# On the vector field problem for product manifolds 

Bernard Junod and Ueli Suter<br>(Received August 18, 1997)


#### Abstract

Let $\operatorname{Span}(M)$ be the largest number of linearly independent tangent vector fields on the manifold $M$. In this paper we establish a criterion giving an upper bound for $\operatorname{Span}(M)$ when $M$ is a product of stably complex manifolds. We obtain explicit upper bounds and exact values of $\operatorname{Span}(M)$ in some special cases, such as products of lens spaces, products of quaternionic spherical space forms and products of Dold manifolds.


## 1. Introduction

Let $M$ be a smooth, closed (i.e. compact and without boundary), connected manifold, we denote $\operatorname{Span}(M)$, the largest number of everywhere linearly independent tangent vector fields on $M$. Finding $\operatorname{Span}(M)$ is a classical problem in differential topology. This problem was solved when $M$ is a sphere by A. Hurwitz, J. Radon and J. F. Adams (see [11], [20] and [1]). For spherical space forms, J. C. Becker has calculated $\operatorname{Span}(M)$ in [6]. For more details about the present state of the question, the reader may consult the survey paper of J. Korbaš and P. Zvengrowski [17].

In this paper we shall study $\operatorname{Span}(M)$ for $M$ being a product of two stably complex manifolds $M_{1}$ and $M_{2}$. In other words, we suppose that the stable class of the tangent bundle $\tau_{M_{i}}$ of $M_{i}$ carries a complex structure for $i=1,2$. We shall prove the following criterion for $\operatorname{Span}(M)$ in the framework of complex $K$-theory.

Theorem 1.1. Let $M_{i}$ be a smooth, closed and connected stably complex $m_{i}$-manifold and let $y_{i} \in \widetilde{K U}\left(M_{i}\right)$ be the stable class represented by the tangent bundle $\tau_{M_{i}},(i=1,2)$. If $\operatorname{Span}\left(M_{1} \times M_{2}\right)=m_{1}+m_{2}-k$, then the following relation is valid in $K U^{0}\left(M_{1}\right) \otimes K U^{0}\left(M_{2}\right)$,

$$
2^{n-1} \gamma_{1 / 2}\left(y_{1}\right) \otimes \gamma_{1 / 2}\left(y_{2}\right) \equiv 0\left(\bmod 2^{n-j-1}\right)
$$

[^0]where $2 n>m_{1}+m_{2}, j=\left[\frac{k}{2}\right]$ and $\gamma_{t}$ is the formal power series associated to Atiyah's $\gamma^{i}$-operations in $K U$-theory.

Remark. At this point we should explain the meaning of the term $\gamma_{1 / 2}(x)$. In general, for $x \in K U(X)$ the expression $\gamma_{1 / 2}(x)$ does not make sense in $K U(X)$, but multiplied by a sufficiently high power of 2 it does. Explicitely, if $\operatorname{dim}(X) \leq 2 m+1$ we define $2^{m} \gamma_{1 / 2}(x) \in K U(X)$ by

$$
2^{m} \gamma_{1 / 2}(x)=\sum_{i=0}^{m} 2^{m-i} \gamma^{i}(x)
$$

Throughout this paper we will adopt this convention. Note that the exponential property of $\gamma_{t}$ implies

$$
2^{m} \gamma_{1 / 2}(x+y)=2^{m} \gamma_{1 / 2}(x) \gamma_{1 / 2}(y)=\sum_{r=0}^{m} \sum_{i=0}^{r} 2^{m-r} \gamma^{i}(x) \gamma^{r-i}(y)
$$

In particular we shall consider the case where $M$ is a product of lens spaces $L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)$, or a product of quaternionic spherical space forms $N^{n_{1}}\left(m_{1}\right) \times N^{n_{2}}\left(m_{2}\right)$. We obtain the following results, where $v_{2}(n)$ is the exponent of 2 in the prime factor decomposition of $n$.

Theorem 1.2. For all positive integers $n_{1}$ and $n_{2}$, if $m_{1}$ and $m_{2}$ are large enough, we have

$$
\operatorname{Span}\left(L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)\right)=2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+2 .
$$

Precisely, the above result is valid when:

1) $n_{i}+1=2^{s_{i}}\left(2 u_{i}+1\right)$ with $u_{i} \geq 1$ and $m_{i} \geq\left[\log _{2} n_{i}\right]+2^{s_{1}}+2^{s_{2}}$, ( $i=1,2$ ),
2) $n_{1}+1=2^{s_{1}}\left(2 u_{1}+1\right)$ with $u_{1} \geq 1, n_{2}+1=2^{s_{2}}$ and $m_{i} \geq\left[\log _{2} n_{i}\right]+$ $\min \left(n_{2}+2^{s_{1}}, n_{1}+3\left[\frac{n_{2}}{4}\right]+4\right),(i=1,2)$,
3) $n_{i}+1=2^{s_{i}}$ and $m_{i} \geq\left[\log _{2} n_{i}\right]+\min \left(n_{2}+3\left[\frac{n_{1}}{4}\right]+4, n_{1}+3\left[\frac{n_{2}}{4}\right]+4\right)$, ( $i=1,2$ ).

If $m_{1}$ and $m_{2}$ are small, the best results we know are those of M . Yasuo in [24].

Theorem 1.3. For all positive integers $n_{i}$, if $m_{i}>\left[\log _{2} n_{i}\right]+v_{2}\left(n_{1}+1\right)+$ $v_{2}\left(n_{2}+1\right)+4,(i=1,2)$, we have

$$
\operatorname{Span}\left(N^{n_{1}}\left(m_{1}\right) \times N^{n_{2}}\left(m_{2}\right)\right) \leq 2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+6 .
$$

This result is best possible when $v_{2}\left(n_{1}+1\right)$ and $\nu_{2}\left(n_{2}+1\right)$ are divisible by 4 (see [6]). For small values of $m_{1}$ and $m_{2}$ the best upper bounds have been obtained by T. Kobayashi in [16].

We establish similar results for products of spheres and complex projective spaces, Dold manifolds $D(u, v)$ and products of Dold manifolds.

Theorem 1.4. Let $M$ be the product $\prod_{i=1}^{r} S^{m_{i}} \times \prod_{l=1}^{s} \mathbf{C} P^{n_{l}}$. If all the spheres are even dimensional then $\operatorname{Span}(M)=0$. If one of the $m_{i}$ at least is odd, then

$$
\operatorname{Span}(M) \leq m+2 n-k \leq m+2 \sum_{l=1}^{s} v_{2}\left(n_{l}+1\right)
$$

where $m=m_{1}+m_{2}+\cdots+m_{r}$.
For the proof of this theorem only the second factor of $M$, involving complex projective spaces, will be taken into account (see section 6). So, the upper bound given in theorem 1.4 is a good bound only if $\sum_{i=1}^{r} \operatorname{Span}\left(\mathbf{S}^{m_{i}}\right)$ is small with respect to $n_{1}+n_{2}+\cdots+n_{s}$, or if $r$ is small with respect to $s$. For example, we believe that

$$
\operatorname{Span}\left(\mathbf{S}^{2 u-1} \times \mathbf{C} P^{v}\right)=\rho(2 u)+2 v_{2}(v+1)-1,
$$

where $\rho(2 n)$ is the Hurwitz-Radon-Eckmann number (see for example [18]). Invoking Clifford algebra constructions, it is possible to show that

$$
\operatorname{Span}\left(\mathbf{S}^{2 u-1} \times \mathbf{C} P^{v}\right) \geq \rho(2 u)+2 v_{2}(v+1)-2
$$

Corollary 1.1. Let $N=\prod_{i=1}^{r} D\left(u_{i}, v_{i}\right)$. If all the integers $u_{i}, i=$ $1,2, \ldots, r$, are even then $\operatorname{Span}(N)=0$. If one of the integers $u_{i}$ at least is odd, then

$$
\operatorname{Span}(N) \leq \sum_{i=1}^{r}\left(u_{i}+2 v_{2}\left(v_{i}+1\right)\right)
$$

In particular:

$$
\operatorname{Span}(D(2 u+1, v)) \leq 2 u+1+2 v_{2}(v+1)
$$

For $r=2$ and $\rho\left(2 u_{i}+2\right)$ small with respect to $v_{i}$, (i.e. $\left.\max \left(u_{1}, u_{2}\right) \leq v_{1}+v_{2}\right)$ the corollary improves a result of Sohn in [21].

The paper is organized as follows: In section 2, we shall see that Theorem 1.1 is a straightforward consequence of a criterion about geometric dimension mentioned in [12] and [14]. We give a proof of this criterion in section 3. From section 4 to 6 we prove Theorems 1.2 to 1.4 .

## 2. The geometric dimension and the vector field problem

Let $X$ be a finite CW-complex and let $x$ be an element of $\widetilde{K O}(X)$. The geometric dimension of $x$, denoted $\operatorname{gdim}(x)$, is the smallest integer $k$ such that $x+\underline{k}$ is represented by a $k$-dimensional real vector bundle. Here, $\underline{k}$ denotes the trivial $k$-dimensional real vector bundle over $X$. If $M$ is a smooth, closed and connected $m$-manifold, we call geometric dimension of $M$ and we denote it by $\operatorname{gdim}(M)$, the geometric dimension of the stable class $\tau_{0}$ of the tangent bundle of $M$

$$
\tau_{0}=\tau_{M}-\underline{m} .
$$

It is a well known result that

$$
\begin{equation*}
\operatorname{Span}(M) \leq m-\operatorname{gdim}(M) \tag{2.1}
\end{equation*}
$$

Consequently, if we can give a lower bound for $\operatorname{gdim}(M)$, we obtain an upper bound of $\operatorname{Span}(M)$. The following result established in [12] and [14] is a useful criterion to give lower bounds for $\operatorname{gdim}(M)$.

