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ABSTRACT. The classification of the second order elliptic differential operators with

locally Lipschitz coefficients in a domain in Rn is considered. Using potential-theoretic

techniques, it is modelled after the biharmonic classification of Riemannian manifolds.

1. Introduction

Let Ω be a domain in R", n>2, and ^(Ω) the family of all second order

elliptic differential operators with locally Lipschitz coefficients in Ω. In this

article, we put the elements in &(Ω) into different classes depending on the

existence of certain special solutions of the operators.

The classification is modelled after (and more general than) that of the
Riemannian manifolds ^ based on the existence of Green functions, bihar-

monic functions, biharmonic Green functions etc.
The similarity between these two classifications of &(Ω) and ̂  arises from

the fact that the C2 -solutions of Lu = 0 for any L ε &(Ω) and the harmonic
functions defined by Au = 0 in R e 3$ (where A is the Laplace-Beltrami operator
on R) both satisfy locally the basic assumptions in the axiomatic potential

theory of M. Brelot [4].

2. Preliminaries

Let £f(Ω] denote the family of all second order elliptic differential

operators with locally Lipschitz coefficients defined on a domain Ω in

Rn,n>2. Assume that the last coefficient is 0 in each Lε&(Ω). Pre-

. * T , ^ \~^ / x δ u(x) v— v , , x du(x) , , , . w> 3
cisely, Lu(x) = > a$(x)- — ̂ -£+> bi(x) , where the α« s are in CA/

^ CXjCXj *-?* OXi

and the bfs are in C1>A; ay — βy, ; and the quadratic form Y^ %£/£/ is positive

definite for every x e Ω.

Then the C2 -functions u in an open set w c= Ω for which Lu = 0 are called

the L-harmonic functions in w. Such solutions satisfy the basic assumptions of
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the Brelot axiomatic potential theory (Mme. Herve [6], pp. 560-568), leading to

the definitions of L-superharmonic functions, L-potentials associated with L in
the open sets of Ω.

We also have in this context a Malgrange Approximation Lemma (A. De

la Pradelle [5], p. 399); using this as in Theorem 4.2 [3], we can prove the

following

LEMMA 2.1: Given a Radon measure μ > 0 on an open set w a Ω, and any

L e &(Ω) there exists an L-superharmonic function u in w such that in a local

Riesz representation μ is the measure associated with u.

NOTATIONS: 1) Given a Radon measure μ > 0 on an open set w c: ί2, for

L e J^(ί2), we write Lu = —μ to denote that u is an L-superharmonic function

in w generated by μ as in Lemma 2.1. (we ignore here any possible inter-

pretation in the sense of distributions of the equation Lu = —μ).

We remark that (i) u is not unique for a given μ, and (ii) if μ is a signed

measure, one can find a δ — L-superharmonic function u in w such that

Lu — —μ in w.
2) Suppose/(jc) is a locally (Lebesgue) integrable function in w. Let μ

be the signed measure defined by / as dμ(x) =f(x)dx, dx the Lebesgue

measure. If u is a δ — L-superharmonic function generated by μ, we write
Lu = —f instead of Lu = —μ.

3) On the other hand, instead of starting with a measure μ > 0 in Ω as

above, suppose we start with an L-superharmonic function v in Ω. Then

locally v has a Riesz representation and an associated Radon measure μ > 0 in
Ω. Suppose now u is an L-superharmonic function in Ω generated by the

measure μ as in Lemma 2.1. Then v = u + h where h is an L-harmonic

function in Ω. Consequently, we can just as well write Lv = —μ in Ω.

REMARK. Dealing with the Laplacian operator A e ^(Ω), instead of

writing ^-superharmonic, A -potential etc., we suppress A and simply refer to

superharmonic, potential etc.. Thus, a superharmonic function in Ω is locally

Lebesgue integrable.

3. Bipotential operators

For an L e <&(Ω), the domain Ω is called L-hyperbolic or L-parabolic

depending on whether there exists or not an L-potential in Ω. If L = A, we

simply refer to Ω as hyperbolic or parabolic. We assume in the sequel that Ω

is always hyperbolic, that is there are J-potentials in Ω.

