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ABSTRACT. We determine the lowest dimension of the Euclidean space in which all

^-dimensional orientable manifolds are immersible up to unoriented cobordism.

Our study is an orientable version of the work investigated by R. L. Brown.

1. Introduction

The purpose of this paper is to give a complete answer to the immersion

problem of orientable manifolds up to unoriented cobordism. Let α(w) be the

number of 1 in the dyadic expansion of an integer n, and v(n) the integer

determined by n = 2v{ n\2m + 1). We set β{ή) = 2n- α(/i) - min{α(w), v(/i)}.

In [10; Theorem A], we studied immersions of orientable manifolds in the

Euclidean space R^ up to unoriented cobordism, and gave a partial answer:

(a) any closed orientable manifold Mn for n > 4 is unoriented cobordant to a

manifold which immerses in R ^ ; (b) if α(n) < v(n) and n > A, then there exists

an n-dimensional closed orientable manifold satisfying that any manifold

unoriented cobordant to it does not immerse in R^M" 1.

We always assume that a manifold is closed C 0 0 differentiable, and by

cobordant we mean unoriented cobordant between manifolds. Then, our main

results are stated as follows:

THEOREM A. Assume that α(/i) > v(n) and n>4. Then, β(n) = 2n- α(/i) -

v(ή), and any orientable manifold Mn is cobordant to a manifold which immerses,

respectively, in R Λ " ) " 1 or R Λ Ό - 2 if the following (I) or (2) holds:

(1) α(/i) + v(/ι) is odd, or

(2) α(/i) + v(n) is even and n = 0 or 3 (mod 4).

THEOREM B. Assume that a(n) > v(ή) and n>4 with nφ6, 7. Then,

there exists an n-dimensional orientable manifold satisfying that any manifold

cobordant to it does not immerse, respectively, in R Λ Ό " 2 , R Λ Ό - 3 o r R Λ Ό - I if

the following (1), (2) or (3) holds:
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(1) oc(n) +v(π) is odd,

(2) α(«) + v(ή) is even and n = 0 or 3 (mod 4), or

(3) oc(n) + v(/i) w et eΛ α«rf « = 1 or 2 (mod 4).

It is well known that the class of any w-dimensional oriented manifold with
1 < n < 4, n = 6 or n = 7 is 0 in the oriented cobordism ring (cf. [11, Thέoreme
IV. 13]), and thus, 0 in the unoriented cobordism ring. Hence, for any given
n, if h(n) is the minimum integer such that every ^-dimensional orientable
manifold immerses in R Λ ^ up to cobordism, then Theorems A and B with the
results in [10] completely determine the value of h(n). The efficient uses of
symmetric characteristic classes seem the key ingredient of success in this paper.

Theorems A and B can be compared with the original study due to Brown
[1; Theorem 5.1, Proposition 5.2].

This paper is organized as follows: In §2 we fix some bases of the
cobordism rings and prepare Proposition 2.3 which plays a crucial role in the
proof of Theorem A. Theorem A is proved in §3 by using Proposition 2.3,
the Theorem B is in §4. In §5 we prove a part of Proposition 2.3. After
preparing necessary properties of the symmetric characteristic classes in §6, we
complete the proof of Proposition 2.3 in §7.

The author wishes to thank Prof. Takao Matumoto and Prof. Mitsunori
Imaoka for their many helpful suggestions.

2. Bases of cobordism rings

First, we recall some generators of the unoriented cobordism ring 91*.
Let CPn be the complex projective space, and Sm = {(*i,... , W i ) e

Rm+i i £w+i t2 = γy t h e u n i t sphere. The Dold manifold P(m,n) is defined as
the orbit space (Sm x CPn)/J for the involution J(u,z) = {—u,z), where z is
the conjugate number of z. Consider a reflection T on Sm concerning the
plane tm+ι = 0. Then, the map (w, z) -> (Γw, z) on SmxCPn induces an
involution A of P(m,«). We define Q{m,ή) to be the manifold constructed
from P(/W,Λ) x [0,1] by identifying (/?,0) with (Ap, 1) for each p e
P(m,n). Let X2JE912J be the cobordism class of the real projective space
X2i = RP2i. For an integer k not a power of 2, we write k = 2r~1(2.y+ 1)
with s > 1. We set xik-\ e yiik-i and x2k e Wik to be the cobordism classes of

X2k-ι = P(2r _ \^2rs) and X2k = Q(2r - \,2rs), respectively. Then, Dold [2;
Satz 3] and Wall [12; Lemma 6] have shown that each xq is indecomposable in
91*, and thus {xq\q^2i - 1} is the polynomial generators of 91*.

Next, we recall some generators of the oriented cobordism ring ί2*
introduced by Wall [12; §9]. In order to state them, we need some notations.
A partition ω of n is an unordered sequence {a\,..., ak) of positive integers
with ΣJLi aj = n- We set \ω\ = n, l(ω) = k and α(ω) = ΣJLi <*(#/)• For
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partitions ω} = (ajU.. .,aJmj) (1 <j < k), we denote (ωi,. .. ,ω*) = {an,...,

a\mι > - - y <*h » »akmk)- Let P be the set of all partitions, and consider the

following subsets of P:

Po = {{ah . . . ,ak) e P\ajφ 2*' - 1 for \<j<k and any i > 1 } ;

Λ = {(2έii,..., 2βjt) e Λ) I β* ^ βy for / ̂ y, and oc{aj) > 2}.

Let / : β* —* 91* be the natural map obtained by ignoring orientation. We

make essential use of the following result:

THEOREM 2.1 (Wall [12; §9]). There are elements h4qeΩ^ {q> 1) and

gω e β|ω |_i (ω = (2αi,. . . ,2a*) 6 Pi) wA/cA satisfy the following (1) am/ (2):

(1) 7%e je/ {h4q,gω\q> l , ω e ? i } generates β*;

(2) /(A^) = x\q and I{gω) = γ*=ι X2aι " xiq-x --X2ak.

We say that Mn immerses with oί-efficiency k if Mn is cobordant to a

manifold which immerses in R2 n-α(Λ)-*# Concerning this terminology, we have

the following:

LEMMA 2.2. (1) (Brown [1; Theorem 5.1]) Any manifold Mn immerses with

^-efficiency 0 for any n>2.

(2) Let n = ]ζ/Li nj V eac^ ^nj immerses with ^-efficiency aj for
l<j<k, then J j !^ MnJ immerses with oc-efficiency b + Σj=ιaj, where b —

Σ/ii«(«/)-Φ).
PROOF. (2) Since each MnJ is cobordant to a manifold which immerses

in R2«/-α(Λy)-«/? Y[^=ιM
nJ is cobordant to a manifold which immerses in R /

for / = Σ/=i {2nj - α(ιiy) - aj) = 2n - Σ / = i α(ny) - Σ y t i ^ = 2Λ - α(π) - 6 -

Σ 7 ^ i Λ/, as required. •

In §5-7, we will prove the following proposition which plays a crucial role

in the proof of Theorem A.

PROPOSITION 2.3. (1) If α(«) > 3, then Xn immerses with oc-efficiency 1.

(2) If n satisfies one of the following conditions (i)-(iii), then Xn immerses

with oί-efficiency 2:

( i) α ( « ) = 3 a n d n = l ( m o d 4 ) ;

(ii) oc{n) > 4 and n is odd;

(iii) α(n) > 4, α(n) is even and n = 2(mod 4).

(3) If n\ = «2 = 2(mod 4), oc{n\) = α(«2) = 2 am/ «i ^ «2, then

( I " 1 ' 1 x Z ^ ^ U ί ^ " 1 x Xn2'λ) immerses with ^-efficiency 2.

