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ABSTRACT. A complex space X is 1-convex if it satisfies the conditions that there exists

a locally finite 1-convex open covering of X of order <2, that the dimension of

Hl(X,Oχ) is at most countably infinite and that X is K-separable outside a compact

set.

0. Introduction

It is well-known that the union of two Stein open sets in a complex space
is not necessarily Stein. For example the union of two Stein open sets
{(zι,z 2)eC 2 | |zι | < 1,0< \z2\ < 1} and {(zι,z2) e(C 2 |0< \z\\ < I,|z2 | < 1} in
(C2 is not Stein. Tovar [22] proved that if X is a union of two relatively
compact Stein open sets D\ and Z>2 in a reduced Stein space S such that
dimHl(X,@χ) < +00, then X is also a Stein open set in S (Theorem 3 of
Tovar [22] or Theorem 1.1 of Cho-Shon [4]).

We prove the following theorem which is a generalization of Theorem 3 of
Tovar [22]. It also gives a generalization of Proposition 3.4 of Cho-Shon [4]
on the finite simple chain Stein open covering. In the proof we use the
theorem of Nguyen-Nguyen [20].

Let X be a second countable (not necessarily reduced) complex space. Then
X is l-convex if it satisfies the following three conditions.

i) There exists a locally finite l-convex open covering of X of order <2.
ii) The dimension of Hl(X, Oχ) is at most countably infinite.

\\\) X is K-separable outside a compact set.

We also give a l-convex version of the theorem of Markoe [16] and Suva
[21] on the union of the monotone increasing sequence of Stein open sets. The
results in this paper were announced in the author's articles [1, 2].

1. Preliminaries

Throughout this paper all complex spaces are supposed to be second
countable. Let X be a (not necessarily reduced) complex space. We always
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denote by &χ the complex structure sheaf of X and by Jfx the nilradical of
(9χ. A compact analytic set C in X is said to be the maximal compact analytic
set of X if every nowhere discrete compact analytic set of X is contained in C
and dim* C > 0 for every x e C (cf. Grauert [1 1, p. 339]). A complex space X
is said to be \-convex if X is holomorphically convex and contains the maximal
compact analytic set. This definition is equivalent to the usual one (cf.
Nguyen-Nguyen [20] or Coltoiu [5]).

Every closed complex subspace of a 1 -convex complex space is 1 -convex.
Especially if a complex space X is 1 -convex, then red X is also 1 -convex.
If conversely redA' is 1 -convex, then X is 1 -convex. For the completeness
we give a proof of this fact (Lemma 3 below). Here we remark that there
exists a complex space which are not holomorphically convex and the holomor-
phic reduction of which is holomorphically convex (cf. [6, p. 33]).

LEMMA 1. Let X be a complex space. Assume that red X is l-convex and
that there exists m > 1 such that Jf$ = 0. Then we have that dimHq(X, < )̂ <
H-oo for every coherent analytic sheaf ^ on X and for every q>\.

PROOF. Let q>\. Since Λ ^ ( Λ ^ / Λ + ^ ) = 0, the sheaf Λ /
is (0jr/Λ^)-coherent f°Γ every j > 0 by the extension principle [13,

p. 239]. Since redJT is l-convex, it holds that dimH<*(X,^y/^ly) <
-l-oo for every j > 0 by Theorem V of Narasimhan [19]. The exact sequence
0 -> Jf^y I Jfjf1 Sf -> y/^+lST -> y/^y -> 0 induces the exact sequence
of cohomology groups ---- > Hq(X, ^y/^+ly) -> Hq(X, yjjf^y} -»

Therefore by induction on j it holds that
for every j > 1. Since Jf$ = 0, it holds that

We need the following theorem of Narasimhan (Theorem V of [19]).

LEMMA 2. Let X be a complex space. Then the following three conditions
are equivalent.
1) X is l-convex.
2) dimHq(X, y) < +00 for every coherent analytic sheaf ^ on X and for every

q>L
3) dimHl(X,S) < +00 for every coherent ideal J of &χ.

