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ABSTRACT. We determine the lowest dimension of the Euclidean space in which all
n-dimensional orientable manifolds are immersible up to unoriented cobordism.
Our study is an orientable version of the work investigated by R. L. Brown.

1. Introduction

The purpose of this paper is to give a complete answer to the immersion
problem of orientable manifolds up to unoriented cobordism. Let a(n) be the
number of 1 in the dyadic expansion of an integer n, and v(r) the integer
determined by n =2""(2m+1). We set f(n) = 2n — a(n) — min{a(n), v(n)}.
In [10; Theorem A], we studied immersions of orientable manifolds in the
Fuclidean space R/ up to unoriented cobordism, and gave a partial answer:
(a) any closed orientable manifold M" for n > 4 is unoriented cobordant to a
manifold which immerses in R?™; (b) if a(n) < v(n) and n > 4, then there exists
an n-dimensional closed orientable manifold satisfying that any manifold
unoriented cobordant to it does not immerse in RA®-1,

We always assume that a manifold is closed C*® differentiable, and by
cobordant we mean unoriented cobordant between manifolds. Then, our main
results are stated as follows:

THEOREM A. Assume that a(n) > v(n) and n > 4. Then, f(n) = 2n — a(n) —
v(n), and any orientable manifold M" is cobordant to a manifold which immerses,
respectively, in RF™=1 or RE™-2 if the following (1) or (2) holds:

(1) a(n) + v(n) is odd, or

(2) a(n) +v(n) is even and n=0 or 3(mod 4).

THEOREM B. Assume that a(n) > v(n) and n>4 with n#6, 7. Then,
there exists an n-dimensional orientable manifold satisfying that any manifold
cobordant to it does not immerse, respectively, in RF®™=2 RE®M-3 o REM-1 jr
the following (1), (2) or (3) holds:
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(1) a(n)+v(n) is odd,
(2) a(n) +v(n) is even and n=0 or 3(mod 4), or
(3) a(n) +v(n) is even and n=1 or 2(mod 4).

It is well known that the class of any n-dimensional oriented manifold with
1<n<4,n=6o0rn="7is0 in the oriented cobordism ring (cf. [11, Théoréme
IV. 13]), and thus, 0 in the unoriented cobordism ring. Hence, for any given
n, if h(n) is the minimum integer such that every n-dimeénsional orientable
manifold immerses in R*™ up to cobordism, then Theorems A and B with the
results in [10] completely determine the value of A(n). The efficient uses of
symmetric characteristic classes seem the key ingredient of success in this paper.

Theorems A and B can be compared with the original study due to Brown
[1; Theorem 5.1, Proposition 5.2].

This paper is organized as follows: In §2 we fix some bases of the
cobordism rings and prepare Proposition 2.3 which plays a crucial role in the
proof of Theorem A. Theorem A is proved in §3 by using Proposition 2.3,
the Theorem B is in §4. In §5 we prove a part of Proposition 2.3. After
preparing necessary properties of the symmetric characteristic classes in §6, we
complete the proof of Proposition 2.3 in §7.

The author wishes to thank Prof. Takao Matumoto and Prof. Mitsunori
Imaoka for their many helpful suggestions.

2. Bases of cobordism rings

First, we recall some generators of the unoriented cobordism ring N..
Let CP" be the complex projective space, and S™ = {(t1,...,tm+1) €
R”!|°mt1 42 = 1} the unit sphere. The Dold manifold P(m,n) is defined as
the orbit space (S™ x CP")/J for the involution J(u,z) = (—u,z), where Z is
the conjugate number of z. Consider a reflection T on S™ concerning the
plane t,;; =0. Then, the map (u,z) — (Tu,z) on S™ x CP" induces an
involution 4 of P(m,n). We define Q(m,n) to be the manifold constructed
from P(m,n) x [0,1] by identifying (p,0) with (4p, 1) for each pe
P(m,n). Let xp € Ny, be the cobordism class of the real projective space
X? =RP?. For an integer k not a power of 2, we write k = 2""1(2s+ 1)
with s > 1. We set xpr_1 € JMor—1 and xy; € Ny to be the cobordism classes of
X%-1 = p(2" —1,2%s) and X% = Q(2" — 1,2"s), respectively. Then, Dold [2;
Satz 3] and Wall [12; Lemma 6] have shown that each x, is indecomposable in
N,, and thus {x,|q # 2" — 1} is the polynomial generators of N,.

Next, we recall some generators of the oriented cobordism ring €,
introduced by Wall [12; §9]. In order to state them, we need some notations.
A partition ® of n is an unordered sequence (a,...,a;) of positive integers
with E}‘:, ag=n. We set |w|=n, l(w)=k and a(w)= Zk=1 a(aj). For
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partitions w; = (aj1,--.,am;) (1 <j<k), we denote (wi,...,wx)= (ain,-.-,
Amys- -y @y - - Q). Let P be the set of all partitions, and consider the
following subsets of P:

Py={(ai,...,ax)ePlaj#2"—1 for 1 <j<k and any i>1};

Py ={(Q2a1,...,2ar) € Py|a; # a; for i #j, and a(a;) > 2}.
Let 7:Q, — N, be the natural map obtained by ignoring orientation. We
make essential use of the following result:

THEOREM 2.1 (Wall [12; §9]). There are elements hsy € Q49 (9 > 1) and
Jo € Qiu|-1 (@ = (2ay,...,2a;) € P1) which satisfy the following (1) and (2):

(1) The set {hag,dn|q = 1,w € P} generates Q,;

(2) I(hag) = xgq and 1(ge) = Z};l Xoay * X2g—1 """ X2a-

We say that M”" immerses with a-efficiency k if M" is cobordant to a
manifold which immerses in R?~*"~%_ Concerning this terminology, we have
the following:

Lemma 2.2. (1) (Brown [1; Theorem 5.1]) Any manifold M" immerses with
a-efficiency 0 for any n > 2.
(2) Let n= Z]k 1hj. If each M" immerses with oz-eﬁictency a; for

1<j<k, then H M "l immerses with o-efficiency b+Z] aj, where b=
21_1 a(ny) — ofn).

PRrROOF. (2) Slnce each M" is cobordant to a manifold which immerses
in RZv—*m)-a; H ‘. M" is cobordant to a manifold which immerses in R/
for f= z]_ {2nj a(n) —a;} = 2n—zj a(n;) Z] 1ai=2n—oa(n) —b—
Ejk:, a;, as required. O

In §5-7, we will prove the following proposition which plays a crucial role
in the proof of Theorem A.

ProposITION 2.3. (1) If a(n) > 3, then X" immerses with a-efficiency 1.

(2) If n satisfies one of the following conditions (i)—(iii), then X" immerses
with a-efficiency 2:

(i) a(n) =3 and n=1(mod 4);

(i) o(n) >4 and n is odd,

(i) a(n) >4, a(n) is even and n = 2(mod 4).

3) If m=n=2(mod 4), am)=a(n)=2 and ny #ny, then
(XM x X®)[J(X™ x X™71) immerses with a-efficiency 2.