Theorem 2.1. If $x \in \widetilde{K O}(M)$ is the image of a stable complex class, (i.e. $x=r y$ with $y \in \widetilde{K U}(M)$ and $r: K U(M) \rightarrow K O(M)$ the canonical map), and if $g \operatorname{dim}(x) \leq k$, the following relation is satisfied in $\widetilde{K U}(M)$

$$
2^{n-1} \gamma_{1 / 2}(y) \equiv 0\left(\bmod 2^{n-j-1}\right)
$$

where $2 n>\operatorname{dim}(M), j=\left[\frac{k}{2}\right]$ and $\gamma_{t}$ is as in Theorem 1.1.
We will give a proof of this theorem in section 3. Now we can show that Theorem 1.1 is a straightforward consequence of Theorem 2.1. Let $M$ be the product $M_{1} \times M_{2}$, where $M_{i}$ is a smooth, closed, connected and stably complex $m_{i}$-manifold for $i=1,2$. If $\tau_{0}(i)=\tau_{M_{i}}-m_{i}$ denotes the stable class of the tangent bundle over $M_{i}$, we have the following relations:

$$
\begin{aligned}
\tau_{0}(i) & =r y_{i}, \quad \text { with } y_{i} \in K U\left(M_{i}\right), \quad i=1,2 . \\
\tau_{0} & =\tau_{M_{1} \times M_{2}}-\underline{m_{1}+m_{2}}=p_{1}^{*}\left(\tau_{0}(1)\right)+p_{2}^{*}\left(\tau_{0}(2)\right) \\
& =p_{1}^{*}\left(r y_{1}\right)+p_{2}^{*}\left(r y_{2}\right)=r\left(p_{1}^{*}\left(y_{1}\right)+p_{2}^{*}\left(y_{2}\right)\right),
\end{aligned}
$$

where $p_{i}: M_{1} \times M_{2} \rightarrow M_{i}$ is the canonical projection.
Hence, the stable class $\tau_{0}$ of the tangent bundle over $M_{1} \times M_{2}$ comes from a complex stable class. If $\operatorname{Span}\left(M_{1} \times M_{2}\right) \geq m_{1}+m_{2}-k$, by the inequality (2.1) we have $\operatorname{gdim}\left(\tau_{0}\right) \leq k$. Then, according to Theorem 2.1, in $K U\left(M_{1} \times M_{2}\right)$ the following relation holds:

$$
\begin{equation*}
2^{n-1} \gamma_{1 / 2}\left(p_{1}^{*}\left(y_{1}\right)+p_{2}^{*}\left(y_{2}\right)\right) \equiv 0\left(\bmod 2^{n-j-1}\right) \tag{2.2}
\end{equation*}
$$

By the Künneth theorem in KU-theory [3] the homomorphism

$$
\begin{aligned}
K U^{0}\left(M_{1}\right) \otimes K U^{0}\left(M_{2}\right) & \rightarrow K U^{0}\left(M_{1} \times M_{2}\right) \\
x \otimes y & \mapsto p_{1}^{*}(x) \cdot p_{2}^{*}(y)
\end{aligned}
$$

maps $K U^{0}\left(M_{1}\right) \otimes K U^{0}\left(M_{2}\right)$ onto a direct summand.
We have $2^{n-1} \gamma_{1 / 2}\left(p_{1}^{*}\left(y_{1}\right)+p_{2}^{*}\left(y_{2}\right)\right)=2^{n-1} p_{1}^{*}\left(\gamma_{1 / 2}\left(y_{1}\right)\right) \cdot p_{2}^{*}\left(\gamma_{1 / 2}\left(y_{2}\right)\right)$. The latter element corresponds via the Künneth isomorphism to $2^{n-1} \gamma_{1 / 2}\left(y_{1}\right) \otimes$ $\gamma_{1 / 2}\left(y_{2}\right)$ and Theorem 1.1 follows from (2.2).

Let $f: M \rightarrow \operatorname{BSO}(2 n), \quad 2 n>\operatorname{dim}(M)$, be the classifying map of $x \in \widehat{K O}(M)$. Since $x=r y$, we can lift the map $f$ to $B U(n)$. We shall denote the classifying map of $y$ by $g$. If we assume that $g \operatorname{dim}(x)=k$, we can lift $f$ to $B S O(k)$ and further to $B(n, k)$, the latter space being the pull-back space of the diagram


We have the following commutative diagram


With the same hypothesis as in Theorem 2.1 we can give a second criterion concerning the geometric dimension of real stably complex vector bundles.

Theorem 2.2. If $\operatorname{gdim}(x) \leq k$, the following relations are satisfied in $H^{*}(B(n, k) ; \mathbf{Z})$,

$$
g^{*}\left(c_{i}\right) \equiv 0(\bmod 2), \quad\left[\frac{k}{2}\right]+1 \leq i \leq n-1
$$

where $c_{i}$ is the $i$-th universal Chern class.
Proof. In [12] and [15], we have determined the additive structure of $H^{*}(B(n, k) ; \mathbf{Z})$. There are abelian group isomorphisms:

$$
H^{*}(B(n, k) ; \mathbf{Z}) \cong \begin{cases}\mathbf{Z}\left[c_{1}, \ldots, c_{t}\right] \otimes \Delta\left(a_{t}, b_{t+1}, \ldots, b_{n-1}\right) & \text { if } k=2 t \\ \mathbf{Z}\left[c_{1}, \ldots, c_{t}\right] \otimes \Delta\left(b_{t+1}, \ldots, b_{n-1}\right) & \text { if } k=2 t+1\end{cases}
$$

where $\Delta\left(x_{1}, \ldots, x_{m}\right)$ is the free abelian group generated by the elements

$$
x_{i_{1}} x_{i_{2}} \ldots x_{i_{s}} \quad \text { with } 1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq m
$$

$c_{i}$ is the image of the $i$-th universal Chern class under the map $p^{*}$ and the elements $b_{i}$ satisfy the relations

$$
c_{i}=2 b_{i}, \quad i=\left[\frac{k}{2}\right]+1, \ldots, n-1
$$

Then, by the commutativity of the diagram (2.3), we have

$$
g^{*}\left(c_{i}\right)=\tilde{f}^{*}\left(p^{*}\left(c_{i}\right)\right)=\tilde{f}^{*}\left(2 b_{i}\right)=2 \tilde{f}^{*}\left(b_{i}\right)
$$

for $i=\left[\frac{k}{2}\right]+1, \ldots, n-1$.
We shall also need the two following results:
Proposition 2.1. Let $\tau_{0}$ and $\tau_{0}(i)$ be the stable classes of the tangent bundles of $M_{1} \times M_{2}$ and $M_{i}$ respectively ( $i=1,2$ ). Then:

$$
\begin{equation*}
\operatorname{gdim}\left(\tau_{0}\right) \geq \max \left(g \operatorname{dim}\left(\tau_{0}(1)\right), g \operatorname{dim}\left(\tau_{0}(2)\right)\right) \tag{a}
\end{equation*}
$$

(b)

$$
g \operatorname{dim}\left(\tau_{0}\right) \leq g \operatorname{dim}\left(\tau_{0}(1)\right)+g \operatorname{dim}\left(\tau_{0}(2)\right)
$$

Proof. (a) If $g \operatorname{dim}\left(\tau_{0}\right)=k$, the stable class $\tau_{0}$ may be written as $\tau_{0}=$ $\xi-\underline{k}$ where $\xi$ is a real $k$-dimensional vector bundle. Then we have

$$
\tau_{0}(1)=i_{1}^{*}\left(p_{1}^{*}\left(\tau_{0}(1)\right)+p_{2}^{*}\left(\tau_{0}(2)\right)\right)=i_{1}^{*}\left(\tau_{0}\right)=i_{1}^{*}(\xi)-\underline{k}
$$

and so $g \operatorname{dim}\left(\tau_{0}(1)\right) \leq k=g \operatorname{dim}\left(\tau_{0}\right)$. In the same way we show $g \operatorname{dim}\left(\tau_{0}(2)\right) \leq$ $g \operatorname{dim}\left(\tau_{0}\right)$.
(b) If $\operatorname{gdim}\left(\tau_{0}(i)\right)=k_{i}$, the stable class $\tau_{0}(i)$ may be written as $\tau_{0}(i)=$ $\xi_{i}-k_{i}$, where $\xi_{i}$ is a real $k_{i}$-dimensional vector bundle, for $i=1,2$ and so

$$
\tau_{0}=\left(p_{1}\right)^{*}\left(\tau_{0}(1)\right)+\left(p_{2}\right)^{*}\left(\tau_{0}(2)\right)=\left(p_{1}\right)^{*}\left(\xi_{1}\right) \oplus\left(p_{2}\right)^{*}\left(\xi_{2}\right)-\underline{k_{1}+k_{2}},
$$

hence $\operatorname{gdim}\left(\tau_{0}\right) \leq k_{1}+k_{2}=\operatorname{gdim}\left(\tau_{0}(1)\right)+\operatorname{gdim}\left(\tau_{0}(2)\right)$.
Proposition 2.2. If $M_{1}$ and $M_{2}$ are as above, then

$$
\operatorname{Span}\left(M_{1} \times M_{2}\right) \geq \operatorname{Span}\left(M_{1}\right)+\operatorname{Span}\left(M_{2}\right)
$$

Proof. If there are $k_{i}$ linearly independent tangent vector fields over $M_{i}$, for $i=1,2$, then there are at least $k_{1}+k_{2}$ over $M_{1} \times M_{2}$.

## 3. Spinor representations and generators of $\operatorname{KU}(B(n, k))$

Let $\operatorname{Spin}^{c}(2 n)$ be the group $(\operatorname{Spin}(2 n) \times U(1)) /(\mathbf{Z} / 2)$. Here $\mathbf{Z} / 2$ is the subgroup generated by $(\varepsilon,-1)$, where $\varepsilon$ denotes the generator of the kernel of $\pi: \operatorname{Spin}(2 n) \rightarrow S O(2 n)$, the 2 -fold covering map of $S O(2 n)$. The composition of the projection $\operatorname{Spin}(2 n) \times U(1) \rightarrow \operatorname{Spin}(2 n)$ and $\pi$ sends the subgroup $\mathbf{Z} / 2$ to the identity matrix of $S O(2 n)$, and induces a map

$$
\tilde{\pi}: \operatorname{Spin}^{c}(2 n) \rightarrow S O(2 n)
$$

We can also see the group $\operatorname{Spin}^{c}(2 n)$ as $\pi^{-1}(S O(2 n) \times S O(2))$, where $S O(2 n) \times$ $S O(2)$ is identified with a subgroup of $S O(2 n+2)$ and $\pi: \operatorname{Spin}(2 n+2) \rightarrow$ $S O(2 n+2)$ is as above.

The canonical inclusion $U(n) \subset S O(2 n)$ lifts to $\operatorname{Spin}^{c}(2 n)$. Then, the map $B U(n) \xrightarrow{r_{n}} B S O(2 n)$, which is induced by this inclusion on the classifying spaces, lifts to $B \operatorname{Spin}^{c}(2 n)$ (see [4]), i.e. we have maps

$$
\begin{equation*}
B U(n) \xrightarrow{\tilde{f}_{2}} B S \operatorname{Sin}^{c}(2 n) \xrightarrow{B_{\pi}} B S O(2 n), \quad \text { with } \quad B_{\tilde{\pi}} \circ \tilde{f}_{2 n}=r_{n} . \tag{3.1}
\end{equation*}
$$

The pull-back diagram of Lie groups

gives rise to a pull-back diagram on the classifying space level and together with (3.1) we obtain the pull-back diagram


In the following we concentrate on the left hand square. The diagram induces a commutative diagram in $K U$-theory.

