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ABSTRACT. In this paper we establish an estimate for the distance between adjacent

zeros of the oscillatory solutions of the neutral delay differential equation [x(t) +

P(t)x(t - τ)]' 4- Q(t)x(t - σ) = 0, where P, Q e C([ί0, oo),R+) and τ ,σeR + .

1. Introduction

Consider the first order neutral delay differential equation

[X(t)+P(t)X(t-τ)]' + Q(ί)X(t-σ) = Q (1)

where

P e C([f0, oo), [0, oo)), β e C(ft>, oo), (0, oo)), σ > τ > 0. (2)

When P(t) = 0, Eq.(l) reduces to

x'(t) + Q(t)x(t-σ) = 0. (3)

The oscillation theory of neutral differential equations has been extensively
developed during the past several years. We refer to the monographs by Gyόri
and Ladas [1], Bainov and Mishev [2], Erbe, Kong and Zhang [3], and the
references cited therein. But the results dealing with the distribution of zeros
of the oscillatory solution of neutral differential equation are relatively scarce.
Recently, Erbe et al. [3] and Liang [4] established estimates for the distance
between adjacent zeroes of the solutions of Eq.(3). Zhou and Wang [5] extend
the results in [3]. In this paper, by using a new technique, we establish an
estimate for the distance between adjacent zeroes of the solutions of Eq.(l).
Our results improve the known results in [3-5].

Let w = max{τ, σ}. By a solution of Eq.(l) we mean a function x e
C([tx — m, oo), R), for some tx > fo, such that x(t) + P(t)x(t — τ) is con-
tinuously differentiate on [^,00) and such that Eq.(l) is satisfied for t>tx.
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Assume that (2) holds and let φ e C([fa - /H,*o],R) be a given initial
function. Then one can easily see by the method of steps that Eq.(l) has a
unique solution x e C([fa — m, oo),R) such that x(i) = φ(t) for fa — m < t < fa.

2. Main results

First we define a sequence {α/} by

aι=e", aM =€<»', ι = l ,2, . . . . (4)

It is easily seen that for p > 0.

ah ι = 1,2, . . . .

Observe that when /? > - then
e

lim di — +00,
i— >oo

because otherwise the sequence {#/} would have a finite limit α, such that

a = epa.

Using the known ineqality

ex > ex,

we have

a = epa > epa > a

which is a contradiction.

When -</?<! , we also define a sequence {bj} by

- -
»ι = ϊ

Observe that for - < p < 1
e

j= 1,2,....

In the following, D( c) denotes distance between adjacent zeros of the
solution x(t) of Eq.(l).

Our main result is the following theorem.
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THEOREM 1. Assume that (2) holds. Suppose that
(A) there exist a function H(t) e Cl([tQ, oo), [0, oo)) such that

p(t - σ) * H® and H'w * °;
(B) there exist t\ (t\ > fo) and positive constant p such that

r e<£> ώa,>i /OT,a,.J,+τ_σl+#(s + τ-σ) ^ e

Let x(i) be a solution of Eq.(\] on [tx, oo), where tx>t\. Then x(t) has
arbitrarily large zeros and D(x) <2σ + np(σ — τ) on [tx, oo), where

1 , when ρ>\\

+ j I at > bj}, when l/e<p<l]

and ai,bj are defined by (4) and (5).

PROOF. It suffices to prove that for TO > tx the solution x(t) of Eq.(l) has
zeros on [To, TO + 2σ + np(σ — τ)]. Otherwise, without loss of generality, we
assume that x(t) is positive on [TO, Γ0 -h 2σ + np(σ — τ)].
Let

z(t) = x(t) -h P(ί)x(t - τ) for t > Γ0 + τ. (7)

Then we get

z(ί) > 0 for t e [To + τ, 7b + 2σ + «p(σ - τ)] (8)

and

z'(ή = -Q(t)x(t - σ) < 0 for t e [TQ -f σ, TO -h 2σ + /ι,(σ - τ)]. (9)

From (1) and (7), we have

z'(t) = -Q(t)X(t-σ)

= -Q(t)[z(t -σ)- P(t - σ)x(t - τ - σ)\

= -Q(t)z(t-σ)-P(t-σ)-Ά-^'(t-τ) f o r ί > 7 o + σ + τ. (10)

By condition (A) and (10), we get

z'(0 + H(i)z'(t - τ) + Q(t)z(t - σ) < 0 f o r ί > 7 b + σ + τ. (11)

Set

w(t) = z(t) + H(t)z(t - τ) forl>T0 + 2τ. (12)



364 Yong ZHOU

From (8) and (12), we have

w(ί) > 0 for t e [To + 2τ, Tb + 2σ 4- np(σ - τ)} (13)

and

w'(t) = z'(t) 4- H'(t)z(t - τ) 4- #(*)*'(' - τ) for t > Γ0 4- 2τ. (14)