3. Proof of Theorem A

For elements h4y (9 > 1) and g, (w € P;) in £, given in Theorem 2.1, we
take orientable manifolds H% and G, whose cobordism classes are I (hag) and
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I(g,,), respectively. By Theorem 2.1 (1), any orientable manifold is cobordant
to a finite disjoint union of the form ([JX, H*) x ( j’=1 G.,), where g; > 1
and w; € P;. Thus, in order to establish Theorem A, it is sufficient to prove it
for the following manifolds:

() M"=T[E, H*, where n= Yk 4q;

(i) M"= ([T, H*) x ()= Gay), Where n= Y, 4q; + 3 {loy| - 1}
and k, /> 1;

(i) M" =TI, G, where n= 31 {|oy| — 1}.
For a partition = (2ay,...,2a) € P, we put ¥; = X245~ x ([],,; X**). By
Theorem 2.1 (2), G, is cobordant to ]_[1’;1 Y;.

PROPOSITION 3.1. Let we P, and n= |w| — 1. Then, any G, immerses
with, respectively, o-efficiency 1 or 2 if the following (1) or (2) holds:

(1) a(n) if odd, or

(2) a(n) is even and n = 3(mod 4).

ProoF. Let w = (2ay,...,2a;) € P;. First, we remark that, if a(w) is
odd, then there exists ¢, 1 <t <k, such that X?* and X?#~! immerse with
o-efficiency 1. In fact, since we P; and a(w) is odd, there exists ¢ with
a(2a; — 1) > a(2a;) > 3, and thus, X?* and X?%~! immerse with a-efficiency 1
by Proposition 2.3(1). We shall prove (2) and omit the proof of (1), since the
methods are similar. Thus, assume that «(n) is even and n = 3(mod 4). Since
G, is cobordant to [[X, ¥}, it is sufficient to show that each Y; immerses with
a-efficiency 2.

(a) The case a(w)>a(n)+2: Since a(2a;— 1)+, a(2a;) — a(n) 2
a(w) —a(n) =2 for each j, 1 <j<k, Y; immerses with a-efficiency 2 by
Lemma 2.2.

(b) The case a(w)=a(n)+1: Since a(w) is odd, there exists ¢, 1 <
t <k, such that X?* and X?*~! immerse with a-efficiency 1 by the remark
above. Similarly to (a), we have a(2a; — 1) + >, 2(2a;) — «(n) > 1. Hence,
by Lemma 2.2, each Y; immerses with a-efficiency 2.

(c) The case a(w) < a(n) —2: For each j, we have a(n) < a(2a; — 1) +
> iz ®(2a;) = a(2a; — 1) + a(w) — «(24)), and thus, «(2a; — 1) >a(24;) + a(n) —
a(w) >4, since weP;. Hence, X*%~! immerses with a-efficiency 2 by
Proposition 2.3(2), and thus, Y; immerses with a-efficiency 2.

(d) The case a(w)=a(n) —1: Since a(w) is odd, there exists z, 1 <
t < k, such that X% immerses with a-efficiency 1. Similarly to (c), a(2a; — 1)
>3 for each j. Hence, by Proposition 2.3(1) and Lemma 2.2, each Y;
for j #t immerses with a-efficiency 2. Further, when there exists at least
one integer s, 1 <s <k, such that s# ¢ and «(2a;) >3, Y, immerses with
a-efficiency 2 by Proposition 2.3(1) and Lemma 2.2. When «(2g;) =2 for
any j #t, we have a(2a,) is odd and a(24,) > 3, since a(w) is odd. Then,
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o(2a; — 1) > 3, and 24, — 1 = 1(mod 4) if «(2a, — 1) =3. Thus, by Proposi-
tion 2.3(2) and Lemma 2.2, Y, immerses with a-efficiency 2, as required.

(e) The case a(w)=oa(n): First, assume that there exist at least two
integers ¢ and s which satisfy «(2b) >3 for b =a,, a;. Since a(2b—1) >
a(2b) >3, X?* and X?*-! (b = a,,a,;) immerse with a-efficiency 1 by Propo-
sition 2.3(1). Thus, each Y; immerses with a-efficiency 2, as required.
Hence, we may assume that a(a;) is even with a(a;) >2 and a(aq;) =2 for
2 <j <k, since a(w) is even. Further, when a(a;) >4 and 2a; = 2(mod 4),
X2 and X?~! immerse with a-efficiency 2 by Proposition 2.3(2), and each Y;
immerses with a-efficiency 2. Thus, hereafter, we also assume that a(aq;) =2
or 2a; = 0(mod 4).

If 2a;=2(mod 4) for some j, we have a(q;)) =2 by the assump-
tions. Then, since n+ 1 = 0(mod 4), there exists another integer ¢ #j with
2a, =2(mod 4) and a(a;) = 2. Hence, by Proposition 2.3(3), (X2~ 1x X%)
[1(X?% x X%~!) immerses with oa-efficiency 2, and thus, Y;[[Y,=
{(x271 x X2 [1(X?* x X?*71)} x ([, X**) immerses with a-efficiency 2.

Lastly, we consider the case 2a; = 0(mod 4) for some j. Since a(b)+
v(b) =a(b—1)+1 in general and v(2a;) >2, we have a(2a; — 1) = a(2a) +
v(2a;) — 1 > 3. Thus, by Proposition 2.3 (1), X?4~! immerses with a-efficiency
1. Further, since a(n) = a(w) = Y.X | «(24;), we have a(2a; — 1) + > iz %(2a;)
—a(n) = a(2a; — 1) — «(2a;) = v(2¢5) — 1 > 1. Hence, Y; immerses with
a-efficiency 2, as required. O

PROPOSITION 3.2. Let M" = H}:l Gy, for 1>2, where wj€ Py and n=
Z}=1{|wj| —1}. Then, M" immerses with, respectively, a-efficiency v(n) + 1 or
v(n) + 2 if the following (1) or (2) holds:

(1) afn) + v(n) is odd, or

(2) an) + v(n) is even and n =0 or 3(mod 4).

Proor. We omit the proof of (1), since it is similar to that of (2). Thus,
assume that a(n) + v(n) is even and n =0 or 3(mod 4). We put n; = |w;| — 1
and ¢;j = (nj—1)/2 for each j, 1 <j </ Notice that a(a) + a(b) > a(a+b)
and a(a) +v(a) = a(a— 1) + 1 for any positive integers a and b. Hence, we
have Z}=1 a(nj) —a(n) = a(n —ny) +a(n) —a(n) = a(n—2c — 1) +a(2c1) +
1—oa(n) =a(n—1)+1—a(n) = v(n).

When there exists at least one integer ¢ such that «(n,) is even and
n, = 3(mod 4), G, immerses with a-efficiency 2 by Proposition 3.1(2). Hence,
M" immerses with a-efficiency v(n) + 2 by Lemma 2.2, as required. Thus, in
the remaining of the proof, we assume that «(n;) is odd or n; = 1(mod 4) for
each j, 1 <j<l.

When there exist at least two integers ¢, s such that each a(n;) is odd for
i=1t, s, both G, immerse with a-efficiency 1 by Proposition 3.1(1), and M™"
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immerses with a-efficiency v(n) +2. When only one a(n,) is odd for 1 <z </,
G, immerses with a-efficiency 1 by Proposmon 3.1(1). If E,_l a(n;) — a(n) =
v(n), then we have that a(n) + v(n) = E,_ oz(n,) is odd, which contradicts the
assumption that a(n) + v(n) is even. Hence, 3.’ _1a(n;) —a(n) = v(n) +1, and
M" immerses with a-efficiency v(n) + 2, as required.