It is a well known result that the ring $\operatorname{KU}(B G)$ is isomorphic to the completed representation ring $\widehat{R U}(G)$, when $G$ is a compact, connected Lie group (see [5]). This is our motive to use below some information about the representation rings of $\operatorname{Spin}^{c}(2 n), \operatorname{Spin}^{c}(2 k)$ and $U(n)$ to define generators of $K U(B(n, 2 k))$ (see also [12]). In a first step we consider the projection $\operatorname{Spin}(2 n) \times U(1) \xrightarrow{\varphi} \operatorname{Spin}^{c}(2 n)$. It induces an injection of representation rings

$$
\varphi^{*}: R U\left(\operatorname{Spin}^{c}(2 n)\right) \rightarrow R U(\operatorname{Spin}(2 n)) \otimes R U(U(1)) .
$$

Let $\rho$ be the representation defined as the identity of $U(1)$, and let $\Delta_{2 n}^{+}, \Delta_{2 n}^{-}$be the canonical irreducibles spinor representations of $\operatorname{Spin}(2 n)$. The representations $\Delta_{2 n}^{ \pm} \otimes \rho$ of $\operatorname{Spin}(2 n) \times U(1)$ give rise to the representations $\tilde{\Delta}_{2 n}^{ \pm}$of $\operatorname{Spin}^{c}(2 n)$ (the elements $(\varepsilon,-1)$ acts trivially). The latter induce two elements in $\operatorname{KU}\left(B \operatorname{Spin}^{c}(2 n)\right)$ that we still denote $\tilde{\Delta}_{2 n}^{+}$and $\tilde{\Delta}_{2 n}^{-}$. There is a relation between these two elements and some generators of $\operatorname{KU}(B(n, 2 k))$ defined in [12] and [13].

Proposition 3.1. (a) In $\operatorname{KU}(B(n, 2 k))$, there are elements $\alpha_{k}$ and $\beta_{k+1}$ such that the following relations are satisfied
i)

$$
\tilde{f}_{2 k}^{*}\left(\tilde{\Delta}_{2 k}^{-}\right)=\sum_{r=0}^{k-1} 2^{k-r-1} \gamma^{r}+\alpha_{k}
$$

ii)

$$
\tilde{f}_{2 k}^{*}\left(\tilde{\Delta}_{2 k}^{+}\right)=\sum_{r=0}^{k-1} 2^{k-r-1} \gamma^{r}+\gamma^{k}-\alpha_{k}+\beta_{k+1}
$$

iii)

$$
2^{n-k} \beta_{k+1}=\sum_{r=k+1}^{n-1} 2^{n-r} \gamma^{r}
$$

(b) In $K U\left(B(n, 2 k+1)\right.$, there is an element $\beta_{k+1}^{\prime}$ satisfying
iii)

$$
2^{n-k} \beta_{k+1}^{\prime}=\sum_{r=k+1}^{n-1} 2^{n-r} \gamma^{r}
$$

Here the elements $\gamma^{r}$ are the images of the universal generators of $\operatorname{KU}(\operatorname{BU}(n))$ under the map $K U(B U(n)) \rightarrow K U(B(n, j)), j=2 k, 2 k+1$.

Proof. Let $T, T^{\prime}, T^{\prime \prime}$ be maximal tori of the Lie groups $S O(2 n)$, $\operatorname{Spin}(2 n), \operatorname{Spin}^{c}(2 n)$ respectively. Via the canonical inclusion $U(n) \subset S O(2 n)$, $T$ is also a maximal torus of $U(n)$. Following [7], we know that

$$
R U\left(T^{\prime}\right) \cong R U(T)[u] /\left(u^{2}=\alpha_{1} \cdot \alpha_{2} \ldots \alpha_{n}\right)
$$

where the $\alpha_{j}$ are the 1 -dimensional canonical irreducible representations of $T$ and $u$ is an irreducible representation of $T^{\prime}$ mapping $\varepsilon$ to $-1 \in U(1)$. With this description of $R U\left(T^{\prime}\right)$ and identifying $R U(\operatorname{Spin}(2 n))$ with its image in $R U\left(T^{\prime}\right)$, we can write

$$
\Delta_{2 n}^{+}+\Delta_{2 n}^{-}=u^{-1} \prod_{r=1}^{n}\left(\alpha_{r}+1\right)
$$

and

$$
\tilde{\Delta}_{2 n}^{+}+\tilde{\Delta}_{2 n}^{-}=\left(\Delta_{2 n}^{+}+\Delta_{2 n}^{-}\right) \otimes \rho=u^{-1} \prod_{r=1}^{n}\left(\alpha_{r}+1\right) \otimes \rho=\prod_{r=1}^{n}\left(\alpha_{r}+1\right) u^{-1} \otimes \rho
$$

in $R U(\operatorname{Spin}(2 n)) \otimes R U(U(1)) \subset R U\left(T^{\prime}\right) \otimes R U(U(1))$.
Both elements $\tilde{\Delta}_{2 n}^{+}+\tilde{\Delta}_{2 n}^{-}$and $u^{-1} \otimes \rho$ belong to $R U\left(T^{\prime \prime}\right) \subset R U\left(T^{\prime}\right) \otimes$ $R U(U(1))$ and the image of the element $\tilde{\Delta}_{2 n}^{+}+\tilde{\Delta}_{2 n}^{-}$in $R U(U(n))$ shall be determined, if we know the image of $u^{-1} \otimes \rho$. Invoking the explicit description of the map $U(n) \rightarrow \operatorname{Spin}^{c}(2 n)$ given in [4], we see that the image of $u^{-1} \otimes \rho$ in $R U(T)$ is the trivial representation and hence

$$
\tilde{f}_{2 n}^{*}\left(\tilde{U}_{2 n}^{+}+\tilde{\Delta}_{2 n}^{-}\right)=\prod_{r=1}^{n}\left(\alpha_{r}+1\right)=\prod_{r=1}^{n}\left(\alpha_{r}-1+2\right)=\sum_{r=0}^{n} 2^{n-r} \gamma^{r}
$$

The image of $\Delta_{2 n}^{+}+\Delta_{2 n}^{-}$in $R U(\operatorname{Spin}(2 k))$ is equal to $2^{n-k}\left(\Delta_{2 k}^{+}+\Delta_{2 k}^{-}\right)$. By homotopy commutativity of the diagram (3.2), the element $\tilde{f}_{2 k}^{*}\left(\Delta_{2 k}^{+}+\Delta_{2 k}^{-}\right)$of $K U(B(n, 2 k))$ satisfies the following relation

$$
2^{n-k} \tilde{f}_{2 k}^{*}\left(\tilde{\Delta}_{2 k}^{+}+\tilde{U}_{2 k}^{-}\right)=\sum_{r=0}^{n-1} 2^{n-r} \gamma^{r}
$$

where $\gamma^{r}$ denotes the image of the r-th universal class under the map $\rho^{*}$. Consequently, the element

$$
\begin{equation*}
\beta_{k+1}=\tilde{f}_{2 k}^{*}\left(\tilde{U}_{2 k}^{+}+\tilde{\Delta_{2 k}^{-}}\right)-\sum_{r=0}^{k} 2^{k-r} \gamma^{r} \tag{3.3}
\end{equation*}
$$

satisfies

$$
2^{n-k} \beta_{k+1}=\sum_{r=k+1}^{n-1} 2^{n-r} \gamma^{r}
$$

So we have proved part iii) of Proposition 3.1.
We know that the Euler class in KU-theory of the sphere fibration

$$
S^{2 k-1} \rightarrow \operatorname{BSpin}^{c}(2 k-1) \rightarrow \operatorname{BSpin}^{c}(2 k)
$$

is the element $\tilde{\Delta}_{2 k}^{+}-\tilde{\Delta}_{2 k}^{-}$(see [4]). We denote by $\varepsilon_{k}$ the image of this class in $K U(B(n, 2 k))$, (i.e. the Euler class of the induced fibration under the map $\left.\tilde{f}_{2 k}\right)$ and we can write:

$$
\tilde{f}_{2 k}^{*}\left(2 \tilde{\Delta}_{2 k}^{-}\right)=\sum_{r=0}^{k} 2^{k-r} \gamma^{r}+\beta_{k+1}-\varepsilon_{k}=\sum_{r=0}^{k-1} 2^{k-r} \gamma^{r}+\gamma^{k}+\beta_{k+1}-\varepsilon_{k} .
$$

We set

$$
\alpha_{k}=\tilde{f}_{2 k}^{*}\left(\tilde{\Lambda}_{2 k}^{-}\right)-\sum_{r=0}^{k-1} 2^{k-r-1} \gamma^{r}
$$

satifying relation i) of Proposition 3.1; furthermore $\varepsilon_{k}=\gamma^{k}+\beta_{k+1}-2 \alpha_{k}$.
Relation ii) is a straightforward consequence of relations i) and (3.3).
To prove part (b) of the proposition we consider the canonical map $B(n, 2 k+1) \xrightarrow{p_{0}} B(n, 2 k+2)$. In $K U$-theory the homomorphism $p_{0}^{*}$ maps the Euler class $\varepsilon_{k+1}$ to zero. We set $\beta_{k+1}^{\prime}=p_{0}^{*}\left(\alpha_{k+1}\right)$ and calculate

$$
\begin{aligned}
2^{n-k} \beta_{k+1}^{\prime} & =2^{n-k-1} p_{0}^{*}\left(2 \alpha_{k+1}\right)=2^{n-k-1} p_{0}^{*}\left(\gamma^{k+1}+\beta_{k+2}\right) \\
& =p_{0}^{*}\left(2^{n-k-1} \gamma^{k+1}+2^{n-k-1} \beta_{k+2}\right)
\end{aligned}
$$

Relation iii) for the case $B(n, 2 k+2)$ implies (b).
The generator $\beta_{k+1}$ may be defined in another way, with the help of Thom and Bott isomorphisms (see [12]).

Now we can see Theorem 2.1 as a consequence of the above Proposition. Let $f: X \rightarrow B O(2 n)$ be a classifying map of $x=r y$ in $\widetilde{K O}(X)$, where $r$ and $y$ are as in section 2. The map $f$ lifts to $B U(n)$ and we denote $g$ the classifying map of $y$. If $\operatorname{gdim}(x)=k, f$ lifts to $B S O(k)$ and there is a map $\tilde{f}: X \rightarrow$ $B(n, k)$ such that the following diagram is commutative


If $k$ is even, we apply $\tilde{f}^{*}$ to the relation iii) of Proposition 3.1. We obtain in $K U(X)$, with $j=\frac{k}{2}=\left[\frac{k}{2}\right]$, and identifying $\gamma^{r} \in K U(B U(n))$ with its image in $K U(B(n, k)):$

$$
\begin{aligned}
2^{n-1} \gamma_{1 / 2}(y) & =\sum_{r=0}^{n-1} 2^{n-r-1} \gamma^{r}(y) \\
& =\sum_{r=0}^{n-1} 2^{n-r-1} \tilde{f^{*}}\left(\gamma^{r}\right) \\
& =\tilde{f}^{*}\left(\sum_{r=0}^{j} 2^{n-r-1} \gamma^{r}+\sum_{r=j+1}^{n-1} 2^{n-r-1} \gamma^{r}\right) \\
& =2^{n-j-1} \tilde{f}^{*}\left(\sum_{r=0}^{j} 2^{j-r} \gamma^{r}+\beta_{j+1}\right) \\
& \equiv 0\left(\bmod 2^{n-j-1}\right) .
\end{aligned}
$$

If $k$ is odd, say $k=2 j+1$, we proceed as before invoking (b) of Proposition 3.1.