3. Proof of Theorem A

For elements h$q {q > 1) and gω (ω e Pi) in β* given in Theorem 2.1, we

take orientable manifolds H4q and Gω whose cobordism classes are /(A^) and
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I(gω), respectively. By Theorem 2.1 (1), any orientable manifold is cobordant

to a finite disjoint union of the form (Π^i H*qi) x (Π/=i Gωj), where qt > 1

and (Dj G P\. Thus, in order to establish Theorem A, it is sufficient to prove it

for the following manifolds:

(i) Mn = Π t i H4*, where n = Σίi *><H\

(ii) M» = (Πf=1 H**) x (Πj=1 Gωj), where n = Σίi *<H + Σ j U ί N - 1}
and k, / > 1;

(iii) Mn = Uj=ι Gωp where n = Σ j = i ί N - 1}.
For a partition ω = (2au . , 2ak) e Pu we put Yj = X2"^1 x (Π, # ^ 2 α ' ) BY
Theorem 2.1 (2), Gω is cobordant to U*=ι Yj-

P R O P O S I T I O N 3.1. Let ωeP\ and n= \ω\ — 1. Then, any Gω immerses

with, respectively, oc-efficiency I or 2 if the following {I) or (2) holds:

(1) oc(ή) if odd, or

(2) α(w) is even and n = 3 (mod 4).

PROOF. Let ω = (2a\,...,2ak)e P\. First, we remark that, if α(ω) is

odd, then there exists t, 1 < t < k, such that X2a' and X2"*-1 immerse with

α-efficiency 1. In fact, since ωeP\ and α(ω) is odd, there exists t with

α(2α, - 1) > α(2α,) > 3, and thus, X2"* and Ar2^~1 immerse with α-efficiency 1

by Proposition 2.3(1). We shall prove (2) and omit the proof of (1), since the

methods are similar. Thus, assume that oc(n) is even and n = 3 (mod 4). Since

Gω is cobordant to \J*=ι Yj, it is sufficient to show that each Yj immerses with

α-efficiency 2.

(a) The case α(ω) > α(/i) + 2: Since α(2α, - 1 ) 4 - ]£,-# α(2α/) - α(/i) >

α(ω) — α(«) > 2 for each j , \<j<k, Yj immerses with α-efficiency 2 by

Lemma 2.2.

(b) The case α(ω) = α(«) + l: Since α(ω) is odd, there exists t, 1 <

ί < k, such that A"2*' and X2a'~ι immerse with α-efficiency 1 by the remark

above. Similarly to (a), we have α(2«/ — 1) 4- Σi#α(2tfί) — α(w) > l Hence,

by Lemma 2.2, each Yj immerses with α-efficiency 2.

(c) The case α(ω) < α(«) — 2: For each j , we have oc(n) < oc(2aj — 1)4-

Σ / W α ( 2 α z ) = a(2aj - 1) 4- α(ω) - α(2α/ ), and thus, α(2α7- - 1) >α(2α/ ) + α(/i) -

α(ω) > 4, since ωeP\. Hence, X2aj~ι immerses with α-efficiency 2 by

Proposition 2.3(2), and thus, Yj immerses with α-efficiency 2.

(d) The case α(ω) = α(«) — 1: Since α(ω) is odd, there exists t, 1 <

t < k, such that JSf2*' immerses with α-efficiency 1. Similarly to (c), α(2α/ - 1)

> 3 for each / Hence, by Proposition 2.3(1) and Lemma 2.2, each Yj

for j φ t immerses with α-efficiency 2. Further, when there exists at least

one integer s, 1 < s < k, such that sφt and α(2tfy) > 3, Yt immerses with

α-efficiency 2 by Proposition 2.3(1) and Lemma 2.2. When α(2αy) = 2 for

any j φ t, we have α(2α,) is odd and α(2αr) > 3, since α(ω) is odd. Then,
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0L{2at - 1) > 3, and 2at - 1 = 1 (mod 4) if oc(2at - 1) = 3. Thus, by Proposi-

tion 2.3(2) and Lemma 2.2, Yt immerses with α-efϊiciency 2, as required.

(e) The case α(ω) = α(n): First, assume that there exist at least two

integers t and s which satisfy oc(2b) > 3 for b = at, as. Since α ( 2 6 - l ) >

α(26)>3, X2h and X2b~ι (b = ahas) immerse with α-efficiency 1 by Propo-

sition 2.3(1). Thus, each Yj immerses with α-efficiency 2, as required.

Hence, we may assume that oc(a\) is even with <x(a\) > 2 and α(tf7) = 2 for

2 <j < k, since α(ω) is even. Further, when a(a\) > 4 and 2a\ = 2(mod 4),

X1"1 and X2"1"1 immerse with α-efficiency 2 by Proposition 2.3(2), and each Yj

immerses with α-efficiency 2. Thus, hereafter, we also assume that cc(a\) = 2

or 2a\ =0(mod 4).

If 2a, = 2 (mod 4) for some j , we have α(α7) = 2 by the assump-

tions. Then, since w + 1 =0(mod 4), there exists another integer tφj with

2at = 2(mod 4) and α(α,) = 2. Hence, by Proposition 2.3(3), (X^~x xJT2"')

]\{X2aJ x X2a<-χ) immerses with α-efficiency 2, and thus, YjUγt =

{(X2a~ι x X2"*) LK^2^ x X2"'-1)} x (Πiw,/^2*1') i m m e r s e s w i t h α-efficiency 2.

Lastly, we consider the case 2α7 =0(mod 4) for some / Since α(fe)-h

v(b) = oc(b - 1) + 1 in general and v(2α/ ) > 2, we have α(2α7 - 1) = α(2αy) H-

v(2α/) — 1 > 3. Thus, by Proposition 2.3 (1), X2"^1 immerses with α-efficiency

1. Further, since α(π) = α(ω) = J^^j α(2α, ), we have α(2α/ - 1) + Σ ^ α(2fl, )

— α(«) = α(2α/ — 1) — a(2ay) = v(2a7) — 1 > 1. Hence, Yj immerses with

a-efficiency 2, as required. •

PROPOSITION 3.2. Let Mn = Πj=i Gωj for I > 2, where ω, e P\ and n =

ΣJ ^iilcOjl — 1} Then, Mn immerses with, respectively, en-efficiency v(n) + \ or

V(Λ) + 2 if the following (I) or (2) Λo/ώ:

(1) α(«) + V(AZ) iy OUW, or

(2) α(w) + v(w) is even and n = 0 or 3 (mod 4).

PROOF. We omit the proof of (1), since it is similar to that of (2). Thus,

assume that α(«) + v(n) is even and n = 0 or 3 (mod 4). We put rij = |ωy | - 1

and cj = (nj - l)/2 for each j , 1 <j <l. Notice that oc(a) + α(6) > cn(a 4- 6)

and α(α) + v(α) = α(α - 1) + 1 for any positive integers a and b. Hence, we

have Σ/=i Φy) - Φ ) > φ - « i ) + φ i ) - α ( n ) = α(« - 2ci - 1) + α(2ci) -h

1 - α(/i) > α(/ι - 1) + 1 - α(n) = v(/ι).

When there exists at least one integer t such that oc(nt) is even and

«, = 3 (mod 4), Gωt immerses with α-efficiency 2 by Proposition 3.1 (2). Hence,

Mn immerses with α-efficiency v(n) + 2 by Lemma 2.2, as required. Thus, in

the remaining of the proof, we assume that α(n7) is odd or ttj = 1 (mod 4) for

each j, 1 <j<l.

When there exist at least two integers t, s such that each α(fy) is odd for

i= t, s, both Gωi immerse with α-efficiency 1 by Proposition 3.1(1), and Mn
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immerses with α-efficiency v(n) + 2. When only one oi(nt) is odd for 1 < t < /,
Gωt immerses with α-efίiciency 1 by Proposition 3.1 (1). If Σj=\ α(wy) ~ α ( w ) =

v(«), then we have that α(«) + v(n) = Σj=ι α(/2y ) is odd, which contradicts the
assumption that α(w) + v(n) is even. Hence, Σ|/=i α(wy) ~ α M ^ V M + 1> a n ^
M" immerses with α-efficiency v(n) + 2, as required.

