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Eisenstein series on orthogonal groups O(1,m + 1) and O(2,m + 2)
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AsstracT. In this paper we will study two kinds of Eisenstein series: One for the
orthogonal groups of signature (1,m+1), and one for the orthogonal groups of
signature (2,m+2). We give an explicit Fourier expansion by means of Shimura’s
method.

0. Introduction

Let'S be an even integral negative definite symmetric matrix of rank m and
assume that S is maximal. We put

1 1
S1 = S , Sy = S1 ,

G=0(), G =0() and G,=0(S).

Put K) , = G1,, N GLm+2(Z,) and Kz p = G2, N GLm14(Z,). G, the identity
component of the real point of G, acts on X := R"™ x R} (IR} is the set of
positive real numbers) transitively by

g1 - X" = (91<XD)" - j(91,X),
r— S[X]/2
X = X eR™?  (g1e€Gl,,X=(X,r)eX).
1

Ggw, the identity component of the real point of G, acts on
1
D= Z e C"?(8;[Im(Z)] > 0,8,(Yo,Im(Z)) > 0,Yy = [ 0,
1
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transitively by

-S1(2]/2
9-Z"=(9<2>) -J(9,2), Z~ ::( z >ea:'"+4 (9€ Gy, ZeD).
1

We fix a point X = (0, 1) € X and denote by K] , the stabilizer subgroup of
X in G?,oo. Let P, [resp. P,] be a maximal parabolic subgroup of G; [resp.
G] defined by (1.1) [resp. (1.2)]. By the Iwasawa decomposition for Gy 4, each
g1 € Gy 4 is written in the form

ti1(g1) * *
g1 = hi(g1) * ki(g1), t1(g1) € Q},
tl(gl)_l
h1(g1) € Ga, ki(g1) € H Ky,

v< 00

Then the Eisenstein series on Gy 4 is defined by

(0.1) &)= > |uma)*™?,

71€P19\Gi@

which converges absolutely in a right half plane {se C|Res > m/2}.

Let / be a non-negative even integer. We denote by M;(I") the space
of holomorphic automorphic forms on ® of weight / with respect to
I:= GZYQﬂG{w Il,< K2,p- The real analytic Eisenstein series on D of
weight / with respect to I' is defined by

S [Im Z])(Zs—21+m+2)/4 Z

02 B(z.9= (25 0 2) (5, 2)

ve(P@ NI\

which converges absolutely in a right half plane {se C|[Res>m/2+1}. In
particular if />m+2, we can define the holomorphic Eisenstein series
E](Z) = E](Z,l-— m/2 — 1) € M[(F)

In §1 we introduce two kinds of Eisenstein series (0.1) and (0.2).
Applying Shimura’s method, we write the Fourier expansion in terms of adelic
language (Proposition 1.3 and Proposition 1.4).

§2-84 give the local theory to write Fourier expansions in Proposition 1.3
and Proposition 1.4 more explicitly. In §2 we calculate the contribution of
non-archimedean part which commonly appears in two types of Eisenstein
series. The local Hecke algebra which is studied by Sugano [12] plays im-
portant roles to prove the main theorem (Theorem 2.1) in §2. In §3 we
introduce confluent hypergeometric functions and calculate the contribution in
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archimedean part. In various aspects of our argument, we use the properties
of confluent hypergeometric functions studied by Shimura [10]. In §4 we
calculate the contribution which only appears in the type of Eisenstein series
defined by (0.2).

In §5 and §6 we study Eisenstein series on O(1,m+ 1) and O(2,m + 2)
defined by (0.1) and (0.2), respectively. Combining the results in §1-§4, we
write the Fourier expansion of the Eisenstein series explicitly (Theorem 5.2 and
Theorem 6.2). We prove the continuation and the functional equation of the
Eisenstein series without using Langlands’ theory [2].

THEOREM 0.1 (THEOREM 5.4). Let s be a complex number with
Res > m/2. We normalize the Eisenstein series &*(g1,s) by

1 if m is even
&* = &(S; 1)é&(g1,s) - . . ,
(91,5) :=&(S;s + Dé(g1,) {¢(2s+ 1) ifmisodd
where £(S;s) is the (global) standard L-function attached to the constant function
defined by (5.2) and &(s) = n=*/2I(s/2){(s). Then &*(g1,s) has a meromorphic
continuation in s to the whole s-plane and is invariant under s+ —s.

THEOREM (.2 (THEOREM 6.4). Let s be a complex number with
Res>m/2+ 1. We normalize the Eisenstein series Ef(Z,s) by

1 if m is even
E}(Z,s):=P Si;s+ 1)E(Z,s) - e ,
1(2:9) = PSS+ DE(Z,3) {é(2s+1) if m is odd
where Pi(s) is a polynomial in s defined in (3.10). Then E;(Z,s) has a
meromorphic continuation in s to the whole s-plane and is invariant under
S —s.

Although the above assertions have been proved by Langland’s theory, our
proof seems to be new and elementary.

The absolute convergence of (0.2) at s =/—m/2 — 1 is not guaranteed if
I <m+2. However, as in Shimura [11], we obtain the holomorphic Eisenstein
series of smaller weights. Since the Eisenstein series E;(Z,s) is regular at
s=1-m/2—-1 (I>(m+4)/2), we can define E/(Z) := E|(Z,$)|seimj2-1-

THEOREM 0.3 (THEOREM 6.5).
E(Z)e My(IN) for [I>(m+4)/2.

Moreover we give an explicit formula for the Fourier coefficients of
holomorphic Eisenstein series Ej(Z) (Theorem 6.6). By this formula, we verify
that Fourier coefficients of E;(Z) are rational numbers whose denominators are
bounded (Corollary 6.7).
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In §7 we consider the Eisenstein series on O(2,m +2) in the case of
Q-rank 1 to complete our results in this paper.
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on O(2,m + 2) which is the main result in this paper. The author wishes to
express his sincere gratitude to Professor Takashi Sugano for his valuable
advice, guidance and encouragement. The author is much indebted to referee
for his valuable comments and detailed reading of this paper.

NotaTiION. We denote by Z, Q, R and C, respectively, the ring of
integers, the rational number field, the real number field, and the complex
number field. For an associative ring R with an identity element, R* denotes
the group of all invertible elements of R and M,,(R) the ring of all matrices of
size m with coefficients in R. We put GL,(R) = M,,(R)*. If X € M,,(R), 'X
and Tr(X) stand for its transpose and trace. If R is commutative, det(X)
stands for its determinant, and we denote by SL,,(R) the special linear group G
of degree m. For each place v of @, we denote by Q, the v-completion of @,
and by |x|, the module of x for an x € Q. @, [resp. Q] means the adele ring
[resp. the idele group] of @ and for x = (x,) € Q} put |x|, =[], |xs|,- For an
algebraic group G defined over @, we denote by Gg the group of Q-rational
points of G. We abbreviate G, to G,. Let co and f denote the sets of
archimedean primes and non-archimedean primes of @, respectively. We
denote by G4, Gy and G the adelized group of G, the finite part of G4, and
the identity component of G, respectively. Similar notations are used for
an algebra or a vector space. When Q is a symmetric matrix of degree m,
for X and Y in M,,,, we put Q(X,Y) ='XQY and Q[X] ='XQX. We set
e[x] = e?* for xe C. The cardinality of a finite set S is denoted by #S.
The disjoint union of sets Z,,...,Z; is denoted by [];_; Z;. We denote by
d((*)) =1 or 0 according as the condition (x) is satisfied- or not. For a e R,
the symbol [a] denotes the integer not greater than a.

1. Definition of Eisenstein series

Let S € M,,(@Q) be an even integral negative definite symmetric matrix and
assume that S is maximal, namely, S[g~!] is not even integral for any
g€ GL,(Q)NM,,(Z) with detg# +1. We denote by G the orthogonal
group of S and by G [resp. G»] the orthogonal group of

s o) s (5 )]
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Put L=2Z", L*=S"'L, L; =Z™?, and L} =S;!L;. We define maximal
compact subgroups K, := G, N GLny(Z,), Kip:= GipNGLy2(Z,), and
K> p := Gy,p N GLy14(Zy). Let co be the archimedean place of Q.

We recall the action of G?,w on

X:=R" xR} (IR} is the set of positive real numbers)

and the action of G, on

D= {Z e C"?

1
S1 [Im(Z)] >0,85(Y,Im(Z)) >0,Y, = (Om)}

1

r— S[Xx]/2

For X= (X,r)e X, put X := ( X ) e R™2, For g€ Gf,w and
X € X, we define the action ¢g1<{X) € X anld the automorphy factor j(g;,X) € R*
b
’ g1 - X" = (g1<X>)" - j(g1, X).

We fix a point Xy = (0, 1) € X and denote by K the stabilizer subgroup of
Xo in G),. Clearly K)o is a maximal compact subgroup of G}, and
G?,oo/Kl,OO ~ X.
-81[Z]/2
For ZeD, put Z~ := zZ e C™*. For ge G, and Ze D,
1
we define the action g{Z) € D and the automorphy factor J(g,Z) € C* by

g-Z" =(g<Z>)" - J(9,2).

We fix a point Zy = iYy € D and denote by K, ,, the stabilizer subgroup of Z,
in Gg - Clearly K, is a maximal compact subgroup of Ggw and
GY /Ko =D. We abbreviate [[,.,, Ki, to Ky and KioKis to Kia
(i=1,2).
Let P; be a maximal parabolic subgroup of G; defined by

nh % *

(1.1) PI,Q = hy * € GI,Q He Qx,hl € GQ
tr!

and let P, be a maximal parabolic subgroup of G, defined by

(1.2) PZ,Q = h = € Gz‘Q te Qx,h € GI,Q
t_l
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By the Iwasawa decomposition, each g; € Gy 4 is written in the form

ti(g1) * *
g1 = hi(g1) * ki(g1), t1(g1) € @, h1(g1) € Ga, k1(g1) € K, 4,
(g™

and each g € G, 4 is written in the form

tg) = *
g= h(g) * k(g),(g) € Q},h(g) € G1,4,k(g) € K2,
t(g)™"

For se C, we define a function ¢(g;;s) on G 4 by
o(g1;5) = |t1(g1)[%-

For a non-negative even integer /, we define a function fi(g;s) on G, 4 by

fi(g;8) = 11(9) T (k(9) 0> Z0) ",
where || , means the idele norm of ¢t € Q. Then the Eisenstein series on G 4
is defined by
m
(13) s)= Y.  o(nas+%),
nePlie\Gie

which converges absolutely in a right half plane {se C|Res > m/2}. The
Eisenstein series on G, 4 is defined by

(1.4 = Y A(ws+mr),

7ePo\Gr@

which converges absolutely in a right half plane {se C|Res > m/2+1}. We
easily see that

(1.5) E(ng1kr,s) = &(g1,5) (71 € G1,@,91 € G4, k1 € Ky, 4),
(16) Elgr(ygk)s) = E[gr(gas)J(kOO’ZO)—l (y € GZ,Q)Q € GZ,A)k € KZ,A)'
We prepare the following lemma (cf. [12, p29]).