## 4. Proof of Theorem 1.2

By a well known theorem of H . Hopf, the span of the complex projective spaces $\mathbf{C} P^{n}$ and their products is zero, since the Euler characteristic of these manifolds is non-zero. But, to study the lens space case, it will be convenient to invoke the following facts on $\mathbf{C} P^{n}$ (see for example [18]). The complex Ktheory of the complex projective space $\mathbf{C} P^{n}$ is given by

$$
K U^{q}\left(\mathbf{C} P^{n}\right) \cong \begin{cases}\mathbf{Z}[\mu] /\left(\mu^{n+1}\right) & \text { if } q=0 \\ 0 & \text { if } q=1\end{cases}
$$

where $\mu$ denotes the stable class of the canonical complex line bundle over $\mathbf{C} P^{n}$. Since the KU-theory of $\mathbf{C} P^{n}$ is torsion free, $\gamma_{1 / 2}(x)$ makes sense in $K U\left(\mathbf{C} P^{n}\right) \otimes \mathbf{Q}$. We have $\gamma_{1 / 2}(\mu)=1+\frac{1}{2} \mu$ and $\gamma_{1 / 2}((n+1) \mu)=\left(1+\frac{1}{2} \mu\right)^{n+1}$. The stable class of the tangent bundle $\tau_{\mathbf{C P}^{n}}-2 n$ over $\mathbf{C} P^{n}$ may be identified with $r((n+1) \mu)$ (see [22]). It follows that the stable class of the tangent bundle of $\mathbf{C} P^{n_{1}} \times \mathbf{C} P^{n_{2}}$ corresponds to the element $\left(n_{1}+1\right) \mu_{1} \otimes\left(n_{2}+1\right) \mu_{2}$ of $K U^{0}\left(\mathbf{C} P^{n_{1}}\right) \otimes K U^{0}\left(\mathbf{C} P^{n_{2}}\right)$ and we calculate:

$$
\begin{align*}
& 2^{n-1} \gamma_{1 / 2}\left(\left(n_{1}+1\right) \mu_{1}\right) \otimes \gamma_{1 / 2}\left(\left(n_{2}+1\right) \mu_{2}\right)=2^{n-1} \gamma_{1 / 2}\left(\mu_{1}\right)^{n_{1}+1} \otimes \gamma_{1 / 2}\left(\mu_{2}\right)^{n_{2}+1} \\
& \quad=\sum_{s=0}^{n_{1}} \sum_{t=0}^{n_{2}} 2^{n-s-t-1}\binom{n_{1}+1}{s}\binom{n_{2}+1}{t} \mu_{1}^{s} \otimes \mu_{2}^{t} \tag{4.1}
\end{align*}
$$

We now turn to the lens spaces. The space $L^{n}\left(2^{m}\right)$ is the quotient space $\mathbf{S}^{2 n+1} /\left(\mathbf{Z} / 2^{m}\right)$ where the action on the sphere $\mathbf{S}^{2 n+1} \subset \mathbf{C}^{n+1}$ of the group $\mathbf{Z} / 2^{m}$ generated by $\zeta=\exp \left(i \pi / 2^{m-1}\right)$ is given by:

$$
\zeta^{k} z=\left(\zeta^{k} z_{0}, \zeta^{k} z_{1}, \ldots, \zeta^{k} z_{n}\right)
$$

It is well known that the KU-theory and the integral cohomology of $L^{n}\left(2^{m}\right)$ are given by:

$$
\begin{aligned}
K U^{q}\left(L^{n}\left(2^{m}\right)\right) \cong \begin{cases}\mathbf{Z} & \text { if } q=1 \\
\mathbf{Z}[\sigma] /\left\langle\sigma^{n+1},(\sigma+1)^{2^{m}}\right\rangle & \text { if } q=0\end{cases} \\
H^{q}\left(L^{n}\left(2^{m}\right) ; \mathbf{Z}\right) \cong \begin{cases}\mathbf{Z} & \text { if } q=0,2 n+1 \\
\mathbf{Z} / 2^{m} & \text { if } q \text { even, } 0<q \leq 2 n \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Here $\sigma=\pi^{*}(\mu)$, where $\pi: L^{n}\left(2^{m}\right) \rightarrow \mathbf{C} P^{n}$ is the canonical map. The group $H^{2 r}\left(L^{n}\left(2^{m}\right) ; \mathbf{Z}\right) \cong \mathbf{Z} / 2^{m}$ is generated by $z^{r}$ where $z$ is the first Chern class of $\sigma$. For a complete description, the reader is referred to [18].

Recall that the stable class $\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}$ of the tangent bundle of $L^{n}\left(2^{m}\right)$ may be identified with $r((n+1) \sigma)$ (see [22]), and that the stable class of the tangent bundle of $L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)$, is the element $\tau_{0}=$ $r\left(p_{1}^{*}\left(\left(n_{1}+1\right) \sigma_{1}\right)+p_{2}^{*}\left(\left(n_{2}+1\right) \sigma_{2}\right)\right)$. The latter element is the pull back of the stable tangent bundle of $\mathbf{C} P^{n_{1}} \times \mathbf{C} P^{n_{2}}$ with respect to the projection

$$
L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right) \rightarrow \mathbf{C} P^{n_{1}} \times \mathbf{C} P^{n_{2}}
$$

Now we want to find a lower bound for $\operatorname{gdim}\left(\tau_{0}\right)$. We proceed in two steps. First we apply the cohomology criterion of theorem 2.2. This criterion gives us a first bound for $\operatorname{gdim}\left(\tau_{0}\right)$ (see Prop. 4.2). Next we use this bound and Theorem 2.1 to prove Theorem 1.2. We start with some technical lemmas.

Lemma 4.1. Let $g: L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right) \rightarrow B U(n)$ be the classifying map of $p_{1}^{*}\left(\left(n_{1}+1\right) \sigma_{1}\right)+p_{2}^{*}\left(\left(n_{2}+1\right) \sigma_{2}\right)$. Then for $l=1,2, \ldots, n$, we have

$$
g^{*}\left(c_{l}\right)=\sum_{i=\max \left(0, l-n_{2}\right)}^{\min \left(l, n_{1}\right)}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l-i} z_{1}^{i} \otimes z_{2}^{l-i}
$$

where $g^{*}$ is the map induced by $g$ in integral cohomology, $c_{l}$ is the l-th universal Chern class, and $z_{i}=c_{1}\left(\sigma_{i}\right) \in H^{2}\left(L^{n_{i}}\left(2^{m_{i}}\right) ; \mathbf{Z}\right) \cong \mathbf{Z} / 2^{m_{i}}$, for $i=1,2$, and $n \geq$ $n_{1}+n_{2}+2$.

Proof.

$$
\begin{aligned}
g^{*}\left(c_{l}\right) & =c_{l}\left(p_{1}^{*}\left(\left(n_{1}+1\right) \sigma_{1}\right)+p_{2}^{*}\left(\left(n_{2}+1\right) \sigma_{2}\right)\right) \\
& =\sum_{i=0}^{l} c_{i}\left(p_{1}^{*}\left(\left(n_{1}+1\right) \sigma_{1}\right)\right) c_{l-i}\left(p_{2}^{*}\left(\left(n_{2}+1\right) \sigma_{2}\right)\right) \\
& =\sum_{i=0}^{l} p_{1}^{*}\left(c_{i}\left(\left(n_{1}+1\right) \sigma_{1}\right)\right) p_{2}^{*}\left(c_{l-i}\left(\left(n_{2}+1\right) \sigma_{2}\right)\right) \\
& =\sum_{i=0}^{l}\binom{n_{1}+1}{i} p_{1}^{*}\left(c_{1}\left(\sigma_{1}\right)^{i}\right)\binom{n_{2}+1}{l-i} p_{2}^{*}\left(c_{1}\left(\sigma_{2}\right)^{l-i}\right) \\
& =\sum_{i=0}^{l}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l-i} z_{1}^{i} \otimes z_{2}^{l-i}
\end{aligned}
$$

We know that $z_{1}^{i}=0$ for $i \geq n_{1}+1$ and that $z_{2}^{l-i}=0$ for $l-i \geq n_{2}+1$. This achieves the proof.

Lemma 4.2. Let $n+1=2^{s}(2 u+1)$ and $s \geq 1$ be integers. The following congruences are satisfied,

$$
\binom{n+1}{i} \equiv \begin{cases}1(\bmod 2) & \text { if } i=n+1-2^{s} \\ 0(\bmod 2) & \text { if } n+2-2^{s} \leq i \leq n .\end{cases}
$$

Notice, if $n$ is even, then $\binom{n+1}{n}$ is odd.
Proof. Recall that $v_{2}\left(\binom{n}{k}\right)=\alpha(k)+\alpha(n-k)-\alpha(n)$ where $\alpha(n)$ is the number of 1 in the dyadic expansion of $n$. Then, we have

$$
\begin{aligned}
\nu_{2}\left(\binom{n+1}{n+1-2^{s}}\right) & =\nu_{2}\left(\binom{n+1}{2^{s}}\right)=\alpha\left(2^{s}\right)+\alpha\left(n+1-2^{s}\right)-\alpha(n+1) \\
& =1+\alpha\left(2^{s+1} u\right)-\alpha\left(2^{s}(2 u+1)\right) \\
& =1+\alpha(u)-\alpha(2 u+1)=1+\alpha(u)-\alpha(u)-1=0 .
\end{aligned}
$$

Moreover, as $\binom{n+1}{i}=\binom{n+1}{n+1-i}$, we can reduce the case $i \geq n+2-2^{s}$ to the case $i \leq 2^{s}-1$.