PROOF. 1) — > 2). Let C be the maximal compact analytic set of
X. There exists a strongly pseudoconvex open set D of X with globally
defined boundary such that C c D cc= X. The argument of the proof of
Theorem V of Narasimhan [19, p. 214] is valid for not necessarily reduced
complex space X. Therefore the natural homomorphism Hq(X,y}->

f} is injective. By theorem I of Narasimhan [19] red/) is l-convex.
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Since D is compact, there exists m > 1 such that Λ ^ = 0. By Lemma 1 it
holds that άimHq(X,y) < dimHq(D,^) < +00 for every q > 1.

2) —> 3) —> 1). The argument of the proof of Theorem V of Narasimhan
[19, p. 215] is valid for not necessarily reduced complex space X. Π

LEMMA 3. Let X be a complex space. If red X is 1-convex, then X is also
l-convex.

PROOF. Let C be the maximal compact analytic set of red X. Let
ψ': redX -* T be the Remmert reduction of red X (cf. [13, p. 221]). Take a
Stein open set E\ of Γ such that ψ'(C) c E\ c c T. Then D\ := ψ'~l(Eι) is
a l-convex open set of red X. Since D\ is compact, there exists m>\ such
that Jf™ — 0 on D\. Therefore D\ as an open set of X is also l-convex by
Lemmas 1 and 2. Let (φ,φ) : (D\,βDί) —> (Γi,0Y l) be the Remmert reduction
of (Dι,βDί), where GDl = βχ\Dl (cf. [13, p. 221] or Wiegmann [24]). Then
P I := φ(C) is a finite set of Y\ and the induced map D\ — C —> Y\ — P\ is
biholomorphic. Let Z be the direct sum of YQ := X - C and Y\. Identifying
such ZG e D\ — C and z\ e Y\ — P\ that φ(z$) = z\, we obtain the quotient space
Y of Z. Then Y is a Hausdorff space and the natural projection p : Z —> Y
is continuous and open. Let Ul :=p(Yi), Pi := pγhUi'- Yi-+Ui and 0, :=
(/>/)* (0r,) for * = 0,1. The map /?z is homeomorphic and (C//, 0, ) is a complex
space for each i = 0,1. The homomorphism ^ induces the isomorphism
# : ^ilt/ont/! -» 0o|tf0nt/, β y t h e gluing lemma [13, p. 10] there exist a
complex structure sheaf &γ of Y and (C-algebra isomorphisms /?/: ^yj^ —> Φί
such that Θ=p0opϊl on ί/0ΠC/ι. (Λ,^.) : (r/,0ιv) -* (ϋi,(Py|^)' is a
biholomorphic map for each / = 0,1. Let ψ : X -+ Y be the continuous map
defined by ι/̂ (x) =/?(*) for x e ΓQ and \j/(x) =p(φ(x)) for x e D i . The map
\l/ : X —> Y is surjective and proper. For every open set W c= Y and for every

there exists a unique keβχ(ψ~l(W)) such that ^|po-i(^nί/0)
 =

a n d fclf-i(/ιr1(»rn^)) = #(Λ(A|Vn^1)) J h e s e l o c a l homomor-
phisms glue together to determine an isomorphism ψ : (9γ —> ψ*(&χ). Then
(ι/̂ , ψ) : (X, &χ) —> (F, (Py) is a holomorphic map. P := ^(C) is a finite set of
Γ. We have that ψ~l(P) = C. The induced map \I/X_CY_P: X - C ^
Y — P is biholomorphic. Using the properties of the map ψ, we can verify
that Y contains no positive dimensional compact analytic set. Since red ψ :
red X-^ red Y is proper and surjective, red Y is Stein by E.73b of [15,
p. 314]. Therefore (Y,0γ) is Stein by 52.19 of [15, p. 236]. Since ψ is
proper, X is holomorphically convex. It follows that X is l-convex. Π