DENITION 3.1. An operator L e &(Ω) is called a bίpotential operator in Ω

if there exist an L-potential q and a potential p > 0 (that is, p is a A -potential)
in Ω such that Lq = —p.
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EXAMPLES:
1) A is a bipotential operator in Rn, n > 5. For, p = 2(n — 4)r2~n and

q — r4~n are potentials in Rn such that Aq = —p.
2) Since R2 is parabolic, A cannot be a bipotential operator in R2.
3) Though R3 and R4 are hyperbolic, yet A is not a bipotential

operator there. For Aq = -p would imply [7] that —^r n~ ldrdσ is
Ji JdB r* 2

finite, where dB is the unit sphere and dσ is its surface area; this in turn would
imply (since a potential majorizes wr2"", for some m > 0, near infinity) that

f°° 1 1
—=• —~ r""1 t/r is finite which is false when n = 3.4.

Ji r"-2r"~2

PROPOSITION 3.2. Let Ω be a relatively compact domain in Rn,
n>2. Then, any L ε &(Ω\), Ω\ a domain => Ω, is a bipotential operator in Ω.

PROOF. Let ΩQ be a relatively compact domain such that Ω\ n> ΩQ •=> Ω.
Then, by Lemma 2.1, there exists an L-superhamonic function q$ in ΩQ such
that Lqo = — 1 in ΩQ.

Since Ω c ΩQ, q$ has an L-harmonic minorant in Ω; let AO be the greatest
L-harmonic minorant of qo in Ω. Then q\ = q$ - AO is an L-potential in Ω
such that Lq\ = -1 in Ω.

Now, for a nonpolar compact set K in ί2, p = (R*)Ω is a potential in
Ω. Let ^ be an L-superharmonic function in Ω such that Ls = —p; and let t be
an L-superharmonic function in Ω such that Lt = — (1 — p).

Then there exists an L-harmonic function h\ in Ω such that Λ + t = q\ +h\\
since q\ > 0, this implies that s has an L-subharmonic minorant in Ω. Let A
be the greatest L-harmonic minorant of s in Ω and write q — s — h.

Then # is an L-potential in Ω such that Lq = —p. Hence L is a
bipotential operator in Ω.

DEFINITION 3.3. An operator L ε JS?(Ω) is called a biharmonic potential
operator in ί2 if there exists an L-potential q and a harmonic function A > 0 in
Ω such that Lq = —A.

NOTE: The argument in the proof of Proposition 3.2 shows that a
biharmonic potential operator L in Ω is a bipotential operator. But A which is
a bipotential operator in Rn, n > 5, is not a biharmonic potential operator there.

For, any positive harmonic function in Rn being a constant, assume
that there exists a potential q in Rn such that Aq = — 1. Then
f°° f Λa f°°

—^ϊ^'^drdσ should be finite, that is rdr should be finite, a
Ji he *" J i
contradiction.
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However, if Ω is a bounded domain in Rn, n>2, any operator
L e &(Ω\), Ω\ a domain ID ί2, is a biharmonic potential operator in Ω. For,
as shown in the proof of Proposition 3.2, there exists an L-potential q\ in Ω
such that Lq\ = — 1.

4. Weak bipotential operators

In this section we will obtain some necessary and sufficient conditions for
an operator L e 5£(Ω) to be a bipotential operator.

Given the local nature of the solutions of the operator L, we can apply
these results in the context of Ω being a Riemannian manifold and L0 the
Laplace-Beltrami operator defined on Ω, to show that -Lo is a bipotential
operator if and only if the biharmonic Green potential is defined on the
Riemannian manifold (Chapter VIII, Sario-Nakai-Wang-Chung [9]). Con-
sequently, Theorem 4.4 below provides some additional characteristics of
Riemannian manifolds with biharmonic Green potentials not explicitly men-
tioned in [9].

Actually, in this section we want to work in a more inclusive context; the
definition of a bipotential operator L e ^(Ω) presupposes that Ω is an L-
hyperbolic domain. With a view to remove this restriction on Ω, we introduce
the notion of a weak bipotential operator.