LemMma 1.1.
Gi.4 = GioG) ,Ki,f-

By Lemma 1.1, we easily see that

Gr,a = G2@G3 K2 1.
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Therefore the values of &(g,s) [resp. Ei(g,s)] are determined by the restriction
to G), [resp. G} ,]. We define a discrete subgroup I' of Gj, by

I':=GqNG) Ky
It is easily verified that
(1.7) Grg=Prg-T.
For Z=g{Zy)eD (g€ G} ,), we put
(1.8) E/(Z,5) = EF(4,5)J(9, Z0)'".

Then by (1.7) we have

(25-21+m+2)/4
Sl[ImZ]) Z lJ(}", Z)l—S+I-m/2—1J(y’ Z)—I.

(1.9) E,(z,s)z( =

7€ (szQ n I‘)\I‘

For X € @™ [resp. X € Q™*?%], put

1 —'XS -S[Xx]/2 1
nl(X)= ( 1, X ), r_tl(X)= ( X 1, ) e G
1 -S[x]/2 -'XS 1

1 —'XS;, —8[x]/2
[rCSP-nz(X)=( | ) X )
1

1
flz(X) = ( X | IS ) € G2:| .
=-Si[X]/2 -'X$; 1

We embed G; to G, by
g1 > diag(l,41,1) (91 € Gy).
We obtain the following Bruhat decomposition of G; and G;.
Lemma 1.2. (i)

Gio = Pig [ Prow{m(X)|X e @™}
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(i)

GZQ PgQHPZle{nz(X)|XEQm+2}H PZQWZ n2( XEQ
y
X H Pygwid m| | Om | |m(X)|ye@Q,X € Q™
0
[ 1
w= lm , wp = 4 1m+2 y Wy = lm ,
\1 1 J
1
_/ | 2 (0 1)
w3 = m ’ = 1 0 .

\ 12
We define a character y of the adele ring @, by x =[], x,, Where

%) { e [the fractional part of — x] forxe Q, if v =p,
x) =
e [x] forxe@Q,=Rifv=c0

We notice that y is trivial on Q. Now we normalize a Haar measure
dX =T], dX, on Q7 as

[ an=1 [ ax-
> /"

Then we note that dX,, is the ordinary Lebesgue measure. By the Fourier
expansion of &(n1(X)g1,s) as a function of X € @7, we have

Eg,5) =Y &(91,9),

neq@"

(1.10)
Sion9) = 8000, 9x(-S0r, 1)ax.

By (1.3) and Lemma 1.2(i), we have
m
(1.11) é’,,(gl,s):é(n=0)¢(g1;s+—2—)

+JQM (wnl(X)gl,S+ )( S(n, X))dX .

A



Eisenstein series on orthogonal groups O(1,m+ 1) and O(2,m +2) 15

We assume that g; € G} ,. Since
E(m(X + U)gi,s) = Emi(X)g1,s)  for Ue L,

éy(g1,5) #0 only when ne L*. So we have

(1.12) E(g1,5) =D &(91,9), g1€G,.
nel*

Therefore we obtain the following proposition.

ProrosiTiON 1.3. Let s be a complex number with Res>m/2. For
= diag(t, 1m,17') € G}, and X e R™, we have

E(m(X)g1,5) = Y &(g1,5)e[S(n, X)),
nel*
En(91,5) = t+25(n = 0) + S (1n;5) 57 (m;5),
where

I7(1:8) = [ [ £ (n;9),
p
Foltis) = [ g (X035 + ) (=S (en, X))aX,

Sylwi) = [ o905+ m/202,-S(1, D)ax.

P

In the same way, for ge G}, we have

Elgr(glys) = Z Elg;,(g,s)1
nelL;

(1.13)

Elg;,(g’ 5) = Elgr(n2(X)g,S)X(_Sl (n, X))dX.

JQZ+2 /Qm+2
By Lemma 1.2(i1)) we get

Ef (9,5 = fi(gis+5 +1)8(1 = 0)

* JQ,“ A (X)gis +3 +1)x(=Si(n, X))dx

IQM\QM{Zfl( ()na(X)g;s + 5 5+ 1)

xe@Q

+ 3 Si(uxpm(Nm(X)g;s + % + 1) Yx(=si(n, x))ax
Ye@Q"
xe@Q
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where we put

0
(1.14) u(x) 1= wym (( O )) .

From Lemma 1.2(i), the third term is equal to

Jnge 22 2 A(ommgis + 5 +1) 281 X))ax

m+2\Q’"+ XEQ yleP|Q\qu
= > J N Zfz( (Im(X)ngis+5 7+ )x(—Sl(m,X))dX-
ylePl,Q\Gm Qm+ \Q;’
We note the above series is well-defined (see (4.2), (4.4)).

PrOPOSITION 1.4. Let | be a non-negative even integer and let s be a
complex number with Res>m/2+ 1. For g=diag(t,h,r"') e G}, and X €
R™2, we have

Ef(m(X)g,s) = Y Ef(g,5)elS1(n, X)),
nel;
Ef (9,5) = £°"215(n = 0) + Lo (9,13 9) I (03 5) + 1} (g, 73 9),

where
I Lo g—stm/2+1 _ L -1
oo (9,138) = 1 o Jio (X545 1) el =1 (4™ pt, X)laX,
S) = H Ip(ﬂ;s)a
P

Iy(n;5) = |t (X)) 52 2, (= S1 (m, X)) dX,
QZI+2
m
Lgms)= ), FI(M,M;HEH),
71 €P1g\Giq

Fi(g,m;5) = Zfz u(x)ny(X)g; )x(—Si(n, X))dX

JQm+2 \Qm+2

2. Non-archimedean part

2.1. Results on non-archimedean part Let k be a non-archimedean local field
with characteristic 0 and o its maximal order. We fix a prime element p of k
and denote by p = (p) the maximal ideal of 0. Let x be a character of k trivial
on o and non-trivial on p~!. We normalize the valuation || = ||, of k so that
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lp| =¢q~' where g= #(o/p). Let S be a non-degenerate even integral
symmetric matrix of rank m, where ‘“even integral” means that S = (s;) €
M, (o) and s;€20. Put L=0" and ¥V =k™. Throughout this section we
assume that S is maximal, namely, if M is a lattice containing L such that
18[x]eo for any xe M, then M =L. We denote by L* =S~'L the dual
lattice of L and put

L'={xeL*|iS[x]ep7'}.

Then L' is a lattice contained in Lp~' and L'/L is a vector space over a finite
field o/p. We denote its dimension by d = 4(S). We define the dual lattice of
L/

L":={neV|S(n,X)eoforal X e L'}.

An element 7 € L* is said to be primitive if p~!z is not in L*. We denote by
Lim the set of primitive elements. As is well-known, taking a suitable o-basis
of L, we may assume that

Jy 1
S=8 = So Iy = (1 appears v times),
Jy 1

where Sy is anisotropic and v = v(S) is the Witt index of S. We denote by
ng = no(S) the rank of Sy, so m =2v+ny. Let G be the orthogonal group of
S and put

K = GN GLy(0).

When we need to emphasize the Witt index v, we write v as a suffix; G,, X,, V,,
L, etc. For X eV, we put

1 —XS, —S,[X]/2 1
nv(X) = ( 1no+2V X ),ﬁV(X) = ( X 1n0+2V 0) € GV+1.
1 -S,[x]/2 xS, 1

The main purpose of this section is to calculate the following integral
@) 165155) = | e GOO) (-0, X))aX,

where we write

tv+l(g) * *
g= 0 * * kv+l(g) € Pv+1Kv+1'

0 0 t(g)"
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We put # = p®ng, o € Ly, Since
I(S,n;s) =I(S,hn;s) forany he K,

if v>1 we may assume that

( pzf“O Ov—l
Py | €L, imiBu1=| Bo |, S ismaximal if Sfy] #0,
1 Ov—l
2.2 =<
22) m 0
Onszs2 | if Sir] =0,
1
\
~ _ Sv—l - v—lﬂy—l
where S™ = (—'ﬂv—ls—l — 20 .

For our purpose, we define the local standard L-function of S after [6]:

m-1 , if m:
(2.3) Ly(S;s) = ]13 Co(s+Jj— m/2)Bs(s){ le(xs s) ;f Z: Z‘ézn
where
(1 if =0 or (n,d) = (2,1)
14 g—s+1/2 if (ng,d) = (1,1)
)+ +47) if (no,9) = (2,2)
@4 B =y e if (n0,0) = (3,1)
(1 +gt72)(1 —g=+72)  if (ng,0) = (3,2)
L(1—g~H(1 —g7) if (no,0) = (4,2)

and yg(p) means the Legendre symbol corresponding to

k(\/(— 1ym™=172 det S)/k.

When 7 € L* is anisotropic, we denote by #* the orthogonal complement
of # in V. There exists a maximal even integral symmetric matrix S, of
rank m —1 and ge M,,_1(o) such that S,[g] is a matrix representation of
S|ytngy- If S is anisotropic, any matrix representation of S|,.n,) is a
maximal even integral symmetric matrix. We note that the isomorphic class of
S, (modulo GL,_1(0)) does not depend on the choice of S,. We put

(2.5) Bsy = {q® — ¢**! + g7+ mHD/2 _ glmotm=1)/2} /(g — 1)

where ny = no(S,), &' = 3(Sy).
The following theorem is the main theorem in this section.
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THEOREM 2.1. The function 1(S,n;s) can be continued as a meromorphic
function in s to the whole s-plane and written as follows:
(i)
L Ly(S;s) 1 if m: even
165,09 =T is:5+ 1) { Lo(25)/,(2s+1)  if m: odd.
We put n = p°n, where 1y € Liim is as in (2.2) for v>1.
(ii) If S[n] =0,
1 Ly(S;5)
Lo(s —m/2) Ly(S;s+1)

y 1 if m : even za: q(_s+m/2)l.
(p(28)/Cp(2s+1) ifm:odd ) 15

I(S,n;s) =

(i) If Slr] #0,

_ Ly(Sys+1/2) [ 1 if m : even
Ly(S;s+1) | 1/¢,(2s+1) if m: odd

—-s/2

det S
gsyp(”; S)7

det S,

1(S,n;5)

S[n]

where gs,(1;5) is a polynomial in ¢, q~° invariat under s+ —s. Its explicit
form is given as follows:

(2.6) gsp(m;s)

( (a+l)s _ (—a—1)s _ p—as
q q o —no/2+d 1 — 4 e
B = +0(ng ¢ Liy)g™™/* p— ifv=0,

a
{(tf — g7 Bsy — q1(By ¢ Ly))gUr Y gtk
k=0

a
___(q—s _ q—no/ZﬂS’” _ q:—{—i)—lé(ﬂo ¢ Lg))q(-f——a)s Z q(s+m/2—l)k}
k=0

X ! ifv>1.