Let X be a complex space and L a compact set of X. Then X is said to
be K-separable outside L if for every x e X — L the analytic set {j e Â  [/](>>) =
[/](x)for every/ e ^(A")} is of dimension 0. Here [/] denotes the valuation
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x *-*fx + niχ,χ £ @x,x/niχ,x = C, x e A". If Â  is K-separable outside L, then
every closed complex subspace Y of X is K-separable outside L Π Y. A
complex space X is l-convex if and only if X is holomorphically convex and
K-separable outside a compact set. A complex space X is K-complete if and
only if X is K-separable outside the empty set 0 (cf. E.51c of [15, p. 225]).

Nguyen-Nguyen [20] obtained the following characterization of the finite
dimensional reduced l-convex complex space.

LEMMA 4. Let X be a reduced complex space of finite dimension. Then X
is l-convex if and only if it satisfies the following three conditions.

i) If the function f e Θχ(X) is not constant on any non-compact irreducible
component of X, then the analytic set {x E X\f(x) = 0} is l-convex.

ii) dimH 1 ^,&χ) < +00.
iii) X is K-separable outside a compact set.

An open covering {/>/},• 6 / °f a complex space X is said to be of order <2
if for all pairwise different three indices ϊb,ιΊ and ι*2 the intersections D^ ΠD/, Π
Dj2 are empty (cf. [17, p. 18]). A finite open covering {A}£lι of a complex
space X is said to be a finite simple chain covering of X if Z>/0 Π Diλ = 0 for
l/o — ίι| > 2 (Definition 3.3 of Cho-Shon [4]). Then every finite simple chain
covering of X is of order <2.

2. l-convex open covering of order ^ 2

LEMMA 5. Let X be a complex space. Assume that there exists a finite 1-
convex open covering of X of order <2. Then it holds that dimHq(X,£f) <
+00 for every coherent analytic sheaf ^ on X and q > 2.

PROOF. There exists a finite l-convex open covering {Di}f=l of X of order
<2. Let Yk := ( J/=ι^ f° r 1 — ̂  — N. By induction on k we prove that
ά\mHq(Yk,ίf) < +00. The case k = 1 is by Lemma 2. Assume that 2 <
k < N. Yk-ι VDk= Yk. Yk_ι Γ(Dk = (jf'* (Dt Π Dk) (disjoint union). We
have the Mayer-Vietoris exact sequence - —» φ ^ ^ - 1 (A ^Dk,^) —>

i,e9*) 0Hq(Dk,&)—>•••. By induction hypothesis
< + 0 0 . Dfc and D/ΠAt are l-convex. By Lemma 2 we

have that dim Hq (Dk, se) < + oo and that dim #*"" l (Dt^ Π D*, £f) < + oo. There-
fore it holds that άxmH*(Yk,£e) <+<x>. Since ^ = 7 ^ , the lemma is
proved. Π

LEMMA 6. Let X be a reduced complex space. Assume that there exist 1-
convex analytic sets X\ and XΊ of X such that X\\^Xι — X and that the
intersection X\Γ\X2 is compact. Then X is \-convex.
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PROOF. Let Λ be the maximal defining ideal of Xv(v = 1,2). Let /. be an
arbitrary coherent ideal of Oχ. Consider the exact sequence of sheaves 0 —>
/ -» ( / M / ) θ ( / / Λ / ) -> //G/i + Λ ) / -> 0. Then we have the exact
sequence of cohomology groups > Γ(X\ ΠX2,(//(S\ + J ^ ) / ) ! ^ ^ ^ ) -»
^ H ^ / ) ^ ^ 1 ^ ^ / / ^ / ) ^ ) ® ^ 1 ^ ^ / / ^ / ) ^ ) - - - - . Since JTV is
l-convex, Hl(Xv,(//^v/)\χv) is finite dimensional by Lemma 2 (v=l.,2).
Since the complex space (X\ Π ^2, (®χ/(J\ + ̂ 2))!^ n*2) *s c o m P a c t