Lastly, we assume that all α(w7) are even for 1 <j <L Then, we notice
that Πj = 1 (mod 4) by the above assumption. When 1 = 2, n = n\ + ri2 =
2 (mod 4), which contradicts the assumption that n = 0 or 3 (mod 4). When
/ > 3, we have ΣJ=\ a(nj) - (x(n) = α(2ci) + α(2c2) + α(2c3) + 3 H- ^ J = 4 α(/ιy ) -
α(n) > α(« - 3) + 3 - α(«) = v(n - 2 ) + α ( « - 2 ) + 2 - α(w) = V(Λ - 2) +
v(« - 1) + OL{Π - 1) + 1 - <x(n) = v(n - 2) + v(/z - 1) + v(w) > v(n) + 1. If ΣJ=i
α^y ) — α(«) = V(Λ) + 1, then α(«) H- V(AZ) = X^=1 α(«/) — 1 is odd by the as-
sumption, which contradicts the assumption that oc(n) + v(n) is even. Hence,
Σj=i α(n./) ~ α ( w ) ^ v ( w ) + 2> and M Λ immerses with α-efficiency v(n) + 2, as
required. •

PROOF OF THEOREM A. Propositions 3.1 and 3.2 establish Theorem A for
the case (iii): Mn = Y\j=ι Gωj. In order to show the remaining cases, we first
remark that H4q immerses with α-efficiency cn{q) for any q>\. In face, since
H4<* is cobordant to (X2(*)2 by Theorem 2.1(2), and α(2#) + α(2?) - α(4#) =
oc(q), H4g immerses with α-efficiency oc(q) by Lemma 2.2.

(i) The case Mn = Π t i H^\ Since α(«) > v(n) and each H4* immerses
with α-efficiency α(^z) by the remark above, Mn immerses with α-efficiency

Σίi «(4ίi) - «(«) + Σ t i <<li) > Σ t i <9i) = Σ t i «(4ft) > «(«) > v(«) + 1
by Lemma 2.2. If α(«) + v(n) is even and oc(ή) > v(ή), then α(/i) > v(n) -f 2.
Thus, similarly, we have the required result in this case.

(ii) The case Mn = (ΠJLi H4*) x (Π/=i Gωj) for ifc, / > 1: Similarly to
the proof of Proposition 3.2, we have Y*=x α(4#) + £ ? = 1 α(|ωy| - 1) - α(/i) >
V(Λ). Let G ; = Πί=i ^ and n' = Σy=i{KI - 1}, then M" = ( Π t i ^ 4 ί ί ) x G'
and « = ΣΪ=i fyi- + n1. Since H4qι immerses with α-efficiency (x(q\) > 1, Mn

immerses with α-efficiency v(n) + 1 by Lemma 2.2. If n = 0 or 3 (mod 4), then
n' = n- ΣΪLi 4qi = 0 or 3 (mod 4), thus Gf immerses with α-efficiency v(nf) + 1
by Propositions 3.1 and 3.2. Since H4qι also immerses with α-efficiency 1, Mn

immerses with α-efficiency v(n) + 2, as required. •

4. Proof of Theorem B

Let Wi(Mn) e F ( M " ) for / > 0 be the Stiefel-Whitney class of τ(MΛ),
and Wi(Mn) its dual class. That is, they satisfy (Σ/>o wi(M")) x

(Σi>oWi(Mn)) = 1. Throughout the paper, the cohomology and the
homology are always assumed to be with coefficient Z 2 . Since the manifolds
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treated in this paper may not be connected, we have to distinguish the Stiefel-

Whitney class wnι wnk{Mn) and the Stiefel-Whitney number wnχ wnk[Mn]

for n = ΣJLi ni Then, we recall the following:

LEMMA 4.1 (cf. [10; Lemma 4.1]). Let Ln and L? (1 < i < k) be manifolds

with Ln = Πf=i Lf. If each I* satisfies the following

(i) the Stiefel-Whitney number wσiwni-σi[L"(] φθ,

(ii) any Stiefel-Whitney number which contains Wj(L^) (j > Λ, — <τ, ) as

a factor vanishes, for some σ, < /ι, , then wσwn-σ[Ln] φ 0 and any Stiefel-

Whitney number which contains Wj(Ln) (j > n — σ) as a factor vanishes,

where σ = Y^=χ σ,.

Since two manifolds are cobordant if and only if they have the same

Stiefel-Whitney numbers (see [9; Chapter VI]), if a manifold Ln satisfies

wσwn-σ[Ln] φ 0, then any manifold Mn cobordant to Ln satisfies

wσwn-σ[Mn] φ 0, and thus, wn-σ(Mn) φ 0. Since a necessary condition for

Mn to immerse in R2n-<7~1 is that Wj{Mn) = 0 for any j >n-σ, the following

proposition establishes Theorem B, and this section is devoted to proving it.

PROPOSITION 4.2. Assume that α(«) > v(n) and n>4 with n φ 6, 7. If n

and σ(n) satisfy one of the following (i)-(iii), then there exists an orientable

manifold Ln which satisfies wσ^n)wn_σ(π)[Ln\ φ 0 and any Stiefel-Whitney number

which contains Wj(Ln) (j > n — σ(n)) as a factor vanishes:

(i) α(«) + v(n) is odd and σ(n) = α(«) + v(n) + 1;

(ii) α(«) + v(n) is even, n = 0 or 3 (mod 4) and σ(n) = a(n) + v(n) + 2;

(iii) oc(n) + v(n) is even, n=\ or 2 (mod 4) and σ(n) = θί(n) + v(n).

We prepare some lemmas for the proof of Proposition 4.2. In [10;

Lemma 4.3], we have shown the following:

LEMMA 4.3. (i) Let n = 2r, where r>2 and r is a power of 2. Then,

wj(CPr) = 0 for any j>n- 2, and w 2 w n _ 2 [CP r ] φ 0.

(ii) Let n = 2t + s — 1, where t > s > 2 and t, s are both powers of 2.

Then, Wj(P(s- 1,ή) = 0 for any j >n-s, and wswn-s[P(s- 1,ή] φ 0.

Wall [12; Lemmas 4, 5] has shown that the total Stiefel-Whitney class of

Q(m,n) is

(4.4) w(Q(m,n)) = (1 + C + JC)(1 + c)m~\l + c + d)n+\

where c,x e Hι(Q(m1n)) and d e H2{Q(m,n)) which are bound by the relations

X 2 = o3 cm+ι = cmx and dn+ι = 0.

LEMMA 4.5. Let n = 2t + s, where t > s > 2 and t, s are both powers of

2. Then, wj(Q(s - 1, ή) = 0 for any j > n - 2, and w2wn-2[Q{s - 1, ή] Φ 0.
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PROOF. By (4.4), w(Q(s- l,ή) = (1 + c + x)(l + c)5"2 (l + c + </)'+1.

Since x2 = 0, ci = c^x = c^x2 = 0 for ί > ^ + 1 and d'+ι = 0, we have

w(Q(s-\,ή) = ( l + c + JcΓ^l + c Γ ^ ί l + c + rf)"'"1 = ( 1 + C + JC)2*-1-

( l + c j ^ l + c + rf)'-1. Here, ( l + C + JC) 2 *" 1 (1+ c ) ^ 2 = { ( 1 + c ) 2 ' " 1 *

(1 4- O ^ ^ X l + c)*+2 = (1 + c + x)(l + c)3s = (1 + c + JC)(1 + c*)3 =

( 1 + C + JC)(1 + CJ) = 1 + c + x + c*, and hence, w(Q(s-l,ή) =

(1 +c + x + cs)(l + c + dY~ι. Thus, we have wj(Q(s- 1,0) = 0 for any

y > j + 2 ί - 2 = / i - 2 and vv n-2(β(^-1,0) = Λ*'"1. Because vP2(β(.s-1,0)

= (t — \)d up to terms which contain c or x, we have W2vPπ-2 (β( s— 1,0) =

(t - l)csd* = csdt φ 0, which completes the proof. •

When we denote by m = Σ/U ^ a dyadic expansion of m, we assume that
each Si is a power of 2 and SΊ > > st > 1.

LEMMA 4.6. Assume that n is odd and α(«+l) is even. Let n+\ =
Σ?=i 2rt ό^ α dyadic expansion ofn+l, and ω = (2r\ 4- 2r2A:,..., 2r^ H- 2r̂ -f i) e

Pi. ΓΛ̂ n, α«7 Stiefel-Whitney number which contains Wj{Gω) {j>n — 2r2k —

2k -f- 2) as # factor vanishes, and the Stiefel- Whitney number W2r2k+2k-2 *

Wn-2r2k-2k+2[Gω] Φ 0.