\ ¢ -q°

2.2. Proof of Theorem 2.1 In this subsection we give a proof of Theorem
2.1. The first part has been proved by Murase and Sugano (cf. [5, Theorem
1.9]). In the rest of this section we assume that 7 # 0.

When S is anisotropic, the Iwasawa decomposition for 7ip(X)(X € V' — L)

is
Zy' zZy'xs -1 0 0 -1
A(X)=1] 0 l, —-X 0 1, —Z7y'X'XS Zy'X |,
0 0 Zy ) \ -1 ~Zy'xs zZy
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where Zy =1S[X]. Hence for any 7, € L] ,im and a non-negative integer a
we obtain

K8 =1+ | ASIXI (Sl X)X
.
—s—ny /240  ; %
=(1_q"~"_"0/2) 1+q S—ng 1f110€L0
1 it m ¢ 2§

a a—1
x q—as{z q(—2]+a)s+q—no/2+66(’7o ¢L8':) z q(—2]+a—1)s}‘

j=0 j=0

This proves Theorem 2.1 in the case of v =0.

Hereafter we assume that v > 1 and 5y € L}, is as in (2.2). Let g¢;; be
the characteristic function of M;;(0). We often omit the suffix i,j. For
g € G,,1, it is easily seen that

27 ka 01,m(1(0 O 1)g) "™ 2d 1 = Ly (s + m/2) 8011 (9) """,

where d*t is the Haar measure normalized as [, d*t=1.

LEMma 2.2. We write
Mo = )B € L:,prinu (aaﬂ) €D X L:)

Then we have

1(Sum015) = &y (s+7) " 1(S0, (=0 B3,

where

I(So, (~a,—B);s) = 1 +j dx jL AXolx /2y (x(o + So(B, Xo) — 3 So[Xo))).

k—o
m
Proor. We put I, ={, (s-{—E)I(Sv,ryo;s). By (2.7) we note
I, =J dXJ d*te(t(0 0,,,l)ﬁ(X))x(——S(ﬂ,X))|t|s+'"/2.
v kx
[ x| av| ax| ax| a| aepeeexisiewiee)
o1 k-t k Vo k k<No

x g('xy + 1(xy +} So[Xo]))x(ax + So(B, Xo) + y)|f />
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If v> 2, we deform the above expression as follows:

IV=J dx,_1 f dyy_1 J dxj dyj de dXy J dy
o k o072 k-2 k Vo k

x [ ea(epl Xosp(ty)olenn-1)oley)

X @(Xy-1py-1 + XY + t(xy + 1 So[Xo]))x(ex + So(B, Xo) + y) e +"/**!
= J dx J dy J dx J dX, J dy j d*to(tx)p(t XoSo)e(ty)e(ty)
o2 k-2 k Vo k k*No

x o('xy + t(xy + %So[Xo]))x(ax + So(B, Xo) +y)|t|s+m,/2+1

+J de_IJ dyv_IJ dxj dyJ de dXoJ a'yJ
0 k—o ov-2 k-2 k Vo k k*No

x d*t p(tx)p(t X0S0)@(1y)p(tyy—1)@(ty)@(Xy-1¥v—1 + Xy + t(xy + 1 So[X0]))
x x(ox + So(B, Xo) + )|t|"™/*H,

We prove that the second term in the last expression vanishes. Let f(¢) [resp.
z(t)] be the C-valued [resp. k-valued] continuous function on k*. Then we
have

jdxv_l j dyv_lj dxj dyj 4%t p(x)p(1)p(tys1)
0 k—o k k k*No

X @(xy—1yy—1 + txy + 2())x(0x + y) £ (£)

= dxv—lj dyv-lj dx | dy d*tg(tx)p(ty)e(tyv-1)
Jo k—o k—o Jk Jk*No

X @(Xy-1yy-1 + txy + Z(t))x(o?x +»)f(?)

o

= dx,_ dy,_1 J dx dy dxt¢(tx_1y)¢(tx_1)’v—l)
Jo Jk—-o k—o Jk Jk*No

X @(xy-1¥y-1 + ty + 2(tx7"))x(oax + p) f(tx7")

. . .
= | dx,_ dy,_1 J dx | dy j d"t¢(x_1y)¢(tx—1yv_1)
Jo Jk—o k—o Jk 0%

X @(xy-1yv-1 + ¥ + 2(tx "))y (ax + £71y) f(ex7)

r

. dyy—1 L de | dy | d*te(x'y — xx_1p-1)e(x 7 pon)
-0 -0 x

Jk Jo

=| dx,
Jo J

x (¥ + z(tx"))x(ox + 7 (y = xy-13y-1)) f(1x7")
=0.
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This means that I, =1, ; =---=1;. Hence we only have to calulate I;.
similar arguments as above, we get

e[ ax| an| | apeone xSt + bsix)
) Vo k k*No

x x(ax + So(B, Xo) + y)[t*To/*!

By

+ j dxj X, j dy j A1 p(1)p(t XoSo)p(t)9 (e (xy + 1 So[Xo]))
k—o Vo k k*No

x x(ox + So(B, Xo) + y)|rf"/*+!
= J dx J dXy J dy J d*to(t' XoSo)e( y)e(xy + 11 So[Xo])
0 Vo k k*No
X x(So(B, Xo) + t~1y)|e"*/?
+J dx J dXo J dy J d*to(t'(x 1 X0)So)p(tx~1y)
k—o Vo k k*No
x @(t(y + x~ L So[Xo])x(ax + So(B, Xo) + y) |11/ 2+ g mo/ 241
= J dx JV dXy J dy J dxt¢(tthSo)(p(t%So[Xo])x(So(ﬂ, Xo))
o 0 o 0%
H x| an | & areuxseeety - isix)ew)
k—o Vo k k*No
x (o + xSo(B, Xo) — x1So[Xo] + y)|x=1 "0/ 21|y m/241
—14 L dx jV X L dy p(XeS0)o(x~'y — 1 SolXal)o(»)
x 1(x(o + So(B, Xo) — 1 So[Xo]) + y)|x~1[F /2!

=1 [ de | b+ Su(6, X0) — 3 SoloD),

and our lemma is proved.

The function I(Sp,(—a,—p);s) in Lemma 2.2 coincides with the function
I(So, (—a, —p); ¢~*) in the notation of [12, (2.21)] and this function is calculated

explicitly in [12, Proposition 2.14].
any #, € L;‘m.m.
We now consider the general 7.

Therefore we have proved Theorem 2.1 for

LEmMA 2.3.  We assume ny € Ly, and S[no] = 0. Then for any a > 0, we
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have

a
(2.8) I(Sy,p°n9; 5) = I1(S,,70; 5) Z q(—s+m/2-1)1.
=0

Proor. Using (2.7), we have

Cp(s+%)1(sv,p“no;s) =J dxj dXJ dyJ d*tp(t'XS,-1)p(1y)
0 Vi1 k k*No

x p(t(xy + 1 Sy-1 [ X)) (pop) e+

+J de a'XJ dyJ d*to(tx)
k—o Vi1 k k*No

y—

x @(t'XS,-1)p(1y)p(t(xy + 1 Sy_1 [X]))x(p°y) |1+

=J de dXJ dyj d*te(t'XS,-1)e(»)
0 Vi1 k k*No

y—

x @(xy + t1S, 1 [X)x(pt~1y) g /2!

+J de dXJ dyJ d*to(tx1'XS,_1)
k—o V-1 k k*No

y—

X ¢(tx_l}’)(0(t(y + %1 %Sv—l [X]))X(pay)lx—l |s+m/2lt|s+m/2

a
= Z JV ¢(pl tXSv—l)(o(pl%Sv_l [X])q(—s—m/2+1)IdX
1‘0 v

-1

S w] ar|a] e
; k—o Vv k Y plox

x p(p'x " XS,_1)e(p'x')e(P (¥ + x71 185,21 [X]))

x X(pay)|x——l|s+m/2 m/2)l

g

= Z J o('XS, _l)q)(p_l%SV_I[X])q(~S+m/2—1)1dX
1=0 Vv—l

a

+Z J a'xj dXJ dy o(p''XS,_1)
I=0 Jk—o Vi-1 k

x p(p'x7(y — x1 8,21 [X]))0(P'y)

x X(Pa(y - g Sy-1 [X])) |x-1|5—m/2+2q(—s—m/2)1
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=3 g [ s, (K € phax
1=0 Ly

a
+ Z J dx J dx J dy o('XS,-1)
1=0 Jk-o Vi 0

x p(x~'y — p7x1 8,1 [X])0(»)

x X(pa—ly —-pa_ZIX%Sv_l [X])lx—l Is—m/2+2q(—s+m/2—1)l

=g o, e

1=0

+J dx J dx 6(1S,-1[X] e p')
—0 L,

x X(_PH_ZIX%Sv—l [X])Ix_l ’s—m/2+2}

— Z q (—s+m/2-1)] Z J lSv—l[X] Gplox)dX

1=0
x {1 +J |x—l,s—m/2+21(pa—21+).)dx}
0

s=2+1) a

_ ( 2 —s+m/2-1)I
( m )Zq

X J 03 S,-1[X] € pPo*)dX.
1

To emphasize the primitivity we put
G+ R)e(-3+2
SR =

Then our task is to prove

) I(Sv,Pa'lo;S)-

a

(2.9) J.=Jo Z g(=stm/2-11,
=0
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For this purose, we introduce some notations:

S-1(T) := f: T*v,_1(A), vy-1(4) == J 0(38,-1[X] e pt)dX.
A=0

v—1
Using the above notations, we express J, as follows:

a

J, = Z{q(—s+m/2—l)1 ;(UV—I(A) _ Uv—l(/q- + 1))(1 _ q(—s+m/2—1)(a—21+).+1))}

1=0
= Z{q(—s+m/2—l)l{z Uv—l('l) — Z v‘,_l(l + 1)}
1=0 A=l A=l
o0
_ q(—s+m/2—l)(a-l+1) Z Uyi (/l)q(—s+m/2—l)l
A=l
0
+ q(—s+m/2—1)(a—l) Z v-1(A+ 1) q(—s+m/2—l)(/1+1)}
A=l

a -1
— 2:{q(—s+m/2—l)lvv_1 (l) + Z q(—s+m/2—1)(zz—I-+-A+l)vv—1 (,1)
=0 A=0

_ q(—s+m/2—1)(a—1+1)f;'_l (q—s+m/2—1)

I
_ Z q(—s+m/2—1)(a—l+l) ) (/1) + q(—s+m/2—1)(a—1)fv_l (q—s+m/2—1) }
A=0

— {(1 _ q—s+m/2—l)ﬂ_l(q—s+m/2—l) Ea: q(—s+m/2—1)(a—1) + Za: q(—s+m/2—l)lvv_l (l)

1=0 =0
a I-1 a 1
+ q(—s+m/2—l)(a—1+/1—+—l)vv_1 (/1) _ q(—s+m/2—l)(a—l+l) Uy_1 (,1)}
m -1 - - - —s+m/2—
=Cp(5‘—5+1) ﬁ'—l(q s+m/2 l)zq( +m/2 l)l.
=0
This means that J, satisfies (2.9) |

By Lemma 2.2, [12, Proposition 2.14], and Lemma 2.3, we obtain Theorem
2.1(ii).