Let us give the dyadic expansion of $n+1$ and $i$,

$$
\begin{aligned}
n+1 & =2^{s}(2 u+1)=2^{s_{1}}+2^{s_{2}}+\cdots+2^{s_{t}}, \quad \text { with } s_{1}>s_{2}>\cdots>s_{t}=s, \\
i & =2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, \quad \text { with } s-1 \geq q_{1}>q_{2}>\cdots>q_{r} .
\end{aligned}
$$

It is easy to see that

$$
n+1-i=2^{s_{1}}+2^{s_{2}}+\cdots+2^{s_{t}-1}+\sum_{j=q_{r}}^{s-1} 2^{j}-\sum_{v=1}^{r-1} 2^{q_{v}} .
$$

We observe that $\alpha(n+1)=t$ and $\alpha(i)=r$, then we can write

$$
\alpha(n+1-i)=t+s-r-q_{r}=\alpha(n+1)-\alpha(i)+s-q_{r}>\alpha(n+1)-\alpha(i) .
$$

Lemma 4.3. Consider the integers $n_{i}+1=2^{s_{i}}\left(2 u_{i}+1\right)$ with $u_{i} \geq 1$ $(i=1,2)$, and $l=n_{1}+n_{2}+2-2^{s_{1}}-2^{s_{2}}$. We have $g^{*}\left(c_{l}\right) \not \equiv 0(\bmod 2)$.

Proof. According to Lemma 4.1, we have

$$
g^{*}\left(c_{l}\right)=\sum_{i=\max \left(0, l-n_{2}\right)}^{\min \left(l, n_{1}\right)}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l-i} z_{1}^{i} \otimes z_{2}^{l-i} .
$$

Using Lemma 4.2, we see that $\binom{n_{1}+1}{i}$ is even if

$$
n_{1}+1-2^{s_{1}}<i \leq \min \left(l, n_{1}\right) \leq n_{1}
$$

we also see that $\binom{n_{2}+1}{l-i}$ is even if

$$
l-n_{2} \leq \max \left(0, l-n_{2}\right) \leq i<n_{1}+1-2^{s_{1}}
$$

since in this last case $n_{2}+1-2^{s_{2}}<n_{1}+n_{2}+2-2^{s_{1}}-2^{s_{2}}-i=l-i \leq n_{2}$.
Finally $\binom{n_{1}+1}{i}\binom{n_{2}+2}{l-i}$ is odd if $i=n_{1}+1-2^{s_{1}}$, since $l-i=$ $n_{2}+1-2^{s_{1}}$. So,
we have established

$$
g^{*}\left(c_{l}\right) \equiv\binom{n_{1}+1}{2^{s_{1}}}\binom{n_{2}+1}{2^{s_{2}}} z_{1}^{n_{1}+1-2^{s_{1}}} \otimes z_{2}^{n_{2}+1-2^{s_{2}}} \not \equiv \equiv(\bmod 2) .
$$

Lemma 4.4. Consider the integer $n+1=2^{s}(2 u+1)$. We have

$$
g \operatorname{dim}\left(\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}\right) \geq 2 n+2-2^{s+1} .
$$

Proof. We know that $\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}=r((n+1) \sigma)$. Moreover, if $g: L^{n}\left(2^{m}\right) \rightarrow B U$ denotes the classifying map of the stable bundle $(n+1) \sigma$,

$$
g^{*}\left(c_{l}\right)=c_{l}((n+1) \sigma)=\binom{n+1}{l} c_{1}(\sigma)^{l}
$$

Assume that $\operatorname{gdim}\left(\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}\right)=2 n+1-2^{s+1}$. Then according to Theorem 2.2

$$
g^{*}\left(c_{l}\right) \equiv 0(\bmod 2) \quad \text { for } l \geq n+1-2^{s},
$$

which is inconsistent with Lemma 4.2.
Lemma 4.5 If $n=2^{s}-1$ and $m \geq\left[\log _{2} n\right]+1$, then

$$
\operatorname{gdim}\left(\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}\right) \geq\left[\frac{n}{2}\right]
$$

Proof. According to [24] we have $\operatorname{gdim}\left(\tau_{L^{n}\left(2^{m}\right)}-\underline{2 n+1}\right) \geq r_{2}(n, m)$ where

$$
r_{2}(n, m)=\max \left\{0 \leq r \leq\left[\frac{n}{2}\right] \left\lvert\, v_{2}\left(\binom{n+1}{r}\right)<m+n-2 r\right.\right\} .
$$

In our case $v_{2}\left(\binom{n+1}{r}\right)=v_{2}\left(\binom{2^{s}}{r}\right)=s-v_{2}(r)$.

In particular if $r=\left[\frac{n}{2}\right]=2^{s-1}-1$,

$$
s-v_{2}(r)=s=\left[\log _{2} n\right]+1 \leq m<m+1=m+n-2 r .
$$

Proposition 4.1. Let $n_{i}+1=2^{s_{i}}\left(2 u_{i}+1\right)$ be an integer with $u_{i} \geq 1$ ( $i=1,2$ ). Then

$$
\operatorname{gdim}\left(\tau_{0}\right) \geq 2 n_{1}+2 n_{2}+4-2^{s_{1}+1}-2^{s_{2}+1}
$$

Proof. Assume that $\operatorname{gdim}\left(\tau_{0}\right)=2 n_{1}+2 n_{2}+3-2^{s_{1}+1}-2^{s_{2}+1}$. Then, according to Theorem 2.2, we should have $g^{*}\left(c_{l}\right) \equiv 0(\bmod 2)$ for all $l=n_{1}+n_{2}+2-2^{s_{1}}-2^{s_{2}}, \ldots, n_{1}+n_{2}+1$, which is inconsistent with the result of Lemma 4.3.

Proposition 4.2 a) Consider the integers $n_{1}+1=2^{s_{1}}\left(2 u_{1}+1\right)$ with $u_{1} \geq 1, n_{2}+1=2^{s_{2}}$ and $m_{2} \geq\left[\log _{2} n_{2}\right]+1$. Then we have

$$
g \operatorname{dim}\left(\tau_{0}\right) \geq \max \left(2 n_{1}+2-2^{s_{1}+1},\left[\frac{n_{2}}{2}\right]\right)
$$

b) Consider the integers $n_{i}+1=2^{s_{i}}$ and $m_{i} \geq\left[\log _{2} n_{i}\right]+1,(i=1,2)$. Then we have

$$
\operatorname{gdim}\left(\tau_{0}\right) \geq \max \left(\left[\frac{n_{1}}{2}\right],\left[\frac{n_{2}}{2}\right]\right)
$$

Proof. By Proposition 2.1

$$
\operatorname{gdim}\left(\tau_{0}\right) \geq \max \left(g \operatorname{dim}\left(\tau_{0}(1)\right), g \operatorname{dim}\left(\tau_{0}(2)\right)\right)
$$

where $\tau_{0}(i)=\tau_{L^{n_{i}}\left(2^{m_{i}}\right)}-\underline{2 n_{i}+1}$.
Moreover, according to Lemmas 4.4 and 4.5 we can assert that, under the hypothesis of a),

$$
g \operatorname{dim}\left(\tau_{0}(1)\right) \geq 2 n_{1}+2-2^{s_{1}+1} \quad \text { and } \quad g \operatorname{dim}\left(\tau_{0}(2)\right) \geq\left[\frac{n_{2}}{2}\right]
$$

and under the hypothesis of $b$ ),

$$
g \operatorname{dim}\left(\tau_{0}(1)\right) \geq\left[\frac{n_{1}}{2}\right] \quad \text { and } \quad g \operatorname{dim}\left(\tau_{0}(2)\right) \geq\left[\frac{n_{2}}{2}\right] .
$$

Now, we apply the criterion of Theorem 1.1 to the stable classes $y_{i}=\left(n_{i}+1\right) \sigma_{i}$, $i=1,2$. If $\operatorname{Span}\left(L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)\right)=2\left(n_{1}+n_{2}+1\right)-k$, the following relation is satisfied in $K U\left(L^{n_{1}}\left(2^{m_{1}}\right)\right) \otimes K U\left(L^{n_{2}}\left(2^{m_{2}}\right)\right)$ :

$$
\left.2^{n-1} \gamma_{1 / 2}\left(\left(n_{1}+1\right) \sigma_{1}\right) \otimes\left(n_{2}+1\right) \sigma_{2}\right) \equiv 0\left(\bmod 2^{n-j-1}\right)
$$

with $n \geq n_{1}+n_{2}+2$ and $j=\left[\frac{k}{2}\right]$.

The left hand side of this congruence is the image of the left hand side of (4.1) under the canonical projection $L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right) \rightarrow \mathbf{C} P^{n_{1}} \times \mathbf{C} P^{n_{2}}$ and (4.1) implies

$$
\begin{equation*}
\sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}} 2^{n-i-l-1}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} \sigma_{1}^{i} \otimes \sigma_{2}^{l} \equiv 0\left(\bmod 2^{n-j-1}\right) \tag{4.2}
\end{equation*}
$$

We shall consider the projection

$$
\pi_{1} \otimes \pi_{2}: \mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right] \rightarrow K U\left(L^{n_{1}}\left(2^{m_{1}}\right)\right) \otimes K U\left(L^{n_{2}}\left(2^{m_{2}}\right)\right)
$$

The relation (4.2) lifts to $\mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right]$ modulo $\operatorname{ker}\left(\pi_{1} \otimes \pi_{2}\right)$, that is to say modulo the ideal of $\mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right]$ generated by

$$
\sigma_{1}^{n_{1}+1} \otimes 1,1 \otimes \sigma_{2}^{n_{2}+1},\left(\left(1+\sigma_{1}\right)^{2^{m_{1}}}-1\right) \otimes 1 \text { and } 1 \otimes\left(\left(1+\sigma_{2}\right)^{2^{m_{2}}}-1\right)
$$

We obtain in $\mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right]$ :

$$
\begin{align*}
& \sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}} 2^{n-i-l-1}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} \sigma_{1}^{i} \otimes \sigma_{2}^{l}  \tag{4.3}\\
& =2^{n-j-1} \sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}} a_{i l} \sigma_{1}^{i} \otimes \sigma_{2}^{l}+\left(\left(1+\sigma_{1}\right)^{2^{m_{1}}}-1\right) p_{1}\left(\sigma_{1}, \sigma_{2}\right) \\
& \quad+\left(\left(1+\sigma_{2}\right)^{2^{m_{2}}}-1\right) p_{2}\left(\sigma_{1}, \sigma_{2}\right)
\end{align*}
$$

where $p_{1}\left(\sigma_{1}, \sigma_{2}\right), p_{2}\left(\sigma_{1}, \sigma_{2}\right)$ are certain polynomials and the coefficients $a_{i l}$ are integers.

We need the following result to conclude.
Lemma 4.6. If $m \geq\left[\log _{2}(n)\right]$, then

$$
(x+1)^{2^{m}}-1=2^{m-\left[\log _{2} n\right]} p(x)+x^{n+1} q(x)
$$

where $p(x), q(x)$ are polynomials in the indeterminate $x$ and $\operatorname{deg}(p(x)) \leq n$.
Proof. We have

$$
(x+1)^{2^{m}}-1=\sum_{i=1}^{2^{m}}\binom{2^{m}}{i} x^{i}
$$

and since

$$
v_{2}\left(\binom{2^{m}}{i}\right)=m-v_{2}(i) \geq m-\left[\log _{2} n\right]
$$

$i=1,2, \ldots, n$, the lemma follows.