We call an L-superharmonic function u in a domain Ω a Rn an admissible
L-superharmonic function (p. 145 [1]) if u has an L-harmonic minorant outside
a compact set in Ω.

DEFINITION 4.1. An operator LeJ?(Ω) is called a weak bipotential
operator in Ω if there exists an admissible L-superharmonic function u and a
potential p > 0 in Ω such that Lu = —p in Ω.

REMARKS: 1) A bipotential operator LeJ£?(ί2) is a weak bipotential
operator. On the other hand, if Ω is an L-hyperbolic domain and if L is a
weak bipotential operator in ί2, then L is actually a bipotential operator.

For, in this case suppose u is an L-superharmonic function in Ω having
an L-harmonic minorant h outside a compact set. Then there exists an L-
harmonic function H in Ω such that \H — h\ is bounded outside a compact set
(Extension Theorem 1.20 [1], originally proved by M. Nakai in [8]); con-
sequently, u is the unique sum of an L-potential q and an L-harmonic function
in Ω. Hence Lu = —p implies that Lq = —p and L is a bipotential operator
in Ω.

2) From the above remark it follows that A cannot be a weak bipotential
operator in Rnn = 3,4. For, R* and R4 are hyperbolic domains where A is not
a bipotential operator.
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LEMMA 4.2. Let L e &(Ω). For a measure μ > 0 on an open set w c Ω,
suppose there exists an admissible L-superharmonic function u in w such that
Lu = — μ. Then, for any measure λ, 0 < λ < μ in w, there exists an admissible
L-superharmonic function v in w such that Lυ = —λ.

PROOF. Let v and v\ be L-superharmonic functions in w (Lemma 2.1)
such that Lυ = —λ and Lv\ = —(μ — λ).

Then Ό + Ό\ =u+ (an L-harmonic function) in w.
Since u has an L-harmonic minorant outside a compact set K in w, v has

an L-subharmonic minorant outside K. This implies that v is an admissible
L-superharmonic function in w.

THEOREM 4.3. For L e 3?(Ω], the following are equivalent:

1) For some (or any) compact nonpolar set K in Ω (with respect to A,
the notion of polarity being the same with respect to any L, Theoreme 36.1 [6]),
there exists an L-superharmonic function u in Ω\K, having an L-harmonic
minorant in a neighbourhood of the Alexandrov point of Ω, such that
Lu = -Rf in Ω\K.

2) L is a weak bipotential operator in Ω.
3) There exist an admissible L-superharmonic function u that is not L-

harmonic and a superharmonic function s > 0 in Ω such that Lu = —s.
4) For some (or any) y e Ω, if py denotes a potential with harmonic point

support {y}, there exists an admissible L-superharmonic function qy in Ω such
that Lqy = —py.

PROOF.
1) =^ 2): Let Lu = -Λf in Ω\K.
Let A be an outerregular compact set and w a regular domain such that

K c A <= A c w. (Recall the identity between the L-regular and the A-regular
boundary points for an open set ΩQ c= ΩQ c ί2J.

We can assume that w is L-harmonic in a neighbourhood of w\^4.
Then as in [2], we can find L-harmonic functions u\ in Ω\A and 1*2 in w

such that M = MI — t/2 in w\A.
Then the function i; equal to u — u\ in Ω\A and to — UΊ in w is an L-

superharmonic function in ί2; it is admissible also since by assumption u has an
L-harmonic minorant in a neighbourhood of the Alexandrov point of Ω;
moreover, in Ω\A, Lv = Lu = —Rf.

Let t i be an L-superharmonic function in Ω (Lemma 2.1) such that
Lv\ = —χA the characteristic fuction of A. Since υ\ has compact (harmonic)
support, it is an admissible L-superharmonic function in Ω.
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Thus v + v\ is an admissible L-superharmonic function in Ω with the
associated measure μ such that μ > λ where λ is the measure defined by
dλ(x)=Rf(x)dx.

Hence, by Lemma 4.2, there exists an admissible L-superharmonic function
q in Ω such that Lq = -R* in Ω. That is L is a weak bipotential operator
in Ω.