In the rest of this section we assume 7, is anisotropic. To emphasize the
conductor and the primitivity we write 7, =7, and write 7,, = p°n;,. Let
#H, = #(G,,K,) be the Hecke algebra of the pair (G,,K,) i.e.

H# (G, K,) := A,
={f: Gy = C|f(mguz) = f(g) for uy,u; € K,,supp f is compact}.
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For 0 <r <v, we put
Cs,r) = diag(Plra 1no+2v——2np_1 lr)a
CY = K,c"K, = {g € G| p - g € Myy42(0), rank,, (pg) = r}.

It is well known that %, is generated by c) (0 <r<v)(cf. [8]). For the sake
of simplicity, we put

A= q_("°+2V){C521 — (@ -1+ f-11+4" - 9)},
B=g el —{(@ - 1)@ +4) + (@ — D@11+ 46" )
Fhoo11(@¥ 12 + 67 = )} — @0 (gfyorn + ¢ — 1) A + 247 @),

where f,; = ¢/~ (@7 = 1)(¢"7*™ + ¢°)/(¢/ — 1) (cf. [12, (7.44))).
For te k* and g€ G,, we put

t
(t)g) = ( g ) € Gv+l-
t—l

Let # € L} be anisotropic. We denote by "/V,,f the space of functions W on
Gy satisfying

(2.10) W (n,(X) (1, B)gu) = x(S,(n, X)) W (9)

for any X e V,, ue K,;; and A€ G, such that hin = h. The Hecke algebra
H,4+1 acts on "///,,y by

W x 4(g) = j Wawdu Ydu  (p € Hopr, W e W),

v+1

where we normalize the measure so that the volume of K,y is 1. It is easily
seen that

®,(g) := jV Ity (7 (X)) [/ (=S, (1, X))dX

belongs to Wf. For f >0 and a € Z, we put
P = ¢ﬂo,o((pf+a7 Mf )) = q(s—no/Z—v)(f+a)¢”m(1),

where

Note that &, =0 for negative a.
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LeEMMA 2.4. Let n € L} be anisotropic. The function ®, is a simultaneous
eigen function of #,1. The eigenvalue A(A) [resp. A(B)] of A [resp. B) is
l(A) = q—(no+2v){q—s+no/2+v + q.v+no/2+v + qm,+2v—1 + q}
[resp. X(B) — q—(2n0+4v—1){(q—s+no/2+v + qs+no/2+1')(q2v+no—2 + 1) + 2qno+2v—l }]

Proor. Let ¢e€ H#11(Gy11,K,+1) be the characteristic function on
K,11hKy11 = 11;c; hiKvy1. Then we have easily

Py x 4(g) = (Z |’v+l(hi)|s+no/2+v> D,(9) for g € Gy41.
iel

Hence we know @&, is the simultaneous eigen function of 5#,,,. Using the

explicit coset decomposotion of C‘(,:L)l and Cﬁ)l (cf. [12, Lemma 7.1]), we have

eigenvalues A(4) and A(B). [ ]
PROPOSITION 2.5. Let n € L} be anisotropic. The function ®, satisfies the

Sfollowing additional relation:

a
(2.11) Q’Im = Z q(_x+m/2_1)t¢'l/+a—:,o fora, f>0.
t=0

ProOF.. Lemma 2.4 implies
0=(@*{(¢"' +q ™ A+ (472 + ¢ @+ D) - B}, .
Hence, by [12, Corollary 7.6], we have

2.12)
0=g ®*2 Vg, ) o1 — qPra — DBro1,a+ D1}

+ g @t g(Dy_y 041 — Brra) — 4(Pra — Prit,a-1)

+ (Pfa-1 — Pri1,0-2) — qz(¢f—1,a+2 - ¢f,a+l)}

+q Y Pfar1 — Bri1a— ¢ (Pra — Pry1,a-1)}

+3(f = 0){(g"'Bs, 5 + P){a" @D (qBg o — qD1,a-1)

— @ P ar1 + FP1,a) + gV (qPo o — qPya—1 — Po,a-1 + Pi1,a-2)}
+ g~ (g, — g By 411) + g PV (gD 4 — B a1)}

+0(f = Dp, {g~ "+ (q®o,a11 — P10 — ¢ Po,as2 + T P1,av1)}

+q D (g 411 — qP1,a — Po,a + Proa1)}

+6(a=f =0){—g @+ N(g~ B . +p,)aWoo}

+d(a = 0)g~ M+ g,
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where we put p, =¢°~'6 (n¢ L;). Using (2.12), we obtain

(Do) — Pro=q '®op  for (f,a) =(0,0)
Doy — Py, =q 2Py for (f,a) =(0,1)
D —Dro=q ' for (f,a)=(1,0)
Doz — D1y =q Doy  for (f,a) =(0,2)
Dy — Dy =q 2Py for (f,a)=(1,1)
({ D21 — D30 =q ' Dyp for (f,a) = (2,0).

(2.13) q

We assume that the following equations are valid for 3 </ < L:
(2.14) By 1on — Prtt,i-n-1 = § "Dy 0 O0O<n<li-1).

Then we can prove that (2.14) is valid for /=L +1 in the same way as
(2.13). By the induction on / we have proved the following relation:

(Df,a — ¢f+1,a-l = q~a¢ﬁ0 for a,f > 0.
Note that this relation is equivalent to
a
by, = Z g Dria—tp- fora, f > 0. [ ]
=0

By Lemma 2.2, [12, Proposition 2.14], and Proposition 2.5, we obtain Theorem
2.1(iii) in the case of v>1. Therefore we have proved Theorem 2.1 com-
pletely.

ReMARK. The following proposition gives another proof of Theorem 2.1
(iii) in the case of v>1 and N € Ljim-

PROPOSITION 2.6.

()

(f+l)s _ ,—(f+1)s fs _ ,—fs
)4 q - q q
o = 4 fs{ —q " Bs,

¢-q° e =g

(
— 5By e Ly)d

Vs _ g-(/-1)s
¢ —q° }qb”"”

ProorF. By Lemma 2.4 and [12, Corollary 7.8], we have

MA)Pro = Brir0+{g" +q D1 +6(f =0)g"'Bs, )} Pro
+q "1+ 5(f = 1)p,) P10 for £ >0.
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Since @y, = g~ /2U+Ip, | we obtain

¢'7_/+l,0 = (1 + qu - q—S—no/Za(f = 0)ﬂs,,n)¢7lf,o - q—zs{l +5(f = l)pﬂ}¢ﬂ/_1,o’

This recurrence formula can be easily solved. ||

3. Archimedean part

3.1. Hypergeometric functions In this subsection, we summarize some prop-
erties of hypergeometric functions studied in Shimura [10]. We put

2 = {X e R™2|S;[X] > 0, 81(X, Yp) > 0}.
For he R™? and g e 2, we define the eigenvalues of h relative to g by the
roots of the quadratic equation

£ — Si(h,g)t + S1[A]S1[g]/4 = 0.

Notice that the above quadratic equation has only real roots, since signature of
Si is (1,m+1). We then put (cf [10, (4.1)])

( 0+ (h,g) = the product of all positive eigenvalues of 4 relative to g,
o_(h,g) = 6:+((—h),9),
o(h,g) = 6+(h,9)0-(h,9),

7(h, g) = the sum of all absolute values of nonzero eigenvalues of A
(3.1) ﬁ relative to g,

u(h, g) = the smallest absolute value of nonzero eigenvalues of A
relative to g if A # O; u(h,g) =1if h=0

A(h,g) = the largest absolute value of nonzero eigenvalues of A
relative to g if h # O; u(h,g) = 1if h=0.

We write u(h) = u(h, Yo) and A(h) = A(h, Yp). Set
62) camnp=|  @ShDIGSIX +i-g) " GSX —i-g)Pdx

for (g,h) € 2 x R™? and (a,f) € €2. In [10], Shimura studied a function
w(g, h;a, B) defined for (g,h,a,f) € Z x R™? x €* which is holomorphic in
(o, f) and satisfies
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(33) &g h;0,B) = |det S| /22 e Femi2;26-2ug, [g) P2 4y (Omg, by o, )
(2722 I ()™ T (o~ m/2) ™| Si RS [g]* ™"
if S1[4] > 0,S81(Yo,h) > 0,

2322 (B)7 T (B~ m/2) 7 |Si (S g
if S [h] >0, Sl(Yo,h) <0,

bam 32t bom A (@)U (B) 76 ()", g

if S1[h] <0,
X§ 2etm/23pa=m/24 P (o 4 B — m)2 — 1) ()"

x T(B) "' (e —m/2)7"|Si(h,g)" ™" if Si[h] =0, Si(h, Yo) > 0,
2W4m/ 23 gf-m/2 Py 4 B —m/2 — 1) (@)~ T(B)"

x F'(a—m/2)7!|S1(h, @)™ if Si[] =0, S1(h, Yo) < 0,
2822 (a4 B —m/2 — 1) (a+f —m—1)(@)~' 1(B)~"

x [(a—m/2)~'r(B—m/2)™" ifh=0.

\

The following theorem is one of the main results of [10].
Lemma 3.1 (Shimura [10] Theorem 4.1). The function w satisfies

) _ [o(g,hm/2+1—-B,m/2+1~a) if h=0o0rSi[h] #0,
(34) “’(g’h’“’ﬂ)_{w(g,h;m+1—ﬁ,m+1—a) if S1[4] = 0.