Lastly, we assume that all «(n;) are even for 1 <j </. Then, we notice
that n; = 1(mod 4) by the above assumption. When /=2, n=n+n, =
2(mod 4), which contradicts the assumption that n =0 or 3(mod 4). When
1 >3, we have Zjl=1 a(n) — a(n) = a(2c1) + a(2¢2) + a(2¢3) + 3 + 2}24 a(n;) —
an) = a(n—3) + 3—an) =v(n—-2) + a(n—2) + 2 — a(n) = v(n—2)+
vin—1)+an—1)+1—-a(n) =v(n-2)+v(n— 1) +v(n) 2v(n)+1. If Zj_
a(nj) — a(n) = v(n) + 1, then a(n) +v(n) = Z] ya(nj) —1 is odd by the as-
sumption, which contradicts the assumption that «(n) + v(n) is even. Hence,
Z;zl a(nj) —a(n) > v(n) +2, and M" immerses with o-efficiency v(n)+ 2, as
required. O

ProoF OF THEOREM A. Propositions 3.1 and 3.2 establish Theorem A for
the case (iii): M" H, 1 Gu;- In order to show the remaining cases, we first
remark that H* immerses with a-efficiency a(q) for any ¢ > 1. In face, since
H* is cobordant to (X%4)* by Theorem 2.1(2), and a(2q) + a(2q) — a(4q) =
a(q), H* immerses with a-efficiency a(g) by Lemma 2.2.

(i) The case M" = [[X, H*: Since a(n) > v(n) and each H* immerses
with a-efficiency «(g;) by the remark above, M" immerses with a-efficiency
i o(dqr) —a(n) + T alg) = L algi) = Ti a(dg:) = aln) = v(n) + 1
by Lemma 2.2. If a(n) + v(n) is even and a(n) > v(n), then a(n) > v(n) + 2.
Thus, similarly, we have the requlred result in this case.

(i) The case M" = (]'L | HA4) x (H G,,) for k I>1: Similarly to
the proof of Proposmon 3.2, we have X a(4q,) +3L, a(lew;] = 1) — a(n) =

v(n). Let G'=I]_, G, and n' = Zjlzl{lw, 1}, then M" = ([[X, H*) x G’
and n= Z,_ 4q; +n'. Since H*' immerses with a-efficiency a(q;) >1, M”"
immerses with a-efficiency v(n) + 1 by Lemma 2.2. If n =0 or 3(mod 4), then
n' =n—3Y¥ 4g,=0 or 3(mod 4), thus G’ immerses with a-efficiency v(n') + 1
by Propositions 3.1 and 3.2. Since H*! also immerses with a-efficiency 1, M™"
immerses with o-efficiency v(n) + 2, as required. O

4. Proof of Theorem B

Let w;(M") e H'(M") for i >0 be the Stiefel-Whitney class of t(M"),
and w;(M") its dual class. That is, they satisfy (3 ;,,wi(M")) x
(> iso Wi(M")) = 1. Throughout the paper, the cohomology and the
homology are always assumed to be with coefficient Z,. Since the manifolds
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treated in this paper may not be connected, we have to distinguish the Stiefel-
Whitney class #p, - - - Wy, (M") and the Stiefel-Whitney number #,, - - - W, [M"]
for n =% n;. Then, we recall the following:

LeMMA 4.1 (cf. [10; Lemma 4.1]). Let L™ and L] (1 < i < k) be manifolds
with L" = 1_Lk=1 L. 1If each L satisfies the following

(i) the Stiefel-Whitney number Wg,Wn,_q,[L"] # 0,

(ii) any Stiefel-Whitney number which contains w;(L{") (j > n; — ;) as
a factor vanishes, for some o; < n;, then WeW,—o[L"| #0 and any Stiefel-
Whitney number which contains w;(L") (j >n—0o) as a factor vanishes,
where o = X | o

Since two manifolds are cobordant if and only if they have the same
Stiefel-Whitney numbers (see [9; Chapter VI]), if a manifold L" satisfies
WeWn—g|L"] # 0, then any manifold M”" cobordant to L" satisfies
WoWn—oe[M"] #0, and thus, W,_,(M")#0. Since a necessary condition for
M" to immerse in R**°~! is that #;(M") = 0 for any j > n — g, the following
proposition establishes Theorem B, and this section is devoted to proving it.

PROPOSITION 4.2. Assume that a(n) > v(n) and n >4 withn#6,7. Ifn
and a(n) satisfy one of the following (i)-(iii), then there exists an orientable
manifold L" which satisfies Wo(n)Wn—_o(m)[L"] # O and any Stiefel-Whitney number
which contains w;(L") (j > n—a(n)) as a factor vanishes:

(i) a(n) +v(n) is odd and o(n) = a(n) + v(n) + 1;

(i) ofn) +v(n) is even, n =0 or 3(mod 4) and o(n) = a(n) + v(n) + 2;

(iii) o(n) + v(n) is even, n=1 or 2(mod 4) and o(n) = a(n) + v(n).

We prepare some lemmas for the proof of Proposition 4.2. In [10;

Lemma 4.3], we have shown the following:

LemMA 4.3. (i) Let n=2r, where r > 2 and r is a power of 2. Then,
wj(CP") =0 for any j > n—2, and WW,_2[CP"] #0.

(i) Let n=2t+s—1, where t>s>2 and t, s are both powers of 2.
Then, w;j(P(s—1,t)) =0 for any j >n—s, and W;Ww,_s[P(s —1,1)] # 0.

Wall [12; Lemmas 4, 5] has shown that the total Stiefel-Whitney class of
Q(m,n) is

(4.4) w(Q(m,n) = (1 +c+x)(1+c)" (1 +c+d)",

where ¢, x € H'(Q(m,n)) and d € H*(Q(m, n)) which are bound by the relations
x2 =0, ¢c™! =¢"x and 4™ = 0.

LEMMA 4.5. Let n=2t+s, where t >s>2 and t, s are both powers of
2. Then, wi(Q(s—1,t)) =0 for any j >n—2, and wywn—2[Q(s — 1,1)] # 0.
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PrRooF. By (44), w(Q(s—1,0)=(14c+x)(1+¢)* % (1+c+d)"*"
Since x2=0, ci=c"x=c"2x2=0 for i>s+1 and d"*! =0, we have

WO —-1,0) = Q+c+x) A+ PN +c+d)™ ! = Q+c+x)* .
(1+e)*P?(1+c+d)"". Here, (1+c+x)>* "1+ = {(1+)* '+
1+0* 2} (14 = (I+c+x)(1+0* = (I+c+x)(1+c)’ =
(I+c+x)(1+¢*) = 14c+x+¢, and hence, w(Q(s—1,1)) =

(I+c+x+c)(1+c+d)™". Thus, we have wi(Q(s—1,8)) =0 for any
j>s+2t—2=n-2 and W,—2(Q(s— 1,2)) = c*d*"1. Because w,(Q(s — 1,1))
= (¢t — 1)d up to terms which contain ¢ or x, we have w,w,—» (Q(s—1,1)) =
(t—1)c’d"' = ¢5d’ # 0, which completes the proof. O

When we denote by m = Y_;_, 5; a dyadic expansion of m, we assume that
each s; is a power of 2 and s; > --- > s, > 1.