5 ^(^1 Π -Jfc,
0//(^ι+^2)</)|jrι(Ίjr2) *s fi11^6 dimensional by the finiteness theorem of
Cartan-Serre [12, p. 186]. Therefore Hl(X,/} is also finite dimensional. It
follows that X is 1-convex by Lemma 2. Π

LEMMA 7. Let X be a complex space. Assume that the following three
conditions are satisfied.

i) dimH2(X,y) < -hoo for every coherent analytic sheaf £f on X.
ii) dimH^X^x) < -hoo.

iii) X is K-separable outside a compact set L.
Then X is l-convex.

PROOF. First we consider the case when X is reduced and dimT < +00.
We proceed by induction on dim X. The case dim X = 0 is trivial. Assume
that dim X > 1. Take an arbitrary / e QX(X) which is not constant on any
non-compact irreducible component of X. Let A := {x ε X\f(x) = 0}. Let
{Ai}iel be the set of irreducible components of A. Let I' be the set of i e /
such that Ai is a positive dimensional irreducible component of X. I" :=
/ — /'. A' := (J/e// At. A" := \JieΓ, Af. Since every Aj, i e /', is compact
and contained in L, the analytic set A' is compact. For every i e I" it holds
that dimAi = 0 or that dimxAi<dimxX,xeAi. Therefore it holds that
dim A" < dim X. The analytic set A" is K-separable outside LΓlA". We
denote by i(A") the maximal defining ideal of A". ΘA» := (Θx/i(A"))\AII is the
reduced complex structure sheaf of the analytic set A". The exact sequence
0 —* i(A"} —> ΘX —> &χ/i(A"} —» 0 of sheaves induces the exact sequence
of cohomology groups -> Hl(X, Ox) -* H\A", GA*) -» H2(X, i(A"}) ->-••.
Since Hl(X,Gx) and H2(X,i(A")) are finite dimensional, Hλ(A",®A»} is also
finite dimensional. Let ̂  be an arbitrary coherent analytic sheaf on A". Let
1 : A" —> X be the inclusion. Then ι*£f is a coherent analytic sheaf on A" by
the extension principle. Therefore H2(A",£f} = H2(X, ι*£f) is finite dimen-
sional. By induction hypothesis the analytic set A" is l-convex. By Lemma 6
the analytic set A=A'\JA" is l-convex. It follows that X is l-convex by
Lemma 4.

Next we consider the case when X is reduced and dim ̂  = +00. We
have only to prove that X is holomorphically convex. Let {Xi}iej be the set
of irreducible components of X. Let / ' : = {/e I\Xt^L Φ 0}, I" : = / - / ' ,
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X' := (J.eΓXi and X" := (J/e//,Xt. Since /' is finite, the analytic set X1 is
finite dimensional. X' is K-separable outside LftX'. By the same reasoning
developed above we have that dimHl(X, &x>} < -foo and that dimH2(Xf, ^ ) <
-foo for any coherent analytic sheaf y on X'. Therefore X' is 1-convex
by what was shown above. Take an arbitrary / e I". The analytic set Xi is
finite dimensional. By the same reasoning developed above we have that
dimHl(Xi,Ox.} < -foo and that dimH2(Xi,^) < -foo for any coherent analytic
sheaf έ? on Xf. Therefore Xf is 1-convex by what was shown above. Since
XiΓ\L = 0, the analytic set Xi is K-complete. Therefore Xi is Stein. It
follows that X" is Stein by Narasimhan [18]. Let C be the maximal compact
analytic set of X' and φ : X' —> Y' the Remmert reduction of X'. Then
p := φ(C) is a finite set of Y'. Since φ~l(P) = CandCc:L^X- X", there
exists a neighborhood U of P such that φ~l(U) c c X - X". Let Z be the
direct sum of X — C and U. Identifying such z\ e φ~l(U) — C and ZΊ e U — P
that φ(z\) = ZΊ, we obtain the quotient space Y of Z. Let p : Z —> Y be the
natural projection. Since we can verify that Y is Hausdorff, Y has a unique
reduced complex structure such that both p \ X — C -* p(X — C} and p : U —>
/?({/) are biholomorphic. Let ψ : X —> Y be the map defined by ι̂ (.x) = X * )
for c € X - C and ψ(x) = p(φ(χ)) for Λ: e φ~l(U). The map ^ : X -> 7 is a
proper holomorphic surjection. We can also verify that the complex space Y
does not contain any positive dimensional compact analytic set. Let λ : X —» X
be the normalization of X. Since every irreducible component of X is holo-
morphically convex, every connected component of X is holomorphically
convex. Therefore X is holomorphically convex. Since the composition
ψ o λ : X —> Y is proper and surjective, Y is Stein (cf. E.73b of [15, p. 314]).
Since ψ is proper, X is holomorphically convex.