If (x,B) stays in a compact subset T of C2, then
3.5) o (g, h; @, B)| < Ae™*®O2(1 + u(h, g)~F),
where A and B are positive constants depending only on T and S;.

We denote by W, ,(z) the classical Whittaker function

Z€e—%/2 © £\ Hte—1/2
— pu—Kk—1/2 —t i
(3.6) Wieu(2) Ta+ri2=x) Jo t e (1 + z) dt

(Re(u+1/2 —Kk) > 0,|argz| < n),

which is continued to the whole €2 as a holomorphic function in (x, ) and
satisfies W, , = Wy_,. By [10, (4.29)] if he R™? and Si[h] =0 we have

(B.7)  wlg, ke f) = 2732281, g)| PV  Wiaepy 2,0t p-1)/2(1S1 (B, 9)]).-

The following lemma is well-known (cf. [10]).
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LeEMMA 3.2. The function Wy, satisfies
|z7* W, u(2)| < Ae™ (1 4 z7B) forz > 0,
if (x, p) stays in a compact subset T of C2, where A and B are positive constants

depending only on T.

3.2. Calculation of £,(t,7;s) As is well-known, taking a suitable R-basis of
R”, we may assume that

S = diag(—2aj ... — 2ap), a;>00<i<m).

We assume that ¢ >0, n e L* and Res > m/2. We calculate

(3.8) I (t,1;5) = 17472 Lm |1 (3 (X)) [ e[S (tn, X)X .

ProprosITION 3.3. Let s be a complex number with Res>m/2. For
t >0, we have the followings:
(i) When n =0, we have
I'(s)

. q) — g5tm/2 -1/2 mi2 L \8)
In(t,0;8) =t |det S|7/“(2n) Torm)
(ii) When 0 #£ne L*, we have

12 2(2s+2m—1)/471.s+m/2’s—1/2IS['I”(Z.\‘—I)M
TG+ m/2)

Ieo (8,75 5) = |det S|~ Wo,s(8mt4/|3 Slll)-

PROOF. Since £, (t,7;5) = I (t,hn;s) for he G2, we may assume that

_ Om—l
n a’;l/an )

where we put N, =,/|1S[y]]. To obtain an explicit description of
|t1(A,(X))*™2, we take a decomposition

()
ﬁl(X) = nl(X') h K e Py Kl,0-

yr— 1

For Xy = (0,;,1), we have

yl
J(Ar(x),Xo) = 1 — 3 S[X], j(nl(X’)( h I)k',Xo) =y~ 1K', Xo).
¥
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Since j(k',Xo)? = 1, we obtain

VI=(1-3s@x)~.
Therefore we have

I (t,1;8) = t75+m/2 J 1- %S[X])“s"m/ze[wS(n, X)|dx
R”

S

~12
— 5tm/2|det 5’ J J 1+ ||x”2 + xz)—S—m/Ze[—ZtN,,x]dde,
]Rm—l R

where we put [|x|| = (‘xx)!/2.

We assume that 7 =0. Making use of the formula

I'(s)

2\—s—m/2 — /2
[ 1+ Iy = e T

we get the first assertion of our proposition.
We assume that # #0. By the change of polar coordinates

(3.9) Jw Jm(l + |1 + x2) " ™2 e[ 2N, x]dx dx
=Qp2- LR J:)(l + X2 + )22 dre[— 2N, x]dx
=Qm_2 J:(l 4+ P) T m=2 gy L{(l + x2) 71 2e[— 2t N, x]dx
=210y - J:(l + )2 =32 gy L((l + x3) 1P~ 2Ny ] dx

_ m-np L(s+1/2) —s—1/2;
=n TGtmp) Jm(l + x?) e[—2tN,x]dx,

where Q,,_» is the volume of the m — 2 dimensional unit sphere. As is well-
known, the last integral in (3.9) becomes as follows (cf. [9], [10]):

5-1/295-1/25+1/2 N's’—l/2

I'(s+1/2) Wos(8ntN,). W

J (14 x2) V224N, x]dx =
R

3.3. Calculation of I ,(g,7;s) In this section we assume that / is a non-
negative even integer, Res > m/2 + 1 and g = diag(t,h,1') € G} ,. We calcu-
late the integral

Lo (g, 73 8) = £~5+m/2H1 J i (ﬁz(X ); s+ % + l)e[—Sl (h'nt, X))dX.
R™t
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For this purpose, we introduce several polynomials in s
Pi(s) = P{Y ()P (s),
" 1/2-1
Pt (s) = 25+ m+2)/4+)),
6.10) 170 = [T @+ m+2/a+)
1/2-1
PO@s) = [[ (2s—m+2)/4+))
j=0
and we put
( Pi(—s) - Py(s)”"! ifn=0
(-1)7P7(=s) - Pi(s)™ if Silr] = 0,81(7, Yo) > 0
() (o)1 ;
Pi(—s)- P (s if Si[y] =0,81(y, Yo) <O
(A1) O (s) = | ( _)1 1 (8) ' [7] (1, Yo)
P[(S) if $1 [77] >0, (I], Yo) >0
P[(-S) if S [I]] > 0,57, Yo) <0
CDPP (=) P97 i Sif] < 0.

The next proposition is the main result in this subsection.

ProrosITION 3.4. Let | be a non-negative even integer and let s be
complex number with Res >m/2+ 1. For

g = diag(t,h,t 1) € G;{w and hYpt=Y,
we have the following.
(i) Ifn=0,
(g, 0;5) = |det S |*1/22(—6s+m+6)/47tm/2+2 S [Y](—2s+m+2)/4

I'(s)I'(s—m/2)
((2s+m+2)/4)°T((2s —m+2)/4)*

X Qins) -

(ii) If neL; and Si[n] =0,
Sl [Y] (—2s+m+2)/4
I(s)
T((2s+m+2)/4)2T((2s — m + 2)/4)*
X Waip2,25-my/a(4|S1(Y, 1)) = S1(n, Yo) 2 0.

Lo (g, 7;5) = |det §;|~1/22-st1p(2stm+6)/4 (

X Qiy(s)

33
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(i) If n € L} and Si[n] > 0,

Il,oo(g,ﬂ;S) — Idet Si I—1/22(_2’+3mi41+10)/4n"i’+lS1[Y]il/zsl ['I](Zr-m:tZI-—Z)/4

1
X Qiy(s) I'((2s+m+2)/4)r'((2s—m+2)/4)

x w2nY,2n;(2s+m+21+2)/4,(2s+m—21+2)/4) : Si(ny, Yo) 20
(ivy If neL} and Si|n] <O,

L1 (9,75 9)
= [det §[7/22 2SO (Y] 1) %, (Y, m) 6 (Y, )

1
X Q1a(s) (25 +m+2)/4)?

X w(2nY,2n;(2s +m+21+2)/4,(2s + m — 21+ 2)/4).

Notice that

F<2s+m+2l+2) =P§+)(s)r(2s+;"+2),

F(2s+m—21+2) (=7 (2s+m+2>
4 P§—)(—s) 4 !

r 2s—m+2l+2 =P§_)(S)F 2s—m+2 ’
4 4

I_,(Zs—m—21+2) (=) F(Zs-m-l—Z)
4 P (=s) 4 /)

Hence Proposition 3.4 follows from the next Lemma, (3.3) and (3.7).

LemMmA 3.5. Notation being as above,

cm 2s+m+214+2 2s+m—21+2
T (97155) = (AS1[) " “’/“f(Y on; )

4 ’ 4

Proor. By means of the similar method in the proof of Proposition 3.3,
comparing the automorphy factor of 7;(X) and the Iwasawa decomposition of
Ay (X), we get

—181[X] = iS1(X, Yo) = too(fi2(X)) "I (koo (i2(X)), Zo)-
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Since |J (ko (fi2(X)), Zo)| =1, we have

(3.12) tw (X)) = {(=1+151[X])* + (S1(X, Yo))*} 2,

(3.13)  J(ko(R2(X)), Zo)™
= {(~1+181[X])* + (S1(X, Yo))'Y A (-1 +181[X] + iSi (X, Yo)) .

By (3.12) and (3.13) we obtain
fieo (ﬁz(X);s +3+ 1)

= too (A (X)) ™ J (koo (72( X)), Zo) ™
=@Si[x+ iYo])<‘2‘-M—2I—2)/4(% S1[X — i¥]) 2 mE-2/4,

Since t = (18;[Y])"/? and Y = hY,t, we have
2

I Jiwo (ﬁz(X);s + % + 1)e[—S1 (h~'nt, X))dX
]Rm+2

2s+m+21+2 2s+m—21+2)

— @sirye (v, R 22 B

4. Calculation of (g, 7; s)

In this section we assume that / is a non-negative even integer, Re s >

m/2+1 and
t
g= h €Gy),, hYor=Y.
t_l

I(g,m;8) = Z Fz(ylg,m;s4~§+ 1),

Let us calculate

7 €Pio\Gie
where
Fig,9) = [ > fiu(x)ma(X)g; s)x(=Si (1, X))dX,
Q’"+2\Q';+2 er

and u(x) is defined in (1.14). We fix a y e€Pig\Gio and write
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a
ny = (B) . Since
X0 X0
u(x)ny (( X >) = n1(Xo)n (( 0 )) u(x + zp),
20 0

1) ﬂ@wwmw%=ﬂ6=®ﬂ3=mj Fiu(x)y1g; 9)x(ax)dx.

A

we have

Therefore we know that Ij(g,#7;s) # 0 only when # € L} and Si[y] =0. The
following proposition is the main result in this section.

PROPOSITION 4.1. Let the notation be the same as above. Let ne L] be
isotropic.

(i) Ifn=0,

2 PO(=s)  Es+m)2)

P§+)(S) E(s+m/2+1) x &(h,s).

1;(9,0;5) = 3851[Y))

(ii) When n #0, we take a positive integer A so that A~'n is primitive in
L}. Then we have

I(g,m;5) = GSI[Y) P s (v, )| 2D/
x E(s+m/2+ 1) Gy m/a(A)
y { (—1)1/2P§+)(s)—l Wi, 254m)/a(4n|S1(Y, 7)) if S1(Yo,n) > 0}

P\ (—s) W_1/2,25+m)4(47|S1(Y, 7)) if S1(Yo,n) <0

where a5(4) =3, r’.
Proor. Since J(ki(y1h),Zo) =1 and

—xSo[Y]/2
(4.2) u(x)n1(Y) = ni(—xY)ny (( Y )) u(x),
0

we have

(4.3) [iu(x)ng;5) = filu(x) diag(t, 11 (y1h), L, t1(9yh) ', 07)s ).
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(i) By (4.1), (4.3) and
(44) u(x) diag(t7 h (ylh)’ 1"“ 5] (ylh)_l, t_l)

i - ti(yh
= dlag(tl (ylh), L, lm’ t_la h (ylh) 1)“( 1(};1 ) x))

we have

s+m t h
Q4

71 €Pig\Giq

= 3 JaG | (s 5 1)

71 €P1o\Gi

= 18(h,s) JQ fi(u(oss +5+1)ax.