LEMMA 4.6. Assume that n is odd and a(n+1) is even. Let n+1=
Z,-zfl 2r; be a dyadic expansion of n+ 1, and w = (2r) + 2rak, ..., 21k + 2ri41) €
P,. Then, any Stiefel-Whitney number which contains w;(G,) (j > n — 2ry —
2k +2) as a factor vanishes, and the Stiefel-Whitney number Wy, 12k—2
Wn—2r2k—2k+2[Gm] 74 0.

Proor. We put b, = 2r, + 2ry—441 (1 <t <k). By Theorem 2.1 (2), G,
is cobordant to [[L,¥; where ¥;=X%"!x ([],X"). Here, Xb'=
P(2ry_is1 — 1,r;) and X% = Q(2ry_s41 — 1,7,) by definition. By Lemmas 4.1,
43 (ii) and 4.5, we have ;(Y;)=0 for each i>2 and any j=>
n—2ry —2k+2. Similarly, for i=1, #j(¥Y;)=0 for any j>n—2ry—
2k +2, and Wy 42k—2Wn—2ry—2k+2[Y1] # 0. Hence, we have the required
result. O

Now, we shall complete the proof of Proposition 4.2, which establishes
Theorem B.

PrROOF OF PROPOSITION 4.2. In the below, each r; (j > 1) is always a
power of 2, and r; > r; for i <j. We first consider the case n is odd, namely
v(n) = 0. ‘

(i) In this case, a(n) is odd. When n=1(mod 4), we put n=
Z,.Zfl 2ri+1 for ry=>2, and w=(2r+2,2r3+2ru,...,2rk1 + 2res2)-
Then, by Lemmas 4.1, 4.3 (i) and 4.6, L" = CP" x G, satisfies the condi-
tions of Proposition 4.2 for o(n) = 2k+2=a(n)+ 1, as required. When
n=3(mod 8), we put n= Efﬁf’ 2ri+3 for ry-1 >4, and w=(2r; +4,
2ry 4+ 2rpk—1,. .-, 2rk + 2rg41). By Lemma 4.6, L" = G,, satisfies the conditions
for o(n) =2k+2=a(n)+1. When n=7(mod 8), we put n= ,2:1 2ri+7
for ry >4, w1 =(6), wr=2ryx+2) and w3 = (2r +2, 2r, +2ryp_y1,.--,
2rg + 2rg41). By Lemmas 4.1 and 4.6, L" = G,, x G,, X G, satisfies the
conditions for a(n) =2k +4 = a(n) + 1.
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(ii) Since n=3(mod 4) and «(n) is even in this case, we put
n=2%2r+3 for ry>2 and o= (2r1 +4, 2r + 2rp_1,...,2r% + 2rk41).
By Lemmas 4.1, 4.3 (i) and 4.6, L" = CP™* x G, satisfies the conditions for
a(n) =2k +4=oa(n) +2.

(iii) Since n=1(mod 4) and a(r) is even in this case, we put n=

,.2;‘1_1 2r;4+1 for ry_; =2, and @ = (2r; +2,2r3 4 2ro_1, ..., 21k + 2rey1). By
Lemma 4.6, L" = G,, satisfies the conditions for o(n) = 2k = a(n).

Next, we consider the case n is even.

(i) When v(n) =1 and a(n) =2, we put n=4r; +2 (r; > 2), since n # 6
by the assumption. By Lemmas 4.1 and 4.3 (ii), L”" = P(1,r) x P(1,r)
satisfies the conditions for a(n) =4 = a(n) +v(n) +1. When v(n) =1 and
a(n) >4 is even, we put n= Zf:fl 2r;+2 for ry_y =2, and o = (2r; +2,
2ra+2rpk—1,.--,2rk+1 +2rky2). By Lemmas 4.1, 43 and 46, L"=
P(1,r) x CP™ x G, satisfies the conditions for a(n) = 2k + 2 = a(n) + v(n) + 1.
When v(n) > 2, by the assumption a(n) > v(n), we put n = Z,k=1 2r; for ry > 2
and k>3, and m = Z,’;z 2r; — 3. Here, we notice that m = 1(mod 4) and
a(m) = a(n) + v(n) — 3 is even. By the above case (iii) for odd n, there exists
an orientable manifold N which satisfies the conditions of Proposition 4.2 for
a(m) = a(m). Hence, by Lemmas 4.1 and 4.3 (ii), L" = P(3,r)) x N™ satisfies
the conditions for o(n) =4 + o(m) = a(n) + v(n) + 1.

(ii) Since n=0(mod 4) and «(n) > v(n) >2, we put n= Yk 2r for
re>2and k>3, and m= Z,-k=2 2r; — 3. Then, m and a(m) = a(n) + v(n) — 3
are odd. By the above case (i) for odd n, there exists an orientable manifold
N™ which satisfies the conditions of Proposition 4.2 for a(m) = a(m) + 1.
Hence, by Lemmas 4.1 and 4.3 (ii), L" = P(3,r;) x N™ satisfies the conditions
for a(n) = 4 + a(m) = a(m) + 5 = a(n) + v(n) + 2.

(i) Since n = 2(mod 4) and «(n) + v(n) is even, we put n = 2,2:1 2r; +2
for ryp > 2, and w = (2r2 +2,2r3 + 2rok, ..., 2rky1 + 2r42). By Lemmas 4.1,
4.3(ii) and 4.6, L" = P(1,r;) x G, satisfies the conditions for a(n) =2k +2 =
a(n) + v(n). O

5. Immersions of X” for a(n) >3 or n is odd

The remaining of this paper is devoted to proving Proposition 2.3. For
a space Y and a positive integer m, let P(m,Y) be the space constructed
from S™ x Y x Y by identifying (u,x,y) with (—u,y,x). For odd n not
of the form 2/ —1, we write n=2"(2s+ 1) — 1 with r, s> 1, and set V" =
P(2" — 1,RP?"). Brown [1; Corollary 7.5] has shown that V" is cobordant to
the Dold manifold X” = P(2" — 1,2"s). In this section, we prove the following
proposition, which establishes Proposition 2.3(1) and (2)(i), (ii).
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PROPOSITION 5.1. (1) Let n be odd and not of the form 2° — 1 for any i. If
a(n) > 3, then V" immerses with a-efficiency 1. Moreover, if n satisfies one of
the following conditions (i) and (ii), then V" immerses with a-efficiency 2:

(i) a(n) =3 and n=1(mod 4);

(i) a(n) >4.

(2) If n is even with a(n) >3, then X" immerses with a-efficiency 1.

We need the following results.

THEOREM 5.2 (Brown [1; Proposition 4.3, Theorem 6.3]). (1) P(m,Rk) is
the total space of the bundle k(y,, ® &), where y,, and &, are the canonical line
bundle and trivial line bundle over RP™, respectively.

(2) For even integer n, if the Stiefel-Whitney number Wy(n)Wy_a(m[M"]
vanishes, then M" immerses with a-efficiency 1.

THEOREM 5.3 (Mahowald and Milgram [6; Theorem 4.1]). Let p and q be
odd and m =p+q+ 1. Then, the total space of (p+ 1)y, immerses in R/ for
f=29+p+1—a(m)+a(p+1)—k(p,m). Here, k(p,m)=min(k(p),k(m))
and k(t) =0, 1 and 4 if t=1 or 5, 3 and 7(mod 8), respectively.