PROOF. We put bt = 2r, + 2r2k-t+\ (\<t<k). By Theorem 2.1 (2), Gω

is cobordant to U t i γi w h e r e f̂ = χbi~l x ( Π ^ / ^ O H e r e

? ^ I " 1 =

P(2r2k-i+ι - l,r, ) and ΛΓ*' = β(2r2*:-ί+i - l,rf) by definition. By Lemmas 4.1,

4.3 (ii) and 4.5, we have wy (Yi) = 0 for each / > 2 and any 7 >

« - 2r2A: -2k-\-2. Similarly, for i = 1, wy ( 7i) = 0 for any j > n- 2r2k -

2k-h 2, and W2r2k+2k-2Wn-2rlk-2k+2[Y\]φQ' Hence, we have the required

result. •

Now, we shall complete the proof of Proposition 4.2, which establishes

Theorem B.

PROOF OF PROPOSITION 4.2. In the below, each η (j > 1) is always a

power of 2, and rf > η for i < j . We first consider the case n is odd, namely

v(π) = 0.

(i) In this case, α(«) is odd. When n = 1 (mod 4), we put n =

Σ?=i 2rt + 1 for r2k > 2, and ω = (2r2 + 2,2r3 + 2rlk,..., 2r*+i + 2/>+2).

Then, by Lemmas 4.1, 4.3 (i) and 4.6, Ln = CPrι x Gω satisfies the condi-

tions of Proposition 4.2 for σ(n) = 2fc + 2 = α(«) + 1, as required. When

w = 3(mod 8), we put « = £?=Γ12rί + 3 for r2k-i>4, and ω = ( 2 r i + 4 ,

2r2 + 2r2A:-i,..., 2A> + 2^+1). By Lemma 4.6, Ln = Gω satisfies the conditions

for σ(n) = 2k + 2 = oc(n) + 1. When n = 7 (mod 8), we put n = γ^x 2r{ + 7

for r2k > 4, ωi = (6), ω2 = (2r2A; + 2) and ω3 = (2rx -h 2, 2r2 + 2r2k-u ,

2rk + 2rk+i). By Lemmas 4.1 and 4.6, LΛ = Gωχ x Gω2 x Gω3 satisfies the

conditions for <T(H) = 2k + 4 = α(/i) + 1.
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(ii) Since n = 3 (mod 4) and a(n) is even in this case, we put
n = ΣΪ=ι 2ri + 3 for rlk > 2, and ω = (2rx 4- 4, 2r2 4- 2r2fc-i,. . ., 2r* 4- 2r*+i).
By Lemmas 4.1, 4.3 (i) and 4.6, L" = CPr2k x (jω satisfies the conditions for
σ(n) =2k + 4 = α(/i) 4- 2.

(iii) Since w = 1 (mod 4) and α(«) is even in this case, we put n —
Σ Ϊ Γ ^ + l forrat-i > 2, and ω = (2#Ί + 2,2r2 + 2r2i t_i,... ,2r* + 2r*+i). By
Lemma 4.6, LΛ = Gω satisfies the conditions for σ(ή) = 2k = α(«).

Next, we consider the case n is even.
(i) When v(n) = 1 and α(/i) = 2, we put « = 4r\ 4- 2 (n > 2), since n ^ 6

by the assumption. By Lemmas 4.1 and 4.3 (ii), Ln = P(l,n) x P(l,ri)
satisfies the conditions for σ(n) = 4 = α(n) + v(n) + 1. When v(n) = 1 and
α(/i) > 4 is even, we put n = ΣΪ\l 2r, + 2 for r2A:_i > 2, and ω = (2r3 + 2,
2r4 4- 2r2A:-i,..., 2^+1 4- 2r*;+2). By Lemmas 4.1, 4.3 and 4.6, Ln =
P(l, ri) x CP r 2 x Gω satisfies the conditions for σ(n) = 2k + 2 = α(/ι) 4- v(/i) 4-1.
When v(/z) > 2, by the assumption α(n) > v(n), we put « = Σi=i 2ri f°Γ rA: ^ 2
and k > 3, and AW = ΣίL22f7 - 3. Here, we notice that m = 1 (mod 4) and
α(m) = α(n) -h v(«) - 3 is even. By the above case (iii) for odd «, there exists
an orientable manifold Nm which satisfies the conditions of Proposition 4.2 for
σ(m) = α(w). Hence, by Lemmas 4.1 and 4.3 (ii), Ln = P(3,ri) x Nm satisfies
the conditions for σ(n) = 4 4- σ(rri) = <x(n) 4- v(n) 4-1.

(ii) Since n = 0(mod 4) and oc(n) > v(ή) > 2, we put n = Σi=i 2rt f°Γ

rk > 2 and k > 3, and m = £f=2 2rt - 3. Then, m and a(m) = oc(n) + V(Λ) - 3
are odd. By the above case (i) for odd n, there exists an orientable manifold
Nm which satisfies the conditions of Proposition 4.2 for σ(m) = α(m) + 1.
Hence, by Lemmas 4.1 and 4.3 (ii), Ln = P(3,r\) x Nm satisfies the conditions
for σ(n) =4-1- σ(m) — α(m) -I- 5 = α(n) + v(n) + 2.

(iii) Since n = 2 (mod 4) and α(w) 4- v(n) is even, we put n = Σi=\ 2ri + 2
for r2k > 2, and ω = (2r2 4- 2,2r3 + 2rlk,..., 2rfc+i 4- 2rfc+2). By Lemmas 4.1,
4.3(ii) and 4.6, Ln — P(l,r\) x Gω satisfies the conditions for σ{ή) = 2k + 2 =
α(n) 4- v(/i). D

5. Immersions of XΛ for α(«) > 3 or n is odd

The remaining of this paper is devoted to proving Proposition 2.3. For
a space Y and a positive integer m, let P(m, Y) be the space constructed
from Sm x Y x Y by identifying (M,X,J>) with (—w,j>,.x). For odd n not
of the form 2{ - 1, we write n = 2r(2.?+ 1) - 1 with r, s > 1, and set K" =
P(2r - l,RP2's). Brown [1; Corollary 7.5] has shown that Vn is cobordant to
the Dold manifold Xn = P(2r — l,2rs). In this section, we prove the following
proposition, which establishes Proposition 2.3(1) and (2)(i), (ii).
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PROPOSITION 5.1. (1) Let n be odd and not of the form 21' - 1 for any i. If

(x(n) > 3, then Vn immerses with oc-efficiency 1. Moreover, if n satisfies one of

the following conditions (i) and (ii), then Vn immerses with ^-efficiency 2:

(1) (x(n) = 3 and n=\ ( m o d 4);

(ii) α(«)>4.

(2) If n is even with on(ή) > 3, then Xn immerses with OL-efficiency 1.

We need the following results.

THEOREM 5.2 (Brown [1; Proposition 4.3, Theorem 6.3]). (1) P(m,Rk) is

the total space of the bundle k(γm © εm), where γm and εm are the canonical line

bundle and trivial line bundle over RPm, respectively.

(2) For even integer n, if the Stiefel-Whitney number vvα(n)vvn-α(/i)[Mn]

vanishes, then Mn immerses with oc-efficiency 1.

THEOREM 5.3 (Mahowald and Milgram [6; Theorem 4.1]). Let p and q be

odd and m= p + q+ 1. Then, the total space of {p+\)yq immerses in R^ for

f = 2q+p + 1 - oc(m) + oc(p + \) - k(p,m). Here, k{p,m) = min(k(p),k(m))

and k(i) = 0, 1 and 4 if t = 1 or 5, 3 and 1 (mod 8), respectively.

PROOF OF PROPOSITION 5.1. (1) We set n = 2r(2.s + 1) - 1 for r, s > 1,

a = 2r - 1 and b = 2rs. Then n = a-\-2b. Milgram [7; Theorem 1] and

Lam [5; Theorem (6.2)] have proved that RPι immerses in R2/-α(7) for / > 7.