We shall now assume that $m_{i} \geq\left[\log _{2} n_{i}\right]+1(i=1,2)$, and we set $n=n_{1}+n_{2}+2$. Using Propositions 4.1 and 4.2, we obtain for $j=\left[\frac{k}{2}\right]$ and $n-j-1$ :

1) If $n_{i}+1=2^{s_{i}}\left(2 u_{i}+1\right), u_{i} \geq 1(i=1,2)$, we have

$$
j \geq n_{1}+n_{2}+2-2^{s_{1}}-2^{s_{2}}, \quad n-j-1 \leq 2^{s_{1}}+2^{s_{2}}-1 .
$$

2) If $n_{1}+1=2^{s_{1}}\left(2 u_{1}+1\right), u_{1} \geq 1, n_{2}+1=2^{s_{2}}$, we have

$$
j \geq \max \left(n_{1}+1-2^{s_{1}},\left[\frac{n_{2}}{4}\right]\right), \quad n-j-1 \leq \min \left(n_{2}+2^{s_{1}}, n_{1}+\left[\frac{3\left(n_{2}+2\right)}{4}\right]\right)
$$

3) If $n_{i}+1=2^{s_{i}}$, $(i=1,2)$, we have

$$
j \geq \max \left(\left[\frac{n_{1}}{4}\right],\left[\frac{n_{2}}{4}\right]\right), \quad n-j-1 \leq \min \left(n_{2}+\left[\frac{3\left(n_{1}+2\right)}{4}\right], n_{1}+\left[\frac{3\left(n_{2}+2\right)}{4}\right]\right)
$$

Under the above hypothesis the relation (4.3) becomes in $\mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right]$ :

$$
\begin{equation*}
\sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}} 2^{n-i-l-1}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} \sigma_{1}^{i} \otimes \sigma_{2}^{l} \equiv 0\left(\bmod 2^{n-j-1}\right) . \tag{4.4}
\end{equation*}
$$

As the generators $\sigma_{1}^{i} \otimes \sigma_{2}^{l}$ are free in $\mathbf{Z}\left[\sigma_{1}\right] \otimes \mathbf{Z}\left[\sigma_{2}\right]$, (4.4) induces the congruence relations:

$$
\begin{equation*}
2^{n-i-l-1}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} \equiv 0\left(\bmod 2^{n-j-1}\right) \tag{4.5}
\end{equation*}
$$

for $0 \leq i \leq n_{1}$ and $0 \leq l \leq n_{2}$. In particular, if $i=n_{1}$ and $l=n_{2}$ in (4.5), one gets

$$
2^{n-i-l-1}\left(n_{1}+1\right)\left(n_{2}+1\right) \equiv 0\left(\bmod 2^{n-j-1}\right)
$$

In other words, we have:

$$
n-n_{1}-n_{2}-1+v_{2}\left(n_{1}+1\right)+v_{2}\left(n_{2}+1\right) \geq n-j-1
$$

so

$$
j \geq n_{1}+n_{2}-v_{2}\left(n_{1}+1\right)-v_{2}\left(n_{2}+1\right)
$$

If one of the following three conditions is satisfied

1) $n_{i}+1=2^{s_{i}}\left(2 u_{i}+1\right), u_{i} \geq 1$ and $m_{i} \geq\left[\log _{2} n_{i}\right]+2^{s_{1}}+2^{s_{2}}(i=1,2)$
2) $n_{1}+1=2^{s_{1}}\left(2 u_{1}+1\right), \quad u_{1} \geq 1, \quad n_{2}+1=2^{s_{2}} \quad$ and $\quad m_{i} \geq\left[\log _{2} n_{i}\right]+$ $\min \left(n_{2}+2^{s_{1}}, n_{1}+\left[\frac{3\left(n_{2}+2\right)}{4}\right]\right)(i=1,2)$

$$
\begin{aligned}
& \text { 3) } n_{i}+1=2^{s_{i}} \text { and } m_{i} \geq\left[\log _{2} n_{i}\right]+\min \left(n_{2}+\left[\frac{3\left(n_{1}+2\right)}{4}\right], n_{1}+\left[\frac{3\left(n_{2}+2\right)}{4}\right]\right) \\
& =1,2) \text {, then } \\
& \quad \operatorname{Span}\left(L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)\right) \leq 2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+2 .
\end{aligned}
$$

Using Proposition 2.2 and Theorem 1.1 of [6], we observe that

$$
\begin{aligned}
\operatorname{Span}\left(L^{n_{1}}\left(2^{m_{1}}\right) \times L^{n_{2}}\left(2^{m_{2}}\right)\right) & \geq \operatorname{Span}\left(L^{n_{1}}\left(2^{m_{1}}\right)\right)+\operatorname{Span}\left(L^{n_{2}}\left(2^{m_{2}}\right)\right) \\
& =2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+2 .
\end{aligned}
$$

This achieves the proof of Theorem 1.2.

## 5. Proof of Theorem 1.3

Let $\mathbf{H}$ be the field of quaternions and let $m$ be a positive integer. Let $Q_{m}$ be the group of order $2^{m+1}$, generated by $x$ and $y$ such that $x^{2^{m-1}}=y^{2}$ and $x y x=y$. We can see $Q_{m}$ as a subgroup of $\mathbf{S}^{3} \subset \mathbf{H}$, taking $x=\exp \left(i \pi / 2^{m-1}\right)$ and $y=j$. Here quaternions are represented by $z_{1}+j z_{2}$ with $z_{1}, z_{2} \in \mathbf{C}$. We call $Q_{m}$-spherical space form, or quaternionic spherical space form, the quotient manifold $N^{n}(m)=\mathbf{S}^{4 n+3} / Q_{m}$, where the action of the group $Q_{m}$ on $\mathbf{S}^{4 n+3} \subset \mathbf{H}^{n+1}$ is given by:

$$
q \cdot\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(q x_{0}, q x_{1}, \ldots, q x_{n}\right)
$$

We recall that to any group representation of $Q_{m}$ corresponds a vector bundle over $N^{n}(m)$. We denote by $\alpha_{0}, \alpha_{1}$ and $\delta_{1}$ the stable classes of the bundles corresponding to the complex representations $a_{0}, a_{1}$ and $\zeta$ defined by:

$$
\begin{aligned}
& a_{0}(x)=1, \quad a_{0}(y)=-1 \\
& a_{1}(x)=-1, \quad a_{1}(y)=-1 \\
& \zeta\left(z_{1}+j z_{2}\right)=\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right) .
\end{aligned}
$$

Notice that the representation $\zeta$ is nothing else than the representation induced by the canonical representation of $\mathbf{S}^{3} \subset \mathbf{H}$ in $U(2)$. The latter representation defines a canonical 2-dimensional complex vector bundle $\rho$ over the quaternionic projective space $\mathbf{H} P^{n}=\mathbf{S}^{4 n+3} / \mathbf{S}^{3}$. Its stable class $z=\rho-2$ is mapped on to $\delta_{1}$ by the homomorphism induced by the projection

$$
\begin{gather*}
\mathbf{S}^{4 n+3} / Q_{m}=N^{n}(m) \xrightarrow{\pi} \mathbf{S}^{4 n+3} / \mathbf{S}^{3}=\mathbf{H} P^{n} \subset \mathbf{H} P^{\infty} \\
\delta_{1}=\pi^{*}(z) \in \widetilde{K U}\left(N^{n}(m)\right) \tag{5.0}
\end{gather*}
$$

According to [22] we can identify the stable class of $\tau_{N^{n}(m)}$ in $\widetilde{K O}\left(N^{n}(m)\right)$ with $r\left((n+1) \delta_{1}\right)$.

Consider the elements $\beta(s)$ in $K U\left(N^{n}(m)\right)$ inductively defined by the formulas

$$
\left\{\begin{array}{l}
\beta(0)=\delta_{1} \\
\beta(s)=\beta(s-1)^{2}+4 \beta(s-1) \quad \text { for } s \geq 1
\end{array}\right.
$$

For all integer $s \geq 1$, let $a^{\prime}(s)$ and $b^{\prime}(s)$ be the integers such that $0 \leq b^{\prime}(s)<2^{s}$ and

$$
2^{s} a^{\prime}(s)+b^{\prime}(s)= \begin{cases}2 n+1 & \text { if } n \text { odd } \\ 2 n & \text { if } n \text { even }\end{cases}
$$

and for all integer $i=2^{s}+d$ such that $0 \leq d<2^{s}$ and $0 \leq s<m$, let

$$
\begin{gathered}
a(i)= \begin{cases}a^{\prime}(s+1)+1 & \text { if } 2 d \leq b^{\prime}(s+1) \\
a^{\prime}(s+1) & \text { if } 2 d>b^{\prime}(s+1)\end{cases} \\
u(i)= \begin{cases}2^{m-1+d^{\prime}(1)} & \text { if } i=1 \\
2^{m-s-2+d^{\prime}(s)} & \text { if } i=2^{s}>1 \\
2^{m-s-3+a(i)} & \text { if } i=2^{s}+d \geq 3, \quad 0<d<2^{s} .\end{cases}
\end{gathered}
$$

Now we can give the additive structure of $K U^{*}\left(N^{n}(m)\right)$. The result is due to K. Fujii and M. Sugawara in [10] and we will adopt their notation in what follows. As abelian groups there are isomorphisms:

$$
K U^{1}\left(N^{n}(m)\right) \cong \mathbf{Z}
$$

and

$$
\begin{equation*}
\widetilde{K U^{0}}\left(N^{n}(m)\right) \cong \mathbf{Z} / 2^{n+1} \cdot\left\langle\alpha_{0}\right\rangle \oplus \mathbf{Z} / 2^{n+1} \cdot\left\langle\overline{\alpha_{1}}\right\rangle \oplus \sum_{i=1}^{M} \mathbf{Z} / u(i) \cdot\left\langle\delta_{i}\right\rangle \tag{5.1}
\end{equation*}
$$

where $M=\min \left(2^{m-1}, n\right)$. Here $\mathbf{Z} / t \cdot\langle x\rangle$ denotes the cyclic group of order $t$ generated by $x$.