ProOF OF ProposITION 5.1. (1) We set n=2"(2s+1)—1 for r, s> 1,
a=2"—-1 and b=2"s. Then n=a+2b. Milgram [7; Theorem 1] and
Lam [5; Theorem (6.2)] have proved that RP! immerses in R¥~*") for /> 7.
We remark that, for 2 </ <7, RP' also immerses in R¥*?  Hence, by
Theorem 5.2(1), V" = P(a,RP?) immerses in the total space of the bundle
(2b — (b)) (7, D &a)-

First, assume that r > 3. We apply Theorem 5.3 to 2by, with p+1=
2b, g=a and m=a+2b=n. Since a(m)—a(p+1)=r and k(p,m)=
k(2b—1,n) =4, we obtain an immersion of 2by, in R*+%~"4  Hence,
2by, ® (2b — a(b))e,immersesin R2+4-¢(b)-r-4 _ R2r-em)—4 " Since (2b — a(b)) -
(v, ®€,) is a subbundle of 2by, @ (2b — a(b))e,, V" immerses in R¥*" 4 a5
required.

Next, assume that r =2. Then, we have a=3, n=2b+3 and a(n) =
a(b) +2. Since &3 ~ RP? x R immerses in R* we have an immersion of
4y, ~ t(RP®) @e3 ~ 4e3 in R, and 4ky, ~ 4ke; in R¥*3 for any positive
integer k. We further assume o(b) >4. We put a(b) =/(mod 4) where
0 </ <3. Then we notice that a(b) —/ > 4. Since 2b — a(b) + I = 0(mod 4),
we have an immersion of (2b— a(b) +1)y; in RZ*®++3 by the above
remark. Similarly to the proof of the case r > 3, by taking the product with
R%~*®) we obtain an immersion of ¥” in R/ for f =4b—2a(b)+ /43 =
2n—a(n) — (a(b) — 1) =1 <2n—a(n) — 5, as required.
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We omit the proof of the remaining cases, since they are shown similarly,
except that we use the following result by Gitler-Mahowald [3; Theorem
E]: RP! immerses in R*~> for / = 0(mod 4) with «(l) > 2.

(2) We set n=2"(2s+1) for r>1 and afs)>2, a=2" and b=
2’s. Let b=Y% r be a dyadic expansion of b for r, >2" >2. Then, we
have n=a+2b, a(n)=k+1 and X"=Q(a—1,b). By (4.4), w(X") =
(I1+c+x)(1+0) (1 +c+d)*", where ¢,xe H'(X") and d € H*(X") with
x2=0,c?=c*!x and d®*1 = 0. Since ¢/ = ¢/"2x2 =0 for j > a+ 1, we have
B = Q+c+x)""A+0) M +c+d) = (1+c+x)%1(1 + o).
(1+c+d)™1 Here, (I+c+x)*'1+0)*?=1+c+x+¢? and
B =1 +c+x+c)1+c+d) ! Thus, wi(X")=0 for any j>
a+4r,—2b—2. Since (n—a(n)—(a+4rn —2b—-2)=4b—4r,—k+1=
Z,-k=2(4r,- —1) >0, we have W,_,(,)(X") =0, which completes the proof by
Theorem 5.2(2) O

6. Symmetric characteristic classes

In this section, we prepare some results about the symmetric characteristic
classes, which will be used in the next section. Let s, €Z[t,...,2], a
polynomial ring over Z, be the smallest symmetric function which contains the

monomial ¢! --- t* for any partition w = (ay,...,ax) € P with / > |w|. Then,

for the partition {; = (1,...,1), s, is the elementary symmetric function 6,
i

and s, is expressible as a polynomial s, = Py(61,...,0,) with integral

coefficients. P, is uniquely determined by w if we take / > |w|. We define
So(M™) € H?l(M™) to be s,(M™") = Py(w1,..., W) ) for the Stiefel-Whitney
classes w; = w;(M") of M". Then, when M = M; x M, 5,(M) = Z(wl,w2)=w
S (M1) ® 50,(M>), and [M™] is indecomposable in R, if and only if the Stiefel-
Whitney number s(,)[M"] # 0 (cf. [9; Chapters V, VI]). We remark that M" is
cobordant to N” if and only if s,[M" [ N"] =0 for any partition w € P with
|w| = n. For the manifolds X" defined in §2, we denote X® = ]'[};1 X% for
o = (ai,...,ax) € Po. Since N, is the polynomial algebra with [X"] as gen-
erators, any manifold M" is cobordant to a finite disjoint union of X® for
|o| =n and w € P. We denote by M" such a finite disjoint union of X® for
M". Then, we have the following lemma.

LEMMA 6.1. Assume that s,([M") =0 for any ne P with I(n) <m and
|7l =n. Then,

(1) s4,(M") =0 for any ne P— Py with I(n) =m and |n| =n.

(2) For w e Py with l(w) = m and |o| =n, M" contains X® if and only if
So[M"] # 0.
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Proor. For any 7€ P and w = (ay,...,ax) € Py with |g| = ||, we have
X = Sy X -5, [X%). ] IF Un) < I(@), or if I(n) = (@) and
n # w, then there exists at least one integer j which satisfies |#;| > a;, and hence
s X®=0. If =0, then 5,[X ] = 5(4)[X¥] - - 5(4,)[X*] # 0. Thus, by the
assumption, M" contains only X® with w € Py, I(w) > m and |w| =n. Hence,
for any n € P— Py with I(7) =m and || =n, we have s5,[M"] =0, and thus
5,[M" =0. For we Py with /(0) =m and |w| =n, M" contains X if and
only if s,[M"] # 0, namely, s,[M"] # 0. O

By Lemma 6.1, we remark that M" is cobordant to N” if and only if
So[M™" I N™] = 0 for any partition w € Py with |w| = n. Thus, hereafter in this
paper, we always assume that any partition is in Py. For a manifold N” and a
partition w with |w| =n, if N" satisfies s,[N"] #0 and s5,[N"] =0 for any
partition # # w with |y| = n, we say w is realized by N" or N" realizes . We
define Rd, = {w e Py|w is realized by a manifold which immerses with «-
efficiency 6}. We remark that Rdy > Rdy > Rd, > ---, and w € Rd, for any
partition @ by Lemma 2.2.

LEMMA 6.2. Let o be a non-negative integer. If s,[M"] =0 for any
partition w with |w|=n and o ¢ Rd,, then M" immerses with a-efficiency o.

Proor. By the assumption, for any partition w with s,[M"] # 0 and
|w| = n, we have w € Rd,. Then, there exists a manifold N, which realizes @
and immerses with a-efficiency . Since M" is cobordant to a manifold which
is a disjoint union of such manifolds N,, we have the required result. [J

COROLLARY 6.3. Let o be a non-negative integer. If N" immerses with o-
efficiency ¢ and s,[M" [[ N"] = 0 for any partition w with || = n and o ¢ Rd,,
then M" immerses with a-efficiency o.