We remark that, for 2 < / < 7, RPι also immerses in R2/-α(7). Hence, by

Theorem 5.2(1), Vn = P(a, RPb) immerses in the total space of the bundle

(2b-oc(b))(γaφεa).

First, assume that r > 3. We apply Theorem 5.3 to 2bγa with p + 1 =

2b, q = a and m = a -h 2b = n. Since oc(m) — α(/? + 1) = r and k(p, m) =

k(2b- l,/i) = 4, we obtain an immersion of 2bγa in R 2 Λ + 2 * - ' - 4 . Hence,

2bγa Θ (2b - <x(b))εa immerses in R2*+4*-«W-Γ-4 = R2M-α(w)-4< s i n c e ^ _ ^ty .

(ϊa ® £a) is a subbundle of 2bγa φ (2b - oc(b))εa, Vn immerses in R2"-α(«)-4

? as

required.

Next, assume that r = 2. Then, we have a = 3, n = 2b 4- 3 and α(«) =

(x(b) + 2. Since εs « R P 3 x R immerses in R4, we have an immersion of

4γ3 « τ(RP3) © ε$ « 4β3 in R7, and 4kγ3 « 4kεs in R4A:+3 for any positive

integer k. We further assume oc(b) > 4. We put oc(b) = /(mod 4) where

0 < / < 3. Then we notice that oc(b) - / > 4. Since 2b - u(b) + / = 0(mod 4),

we have an immersion of (2b - <x(b) + l)γ3 in R2b-«(b)+ι+3 by the above

remark. Similarly to the proof of the case r > 3, by taking the product with

R2b-cc(b)^ w e obtain an immersion of Vn in Rf for f = 4b- 2<x(b) + / + 3 =

2« - α(w) - (oi(b) - I) - 1 < 2n - oc(n) - 5, as required.
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We omit the proof of the remaining cases, since they are shown similarly,

except that we use the following result by Gitler-Mahowald [3; Theorem

E]: RPι immerses in R2/~5 for / = 0(mod 4) with α(/) > 2.

(2) We set n = 2 r ( 2 s + l ) for r>\ and φ) > 2, a = V and 6 =

2rs. Let 6 = ΣJ=i ri be a dyadic expansion of b for T> > 2 r > 2. Then, we

have n = a + 2b, α(π) =k+l and Xn = β(α -1 ,6) . By (4.4), w(XM) =

( l + c + x ) ( l + c ) α - 2 ( l + c + rf)w, where c x e t f 1 ^ " ) and deH2{Xn) with

x 2 = 0, cα = c*" 1* and rf*+1 = 0. Since cj = d^x1 = 0 for j > a + 1, we have

^ ^ * 1 2Γ̂  Γ ί ) ( ^ί)
Here, (1 + c + x) 2 α " 1 (l + c) α + 2 = 1 + c + x + cβ, and

fl)(l+c + i/) 2 r i - 0 - 1 . Thus, w/ (Z/1) = 0 for any y >

a + 4ri - 26 - 2. Since (« - α(/i)) - (α + 4ri - 26 - 2) = 46 - 4ri - ifc H-1 =

53^2(4^- — 1) > 0, we have wn_^n){Xn) = 0, which completes the proof by

Theorem 5.2(2) •

6. Symmetric characteristic classes

In this section, we prepare some results about the symmetric characteristic

classes, which will be used in the next section. Let sω e Z[*i,...,ί/], a

polynomial ring over Z, be the smallest symmetric function which contains the

monomial if1 t£k for any partition ω= (a\,...,ak) e P with / > |ω|. Then,

for the partition £,- = ( 1 , . . . , 1), ^. is the elementary symmetric function 0, ,

I

and j ω is expressible as a polynomial ^ω = Pω(θ\,... ,0|ω|) with integral

coefficients. Pω is uniquely determined by ω if we take I > \ω\. We define

sω(Mn)eH^(Mn) to be ^ω(MΛ) = Pω(wu..., w H ) for the Stiefel-Whitney

classes wz = w, (Afπ) of M π . Then, when M = M\x M2, sω(M) = Σ ( ω i j ω 2 ) = ω

jωi(Afi) ® j ^ (M2), and [Λfw] is indecomposable in 91* if and only if the Stiefel-

Whitney number s{n)[Mn] φ 0 (cf. [9; Chapters V, VI]). We remark that Mn is

cobordant to Nn if and only if sω[Mn ]\Nn) = 0 for any partition ωe P with

|ω| = n. For the manifolds Xn defined in §2, we denote Xω = ΠJLi Xaj for

co = ( # ! , . . . j ^ ) GPO Since 91* is the polynomial algebra with [Xn] as gen-

erators, any manifold Mn is cobordant to a finite disjoint union of Xω for

|ω| = n and ω e iV We denote by M n such a finite disjoint union of Xω for

M w . Then, we have the following lemma.

L E M M A 6.1. Assume that sη[Mn]=0 for any ηeP with l(η)<m and

\η\ = n. Then,

(1) sη[Mn] = 0 for any ηeP- Po with l(η) = m and \η\ = n.

(2) For ω e Po with l{ω) = m and \ω\ = «, Mn contains Xω if and only if

sω[Mn] φ 0.
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PROOF. For any η e P and ω = (a\,... ,a^) e Po with \η\ = |ω|, we have

η φ ω, then there exists at least one integer j which satisfies \ηj\ > aj, and hence

sη[Xω] = 0. If η = ω, then sη[Xω] = s{aι)[Xaι] s{ak)[Xak] φ 0. Thus, by the

assumption, Mn contains only Xω with ω e Po, l(co) > m and |ω| = n. Hence,

for any η e P - Po with l(η) = m and \η\ = n, we have sη[Mn] = 0, and thus

sη[Mn] = 0. For ωe Po with l(ω) = m and |ω| = «, Mn contains Xω if and

only if sω[Mn] φ 0, namely, sω[Mn] φθ. Π

By Lemma 6.1, we remark that Mn is cobordant to Nn if and only if

sω[Mn ]\Nn] = 0 for any partition ωe Po with |ω| = n. Thus, hereafter in this

paper, we always assume that any partition is in Po. For a manifold Nn and a

partition ω with |ω| = n, if Nn satisfies sω[Nn] Φ 0 and sη[Nn] = 0 for any

partition ηφω with \η\ = n, we say ω is realized by Nn or Nn realizes ω. We

define Rdσ = {ω e Po \ ω is realized by a manifold which immerses with α-

efficiency σ}. We remark that Rdo => Rd\ => Rdi =>•••, and ω e Rdo for any

partition ω by Lemma 2.2.

LEMMA 6.2. Let σ be a non-negative integer. If sω[Mn] = 0 for any

partition ω with \ω\ = n and ω φ Rdσ, then Mn immerses with cc-efficiency σ.

PROOF. By the assumption, for any partition ω with 5 ω [ M n ] Φ 0 and

\co\ = «, we have ω e Rdσ. Then, there exists a manifold Nω which realizes ω

and immerses with α-efficiency σ. Since Mn is cobordant to a manifold which

is a disjoint union of such manifolds Nω, we have the required result. •

COROLLARY 6.3. Let σ be a non-negative integer. If Nn immerses with α-

efficiency σ and sω[Mn ]J Nn] = 0 for any partition ω with \ω\ = n and ω φ Rdσy

then Mn immerses with oc-efficiency σ.

LEMMA 6.4. Let ω = (a\,... ,a/c) be a partition with \ω\=n, and

σ = Σj=ι Gj for non-negative integers σ}. If {aj) e Rdσ. for each j9 1 <j<k,

then β ) G % ) _ φ ) + f f .

PROOF. We denote by N(aj) a manifold which realizes {aj) and immerses

with α-efficiency σy for each j . Then, clearly, Π/Li N(aj) realizes ω, and im-

merses with α-efficiency α(ω) — α(«) + σ by Lemma 2.2 (2), as required. •

By a similar proof of Lemma 6.2, we have the following:

LEMMA 6.5. Let (n) e Po and σ be a positive integer. If there exists a

manifold Ln which immerses with on-efficiency σ and satisfies that s^n) [Ln] φ 0

and sω[Ln] = 0 for any partition ω with \ω\ = n, l(ω) > 2 and ω φ Rdσ, then

(n) e Rdσ.
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In the rest of this section, we show the next proposition which plays a

crucial role to complete the proof of Proposition 2.3.