2)=>3): Suppose there exists an admissible L-superharmonic function q
and a potential p > 0 in Ω such that Lq = —p. Then clearly q is not L-
harmonic in Ω.

3)=>4): Suppose Lu = —s where u is a non L-harmonic admissible L-
superharmonic function and s > 0 is superharmonic in Ω.

Now, given y e Ω, choose an outerregular compact set k in Ω such that
y E k and consider a potential py with point harmonic support {y}. Then
py = Bpy in ί2\fc where If/jy is the Dirichlet solution in Ω\k with boundary
values py on dk and 0 at the Alexandrov point of Ω.

Note that Bpy < ms in Ω\k for some w > 0. Consequently, we can
construct as in the proof of 1) =>- 2), an admissible L-superharmonic function υ\
in Ω such that Lv\ = —Bpy = —py in Ω\k.

Let ι?2 be an admissible L-superharmonic function in Ω for which
Lv2 = -pyχk in Ω.

Then, if v = v\ + V2, v is an admissible L-superharmonic function in Ω with
the associated measure μ such that μ > λ where λ is the measure defined by
dλ(x) = py(x)dx.

By Lemma 4.2, there exists an admissible L-superharmonic function qy in
Ω such that Lqy = —py.

4)=Φ 1): For some 7, let Lqy = —py in Ω where qy is an admissible
superharmonic function in Ω; that is qy has an L-harmonic minorant outside
some compact set A in Ω.

For a compact nonpolar set K, R* < (inf# /^)~ py in ί2\AT. Con-
sequently, as in Lemma 4.2, there exists an L-superharmonic function u in Ω\K
such that Lu = — Rf moreover, u has an L-harmonic minorant outside the
compact set K\JA.

This completes the proof of the theorem.
We have remarked earlier that if Ω is an L-hyperbolic domain, then any

admissible L-superharmonic function u in Ω is the unique sum of an L-
potential and an L-harmonic function and also if L is a weak bipotential
operator on Ω it is actually a bipotential operator. Consequently, it is easy to
deduce from Theorem 4.3 the following

THEOREM 4.4. For L e Jί?(fl), let Ω be an L-hyperbolic domain. Then the
following are equivalent:
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1) For some (or any) compact nonpolar set K in Ω, there exists an L-

superharmonic function u > 0 in Ω\K such that Lu = —R^ in Ω\K.

2) L is a bipotential operator in Ω.

3) There exist an L-superharmonic function u > 0 and a superharmonic

function s > 0 in Ω such that Lu = —s.

4) For some (or any) y e Ω, if py denotes a potential with harmonic

support {y}, there exists a unique L-potential qy in Ω such that Lqy = —py.

COROLLARY 4.5. Let L be a bipotential operator in Ω. For y ε Ω fixed,

let Ωn be a sequence of relatively compact domains, y e Ωn, Ωn c Ωn+\, and

Ω = \JΩH. Let p®n be the potential in Ωn with harmonic point support {y} such

that p®n = py+a harmonic function in Ωn; let (fin be the unique L-potential in

Ωn such that Lq®n = —p®n in Ωn. Then supg is an L-potential in Ω.

PROOF. Since L is a bipotential operator in Ω, there exists a unique L-

potential qy in Ω such that Lqy = —py.

Since py > p®» in Ωn, q®n = qy + sn in Ωn where sn is an L-subharmonic

function in Ωn; since cfj* is an L-potential in Ωn and sn < q®n, we have sn < 0

in Ωn.
Consequently, q®n < qy in Ωn for every n.

A similar argument also shows that q®n is an increasing sequence and

hence s u p π is an L-potential in Ω.

REMARKS. 1) The proof of the above corollary follows the construction of

the biharmonic Green function on a hyperbolic Riemannian manifold (p. 300

[9])

2) When Ω is a hyperbolic Riemannian manifold with the harmonic

functions defined locally as the solutions of the Laplace-Beltrami operator, the

statement (1) in Theorem 4.4 expresses the condition that the biharmonic

measure of the ideal boundary of Ω is finite (p.310 [9]).
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