LeMma 64. Let w= (ay,...,ax) be a partition with |w|=n, and
o= Z};l o; for non-negative integers a;. If (a;) € Rd,, for each j, 1 <j <k,
then w e Rda(w)—a(n)+a

Proor. We denote by N(,) a manifold which realizes (a;) and immerses
with a-efficiency o; for each j. Then, clearly, H]_l N(, realizes w, and im-
merses with a-efficiency a(w) — a(n) + o by Lemma 2.2 (2), as required. []

By a similar proof of Lemma 6.2, we have the following:

LEMMA 6.5. Let (n) € Py and o be a positive integer. If there exists a
manifold L" which immerses with a-efficiency o and satisfies that su)[L"] # 0
and s,[L"] =0 for any partition w with |w| =n, l(w) >2 and » ¢ Rd,, then
(n) € Rd,.
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In the rest of this section, we show the next proposition which plays a
crucial role to complete the proof of Proposition 2.3.

PROPOSITION 6.6. Let n be even. If a(n) > 2, then (n) € Rdy. Moreover,
if n satisfies one of the following (i)—(iv), then (n) € Rd,:

(i) a(n) =2 and n=0(mod 4);

(i) o(n)=3;

(i) a(n) =4 and n =2(mod 4);

(iv) a(n) =S.

For even integer n with 1 < a(n) < 3, we set W" = RP" the real projective
space. For even n with a(n) >4, let n= 2;;1 r; be a dyadic expansion of
n. Then, for odd k, we put by=ri+r2,..., b1 =rr_2+re_1, bu=rr+1
where m=(k+1)/2, and for even k, we put by=ry, bp=ra+nrs;,...,
bm_1=rr_2+ k-1, bm =1+ 1 where m = (k+2)/2. Let K™ = H 1RP”J‘.
Then, H*(K™') = Zslc1,...,cm)/ (2T, .. ctmtl) for ¢;e H (RPY ). Con-
sider the submanifold W" < K**! dual to the cohomology class u= 37, ¢;.
That is, the inclusion 1: W” — K"t! sends the fundamental homology class
(W") e H,(W") to the Poincaré dual of u (cf. [9; Chapter V]). For n=
ri+r2+3(r1 >ry>4) where each r; is a power of 2, similarly, we define
W™ to be the submanifold of K"*! = RP"*2 x RP"2*2 dual to ¢, + c;, where
H*(K™"Y) = Zy[er, ¢2]/ (], c*?).  Further, for even n with a(n) = 4, sim-
ilarly to the above definitions of W", we define W" to be the submanifold of
K™! =RP"+7 x RP™ x RP*! dual to 3, ¢j, where n= Y}, r; is a dyadic
expansion of n and H*(K™') = Zye1, ¢z, 3]/ (e 4, cpt! civt?).

LemMA 6.7. (1) When n is even with a(n) =2, W" immerses with o-
efficiency 2.

(2) When n=0(mod 4) with a(n) =4, W" immerses with a-efficiency 2.

(3) When n=3(mod 4) with a(n) =4, W" immerses with a-efficiency 2.

Proor. (1) Sanderson [8; Theorem (5.3)] has proved that RP’ immerses
in R¥% for I =3(mod 4) with / >8 We remark that RP7 immerses in
R®. Hence, when n=2(mod 4) with a(n) =2, W" < RP"! immerses in
R>-*"-2  Gitler-Mahowald [3; Theorem E] has proved that RP’ immerses
in R¥75 for /=0(mod 4) with «(/) >2. Hence, when n =0(mod 4) with
2 < a(n) <3, W" immerses in R>"~*"~2_ Sanderson [8] has also proved that
RP! immerses in R¥® for /=3(mod 4) with «(/) >4. Hence, when
n=2(mod 4) with a(n) =3, W" < RP"! immerses in R*~*"~3_ Further,
Sanderson [8] has proved that RP' immerses in R¥~3 for odd integer
1>8. We remark that RP> (resp. R x RP?) immerses in R’ [4; Theorem 7.1]
(resp. R*). Hence, for even integer n with odd a(n) =k >5, W"c K"!
immerses in R/ for f = Z,—l (2b; —5) + 2b,y—3 = 2n—5m+4 = 2n—
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S(k+1)/2+4 <2n—a(n) — 6. For even integer n with even a(n) =k >4,
W" c K™! immerses in R/ for f=2b—1+ Z}:}l(ij -5)+2by—-3=
2n—5m+8= 2n—-5k+2)/24+8 < 2n—a(n) — 3, as required. (2) is sim-
ilar. (3) By the result of Sanderson [8], we have the immersion of W" in
R¥t x R¥? = R?6 = R?*"~2 a5 required. O

Since w(RP") = (1 +c)""! where ce H!(RP") which satisfies ¢"*! =0,
for a partition = (ay,...,a1,-..,8xk...,ar) Wwith |w|=n, we have
N N s

So(RP") = {ny,...,ng,n'}c", Where {sl,..‘:"},} denotes the multinomial coef-
ficient (sy +---+s)!/((s1")---(s))), and n' =n+1-— 2};1 n;.

PROPOSITION 6.8. Let n be even.

(1) If a(n)=2, then (n)eRd,. If n=0(mod 4) furthermore, then
(n) € Rd,.

(2) If a(n) =3, then (n) € Ra,.

Proor. (1) We notice that si)(W") = s(,)(RP") = {1,n}c" #0, and W"
immerses with o-efficiency 2 by Lemma 6.7. When |ow| =n, a(w) =2 and
l(w) =2, o is a form w = (r1,r;) (r1 > ry) where each r; is a power of 2.
Then, by the above calculation, s,[W”] =0. When |w| =n and a(w) > 3, we
have we Rd; by Lemma 6.4. Hence, by Lemma 6.5, (n) € Rd;. When
|w| =n, a(w) =3 and w ¢ Rd,, since (n') € Rd; for even integer n’ with
a(n’) =2 and by Lemma 6.4, w is a form w = (r1,r2,2r;) (r1 # r2) where each
rj is a power of 2. Thus, by the above calculation, if n = 0(mod 4) then
So[W" =0. Further, when |w|=n and a(w)>4, we have we Rd, by
Lemma 6.4. Hence, if n = 0(mod 4), then we have (n) € Rd, by Lemma 6.5,
as required. The proof of (2) is similar, and we omit it. O

Let a(n) >4 and v be the normal line bundle of W” in K"t!. Then,
w(v) =1*(1 + u). Since " 17(K*1) = ¢(W") ®v, we have w(W")i*(1 + u) =
rwK™)  and  w(W") =1*((1 4+ p) 'w(K™tY)). Here,  w(K™t!) =
H}'__’l(1+cj)b"+1 with cf’+l=0, and if r>n+1 is a power of 2, then
T4+ P =0+)A+p) " =0 +p)". Weset w=1+W1+---+ Wpp =
(1+p) " 'w(K™1') e H*(K™') where w;e H/(K™!), and 3,(K")=
Po(W1,..., W) € H?I(K"™1). Then, for a partition @ with |w|=n, we
have (su(W"), (W")) = (1*5,(K™1), (W")) = ($u(K™), 1(W")) = (Su(K™),
uN (K™Y = (us, (K™, (K*+)). Hence, for |w|=n, s,[W" =0 if and
only if u5,[K™!] = 0.

LEMMA 6.9. Let n be even with a(n) > 4. Then, su,)[W"] # 0.