PROPOSITION 6.6. Let n be even. If oc(n) > 2, then (n) e Rd\. Moreover,

if n satisfies one of the following (i)-(iv), then (ή) e Rd2:

(1) oc(n) = 2 and n = 0(mod 4);

(ϋ) α(π) = 3;

(iii) α(w) = 4 and n = 2 (mod 4);

(iv) α(n) > 5.

For even integer n with 1 < α(«) < 3, we set Wn = RPn the real projective
space. For even n with α(«) > 4, let n = ΣjLi 0 be a dyadic expansion of
n. Then, for odd k, we put b\ = n + r 2,..., 6 w - i = r*_2 + rjt_i, *m = rk + 1
where m = (k+l)/2, and for even A:, we put b\ = r\, b2 = r2 + 7*3,...,
&m-i = Γit-2 + rifc-i, δ w = rfc + 1 where m = (k + 2)/2. Let ^ w + 1 = Π ^ i *Pbj

Then, JΪ*(ΛΓ"+1) = Z 2 [ c i , . . . , c m ] / ( c f 1 + 1 , . . . , c ^ + 1 ) for CjeHι(RPbJ). Con-
sider the submanifold Wn a Kn+ι dual to the cohomology class μ = Σ]L\ cj-
That is, the inclusion i: WΛ —> A''1^1 sends the fundamental homology class
( ^ π ) e ^ Λ ( ^ π ) to the Poincare dual of /i (cf. [9; Chapter V]). For n =
ri -h Λ*2 -h 3 (ri > r2 > 4) where each η is a power of 2, similarly, we define
Wn to be the submanifold of Kn+ι = R P Γ l + 2 x R P r 2 + 2 dual to c\ -h c2, where
^ * ( ^ π + 1 ) = Z 2 [ c i , C 2 ] / ( c ί 1 + 3 , ^ 2 + 3 ) . Further, for even n with α(n) = 4, sim-
ilarly to the above definitions of Wn, we define Wn to be the submanifold of
Kn+ι = RP'i+'z x RP'3 x Ri>^4+1 d u a j t o £ 3 = i Cy> w h e r e π = ^ 4 = i Γ;. i s a d y a d i c

expansion of n and H*(Kn+ι) = Z2[cuc2,c3}/(c[l+r2+\cr

2

3+\cr

3

4+2).

LEMMA 6.7. (1) When n is even with oc(ή) > 2, Wn immerses with α-

efficiency 2.

(2) When n = 0 (mod 4) with oc(n) = 4, fϊ"1 immerses with en-efficiency 2.

(3) When n = 3 (mod 4) w/ίλ α(w) = 4, Wn immerses with ^-efficiency 2.

PROOF. (1) Sanderson [8; Theorem (5.3)] has proved that RPι immerses

in R 2 /" 6 for / = 3(mod 4) with / > 8. We remark that R P 7 immerses in

R8. Hence, when « = 2(mod 4) with α(/i) = 2, Wn a R P Π + 1 immerses in

R2«-α(«)-2 Gitler-Mahowald [3; Theorem E] has proved that RPι immerses

in R2 /"5 for / = 0(mod 4) with α(/) > 2. Hence, when n = 0(mod 4) with

2 < α(/i) < 3, Wn immerses in R2"-α(")-2. Sanderson [8] has also proved that

RPι immerses in R2/~8 for 1 = 3 (mod 4) with α(/) > 4. Hence, when

n = 2 (mod 4) with α(«) = 3, Wn c RPn+ι immerses in R2*-α(«)-3. Further,

Sanderson [8] has proved that RPι immerses in R 2 /" 3 for odd integer

/ > 8. We remark that R P 5 (resp. R x R P 3 ) immerses in R 7 [4; Theorem 7.1]

(resp. R 4). Hence, for even integer n with odd α(«) = k > 5, Wn c Kn+X

immerses in Rf f o r / = Y™Jx

ι (2bj - 5) -f 2bm - 3 = 2 n - 5 w + 4 = 2n-
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5(k + l)/2 -f 4 < In — α(«) — 6. For even integer n with even ac(n) = k > 4,
J*"1 cz ΛΓΠ+1 immerses in R / for / = 2bλ - 1 + Σ ^ 1 (2*7 " 5 ) + 2bm - 3 =
2w - 5m + 8 = In - 5(k + 2)/2 + 8 < 2/z - α(«) - 3, as required. (2) is sim-
ilar. (3) By the result of Sanderson [8], we have the immersion of Wn in
R 2 n χ R2r2 = R 2*-6 = R2Λ-α(Λ)-2 ? a

Since w(RPn) = (1 + c)Λ + 1 where ce/ί 1(RP / 1) which satisfies cn+ι = 0,
for a partition ω = (#i , . . . , a\,..., α̂ ? , Qk) with |ω| = w, we have

sω(ΈLPn) = {wi,..., rik, n'}cn, where {^i,..., sy} denotes the multinomial coef-

ficient fa + + J/)!/((JI!) (*/!)), and nf = n + 1 - Σj=ι "J

PROPOSITION 6.8. Let n be even.
(1) If α(fl) = 2, ίÂ w {n)eRd\. If w = 0(mod 4) furthermore, then

(n) € Rd2.
(2) If oi{ή) = 3, then (n) e Rd2.

PROOF. (1) We notice that s{n){Wn) = s{n)(RPn) = {\,n}cn ^ 0, and Wn

immerses with α-efficiency 2 by Lemma 6.7. When |ω| = n, oc(ω) = 2 and
l(ω) > 2, ω is a form ω = (n,^) (ri > ri) where each ry is a power of 2.
Then, by the above calculation, SΌJW1] = 0. When |ω| = n and α(ω) > 3, we
have ωeRd\ by Lemma 6.4. Hence, by Lemma 6.5, (ή) e Rd\. When
\ω\ = n, α(ω) = 3 and ω φ Rd2, since (nf) e Rd\ for even integer n' with
cc(nf) = 2 and by Lemma 6.4, ω is a form ω = (r\,r2,2ri) (r\ φ r2) where each
η is a power of 2. Thus, by the above calculation, if n = 0 (mod 4) then
sω[Wn]=0. Further, when |ω| = n and α(ω) > 4, we have ωeRd2 by
Lemma 6.4. Hence, if n = 0(mod 4), then we have (n) e Rd2 by Lemma 6.5,
as required. The proof of (2) is similar, and we omit it. •

Let α(n) > 4 and v be the normal line bundle of Wn in Kn+ι. Then,

w(v) = i*(I +μ). Since Γιτ(Kn+ι) = τ(Wn) 0 v, we have w(Wn)ι*(l + μ) =
1and w ( ^ Λ ) = i*((l + / / ) " 1 W ( A : / I + 1 ) ) . Here,

/ ) ^ + 1 with c / y + 1 = 0 , and if r > n + l is a power of 2, then
) = ( l + / ) ( l + / ί Γ 1 = ( l + / ί ) " 1 . We set # = H - * i + .•• + * „ + ! =

(1 + μ)r~ιw(Kn+ι) e H*(Kn+ι) where wj € HJ(Kn+ι), and sω(Kn+ι) =
Pω(wu...,w\ω\)eHM(Kn+ι). Then, for a partition ω with |ω| = #i, we
have (sω(W"),(W")) = (ι*~sω(K»+ι),(Wn)) = (sω(Kn+l), ι*(Wn)) = (sω(Kn+ι),
μΓi(Kn+ι)) = (μsω(Kn+ι),{Kn+1)). Hence, for |ω| = n, sω[Wn}=0 if and
only if μsω[Kn+x] = 0.

LEMMA 6.9. Let n be even with α(w) > 4. Then, s^W"} φ 0.