The generators $\overline{\alpha_{1}}$ and $\delta_{i}$ are defined by

$$
\overline{\alpha_{1}}=\alpha_{1}-2 \sum_{s=1}^{m-3} \beta(s) \prod_{t=s+1}^{m-3}(2+\beta(t)) .
$$

$$
\begin{equation*}
\delta_{i}=\beta(s)+\sum_{j=1}^{s} 2^{\left(2^{j}-1\right)\left(d^{\prime}(s)+1\right)} \beta(s-j), \quad i=2^{s}, 1 \leq s \leq m-1, \tag{5.2}
\end{equation*}
$$

$$
\begin{align*}
& \delta_{i}=\delta_{1}^{d-1} \beta(1) \prod_{j=0}^{s-1}(2+\beta(j))-2^{a(i)-1} \delta_{1}^{d} \beta(s)+\sum_{j=2}^{s+1} 2^{\left(2^{j}-1\right) a(i)-1} \delta_{1}^{d} \beta(s+1-j),  \tag{5.3}\\
& i=2^{s}+d, 1 \leq s \leq m-1,0<d<2^{s} .
\end{align*}
$$

We need some complementary technical results.
Lemma 5.1. For all $1 \leq s \leq m-1$, we have

$$
\beta(s)=\delta_{1}^{2^{s}}+q_{s}\left(\delta_{1}\right)
$$

where $q_{s}\left(\delta_{1}\right)$ is a polynomial of degree $2^{s}-1$ with even integer coefficients.
Proof. It is easy to see that the assertion is valid for $s=0$ and $s=1$. Moreover, if it is true for $s \geq 1$, the recurrence relation
$\beta(s+1)=\beta(s)^{2}+4 \beta(s)$ implies that it is true for $s+1$.
Lemma 5.2. For all $i=2^{s}+d \leq n$ with $0 \leq d \leq 2^{s}$ and $0 \leq s \leq m-1$, the integer $a(i)$ satisfies the condition $a(i) \geq 2$.

Proof. Recall that

$$
2^{s+1} a^{\prime}(s+1)+b^{\prime}(s+1)= \begin{cases}2 n+1 & \text { if } n \text { odd } \\ 2 n & \text { if } n \text { even }\end{cases}
$$

For the two cases we have $a^{\prime}(s+1) \geq 1$, since $b^{\prime}(s+1)<2^{s+1} \leq 2 n$. Then, if $2 d \leq b^{\prime}(s+1)$, by definition $a(i)=a^{\prime}(s+1)+1 \geq 2$. If $2 d>b^{\prime}(s+1)$, we also have $a(i)=a^{\prime}(s+1) \geq 2$, since $a^{\prime}(s+1)=1$ would imply

$$
\begin{aligned}
2 n & \leq 2^{s+1} a^{\prime}(s+1)+b^{\prime}(s+1) \\
& <2^{s+1}+2 d \\
& \leq 2 n
\end{aligned}
$$

which is impossible.
Lemma 5.3. Let $u(n)$ be as above. Then

$$
v_{2}(u(n)) \geq m-\left[\log _{2} n\right]-1 .
$$

Proof. For $n=2^{s}>1, u(n)$ is given by $2^{m-s-2+d^{\prime}(s)}=2^{m-\log _{2} n}$, and for $n=2^{s}+d \geq 3$ with $0<d<2^{s}, u(n)$ is given by $2^{m-s-3+a(n)}=$ $2^{m-\left[\log _{2} n\right]-1}$.

Lemma 5.4. For all $1 \leq i \leq M$, there is an odd integer $A_{i}$ and a polynomial $p_{i}\left(\delta_{1}\right)$ of degree $i-1$ with even integer coefficients such that

$$
\delta_{i}=A_{i} \delta_{1}^{i}+p_{i}\left(\delta_{1}\right)
$$

Proof. By definition, the result is true for $i=1$. If $i=2^{s}$, we replace in (5.2) the elements $\beta(s)$ and $\beta(s-j)$ by the expression given in Lemma 5.1. Then $\delta_{i}$ becomes

$$
\delta_{i}=\delta_{1}^{2^{s}}+q_{s}\left(\delta_{1}\right)+\sum_{j=1}^{s} 2^{\left(2^{j}-1\right)\left(d^{\prime}(s)+1\right)}\left(\delta_{1}^{2^{s-j}}+q_{s-j}\left(\delta_{1}\right)\right)
$$

If $i=2^{s}+d$ with $0<d<2^{s}$, we do the same with the relation (5.3) and obtain

$$
\begin{aligned}
\delta_{i}= & \delta_{1}^{d-1}\left(\delta_{1}^{2}+4 \delta_{1}\right) \prod_{j=0}^{s-1}\left(2+\delta_{1}^{2^{j}}+q_{j}\left(\delta_{1}\right)\right)-2^{a(i)-1} \delta_{1}^{d}\left(\delta_{1}^{2^{s}}+q_{s}\left(\delta_{1}\right)\right) \\
& +\sum_{j=2}^{s+1} 2^{\left(2^{j}-1\right) a(i)-1} \delta_{1}^{d}\left(\delta_{1}^{s+1-j}+q_{s+1-j}\left(\delta_{1}\right)\right)
\end{aligned}
$$

and hence $\delta_{i}=\left(1-2^{a(i)-1}\right) \delta_{1}^{d+2^{s}}+p\left(\delta_{1}\right)$, where $p\left(\delta_{1}\right)$ is a polynomial in $\delta_{1}$ of degree $<i$ with even integer coefficients. We conclude with Lemma 5.2.

It follows from (5.1) and Lemma 5.4 by induction on $i$ that the elements $\delta_{1}, \delta_{2}, \ldots, \delta_{i}$ and $\delta_{1}, \delta_{1}^{2}, \ldots, \delta_{1}^{i}$ generate the same subgroup of $\widetilde{K U}^{0}\left(N^{n}(m)\right)$; (all groups under consideration have order a power of 2 ).

Invoking (5.1) again and assuming that $2^{m-1} \geq n$, we set

$$
\widetilde{K U}^{0}\left(N^{n}(m)\right) \cong G \oplus \mathbf{Z} / u(n) \cdot\left\langle\delta_{n}\right\rangle,
$$

where $G$ is the subgroup generated by $\alpha_{0}, \overline{\alpha_{1}}, \delta_{1}, \delta_{1}^{2}, \ldots, \delta_{1}^{n-1}$ and we get for the projection $\rho: \widetilde{K U}^{0}\left(N^{n}(m)\right) \rightarrow \mathbf{Z} / u(n) \cdot\left\langle\delta_{n}\right\rangle$ :

$$
\rho\left(\delta_{1}^{i}\right)= \begin{cases}0 & \text { if } i=1, \ldots, n-1 \\ A \cdot \delta_{n} & \text { if } i=n, \text { where } A \text { is an odd integer. }\end{cases}
$$

Now consider the stable class $\tau_{0}$ of the tangent bundle of $N^{n}(m)$. According to [18] and [22] and by (5.0) we have

$$
\tau_{0}=r(n+1) \delta_{1}=r \pi^{*}((n+1) z), \quad z \in K U\left(\mathbf{H} P^{n}\right)
$$

The $\gamma$-operations on the element $z \in \widetilde{K U}\left(\mathbf{H} P^{n}\right)$ are given by $\gamma_{t}(z)=1+z t(1-t)$ (see [18]). It follows that

$$
\gamma_{1 / 2}((n+1) z)=\left(1+\frac{z}{4}\right)^{n+1} \in K U\left(\mathbf{H} P^{n}\right) \otimes \mathbf{Q}=\mathbf{Q}[z] /\left(z^{n+1}\right)
$$

and further in $K U\left(\mathbf{H} P^{n_{1}}\right) \otimes K U\left(\mathbf{H} P^{n_{2}}\right)$

$$
\begin{align*}
& 2^{n-1} \gamma_{1 / 2}\left(\left(n_{1}+1\right) z_{1}\right) \otimes \gamma_{1 / 2}\left(\left(n_{2}+1\right) z_{2}\right)  \tag{5.4}\\
& \quad=\sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} 2^{n-2 i-2 l-1} z_{1}^{i} \otimes z_{2}^{l}
\end{align*}
$$

We now apply Theorem 1.1 to the stable classes $y_{i}=\left(n_{i}+1\right) \delta_{1, i}, i=1,2$. If $\operatorname{Span}(M)=4 n_{1}+4 n_{2}+6-k$, then the following relation is valid in $K U\left(N^{n_{1}}\left(m_{1}\right)\right) \otimes K U\left(N^{n_{2}}\left(m_{2}\right)\right)$,

$$
\begin{equation*}
2^{n-1} \gamma_{1 / 2}\left(\left(n_{1}+1\right) \delta_{1,1}\right) \otimes \gamma_{1 / 2}\left(\left(n_{2}+1\right) \delta_{1,2}\right) \equiv 0\left(\bmod 2^{n-j-1}\right) \tag{5.5}
\end{equation*}
$$

here $n \geq 2 n_{1}+2 n_{2}+4$ and $j=\left[\frac{k}{2}\right]$.
By (5.0), the left hand side of this congruence is the image of the left hand side of (5.4) under the map

$$
N^{n_{1}}\left(m_{1}\right) \times N^{n_{2}}\left(m_{2}\right) \rightarrow \mathbf{H} P^{n_{1}} \times \mathbf{H} P^{n_{2}}
$$

and (5.5) implies

$$
\begin{equation*}
\sum_{i=0}^{n_{1}} \sum_{l=0}^{n_{2}}\binom{n_{1}+1}{i}\binom{n_{2}+1}{l} 2^{n-2 i-2 l-1} \delta_{1,1}^{i} \otimes \delta_{1,2}^{l} \equiv 0\left(2^{n-j-1}\right) \tag{5.6}
\end{equation*}
$$

Under the projection

$$
\begin{aligned}
& K U^{0}\left(N^{n_{1}}\left(m_{1}\right)\right) \otimes K U^{0}\left(N^{n_{2}}\left(m_{2}\right)\right) \rightarrow\left(G_{1} \oplus \mathbf{Z} / u\left(n_{1}\right) \cdot\left\langle\delta_{n_{1}}\right\rangle\right) \otimes\left(G_{2} \oplus \mathbf{Z} / u\left(n_{2}\right) \cdot\left\langle\delta_{n_{2}}\right\rangle\right) \\
& \quad \rightarrow \mathbf{Z} / u\left(n_{1}\right) \cdot\left\langle\delta_{n_{1}}\right\rangle \otimes \mathbf{Z} / u\left(n_{2}\right) \cdot\left\langle\delta_{n_{2}}\right\rangle \cong \mathbf{Z} / \min \left(u\left(n_{1}\right), u\left(n_{2}\right)\right)
\end{aligned}
$$

the relation (5.6) reduces in the latter group to

$$
\begin{equation*}
A \cdot\left(n_{1}+1\right)\left(n_{2}+1\right) 2^{3} \equiv 0\left(\bmod 2^{2 n_{1}+2 n_{2}+3-j}\right) \tag{5.7}
\end{equation*}
$$

provided $2^{m_{i}-1} \geq n_{i}(i=1,2)$.
The integer $u\left(n_{i}\right)$ is a power of 2 and by Lemma 5.3 we have $v_{2}\left(u\left(n_{i}\right)\right) \geq$ $m_{i}-\left[\log _{2} n_{i}\right]-1$. So, if the hypothesis of Theorem 1.3 is satisfied, i.e. if $m_{i}>\left[\log _{2} n_{i}\right]+v_{2}\left(n_{1}+1\right)+v_{2}\left(n_{2}+1\right)+4, \quad(i=1,2), \quad$ then $\quad \min \left(v_{2}\left(u\left(n_{1}\right)\right)\right.$, $\left.v_{2}\left(u\left(n_{2}\right)\right)\right)>v_{2}\left(n_{1}+1\right)+v_{2}\left(n_{2}+1\right)+3$ and the congruence (5.7) is satisfied in $\mathbf{Z} / \min \left(u\left(n_{1}\right), u\left(n_{2}\right)\right)$ if and only if

$$
j \geq 2 n_{1}+2 n_{2}-v_{2}\left(n_{1}+1\right)-v_{2}\left(n_{2}+1\right) .
$$