We now calculate the local integral. First we consider the non-archimedean
part. Since

@s) ((l) _lx)=<x(;l _x1>(xi1 _01) for x # 0,

we get

J |tp(u(x))|;+m/2+l dx =1 +J Ix—1|s+m/2+1dx
@ Q-7
__Llstm/2)
G(s+m/2+1)

Second we consider the archimedean part. By means of similar method in the
proof of Proposition 3.3, comparing the automorphy factor of u(x) and its
Iwasawa decomposition, we get

X4 1 = 1o ((x)) ™1 (Koo (u(x)), Zo).

Because of |J(ko(u(x)),Zp)| = 1, we have

fio (u(x); s+ % + 1) = too (u(x))" ™2 I (koo (u(x)), Zo) ™
j)(~2s-m-21-2)/4

= (x+i _ j)(2s-mr2i-)/4,

(x

Hence we get
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LR i (u(x);s+%+ l)dx _ Jm(x+ i) (2om2=2)/8 (2o 2=2)/4 g

P (=s)  I(s+m/2)
P(s) T((2s+m+2)/4)>

— 2—s—m/2+ln

Therefore we know
P (=s)  I(s+m)2)
P(s) I((2s+m+2)/4)

y {p(s+m/2)
{p(s+m/2+1)

I)(g,0;s) = ©27s"m/2+1g
x &(h,s).

(i) There exists a y; € P1,g\G1,¢ uniquely such that

A
nn = (Om), A#0.
0

We take p; so that A = 1. Therefore we only have to calculate the following
integral (cf. (4.1)):

I'(g,m;5) = Fi(719, 117 9)
m
= J fl(u(x)ylg; s+ 5 + l)x(—x)dx.
Q4

First we consider the non-archimedean parts. When we write

n(y)  * *
V= ﬂl(yl) * kl,p ePl,pl(l,p,
t(n)™
tl(yl)_l
we obtain 0, =kipn. We put a=ord,(4). Since the p~%k; pn is
0
primitive in L] p there exists a Ag eZI’,‘ such that ¢ (yl)_1 =p°l. By (4.3),

(4.4) and (4.5), we have

j Ity (X)) 52 g (—x)dx

P

= () 5/ jQ lu(t1 (1) %) 724y, (—p% 11 (9) Ao x)dx

P

= () ? jQ lu(x) 5T/ x, (—p®Aox)dx

P
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= () 2{1 + j |x g 2+l)(,,(—p“lox)a'X}

P ZF

_ lp_a|;+m/z(1 _ p—s—m/2—1 ) Xa: p(—s—m/Z)t
=0

— (1 _p—s—m/Z—l) p(s+m/2)t‘

Next we consider the archimedean part. Since the (m + 2)-th component of
Val Y is

0
t(yl Y) (Om) = Sl(yl Ya yl”) = SI(Y’ ’7)’
1

we have

J(u(x)719, Zo) = ' (x +iS1(Y, 7))

= too (u(x)719) " T (koo (u(x)719), Zo)-
We know that

m
Ai(nomgss+3 +1)
= 1o (u(x)719)"™ T (koo (u(x)719), Zo) ™
_ ts+m/2+1(x +iSy(Y, ”))(—Zs—m—Zl—Z)/4(x — i8Sy (Y, ”))(—B—m+21—2)/4
and we get
m
J Jio (“(x)719; s+5+ l)e[—x]dx
R

= /2 JR (x + i1 (Y, 7)) T2/ (5 _ iS) (Y, 7)) "B 2-D/46[—x]dx.
Therefore we obtain
I'(g,m;5) = GSIYD P (s + m/2 + 1) 0y mpa(4)
x LR(x +i81 (¥, 7)) B 2D xSy (Y, 9)) TE D A _x)dx.

As is well-known (cf. [10]), the last integral becomes

25+m+2)/4 1S1(Y, ”)l(—lf—m—Z)/4
Ir'(2s+m+2+20)/4)

(
T
(1) W1y, 2smy(4n]S1(Y, 7))

for $1(Y,n) 20

and this proves the assertion (ii). |
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5. Fisenstein series on O(1,m + 1)

5.1. Standard L-function Let Q be a maximal even integral symmetric matrix
of rank m. We assume that Q < 0 or assume that sinature of Q is (I,m —1)
(m=2). Then we define the (global) standard L-function attached to the
constant function by

L@s) =[] L(Gs)  (se®),
p<oo

where L,(Q;s) is the local standard L-function normalized in (2.3). As the
gamma factor, we take

1 if Q<0
(5.1) Lo(@5s):=9q I'((2s—m+2)/4

27m/2H241/2 (Ig(izsfm)/lg ) i sgn(Q) = (L,m—1)
{ [det 9|7?  ifmis even

[2-1det Q*/? if m is odd.

Im/2)
x (2m) " T s —j+m/2)
j=1

Put
(5.2) ¢(Q59) := Lo (@5 5) Ly (Q58)  (cf. [6]).

The function £(Q;s) is continued to € as a meromorphic function of s and
invariant under s+— 1 —s. If m =1, £(Q;s) is entire and does not vanish at
s=1/2. If m>2, £Q;s) is holomorphic except for possible poles at
s=m/2—k(0<k<m-—1,keZ) and has a simple pole at s =m/2.

Let 7 be the orthogonal complement of #e L* in V. There exists a
maximal even integral symmetric matrix Q, of rank m — 1 and g € M,,_(Z)
such that Q,[g] is a matrix representation of Q|,.n;).- We note that the
determinant of Q, does not depend on the choice of Q,.

5.2. [Kisenstein series Since .#,(n;5) = I(S,#;s) in the notation of (2.1), we
can write $r(#;s) explicitly (cf. Theorem 2.1).

PROPOSITION 5.1. Let s be a complex number with Re s > m/2.

(1)

I'(s+m/2) &(S;s)
I'(s) E(S;s+1)

F7(0;5) = |det S|'/2(2m) ™/ %29 i misodd

{ 1 if m is even
£(2s+1)
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(ii) If0#nel,
ff(??;s) = |det S|1/22(_2‘_"’_1)/47!('2’_'”[(”‘_1)/2])/2|S[ﬂ]I_s/zldetS,,|_1/4I"(s+m/2)
E(Sp;s+1/2) 1 if m is even
TS‘—T gs(m;s) 1. .
(S;s+ E2s+ 1)1 if mis odd,
where gs(n;s) == [1, 9sp(n;5) is a finite product of polynomials in p° and p~*
defined in (2.6).
We define the normalized Eisenstein series £*(g;,s) by

if mis even

Gi.4).
(25+1)  if mis odd 1€ 1)

1

&9 = dsis+ D89

By Proposition 3.3 and Proposition 5.1, we obtain the Fourier expansion of
&*(g1,s) explicitly.

THEOREM 5.2. Let s be a complex number with Res>m/2. For
g1 = diag(t, 1, t7!) € G?,oo and X € R™, the normalized the Eisenstein series has
the following expansion

& (m(X)g1,5) = Y &(91,5)elS(n, X)),

nel*
where
P ) t”’"/zf(S L) 1 if m is even
g1,8) = )

ot E@2s+1) if misodd

1 if m is even

+ £5M2E(S; ) .
&(2s) if mis odd

and for 0 #ne L*,
&r(g1,5) = (V27 mi 2= 2Am=D/2Aglp1det S, |7 /4 E(Sys 5+ 1/2)

X gs(11; 5) Wo,s(87t4 /|3 S]l).

The rest of this section will be devoted to the proof of the continuation
and the functional equation of the normalized Eisenstein series. On each
Fourier coefficient we obtain the following proposition.

PROPOSITION 5.3.. Let the notation be the same as in Theorem 5.2.
(i) The Fourier coefficient &,(g1,s) has a meromorphic continuation in s to the
whole s-plane and is invariant under s+ —s.
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(ii) For an arbitrary sy € C, there exist 6 >0 and 0 < t € Z depending only on
S and sy such that

(s = 50)°5(91,9)

is holomorphic in s on Us(sy) = {s € C||s — so| < 6}
(ili) Let so, 0 and t be as above. Given p > 0, there exist positive constants
cl,...,c4 depending only on S, p, 6 and t such that

(s — 50)°&} (g1,9)| < 12~ VISTl| Sgy]

for t > p, se Us(so) and 0 #£ne L*.

Proor. The assertions (i) and (ii) are easily seen from Theorem 5.2.
Since gs,(n;5) is a polynomial in p* and p~ whose degree depends only on a, f
and S in the notation of (2.6), for any compact subset T of €, there exist two
positive constants 4 and B depending only on T and S such that

lgs(m;5)| < A|S[]|®  foranyseT, nelL”.
We note that

|det S| < |S[y] det S| forne L*.

Therefore, by Lemma 3.2 and Theorem 5.2, we obtain the assertion (iii). H

We now apply Proposition 5.3 to Theorem 5.2. For an arbitrary s € C,
we take > 0 and 0 < t e Z as in Proposition 5.3(ii). For given p > 0, there

exist positive constants c,...,cs depending only on §,p,d and t such that
Z |(s = 50)" &7 (91,5)| < cn”{l + Z e“’V|S["”|S[n]|C“}
nelL* 0#nel*
< csts.

for t > p,s € Us(so). Therefore we have the following theorem.

THEOREM 5.4. The normalized Eisenstein series &*(g1,5) (g1 € G1,4) has a
meromorphic continuation in s to the whole s-plane and is invariant under
s+>—s. Furthermore, it is holomorphic except for possible simple poles at
s=m/2—k(0<k <m,keZ) and the residue at s=m/2 is given by

Ress—m/2 £(S;5) if m is even

Res;—m2 8°(g,5) = {Ress=m/z E(S;5)&(25) if mis odd.
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6. Eisenstein series on O(2,m + 2)

6.1. Real analytic Eisenstein series Since I,(1;s) = I(S1,#;s) in the notation
of (2.1), we can write Ir(n;s) explicitly (cf. Theorem 2.1).