PROOF. Since μs{n)(Kn+ι) = μn+ι = (ci + + c m ) " + 1 = {bu . . . ,*«}•
c*1 c^1 ^ 0, we have J( π ) [^ n ] ^ 0, as required. Π
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LEMMA 6.10. Let n be even with oc(n) > 4, and m = (α(w) + l)/2 or

((x(n) + 2)/2 according as oc(n) is odd or even. If co contains more than m

numbers each of which appears odd times in ω, then sω[Kn+ι] = 0, and hence

sω[lVH] = 0.

PROOF. We remark that w = (1 +μ)r~ι UJLΛ1 + cjΫi+l a n d bm + 1 is

even. By the assumption of ω, each monomial of sω(Kn+ι) contains

(r — l)(r — 2) or (bj + l)bj (1 <j < m — 1) as a factor of its coefficient. Since

(r - l)(r - 2) = (bj +1)6, s 0(mod 2), we have 5ω[A:π+1] = 0 as required.

PROPOSITION 6.11. If n is even with oc(n) = 4 , then (ή) e Rd\.

PROOF. By Lemma 6.9, we have ^ [ W 1 ] φ 0. When ω satisfies |ω| = n,

(x(co) = 4, l(ω) > 2 and ω φ Rd\, ω is a form ω = ( r i , . . . , r4) where rz ^ r7 for

i T̂ y and each ry is a power of 2 by Proposition 6.8 and Lemma 6.4, and hence

we have ^[W*] = 0 by Lemma 6.10. When |ω| = n and α(ω) > 5 , ω e R d \ by

Lemma 6.4, and thus, we have the required result by Lemma 6.5. •

Let n be even with oc(n) > 4. For ω — (a\,... ,#/) with -α,- φ aA (i φj),

\ω\ = n and / < m, we have / ^ ( i ^ 1 ) = Σ ^ α ί + 1 ^ Γ ' ' ' C"-! = Σ { * i - «2, >

bm-\-a'm,bm}c\x "C^. Here, the summation is taken for all series

{α{,...,α^} in which m —/ elements are zero and the rest / elements are

αi , . . . ,α/ . We remark that, in the case of α(ω) = α(«), {Z>i — a^...,

bm-\ ~ a'm,bm} = \ (mod 2) if and only if {fy - αj+1,ΛJ+1} = 1 (mod 2) for any j

with 1 <j <m—\.

LEMMA 6.12. Let n be even with <x(ή) > 4, and ω = ( α i , . . . ,α/) wzYA α, ^ a7

for iφj and \ω\ =n. If ω contains an odd number, then sω[KnJtX] = 0 , and

hence sω[Wn] = 0.

PROOF. We remark that bm is odd, and there exists j (1 <j <m- 1)

such that bj - aj+ι is odd by the assumption. Hence, each {b\ - a'2,...,

bm-\ - a'm,bm} = 0(mod 2), and so, we have sω[Kn+ι] = 0 as required. Π

PROPOSITION 6.13. If n is even with α ( « ) = 4 and w = 2(mod 4), then

(ή) e Rd2.

PROOF. Since oc(n) = 4, we have only to show the case that α(ω) = 4 or 5,

by Lemma 6.4. Let n — ]C/=i 2r7 + 2 be a dyadic expansion of n for r$ > 2,

and ω satisfy |ω | = n and ω φ Rd2. We put Yf = W2r' x W2'2 x ί F 2 r 3 + 2 and
yn = p^2r, χ ^ 2 r 2 + 2 χ ^ 2 r 3 >

(a) Applying Lemma 6.7 (1) to W2r>+2 and ^ 2 r 2 + 2 , we see that y/1 and

y j immerse with α-efficiency 2 by Lemma 2.2.

(b) When ω satisfies α(ω) = 4 and l(ω) > 2, by Proposition 6.8 and

Lemma 6.4, we have ω = (2ri, 2r2,2r3 + 2), (2rx, 2r2 -f 2,2r3), (2ri 4- 2,2r2,2r3)
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or (2ri,2r2,2r3,2). Here, if ω = (2ri,2r2,2r3 + 2), by the remark above, then
μsω(Kn+ι) = {0,2r3,3}cpc£c£ φ 0, where bx = 2ru b2 = 2r2 + 2r3 and b3 = 3.
Similarly, if ω = (2ru2r2 + 2,2r3), then ^ ω [ ^ π + 1 ] ^ 0 . If ω = ( 2 n + 2 ,
2r2,2r3), then, by a similar proof of Lemma 6.12, μsω[Kn+ι] = 0. If
ω = (2ri,2r2,2r3,2), then /iS^"* 1] = 0 by Lemma 6.10.

(c) When α(ω) = 5, similarly to the above and by Lemma 6.12, we have
μsω[Kn+ι] φ 0 if and only if ω = (2ri,r2,r2,2r3,2) or (2ri,2r2,r3,r3,2).

(d) Let η satisfy η φ Rd2. By a similar proof of Proposition 6.8, when
\η\ = 2η for j = 1 or 2, we see that sη[W2rs] φOif and only if η = (2η). Also,
when \η\=2r3 + 2, sη[W2r>+2)φ0 if and only if *7 = (2r3 + 2) or (r3,r3,2).
Hence, sω[Yf]φ0 if and only if ω = (2ri,2r2,2r3 + 2) or (2ri,2r2,r3,r3,2).
Similarly, sω[Y^] φ 0 if and only if ω = (2ru2r2 + 2,2r3) or (2ri,r2,r2,2r3,2).

By (a)-(d) and Lemma 6.9, ϊω[tf™ U I ? U ϊ?] 7̂  0 if and only if ω = («),
and hence, (n) e Rd2 by Lemma 6.5, as required. •

Similar methods as in the proof of Proposition 6.13 show the following
lemma.

LEMMA 6.14. (1) Let n = X)y

4

=i 2η be a dyadic expansion of n for r^ > 2,
and ω satisfy \ω\ = n and ω φ Rd2. Then,

(1) sω[Wn]φ0 if and only if ω = {n), (2n,r2,r2,2r3,2r4) or {2ru2r2,
r3,r3,2r4),

(ii) sω[Wn] φθ if and only if ω = («), (ruru2r2,2r3,2r4) or (2n,r2,r2,
2r3,2r4).

(2) Let n = 2r\+ 2r2 -f 3 (r\ > r2 > 2) where each η is a power of 2, and
ω satisfy \ω\ = n and ωφRd2. Then, sω[Wn] φ 0 if and only if ω =
(2ri+2,2r2 + l), (2τi + l,2r2 + 2), (2r l52r2 + 1,2), (2r{ + 1,2^,2), (r2,2n +
r2 + l,2) or (ri,ri+2r2 + l,2).

PROPOSITION 6.15. If n is even with <x(n) > 5, then (n) e Rd2.

PROOF. We only show the case α(w) = 5, since the cases oc(n) > 6 are
similarly proved. Let n = Σ/U 2η be a dyadic expansion of n for rs > 1, and
ω satisfy |ω| = n and ω φ Rd2. By a similar proof of Proposition 6.13, when
n = 2(mod 4), we have that ^[Jf 1 ] Φ 0 if and only if ω = («), and hence,
(n) e Rd2 by Lemmas 6.5 and 6.7.

When n = 0(mod 4), similarly to the proof of Proposition 6.13, we have
sω[Wn]φ0 if and only if ω = (n), (2r 1,«-2r 1), (2r 2,«-2r 2), (2r 3,«-2r 3)
or (2r4,/i — 2/"4). By Lemma 6.14(1), we have the following equivalences:
sω[W2rι x Wn~2ri] φ 0 if and only if ω = (2ri,n - 2rλ), (2ri,2r2,r3,r3,2r4,2r5)
or (2ri,2r2,2r3,r4,r4,2r5); sω[W2r2 x Wn-2r2] φ 0 if and only if ω =
(2r 2 ,n-2r 2 ), (2ri,2r2,r3,r3,2r4,2r5) or (2rί,2r2,2r3,r4,r4,2r5); sω[W2r* x
Wn~2r3]φ0 if and only if ω = (2r3,w - 2r3), (ri,ri,2r2,2r3?2r4,2r5) or
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(2ri, 2r2, r2,2r3,2r4,2r5); ^ ω [ ^ 2 r 4 x if"1-2'4] ^ 0 if and only if ω = (2r4, π - 2r4),
(ri,ri,2r2,2rs,2r4,2r5) or (2ri,r2,r2,2r3,2r4,2r5). Thus, sω[Wn\[{W2r' x
Wn-2rι)U(W2r2 x W"-2'2)]\{W2r* x ^ Λ " 2 ' 3)U(PF2r4 x Wn~2H)\ φ 0 if and
only if ω = («), and hence, (n) e IW2 by Lemmas 6.5, 6.7 and 2.2. Thus, we
have completed the proof. •

Propositions 6.8, 6.11, 6.13 and 6.15 establish Proposition 6.6.