PROOF. Since i (K™) = u"™ = (c1 4 -+ cm)™ = {b1, ..., bm}-
cf‘ ---¢lm #£0, we have s, [W"] #0, as required. O



Lowest dimensions for immersions of orientable manifolds 495

LEMMA 6.10. Let n be even with a(n) >4, and m = (a(n) +1)/2 or
(x(n) +2)/2 according as a(n) is odd or even. If w contains more than m
numbers each of which appears odd times in ®, then 3,[K"*'] =0, and hence
So[W" =0.

PrOOF. We remark that = (1+4)" "' T[2,(1+¢)”" and b, +1 is
even. By the assumption of , each monomial of 5,(K"*!) contains
(r—1)(r—2) or (bj+1)b; (1 <j <m—1) as a factor of its coefficient. Since
(r—1)(r—2) = (bj + 1)b; = 0(mod 2), we have 35,[K"*!] =0 as required.

PROPOSITION 6.11. If n is even with a(n) =4, then (n) € Rd,.

PrOOF. By Lemma 6.9, we have s(,)[W”"] # 0. When w satisfies || = n,
a(w) =4, l(w) >2 and o ¢ Rd;, w is a form w = (r1,...,rs) where r; # r; for
i # j and each r; is a power of 2 by Proposition 6.8 and Lemma 6.4, and hence
we have s,[W”] =0 by Lemma 6.10. When |w| =n and a(w) > 5, w € Rd; by
Lemma 6.4, and thus, we have the required result by Lemma 6.5. O

Let n be even with a(n) >4. For w = (ay,.. al) with a; # g; (z 9éj),
lo| =n and I < m, we have p5,(K"!) = 3" p4itlc?. 2 ey =Y {b—a,..

b1 — @lyyby}c? - -cbn. Here, the summation is taken for all series
{a{,...,a,’,,} in which m — 1 elements are zero and the rest / elements are
ap,... ,al. We remark that, in the case of a(w) =a(n), {h-a,...,
bm-1 — ay,, b, } = 1(mod 2) if and only if {b; —a;,;,a,,} = 1(mod 2) for any j

with 1515m—1

LeEMMA 6.12. Let n be even with a(n) > 4, and w = (ay, . . ., a;) with a; # a;
for i#j and |w| =n. If  contains an odd number, then 3,[K"*'] =0, and
hence s,[W"] = 0.

PROOF. We remark that b, is odd, and there exists j (1 <j<m—1)
such that b; —a/, , is odd by the assumption. Hence, each {b; —a;,...,
bm-1—a, b,,,} = O(mod 2), and so, we have 5,[K"*!] =0 as required. [J

PrOPOSITION 6.13. If n is even with a(n) =4 and n=2(mod 4), then
(n) € Rdz.

ProoF. Since a(n) = 4, we have only to show the case that a(w) =4 or 5,
by Lemma 6.4. Let n= 2'3=1 2rj +2 be a dyadic expansion of n for r; > 2,
and o satisfy |o| =n and o ¢ Rd,. We put YJ' = W21 x W22 x W¥s*2 and
an — W2r, x W2r2+2 x W2'3.

(a) Applying Lemma 6.7 (1) to W?3+2 and W?2*2  we see that Y] and
Y] immerse with a-efficiency 2 by Lemma 2.2.

(b) When w satisfies a(w) =4 and /(w) =2, by Proposition 6.8 and
Lemma 6.4, we have @ = (2ry,2r;,2r; + 2), (2r1,2r, + 2,2r3), (2r; +2,2r3,2r3)
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or (2ry,2ry,2r3,2). Here, if @ = (2r1,2r,,2r3 + 2), by the remark above, then
(K1) = {0,2r3, 3} P cl2cl # 0, where by = 2ry, by = 2r; + 2r3 and b3 = 3.
Similarly, if o = (2r,2r,+2,2r;), then u§,[K™]#0. If = (2r +2,
2ry,2r3), then, by a similar proof of Lemma 6.12, u5,[K"']=0. If
® = (2r1,2ry,2r3,2), then u5,[K"*'] =0 by Lemma 6.10.

(c) When a(w) = 5, similarly to the above and by Lemma 6.12, we have
US,[K"1] # 0 if and only if w = (2r1,75,72,2r3,2) or (2r1,2r,r3,13,2).

(d) Let 5 satisfy # ¢ Rd;. By a similar proof of Proposition 6.8, when
[n| = 2r; for j =1 or 2, we see that s,[W?7] # 0 if and only if # = (2r;). Also,
when |n| =2r;3 +2, s,[W?3*2] #0 if and only if # = (2r3 +2) or (r3,r3,2).
Hence, s,[Y{"] #0 if and only if w = (2r1,2r;,2r3 +2) or (2r1,2r;,r3,r3,2).
Similarly, s,[Y7’] # 0 if and only if w = (2r1,2r; + 2,2r3) or (2r1,r2,12,2r3,2).

By (a)—(d) and Lemma 6.9, s,[W"]] Y"1 Y7'] # 0 if and only if w = (n),
and hence, (n) € Rd; by Lemma 6.5, as required. O

Similar methods as in the proof of Proposition 6.13 show the following
lemma.

LemMMA 6.14. (1) Let n = Z}LI 2r; be a dyadic expansion of n for r4 = 2,
and o satisfy |w|=n and w ¢ Rd,. Then,

(i) $o[W"]#0 if and only if w= (n), (2r1,rs,r2,2r3,2rs) or (2r1,2r,,
rs,rs, 2)‘4),

(i) so[W™ #0 if and only if w = (n), (r1,r,2rs,2r3,2rs) or (2r1,r2,12,
2r3,2r4).

(2) Let n=2r1+2r,+ 3 (r1 > r, > 2) where each r; is a power of 2, and
o satisfy |w|=n and w¢ Rdy. Then, s,(W"|#0 if and only if w=
(2r1+2,2r,+ 1), 21 +1,2r,+2), (2r1,2r2+1,2), 2r1 +1,2r,2), (12,211 +
rn+1,2) or (r1,r1 +2r,+1,2).

PROPOSITION 6.15. If n is even with a(n) > 5, then (n) € Rd,.

Proor. We only show the case a(n) =5, since the cases a(n) > 6 are
similarly proved. Let n= Z~5=1 2r; be a dyadic expansion of n for rs > 1, and
w satisfy |w| =n and w ¢ Rd,. By a similar proof of Proposition 6.13, when
n=2(mod 4), we have that s,[W"] #0 if and only if w = (n), and hence,
(n) € Rd, by Lemmas 6.5 and 6.7.

When n = 0(mod 4), similarly to the proof of Proposition 6.13, we have
So[W" #0 if and only if w = (n), (2r;,n —2r1), (2r2,n—2r;), (2r3,n —2r3)
or (2r4,n—2r4). By Lemma 6.14(1), we have the following equivalences:
So[W x Wn=21] £ 0 if and only if w = (2r,n —2r1), (2r1,2r2,13,73,2r4,2r5)
or  (2r1,2r3,2r3,r4,74,2rs);  su[W?2 x W"22]£0 if and only if w=
(2r2,n - 2r2), (2r1,2r2,r3,r3,2r4,2r5) or (2ri,2r2,2r3,r4,r4,2r5); Sa,[Wzr3 X
Wr 240 if and only if = (2r3,n—2rs), (r,r1,2r,2r3,2r4,2rs) or
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(2r1,2r2, 72,213,214, 2r5); 5, [W?% x W™ 24] & 0 if and only if @ = (2r4,n — 2ry),
(r1,r1,2r2,2r3,2r4,2rs)  or  (2r1,r2,12,2r3,2r4,2rs). Thus, so[W"[[(W?" x
Wn—2r|) U(WZrz X Wn—2rz) H(Wng X Wn—Zr;) L‘[(WZn X Wn—Zm)] 7& 0 if and
only if w = (n), and hence, (n) € Rd, by Lemmas 6.5, 6.7 and 2.2. Thus, we
have completed the proof. O

Propositions 6.8, 6.11, 6.13 and 6.15 establish Proposition 6.6.