PROPOSITION 6.1. Let s be a complex number such that Res >m/2+ 1.
(1)
/22 /2 I'((2s +m+2)/4)*r((2s — m + 2) /4)?
. Q) — 925-m[2-2_—m[2-2 1/2
Ir(0;5) =2 4 |det S| TETG=m/2)

if m is even

o S(8135) £(29
¢(Si;5+1) f(T—il) if mis odd.
(ii) If0#neL;, Siln] =0 and A=Yy (A is a positive integer) is primitive in L},

2 T((2s+m+2)/4)*I((2s — m + 2)/4)

Ir(n;s) = 28~ 15(=25-m=6)/ 4|det S1 |1/

I'(s)
1 . .
_1 &(S1;s) if m is even
X :(S - M/Z) f(Sl—_;S'l' 1) 6(23) if mis odd a—s+m/2(A)-

E(2s+1)
(i) If ne L} and Si[n] #0,
I(m; 5) =205~ D/AgC2=tm2A-D02) 5, [y] =52 et §4['/2|det S,/
I((2s+m+2)/)I((2s—m+2)/4) if Si[y] >0
{ 20m=I27=12 0 (25 + m + 2) /4)° if Sify] <0 }

9 E(S1y;8+1/2) { 1 if m is even

W15 8),
c(Sis+1) | g2s+1)""  if mis odd, }gs r;5)

where gs,(n;5) := 1, gs,,(n;5) is a finite product of polynomials in p*, p~
defined in (2.6).

We normalize the Eisenstein series E;(Z,s) as follows:

. 1 if mis even
E, (Z,s) = P,(s)C(Sl;s+ l)E](Z,S){ §(2s+ 1) i mis odd

where P;(s) is the polynomial in s defined in (3.10). By Proposition 3.4 and
Proposition 6.1, we obtain the Fourier expansion of Ej(Z,s) explicitly.

THEOREM 6.2. Let | be a non-negative even integer and let s be a complex
number with Res >m/2+ 1. For X +iYe®, g{(Zy>)=X+iY (ge Gg,m), the
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normalized Eisenstein series Ef(X +iY,s) has the following expansion

E[(X+iY,5) = Y aj(Y,n;5)e[S1(n, X)),
nel;

where the Fourier coefficient aj(Y,n;s) is given as follows:
(i) When =0,

1 if m is even
aj(¥,0;5) = (3 Si[Y)FHDP ()¢(Sy;s + 1){ E@s+1)  if misodd }
1 if m is even
+( Sl[Y])(—2s+m—21+2)/4P1(—s)f(Sl;s){é(2 ) if mis odd }
s) if mis o

+ (G SiY)TIAP ()P (—s)E(s — m/2+ 1)E(s +m)2)
x &*(h(g), 5)-
(ii) When Si[n] =0, Si(n, Yo) = 0 and A~y (A is a positive integer) is primitive

in L],
aj(Y,n;s)
= ( SUYD DS (1, )| @D p () (s — m/2)T E(Sis )
1 if m is even W i 1)) "
- T , Osim
&(2s) if misodd 1/2,(25-m)/4 Y s+m/2

- 2s—m— m -1
+ (% Sl[Y])(z”'" 21+2)/4|S1(17, Y)l( 25—m 2)/4Qz”(—s)f<s+?+1> ES;s+1)

1 if m is even W
{§(2s+ 1) if mis odd } 21/2,(25+m) 4 (47| S1 (11, Y)[)Osm2(A)-
(iii) When Si[n] > 0 and Si(n, Yo) 20,
a;‘(Y, 7:s) = (% Sl[Y])—1/22(2mi4l+11)/47t(——[m/2]i21)/2S1[Y]iI/Z
x S1[] " =28 |G ()8 (St s+ 1/2)gs (15 5)
X 0(2nY,2n; (2s+m+21+2)/4,(2s+m— 21 +2)/4).
(ivy When Si[n] <0,
aj (Y, 1;5) = (3 S [¥]) /22 6m g/ 20728, [y 8, [g] 12| |~
x 8..(1, ¥)'5_(n, )0}, (9&(S1055 + 1/2)gs, (1)
x w(2nY,2n; (2s +m+21+2)/4,(2s + m — 21 + 2)/4).
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Here gs,(n;s) := [1, gs,,(n;5) is a finite product of polynomials defined in (2.6)
and we put Qf,(s) :== Pi(s)Qi4(s) (¢f (3.10), (3.11)).

To prove the analytic continuation and the functional equation of Ej(Z,s)
(Theorem 6.4 below), we consider analytic properties of each Fourier coef-
ficient.

PROPOSITION 6.3. (i) The Fourier coefficient aj(Y,n;s) has a meromorphic
continuation in s to the whole s-plane and is invariant under s+ —s.

(i) For an arbitrary s € C, there exist 6 > 0 and 0 < © € Z depending only
on S and s such that

(s — s0)°a} (Y, m;5)
is holomorphic in s on Us(so) = {s€ C||s— so| <6} and is real analytic in
(Y,s) e?x C.
(iii) Let so, 0 and t be as above. There exist positive constants cy,...,C1o
depending only on S1, 6 and t, such that

|(s = 50)°a] (Y, ;)] < c1(A(Y)* + u(¥) ™) ||| e DMl if §y[y] = 0
(s — 50)a; (Y, ;)| < esSi[Y]%|S1[]|7e~ @I (A(Y)® + u(¥) ™) ||n]| "
if Si[n] # 0
Sor s € Us(so) and n € LY.

Proor. The assertions (i) and (ii) are easily seen from Theorem 5.4 and
Theorem 6.2. We shall prove (iii). Since there are only finitely many terms
with ||#|| <1, it is sufficient to consider the terms with ||z|| > 1. First we
consider the case of Si[7] =0. By Lemma 3.2 and Theorem 6.2, there exist
positive constants 4, B and C depending only on S;,d and 7 such that

|(s — 50)°a} (Y, ;)| < Ae™ 5@ (Sy(n, ¥) ™ + Si(n, Y)°)
for se Us(sp) and ne Lj. By [10, p. 299—p. 300] we have
|S1(7, V)| < DAY)llnll,  1S1(m, V)I7' < Ew(Y) ™ |Im]l",
IS1(n, Y)| = Gu(Y)|nl,

with positive constants D, E, F, G independent of Y and #. This proves the
assertion in the cace of S)[n] = 0.

Next we consider the case of Si[#] # 0. For any compact subset T of T,
there exist two positive constants 4 and B depending only on 7T and ) such
that

lgsi(m;9)| < AISi[)|”  foranyseT, nelL]



46 Yoshikazu HIRAI

(cf. proof of Proposition 5.3). We note that

|det S1,| < |S1[y] det S| forn e L].

Notice

8s(n, Y) < AXY)|mll,  64(n, V) < Bu(Y)'Imll€  if Siln) <0,
w(n, ¥)™' < Du(¥) 0%,
with positive constants 4,B,C,D and E independent of Y and # (cf. [10,

p- 299—p. 300]). Therefore, by Lemma 3.1 and the above facts, we can easily
prove the assertion in this case. |

We now apply Proposition 6.3 to Theorem 6.2. For an arbitrary so € C,
we take 6 > 0 and 0 < 7 € Z as in Proposition 6.3(ii). Given p > 0, there exist
positive constants c,...,cs depending only on Sj,p,d and 7, such that

> (s = s0)aj (¥, 7;.8)e[S1(n, X)]|

nely

<ai(N)? 1+ 30 e 30 ISl e

0#nel; nel;
Si[n]=0 Si[n]#0

for u(Y) > p, se€ Us(so). By the inequality
t(n, Y) 2 VSi[Y]|Si[n]] and <(n,Y) = Au(Y)||]|

with positive constant 4 independent of Y and # (cf. [10, p. 300]), there exists a
positive constant C depending only on p and S; such that

e_T('hY) < e“c |S1[?]]| . e_C”’l"_
Hence Schwarz’ inequality gives

> l(s = s0)"ai (¥, n;.5)elS1(n, ]| < eod(¥)°"

nel;

for u(Y) > p and s € Us(so), where positive constants ¢y, c;9 depend only on Sj,
p, 6 and 7. Thus we have the following theorem.

THEOREM 6.4. The Eisenstein series Ef(Z,s) has a meromorphic con-
tinuation in s to the whole s-plane and is invariant under s+ —s. Furthermore,
it is holomorphic except for possible simple poles at s=m/2+1 —k
O<k<m+2kel).
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6.2. Holomorphic Eisenstein series In this section we consider the
holomorphic Eisenstein series on D. We denote by M;(I") the space of
holomorphic automorphic forms on D of weight / with respect to I. For
I>m+2, we put

E(Z):=E(ZI-m2-1)= > J»2)7".
ve(PagNI\I

Since the above series is absolutely convergent, we know E;(Z) € M;(I'). The
convergence of (1.9) at s =/—m/2 — 1 is not guaranteed if / <m+2. How-
ever, as in Shimura [11], we can construct the holomorphic Eisenstein series of
smaller weights.

THEOREM 6.5. We define
E(Z):=E(Z,]-m/2-1)  forl> (m+4)/2.

Then E(Z) is a holomorphic function in Z on ® i.e. E(Z) e M(I"). Moreover
if m is even and ys is non-trivial, then E/(Z):= E/(Z,1)e M|(I") for
I=(m+4)/2

Proor. For X +iY =g{Zy) and ge Gj ,, we write

o0

E(X +iY,s5) =Y a(Y,7;5)e[Si (7, X)].
nel;

Then by Theorem 6.2 we have
(6.1)
a(Y,0;5) = 38 [Y])@m-242)/4

(8 [Y])(—2s+m—21+2)/42(—2s-m+21+2)/4 22| det S|/ Bs, (—s)

le(—s—l)
m
< P19 ! §(+-3)
Pi(s) r(2s+m+2)r(2s"m+2) E(s+3+1)
4 4
( 1/2 S+1+5s1) )
|d(S1)| F(‘ 5 I(s) E(xs,»S) - even
S'|‘6Sl é(XSﬁs_'—l) :
"9 AW >
F(S+l) —6(2.5‘) m: odd
| 2) dn odd
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m
(=141)/2 Pf‘)(—s) é(s + 3)

PI) E(s+5+1)

+11(h(g)" ™ (L $1[Y])

4 tl(h(g))‘”’”/z(Sl[Y])('1“)/22(‘2”’“)/27:1/2Idet S|_1/2—M—
Bs(—s— 1)
m
PO() 1 ((s-3+1)
P (s) r(2s+r:+2)>r<2s—;n+2> é(s+%+ 1)
. !d(S)|1/2r(s+1+6Sl)r(S) \
2 ¢ts»9) m : even
. r(s+25s,) ¢(xs,s+1) y
1\ &(2s) )
\r(”2> s+ 1) miodd )