This implies

$$
\begin{aligned}
\operatorname{Span}(M) & =4 n_{1}+4 n_{2}+6-k \leq 4 n_{1}+4 n_{2}+6-2 j \\
& \leq 2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+6 .
\end{aligned}
$$

and achieves the proof of Theorem 1.4.
We notice that this result is best possible when $v_{2}\left(n_{1}+1\right)$ and $v_{2}\left(n_{2}+1\right)$ are zero modulo 4 since by Proposition 2.2 and Theorem 1.1 of [6] we have

$$
\begin{aligned}
\operatorname{Span}\left(N^{n_{1}}\left(m_{1}\right) \times N^{n_{2}}\left(m_{2}\right)\right) & \geq \operatorname{Span}\left(N^{n_{1}}\left(m_{1}\right)\right)+\operatorname{Span}\left(N^{n_{2}}\left(m_{2}\right)\right) \\
& =2 v_{2}\left(n_{1}+1\right)+2 v_{2}\left(n_{2}+1\right)+6 .
\end{aligned}
$$

## 6. Proof of Theorem 1.4

Let $\quad M$ be the product $\prod_{i=1}^{r} \mathbf{S}^{m_{i}} \times \prod_{l=1}^{s} \mathbf{C} P^{n_{l}}$ and set $m=m_{1}+$ $m_{2}+\cdots+m_{r}, n=n_{1}+n_{2}+\cdots+n_{s}$. If all the spheres are of even dimension, then the Euler chacarteristic of $M$ is non-zero and $\operatorname{Span}(M)=0$. In the following we shall suppose that one of the spheres at least is odd dimensional.

The tangent bundle of $M$ is isomorphic to $\bigoplus_{i=1}^{r} p_{i}^{*}\left(\tau_{s^{m_{i}}}\right) \oplus \bigoplus_{l=1}^{s} q_{l}^{*}\left(\tau_{\mathbf{C} P^{n_{l}}}\right)$, where $p_{i}: M \rightarrow \mathbf{S}^{m_{i}}$ and $q_{l}: M \rightarrow \mathbf{C} P^{n_{l}}$ are the canonical projections. The tangent bundles of the spheres are stably trivial and the complex tangent bundle of $\mathbf{C} P^{n_{l}}$ is stably isomorphic to $\left(n_{l}+1\right) \mu_{l}$, where $\mu_{l}$ denotes the stable class of the canonical line bundle over $\mathbf{C} P^{n_{l}}$ (see [22]). For $\tau_{0}$, the complex stable class of the tangent bundle on $M$, it follows that

$$
\tau_{0}=\sum_{l=1}^{s} q_{l}^{*}\left(\left(n_{l}+1\right) \mu_{l}\right)
$$

As in the beginning of section 4 , we have $\gamma_{1 / 2}\left(\mu_{l}\right)=1+\frac{1}{2} \mu_{l}$ and so $\gamma_{1 / 2}\left(\left(n_{l}+1\right) \mu_{l}\right)=\left(1+\frac{1}{2} \mu_{l}\right)^{n_{l}+1}$. An obvious generalization of Theorem 1.1 to products of more than two factors implies: If $\operatorname{Span}(M)=m+2 n-k$ then the following relation is satisfied in $\bigotimes_{l=1}^{s} K U\left(\mathbf{C} P^{n_{l}}\right) \subset K U(S) \otimes \otimes_{l=1}^{s} K U\left(\mathbf{C} P^{n_{l}}\right)$, $\left(S=\mathbf{S}^{m_{1}} \times \mathbf{S}^{m_{2}} \times \cdots \times \mathbf{S}^{m_{r}}\right)$,

$$
2^{N-1} \bigotimes_{l=1}^{s}\left(1+\frac{1}{2} \mu_{l}\right)^{n_{l}+1} \equiv 0\left(\bmod 2^{N-j-1}\right)
$$

where $2 N>m+2 n$ and $j=\left[\frac{k}{2}\right]$. Expanding the latter relation, we get

$$
\sum_{u=0}^{n} \sum_{u_{1}+u_{2}+\cdots+u_{s}=u} 2^{N-u-1} \prod_{l=1}^{s}\binom{n_{l}+1}{u_{l}} \mu_{1}^{u_{1}} \otimes \cdots \otimes \mu_{s}^{u_{s}} \equiv 0\left(\bmod 2^{N-j-1}\right) .
$$

Since $\mu_{1}^{u_{1}} \otimes \cdots \otimes \mu_{s}^{u_{s}}$ are free generators, we obtain, concentrating on the coefficient of $\mu_{1}^{n_{1}} \otimes \cdots \otimes \mu_{s}^{n_{s}}$,

$$
2^{N-n-1} \prod_{l=1}^{s}\binom{n_{l}+1}{n_{l}}=2^{N-n-1} \prod_{l=1}^{s}\left(n_{l}+1\right) \equiv 0\left(\bmod 2^{N-j-1}\right) .
$$

This implies

$$
N-n-1+\sum_{l=1}^{s} v_{2}\left(n_{l}+1\right) \geq N-j-1
$$

and further

$$
2 n-2 \sum_{l=1}^{s} v_{2}\left(n_{l}+1\right) \leq 2 j \leq k .
$$

Finally,

$$
\operatorname{Span}(M) \leq m+2 n-k \leq m+2 \sum_{l=1}^{s} v_{2}\left(n_{l}+1\right)
$$

which finishes the proof of Theorem 1.4.
The Dold manifold $D(u, v)$ is the quotient of the product manifold

$$
\mathbf{S}^{u} \times \mathbf{C} P^{v}
$$

by the $\mathbf{Z} / 2$-action

$$
\mathbf{S}^{u} \times \mathbf{C} P^{v} \rightarrow \mathbf{S}^{u} \times \mathbf{C} P^{v}, \quad(x, z)=(-x, \bar{z}) .
$$

Hence $\mathbf{S}^{u} \times \mathbf{C} P^{v}$ is a 2 -fold covering of $D(u, v)$, and generally,

$$
\prod_{i=1}^{r} \mathbf{S}^{u_{i}} \times \mathbf{C} \mathbf{P}^{v_{i}}
$$

is a covering manifold of the product manifold

$$
\prod_{i=1}^{r} D\left(u_{i}, v_{i}\right)
$$

Corollary 1.1 is therefore a direct consequence of Theorem 1.4. (If $\tilde{M} \rightarrow M$ is a covering, then obviously $\operatorname{Span}(M) \leq \operatorname{Span}(\tilde{M})$.)

## References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
[3] M. F. Atiyah, K-Theory, Benjamin Inc. (1967).
[4] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3 (Supplement 1) (1964), 3-38.
[5] M. F. Atiyah, F. Hirzebruch, Vector bundles and homogeneous spaces. Am. Math. Soc. Proc. Symp. Pure Math. 3 (1961), 7-38.
[6] J. C. Becker, The span of spherical space forms, Amer. J. of Math. 94 (1972), 991-1026.
[7] R. Bott, Lectures on $K(X)$, Mimeographed notes, Harvard University, Cambridge, Mass., (1962).
[8] M. Fujii, $K_{U}$-groups of Dold manifolds, Osaka J. Math. 3 (1966), 49-61.
[9] M. Fujii, Ring structures of $K_{U}$-cohomologies of Dold manifolds, Osaka J. Math. 6 (1969), 107-115.
[10] F. Fujii, M. Sugawara, The additive structure of $K\left(\mathbf{S}^{4 n+3} / Q_{t}\right)$, Hiroshima Math. J. 13 (1983), 507-521.
[11] A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann. 88 (1923), 125.
[12] B. Junod, Sur l'espace classifiant des fibrés vectoriels réels de dimension $k$ stablement complexes, C. R. Acad. Sci. Paris, t. 296, série I, (1983), 215-218.
[13] B. Junod, Quelques résultats de non-immersion des formes sphériques quaternioniques, $C$. R. Acad. Sci. Paris, t 313, série I, (1991), 103-106.
[14] B. Junod, Sur l'espace classifiant des fibrés vectoriels réels stablement complexes, Thesis (1987).
[15] B. Junod, Some non-immersion results for lens spaces $L^{n}(m)$, Math. J. Okayama Univ. Vol. 37, (1995), 137-151.
[16] T. Kobayashi, Non-embeddability and non-immersibility of products of quaternionic spherical space forms, Mem. Fac. Sci. Kochi Uni. (Math) 13 (1992), 1-14.
[17] J. Korbaš, P. Zvengrowski, The vector field problem: a survey with emphasis on specific manifolds, Expo. Math. 12 (1994), 3-30.
[18] N. Mahammed, R. Piccinini, U. Suter, Some applications of topological K-theory, North Holland (1980).
[19] H. Öshima, On stable homotopy types of stunted spaces, Pub. R.I.M.S. Kyoto Univ. 11 (1976), 497-521.
[20] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem, Univ. Hamburg 1 (1922), 1-14.
[21] M.-Y. Sohn, Span of product Dold manifolds, Kyungpook Math. J. 31 (1991), 19-24.
[22] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. of Math. 86 (1964), 685-697.
[23] J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283-293.
[24] M. Yasuo, $\gamma$-dimension and products of lens spaces, Mem. Fac. Sci. Kyushu Univ. 31 (1977), 113-126.

Institut de Mathématiques<br>Université de Neuchâtel<br>Emile-Argand 11<br>2000 Neuchâtel<br>Suisse


[^0]:    1991 Mathematics Subject Classification: 57R25, 55N15.
    Key words and phrases: Tangent vector fields, vector bundles, geometric dimension, stably complex manifolds, complex projective space, lens space, quaternionic spherical space forms, Dold manifolds.