7. Proof of Proposition 2.3

In this section, we prove Proposition 2.3(2) (iii) and (3), which together
with Proposition 5.1 establish Proposition 2.3. First, assume that n =
2(mod 4) and a(n) is even with a(n) >4, and set m = (n — 2)/2. Then, X" =
Q(1,m), and by (4.4), w(X") = (1 +c+x)(1 + c+d)™"" where ¢, xe H'(X")
and de H*(X") which are bound by the relations x> =0, ¢>=cx and
dm+1 =0.

LemMA 7.1. Let n=2(mod 4) and «(n) be even with a(n) >4. If w
satisfies one of the following (i) and (ii), then s,[X"] = 0:

(i) a(w)=a(n) and l(w) = 3;

(i) o(w)=a(n)+1 and l(w) > 4.

ProOF. According to the splitting principle as usual, we may assume that
l+c+d=(1+4+u)(1+v), and thus u+v=c and uv=d. Then, w(X") =
(1+c+x)(1+u)™ (1 +0v)™". Since x2=0, we have (c+x)*=c* and
(c+x) = ¢%(c+x) for any positive integer a. Moreover, since ¢ =
cx? =0, we have (c+ x) =0 for any j > 4. We shall only show the case (i)
and omit the case (ii), since (ii) follows by a similar methods, and thus, assume
a(w) = a(n) and /(w) > 3.

Let w = (a1,...,4;). When a; >4 for any j, each monomial of s,(X™")
contains (c + x)*, and hence, s,[X"] =0. Also, when / > 4, each monomial of
5»(X™) contains (m + 1)m = 0(mod 2) as a factor of its coefficient, and hence,
S»[X"] =0. Thus, to complete the proof of the case (i), we may assume
that @ = (2,a,b) where a>b>4. Then, 5,(X") = (c+ x)*(u%® + ubv?) =
(c+x) PP (u* +090) = ubo? Ty, (i = LY+ 0) (w0 = Sy
{i—1,j}c"*2d%% =0, since ¢* =0, and thus, we obtain the required result.

a

PrROOF OF PROPOSITION 2.3(2)(iii). Assume n =2(mod 4) and a(n) is
even with a(n) >4. If w satisfies a(w) > a(n) + 2, then w € Rd, by Lemma
6.4. If w satisfies a(w) = a(n) with /(w) < 2, or a(w) = a(n) + 1 with /(w) < 3,
then w contains a number which satisfies one of the conditions (i)—(iv) of
Proposition 6.6, and thus, w € Rd, by Lemma 6.4. If w satisfies a(w) = a(n)
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with /(@) > 3, or a(w) = a(n) + 1 with /(w) > 4, then s5,[X"] =0 by Lemma
7.1. Hence, by Lemma 6.2, X" immerses with a-efficiency 2, as required. []

Dold [2; Satz 1, 2] has shown that the total Stiefel-Whitney class of
P(m,n) is
w(P(m,n)) = (1 +¢)™(1+c +d)"",

where ¢ e H!(P(m,n)) and d € H*(P(m,n)) which are bound by the relations
c¢™t1 =0 and d**! =0. By making use of this fact and a similar proof as in
Lemma 7.1, we have the following:

LemMMa 7.2. (1) Let n=2r+ 2 where r is a power of 2 with r > 2, and
be a partition with |w| =n and w ¢ Rd,. Then, s,|X"] # 0 if and only if © =
(n), (2r,2) or (r,r,2).

(2) Let n=2r+1 where r is a power of 2 with r > 2, and w be a partition
with |w| =n and w ¢ Rd,. Then,

(i) when r>2, 5,[X"] #0 if and only if = (n) or (r+1,r).

(i) when r=2, s,[X" #0 if and only if w = (n).

(3) Letn=ri+r+1 (r1 >ry>2) with n# 7, where each r; is a power
of 2, and w be a partition with |w| =n and w ¢ Rdy. Then,

(i) when ry>2, s,[X"#0 if and only if w=(n), (rn+1,r2) or
(ri,ra +1).

(i) when r; =2, 5,[X" #0 if and only if w = (n) or (r1 + 1,r2).

PrOOF OF PROPOSITION 2.3(3). Assume that ny =2r; +2 and n; = 2r, + 2
for r1 > r, > 2, where each r; is a power of 2, and set n=2r; +2r,+3. In
the following, we also assume that w satisfies |w| =n and w ¢ Rd,.

(a) By Lemmas 6.4 and 7.2(1),(2), when ry > 2, so[X™ x X™71]#0
if and only if w= (2r; +2,2r, + 1), (2r1,2r,+ 1,2), (r1,r1,2r2 +1,2) or (2r,
r2+1,r2,2). When r; =2, s,[X™ x X™7 1] #0 if and only if o= (2r; +2,
2r, +1), (2r1,2r2+1,2) or (r1,r1,2r; + 1,2).

(b) Similarly to (a), so[X™~! x X™]#0 if and only if = (2r; +1,
2ry +2), (2r1 +1,2r2,2), (2r1 + 1,r2,12,2) or (r1 + 1,r1,2r,,2).

(c) By Lemma 6.14(2), s,[W?"] # 0 if and only if 0 = (2r; +2,2r, + 1),
2r1 + 1,2r, + 2), (2r1,2r, + 1,2), (2r1 + 1,2r3,2), (r2,2r1 +r2 + 1,2) or (ry,r1 +
2r; +1,2). Here, we notice that, when r) =2r;, (2r; +1,2r,2) = (r1,n1 +
2r, +1,2).

(d) By Lemmas 6.4 and 7.2(3), when r; > 2, 5,[X" x X2n+r+l x 2] #
0 if and only if w=(r,2r1+r.+1,2), (2r1 +1,r2,1r,2) or (2r,ra+1,
r2,2). When ry = 2, 5,[X" x X¥1+72+1 x X2] # 0 if and only if @ = (r2,2r; +
ra+1,2) or (2r1 +1,r2,1r2,2).

(e) Similarly to (d), s,[X" x X"+22+1 x X?] #£0 if and only if w=
(r1,r1 +2r; + 1,2), (rl,r1,2r2 + 1,2) or (r1 + 1,r1,2r2,2).
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By (a)-(e)) when r;>2r, s,[(X™ x X" H)I[(X™M1 x X™)]]

WrI(X"™ x X2+l 5 Y2 ] (X" x X422+ x X2)] =0 for any o, and
when ry =2r, sol(X™ x X ) [(X™1 x X®2)[[W"]] (X7 x X2+n+l x
X?)] =0 for any w. Hence, by Lemmas 2.2 and 6.7(3), Proposition 2.3(1)
and Corollary 6.3, (X™ x X" 1) [[(X™~! x X™) immerses with a-efficiency 2,
as required. |
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