Finally we consider the case when X is not reduced. G := ΘX/^X is the
complex structure sheaf of red X. We have the exact sequence 0 —> jVx —>
(9χ —> G —> 0. By the same reasoning developed above we have that
d\mHl(X,Θ] < -foo and that dim/ί2(Ar,e9

?) < -foo for any coherent analytic
sheaf £f on red A". Therefore red A" is 1-convex by what was shown above.
It follows that X is 1-convex by Lemma 3. Π

THEOREM 8. Let X be a complex space. Assume that the following three
conditions are satisfied.

i) There exists a locally finite 1-convex open covering of X of order <2.
ii) The dimension of Hl(X, (9χ) is at most countably infinite.

iii) X is K-separable outside a compact set.
Then X is \-convex.

PROOF. There exists a locally finite 1-convex open covering {Di}iel of X
of order <2. It holds that άxmHl(X,Oχ) < -foo by Siu's theorem (Pro-
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posizione 7 of Ballico [3] or Theoreme 2 of Jennane [14]). There exists a
compact set L of X such that X is K-separable outside L. Let /' :=
{ i 6 / | A Π L * 0 } , / " : = / - / ' , Γ : = U / e / Ά and Z:=\JJeΓ,Dj9 then we
have YVZ = X and ^ Π Z = |J ( z.y. ) 6 / / χ / w(A Π^/) (disjoint union). Let &
be an arbitrary coherent analytic sheaf on X. We have the Mayer-Vietoris

exact sequence > Hl(YΠZ,y) ^ H2(X,y)-* H2(Y,^) ® H2(Z, ff>) ->
H2(YΓίZ,y) -> •••. Since Π Ί Z i s Stein, ^ ( r Π Z , ^ ) = 0 for every 0 > 1.
Since {Z>7}ye/,, is a Stein open covering of Z of order <2, H2(Z, £f) ^
H2({Dj}jeI,,,&

>) = 0 (cf. [12, p. 35]). Therefore we have an isomorphism
H2(X,&>} ̂ H2(Y,^). Since the set I' is finite, it holds that dimH2(X,&} =
dimH2(Y,£f) < +00 by Lemma 5. It follows that X is 1-convex by
Lemma 7. Π

COROLLARY. Let X be a K-complete complex space. Assume that the
following two conditions are satisfied.
i) There exist two Stein open sets D\ and DΊ of X such that D\ U Z>2 — X>

ii) The dimension of Hl (X, Oχ) is at most countably infinite.
Then X is Stein.

Theorem 8 is a generalization of Theorem 3 of Tovar [22]. It also gives a
generalization of Proposition 3.4 of Cho-Shon [4] on the finite simple chain
Stein open covering by the similar argument in the proof of Lemma 5.