1
. o 5(-13)
+u(h(@) " S asinis) }p)(s) Bs(—s—1)

neL*\{0}

1 1
y Wo, (8na1 ®) |ls1m|)
E(s+5+1) r(——zs+;"+2) 2
s+ 140 1 ) )
“( 2 )é(xs,s+1) 7 even

—

X < r S+l é XS,S‘{'l
2 . 2 m : odd
(2s+1+5s”) E(2s+1) Y
T 4

/

where Bs(s) = [[,< Bs,»(S) (Bs,,(s) is defined by (2.4)),

_ s _f0 m=0 (mod4) _fo
551—(5s-—{1 m =2 (mod 4)’ ‘SSF{1

da($) denotes the discriminant of the quadratic field
Q \/ (—=1)m+m+D/2 got Sl) and as(n;s) is an entire function in s which does

not have any zero. If / >'m/2+2 and !/ #m+ 1, then every term of (6.1)
vanishes at s =/ —m/2 — 1 except for the first term. If /=m+ 1, then we

have
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m+1
(22 etm
m']"(1>é(m+ 1)?
Bs, (—s) (=)¢_ _m )
' <Bs.(—s- O E(3) w2
m+ 1
r (‘*‘2—)5("1)
mir (3)cm+ 17

x (leis—(s_j)l) P =94(s ‘_“»
~1.

a(Y,0;5)_psr = 1+ S1[Y]7"220' 2 |det 5|7/

+ 81[Y] ™27 /2|det S|/

s=m/2

Hence we have a;(Y,0;/ —m/2—1) =1 for I >m/2+2. If g5 is non-trivial,
¢(xs,,s) is an entire function and 4;(Y,0;1) =1 for I =m/2 +2.

In the same way, if Si[gJ<0 or Si(y,Y) <0, we have
a(Y,n;1—m/2—1)=0 for I > (m+3)/2. We assume that Si[y] >0 and
S1(n, Yo) > 0. Notice that

Wipa-ny2 = @n|SI(Y,n))%elilSi(n, Y)|]  if Silr] =0, Si(Yo,n) >0,
(27, 2n;1,0) = 27" 2¢[S1(n,iY)]  if Si[y] > 0, S1(Yo,7) > 0.

Hence we can write
a(Y,n;1 —m/2 — D)e[Si(n, X)] = ai(n)e[S1(n,Z)]  forl> (m+3)/2,

where a;(n) does not depend on Z.
Here we set

(2l-m-2)/4

det 5y gs,(m1—m/2 —1)

(62) 0 = | s sib
= H gl,p(” .
p

To write §;,(r) more explicitly, we take a positive integer 4 so that Ay is
primitive in L] and put

a, =ord,(4) and = o rd (:itsl S [r;]) =a, +f,.

We can write g; ,(n) as follows:



50 Yoshikazu HIRAI

(i) If v,=0
a,, ap_l
Gip(n) = pAm Dty pros/ Mg (g, ¢ Lix )Y plimmAuim/2-l
=0 2
i) Ifv,2>1,
a, frta,—k
91,p(m) = Z Z pA-m-2)r+(-Dk
k=0 =0
ay fota,—k—1
— p—no"/zﬁs1,,,,p Z Z q(2l—m—2)g+(1_1)k+l_m/2_1
k=0 =0
a4 fptay—k—1
_pap—lé(ﬂo,p ¢ Lg:p) Z Z p(21—m—2)t+(1_.1)k.
k=0 =1

Here B, , =~ defined by (2.5) and f, , is as in (2.2). We note that the case (i)
does not occur, since the @-rank of S; is 1. We give an explicit formula for
the Fourier coefficients of the holomorphic Eisenstein series by Theorem 6.2
and Theorem 6.5.

THEOREM 6.6. Let [ be an even integer. We assume that | >m/2+2 if m
is even and xg is non-trivial, | > m/2 + 2 otherwise. The Fourier coefficients of
the holomorphic Eisenstein series

E(Z)=1+ > ai(n)e[S1(n, Z)]

nel;
Sh [77]20,S1(1],Y0)>0

is given as follows:
(i) When Sijy) =0 and A~'y (A is a positive integer) is primitive in Ly,

al(n) = —%i o1-1(4).

(i) When Si[n] > 0,
B, (—1+(m+1)/2)

a =

1) By (<1+m/2) 9i(n)

( ~ 1 5 B d(S]) 1——(m+1)/2}
—1){m+2)/45—1+m/2+3; l_ﬂ det S, .|-m/21
(=1) ( 2) BiBi 2z, |det Sy,y| det S,

{ if mis even

Bi_(m I=m/2-1 ’
(1)) A=)z D2, 0 | AL S |det §y|~H+m+D/2

BBy m—1 | d(S1,59)

if misodd )
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where B, [resp. B, ,] is the n-th Bernoulli [resp. generalized Bernoulli] number
(for the definition see [3, p. 89, 94]).

On the Fourier coefficient of Ej(Z), the following corollary is obtained.

COROLLARY 6.7. The Fourier coefficient a;(n) is a rational number. More
precisely there exists a constant C € Z — {0} depending only on S| and | such
that Cai(n) € Z for all ne L.

REMARK. When / > m + 2, an explicit formula for the Fourier coefficients
of the holomorphic Eisenstein series is given also by theta lifting of Jacobi form
(cf. [7)).

7. KEisenstein series on O(2,m + 2) in the case of Q-rank 1

To complete our results we consider the Eisenstein series on O(2,m + 2) in
the case of @-rank 1.

7.1. Definition of Eisenstein series Let S) € M,,.»2(Q) be an even integral
anisotropic symmetric matrix of signature (1,m+ 1) and assume that S is
maximal. Since S is isotropic for m > 3, we may consider the case of m =1
or 2. We denote by G; the orthogonal group of S; and by G, the orthogonal

group of
1
Sy = S .
1

Put L, =Z™2, L} =S7'L;. We define the maximal compact subgroups
Kip:=Gip,NGLyy2(Z,) and K p:= Gy ,NGLy4(Z,). We fix a point
Zy = iYp such that Si[Yy] =2. We define the action of G, on

D = {Z e C"2|$[Im(Z)] > 0, S1( Yo, Im(Z)) > 0}

by

=S1(Z]/2

g-Z~=(g<Z>)”'J(g,Z),Z~!=( z )EC'"+4 (9€ Gy, Z€ D).
1

We denote by K;  the stabilizer subgroup of Z; in Ggw. Clearly K5 » is a
maximal compact subgroup of Ggw and Gg,w /K20 =D. Let / be a non-
negative even integer. We define the Eisenstein series of weight / with respect
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to I' on D by

Tm Z]\&-2Hm+2)/4 .
1) Bz - (234) > WeD 2,
ve(Prq NI\

which converges absolutely in a right half plane {se C|Res>m/2+ 1}.
Since the @Q-rank of S; is 0, Si[y] #0 for all # # 0 and the Bruhat
decomposition of G,q is given by

(7.2) Grq = Pog [ [ Paawi{m(X)[X e @™},

where nz(-) and w; is same as in §1. We easily see that all properties in §3
also hold for this case. Therefore all the necessary calculations to obtain the
Fourier expansion of Ej(Z,s) explicitly have be done in §2 and §3.

7.2. Main theorem We put

" 1 if m is even
E[(Z,5) == Pi(s)E(S158 + 1)EZ, 5) - {g(zs+ 1) if misodd.

THEOREM 7.1. Let | be a non-negative even integer and let s be a complex
number with Res>m/2+ 1. For X +iY €D, the normalized FEisenstein
series Ef (X +1iY,s) has the following expansion

Ef(X +iY,5) = Y ai(Y, n;5)e[Siln, X)),
nel;

where the Fourier coefficient aj(Y,n;s) is given as follows:
(i) When n =0,

1 if m is even
4 (Y,0;5) = 3 Sy [Y])EH-24D/ () £(S )54+ 1) - {§(2s+ 1) if misodd }
1 if mis even
+ @ Si[Y]) APy (—5)E(Shs8) - { &(2s) if mis odd }

(ii) When Si[n] >0 and S1(n, Yo) 20,
a;(Y,n;5) = (% Sl[Y])—1/22(2mi4l+11)/4n(—[m/2]iZl)/2 SI[Y]iI/Z

x ST ERDA Sy 1T O (5)E(S 35+ 1/2)gs, (3 8)
X o(2nY,2n; (2s + m+ 21+ 2)/4,(2s + m — 2] + 2)/4).
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(iii) When Si[n] <O,
a}(Y,7;5) = (FS1[¥])/226m+9)/An(-Im/A-0/28, [ Y]/ 5, [g] 2|8y |7/
x 8. (Y, )5 (Y, )20} ()&(S1, 35+ 1/2)gs, (13 5)
X 02nY,2n;(2s+m+21+2)/4,(2s+ m — 21 + 2)/4).

THEOREM 7.2. The Eisenstein series Ej(Z,s) has a meromorphic con-
tinuation in s to the whole s-plane and is invariant under s — —s. Furthermore,
it is holomorphic except for possible simple poles at s=m/2+1 —k
O0<k<m+2kel).

The convergence of (7.1) ats = I — m/2 — 1 isnot guaranteed if/ < m + 2. How-
ever, as in Shimura [11], we can construct the holomorphic Eisenstein series of
smaller weights. Notice that the number of primes such that Sj , is aniso-
tropic over @, is even if m=1.

THEOREM 7.3. We define
E(Z):=E(Z,]1-m/2—-1)  forl>= (m+3)/2.
Then E|(Z) is a holomorphic function in Z on D ie. E|(Z)e M(I).

THEOREM 7.4. Let | be an even integer with | > (m+ 3)/2. The holo-
morphic Eisenstein series E;(Z) has the following Fourier expansion

E(Z)=14+ > amelSi,2),

nel;
S1[1]>0,81(n,Y0)>0

Bs, ,(—1+(m+1)/2) ,

a =

1) Be (—l+m)2) gi(n)

( 1 d(S ) I—(m+1)/2 3\
_1)nt2)/4p—ttm/243; (1 T det Sy . |-m/2-1 1
=1 ( 2) BIBI—m/Z,xs] [det S| det S}

) if mis even [

I-m/2-1 J
__(_1)[(m+2)/4]21—(m_3)/2l Bl—(m+1)/2,lsl,,, det Sl,’? m/ |det sy I_I+(m+1)/2
BiBy_m-1 | d(S1,y)
L if misodd )

where §;(n) is defined by (6.2).

REMARK. When m =1, the algebraic group G, is isogenous to a qua-
ternion unitary group of degree 2 and this Eisenstein series is the one studied
in [1].
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