7. Proof of Proposition 2.3

In this section, we prove Proposition 2.3(2) (iii) and (3), which together
with Proposition 5.1 establish Proposition 2.3. First, assume that n =
2 (mod 4) and α(w) is even with α(w) > 4, and set m = (n- 2)/2. Then, Xn =
β(l,/fi), and by (4.4), w(Xn) = (1 + c + x)(l + c + rf)w+1 where c, xeHι(Xn)
and d e H2(Xn) which are bound by the relations x2 = 0, c2 = ex and

= 0.

LEMMA 7.1. Lei π = 2(mod 4) and oc(n) be even with α(n) > 4. If ω

satisfies one of the following (i) and (ii), then sω[Xn] = 0:

(i) α(ω) = α(«) αm/ l(ω) > 3;
(ii) α(ω) = α(w) + 1 «wrf /(ω) > 4.

PROOF. According to the splitting principle as usual, we may assume that
\ + c + d=(l+u)(l + Ό), and thus u + v = c and uv = d. Then, w(Xn) =
( l + c + x)( l+MΓ + 1 ( l + t;Γ+ 1. Since x2 = 0, we have (c + x)2 a = c2 a and
(c + x)20"^1 = c2α(c + x) for any positive integer a. Moreover, since c3 =
cχ2 = 0, we have (c + x)j = 0 for any j > 4. We shall only show the case (i)
and omit the case (ii), since (ii) follows by a similar methods, and thus, assume
α(ω) = α(«) and l{ώ) > 3.

Let ω = (a\,... ,α/). When aj > 4 for any j , each monomial of sω(Xn)
contains (c + x)4, and hence, 5ω[A

r/I] = 0. Also, when / > 4, each monomial of
sω(Xn) contains (m + l)m = 0(mod 2) as a factor of its coefficient, and hence,
•ϊejjf1] = 0. Thus, to complete the proof of the case (i), we may assume
that ω = (2, α, b) where a > b > 4. Then, sω(Xn) = (c + x)2(uavb + ubva) =

W ' y
{/- \,j}ci+2db+j = 0, since c3 = 0 , and thus, we obtain the required result.

D

PROOF OF PROPOSITION 2.3(2)(iii). Assume n = 2(mod 4) and oc(n) is
even with oc(n) > 4. If ω satisfies α(ω) > α(/i) + 2, then ω e Rdi by Lemma
6.4. If ω satisfies α(ω) = α(«) with l(ω) < 2, or α(ω) = α(«) + 1 with l(ω) < 3,
then ω contains a number which satisfies one of the conditions (i)-(iv) of
Proposition 6.6, and thus, ω e Itofe by Lemma 6.4. If ω satisfies α(ω) = oc(n)
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with l(ω) > 3, or <x(ω) = oc(n) + 1 with l(ω) > 4, then sω[Xn] = 0 by Lemma

7.1. Hence, by Lemma 6.2, Xn immerses with α-efficiency 2, as required. •

Dold [2; Satz 1, 2] has shown that the total Stiefel-Whitney class of

P(m,n) is

w(P(m,n)) = (l+c)m(l+c + d)n+\

where ce Hι(P(m,n)) and deH2(P(m,ή)) which are bound by the relations

cm+\ _ o a n cj ^/i+i _ Q βy m a ] Q n g u s e o f this fact and a similar proof as in

Lemma 7.1, we have the following:

LEMMA 7.2. (1) Let n = 2r + 2 where r is a power of 2 with r > 2, and ω

be a partition with \ω\ = n and ω φ Rd2. Then, sω[Xn] φθ if and only if ω =

(«), (2r,2) or (r,r,2).

(2) Let n = 2r+\ where r is a power of 2 with r > 2, and ω be a partition

with \ω\ = n and ω φ Rd2. Then,

(i) when r > 2, sω[Xn] φθ if and only if ω= {ή) or (r + 1, r).

(ii) when r = 2, sω[Xn] φθ if and only if ω = (n).

(3) Let « = ri + r2 + 1 (ri > Γ2 > 2) with nφl, where each η is a power

of 2, and ω be a partition with \ω\ — n and ω φ Rd\. Then,

(i) when r2 > 2, sω[Xn] φθ if and only if ω = («), (r\ + l,r2) or

(ri,r2 + l).
(ii) when r2 = 2, ^ω[Xn] φθ if and only if ω = (n) or (ri + l,r2).

PROOF OF PROPOSITION 2.3 (3). Assume that n\ =2r\+2 and n2 = 2r2 + 2

for r\ > r2 > 2, where each η is a power of 2, and set « = 2r\ + 2r2 + 3. In

the following, we also assume that ω satisfies |ω| = n and ω φ Rd2.

(a) By Lemmas 6.4 and 7.2(1), (2), when r2 > 2, ί ω [ J n i x JΓ12"1] φ 0

if and only if w = (2n +2,2r 2 + 1), (2ri,2r2 + 1,2), (ri,ri,2r2 + 1,2) or (2r b

r2 4- I,r2,2). When r2 = 2, ί ω [ I Λ l x I " 2 " 1 ] ^ 0 if and only if ω = (2ri + 2,

2Γ2 + 1), (2ri,2r2 + l,2) or (ruru2r2 + 1,2).

(b) Similarly to (a), ^ I ^ " 1 " 1 x ^ * 2 ] ^ 0 if and only if ω = (2ri + 1,

2r2 + 2), (2ri + l,2r2,2), (2n + I,r2,r2,2) or (n + I,r1?2r2,2).

(c) By Lemma 6.14(2), ^ ω [ ^ n ] ^ 0 if and only if ω = (2n + 2,2r2 + 1),

(2ri + l,2r2 + 2), (2r b2r 2 + 1,2), (2n + I,2r2,2), (r2,2n + r 2 + 1,2) or (run +

2r2 + 1,2). Here, we notice that, when ri = 2r2, (2r\ + I,2r2,2) = (ri,ri -f

(d) By Lemmas 6.4 and 7.2(3), when r2 > 2, sω[Xr2 x X2r^+X x X2] ^

0 if and only if ω = (r2,2rx +r2 + 1,2), (2ri + I,r2,r2,2) or (2ri,r2 + l,

r2,2). When r2 = 2, sω[Xr2 x Λr2r i+Iϊ+1 x ^ 2 ] φ 0 if and only if ω = (r2,2ri +

Γ2 + l,2) or (2ri + l,Γ2,r2j2).

(e) Similarly to (d), sω[Xri x Arr i+2r2+1 x ! 2 ] / 0 if and only if ω =

(ri,ri+2r2 + l,2), {ruru2r2 + 1,2) or (n + I,n,2r2,2).
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By (a)-(e), when rx > 2r2, sω[(Xnι x X"2'1) U(Xnι~l x Xm) U
WnU(Xr2 x Z 2 r i + Γ 2 + 1 x X2)U (Xrι x Xrι+2r2+ι x X2)} = 0 for any ω, and
when n = 2r2, ^[(AΓ"1 x A"12"1) U ί ^ " 1 " 1 x Xni) II » " I I (^Γ2 x X2n+r2+ι x
jf2)] = 0 for any ω. Hence, by Lemmas 2.2 and 6.7(3), Proposition 2.3(1)
and Corollary 6.3, (Xm x Xn2-ι)\}(Xnι-1 x I " 2 ) immerses with α-efficiency 2,
as required. •
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