In Theorem 8 we cannot replace the condition ii) by the weaker one
that Hl(X,Θχ] is Hausdorff with its canonical topology. For example let X
be the union of two Stein open sets {(zι,Z2) e (C2| \z\\ < 1,0 < \ZΊ\ < 1} and
{(zι,z2) e (C2|0 < \z\\ < 1, |z2| < 1} in C2. By Lemma 9 of Trapani [23] the
topology of Hl(X,0χ) is Hausdorff. But X is not Stein.

3. Increasing sequence of 1-convex open sets

If A" is a complex space which is the union of monotone increasing
sequence of Stein open sets, then X is not necessarily Stein as is shown by
Fornaess [7, 8, 9] or Fornaess-Stout [10]. Markoe [16] and Suva [21] proved
that a complex space X is Stein if it satisfies the conditions that X is the union
of a monotone increasing sequence of Stein open sets and that the cohomology
module Hl(X,@χ) is Hausdorff with its canonical topology. For the defini-
tion of the canonical topology of the cohomology modules Hq(X,θχ},q > 0,
we refer E.55h of [15, pp. 261-262]. We have the following 1-convex version
of the theorem of Markoe-Silva [16, 21].

THEOREM 9. Let X be a complex space which is the union of a monotone
increasing sequence of l-convex open sets. Assume that the following two condi-
tions are satisfied.
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i) Hl(X,Θχ] is Hausdorff with its canonical topology.
ii) There exists a compact set L of X such that every nowhere discrete compact

analytic set of X is contained in L.
Then X is \-convex.

PROOF. There exists a sequence {DV}™=1 of 1-convex open sets of X such
that Dv c Dv+ι for every v > 1 and that X = (J™=1DV. We may assume that
L c: D\. Let C be the maximal compact analytic set of D\. Then C is also
the maximal compact analytic set of X. By the same method as in the proof
of Lemma 3 we construct a complex space Y and a proper holomorphic
surjection ψ : X —> Y. Then Y contains no positive dimensional compact
analytic set and Ev := ψ(Dv) is an open set of Y for every v > 1. Since the
map ιA/>v,£v

 : A/ —» Ev is proper and surjective, Ev is Stein for every v > 1
(cf. E.73b of [15, p. 314]). Therefore Y is the union of the monotone
increasing sequence {^vl^i of Stein open sets, ψ induces the isomorphisms
ft : Cq({Ev}*=l,(9Y} -+ C«({/) v }^ 1 ,^)a^. . .vJ^{^. . .vJ} ,9 > 0. By the
definition of the product topology and by 55.6 ii) of [15, p. 258] ψq is
continuous for every q > 0. It holds that ψq+l o δ = δ o ψq for every q > 0,
where δ denotes the coboundary operator. Therefore \j/q induces a con-
tinuous isomorphism Hq({Ev}^=l,0Y) ^ Hq({Dv}™=l,Θx} for every q > 0.
Since {EV}™=1 is a Stein open covering of Y, the canonical homomorphism
Hl ({£v}^ι, Oγ) -> Hl (Y, GY) is isomorphic and homeomorphic. On the other
hand the canonical homomorphism Hl({Dv}^^Ox) -* Hl(X, &χ] is injective
and continuous. Therefore we have a continuous injection Hl(Y,0r) —>
Hl(X,&x). Since Hl(X,Gx) is Hausdorff, Hl(Y,0Y) is also Hausdorff. It
follows that Y is Stein by the theorem of Markoe [16] or Suva [21]. Since the
map ψ : X —> Y is proper, X is holomorphically convex. It follows that X is
1-convex. Π

We cannot drop the condition ii) in Theorem 9 above. For example let X
be the direct sum of countably infinite copies of the w-dimensional projective
space PΛ. Then X satisfies the condition i). But X is not 1-convex.

References

[ 1 ] M. Abe, On the limit of an increasing sequence of 1-convex open sets, Proceedings of the

First Korean-Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis,

Pusan, Korea, 10-17 July 1993 (eds. J. Kajiwara, H. Kazama and K. H. Shon), Miura

Bindery, Fukuoka, 1993, pp. 71-75.

[2] M. Abe, On the complex space which admits a 1-convex open covering, Proceedings of

the 5th International Colloquium on Differential Equations, Plovdiv, Bulgaria, August 18-

23, 1994, Vol. 1 (eds. D. Bainov and A. Dishliev), Science Culture Technology Publishing,

Singapore, 1995, pp. 6-15.



On the union of 1-convex open sets 147

[ 3 ] E. Ballico, Finitezza e annullamento di gruppi di coomologia su uno spazio complesso,

Boll. Un. Mat. Ital., (6) 1-B (1982), 131-142.

[4] H. R. Cho and K. H. Shon, Stein-ness of open subsets in complex spaces of finite

dimension, J. Korean Math. Soc., 31 (1994), 131-138.

[ 5 ] M. Coltoiu, Some open problems concerning Stein spaces, Rev. Roum. Math. Pures

Appl., 36 (1991), 225-229.

[6] G. Fischer, Complex analytic geometry, Lecture Notes in Math. 538, Springer, Berlin-

Heidelberg-New York, 1976.

[ 7 ] J. E. Fornaess, An increasing sequence of Stein manifolds whose limit is not Stein, Math.

Ann, 223 (1976), 275-277.

[ 8 ] J. E. Fornaess, 2 dimensional counterexamples to generalizations of the Levi problem,

Math. Ann, 230 (1977), 169-173.

[ 9 ] J. E. Fornaess, A counterexample for the Levi problem for branched Riemann domains over

C", Math. Ann, 234 (1978), 275-277.

[10] J. E. Forneaess and E. L. Stout, Polydiscs in complex manifolds, Math. Ann, 227 (1977),

145-153.

[11] H. Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann, 146

(1962), 331-368.

[12] H. Grauert and R. Remmert, Theory of Stein spaces, Springer, Berlin-Heidelberg-New

York, 1979.

[13] H. Grauert and R. Remmert, Coherent analytic sheaves, Springer, Berlin-Heidelberg-New

York-Tokyo, 1984.

[14] B. Jennane, Probleme de Levi et espaces holomorphiquement separes, Math. Ann, 268

(1984), 305-316.

[15] L. Kaup and B. Kaup, Holomorphic functions of several variables, Walter de Gruyter,

Berlin-New York, 1983.

[16] A. Markoe, Runge families and inductive limits of Stein spaces, Ann. Inst. Fourier, 27

(1977), 117-127.

[17] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.

[18] R. Narasimhan, A note on Stein spaces and their normalizations, Ann. Scuola Norm.

Sup. Pisa, 16 (1962), 327-333.

[19] R. Narasimhan, The Levi problem for complex spaces II, Math. Ann, 146 (1962), 195-216.

[20] V. K. Nguyen and D. S. Nguyen, On some characterizations of 1-convex spaces, Rev.

Roum. Math. Pures Appl, 31 (1986), 237-245.

[21] A. Suva, Rungescher Satz and a condition for Steinness for the limit of an increasing

sequence of Stein spaces, Ann. Inst. Fourier, 28 (1978), 187-200.

[22] L. M. Tovar, Open Stein subsets and domains of holomorphy in complex spaces, Topics

in several complex variables (eds. E. Ramirez de Arellano and D. Sundararaman), Research

Notes in Math. 112, Pitman, Boston-London-Melbourne, 1985, pp. 183-189.

[23] S. Trapani, Inviluppi di olomorfia e gruppi di coomologia di Hausdorff, Rend. Sem. Mat.

Univ. Padova, 75 (1986), 25-37.

[24] K.-W. Wiegmann, Uber Quotienten holomorph-konvexer komplexer Raume, Math. Z , 97

(1967), 251-258.

Oshima National College of Maritime Technology
Komatsu, Oshίma-cho, Oshima-gun, Yamaguchi 742-2193

Japan