By (11) and (14), we get

w'(0 < #'(f)z(f - τ) - Q(t)z(t - σ) < 0, for

ί 6 [Γ0 + σ 4- T, TO + 2σ + /ι,(σ - τ)]. (15)

Since z(t) is decreasing for f e [Tb + <7, TO + 2<7 + fy(σ- τ)], by (12) we have

w(0 < (1+ H(f))z(t - τ) for ί 6 [To -f τ -f σ, Γ0 4- 2σ 4- n^(σ - τ)] (16)

and so

ιι/,(σ-τ)]. (17)

Substituting (17) into (15), we have

/

t e [Tb + 2σ, TO + 2σ + np(σ - τ)}. (18)

Next, for convenience, we set

Thus, (18) implies that

w'(t) + q(t)w(t + τ - σ) < 0 for f e [Tb + 2σ, Tb + 2σ -h ^(σ - τ)]. (19)

We consider the following two cases:

Case 1. p> 1.
From (13) and (15), we have

w(t) > 0 for t e [Γ0 -f 2τ, Tb 4- 2σ + (σ - τ)] (20)

and

w'(0 < 0 for ί e [Tb -h σ 4- τ, Γ0 4- 2σ 4- (σ - τ)], (21)

which implies that w(t) is decreasing, and thus

w(t) > W(TQ -h 2σ) for r e [Tb 4- σ 4- τ, Γ0 4- 2σ].
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Integrating both sides of (19) from 7o + 2σ to TO + 2σ-h (σ — τ), we obtain

ί
7o+2σ+(σ-τ)

q(s)w(s + τ - σ)ίfc
7o+2σ

{ r7o+2σ+(σ-τ) Ί

1- q(s)ds\. (22)
Jr0+2σ J

By (22) and condition (B), we have

w(7o + 2σ + (σ - τ)) < w(7b + 2σ)(l - p) < 0,

which contradicts (20).

Case 2. l/e <ρ < 1.

Setting np = i* + j*9 under the condition (B), when ί > tx (where tx > t\)9

we know that

f t j rt-τ+σ i

q(s)ds > p > — and q(s)ds > p > —.
Jt+τ-σ e Jt e

Observe that /(/I) = Jf ^(^)ώ is a continuous function, /(ί) = 0 and

f(t — τ H- σ) > /? and there exists a Λ,, such that J/' q(s)ds = p, where ί < ^ <
/ + (σ - τ). In view of (6), we know that np > 2. When TO + 2σ + (σ - τ) < t

< TQ + 2σ -f (/* + y* - l)(σ - τ), integrating both sides of (19) from t to λ,, we

obtain

fλt

w(t) - w(λt) > q(s)w(s + τ - σ)ds. (23)

Since t < s < t+ (σ - τ), we easily see that TO + 2σ < t - (σ - τ) < s-
(σ — τ) < t. Integrating both side of (19) from s— (σ — τ) to /, we get

Γw(s + τ — σ) — w(f) > q(u)w(u + τ — σ)du.
Js+τ—σ

From (15), it is clear that w(u + τ — σ) is decreasing on TO + 2σ < s — (σ — τ) <

u <t, thus, we have

w(s -f τ — σ) > w(ί) + w(ί -f τ — σ) q(u)du
Js+τ—σ

c rs Γ \
lL+τ-σ J / J

> w(ί) + w(ί H- τ - σ) ίp - Γ ̂ (w)Jw|. (24)
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From (23) and (24), we have

ώ

fλt
w(t) > w(λt) + q(s)w(s + τ — σ)ds

Jt

> w(λt) + q(s) < w(t) + w(t + τ - σ) ί /? - #(w)dw J >ί

ί
A, j j

ώ q(s)q(u)du. (25)
/ Jr

As is well known, the identical relation

fλt PS fλt fλt

ds q(s)q(ύ)du = \ du\ q(s)q(u)ds
J t J t J t J u

holds. On the right hand, exchanging the variable notation of integration s
and w, the above equality becomes

fλt fS fλt fλtf t fS f t f t

ds q(s)q(u)du = \ ds\ q(u)q(s)du,
J t J t J t Js

which implies

fλt fS J fλt fλt

I ds\ q(s)q(u)du = -\ ds\ q(u)q(s)du

Substituting this into (25), we have

w(t) > w(^)+/;w(0+yw(ί + τ-σ). (26)

Noting that

w(λt) > 0 for t e [To + 2σ + (σ - τ), TO + 2σ + (Γ + f - l)(σ - τ)],

(26) implies

- - =
l j

w(t) p2 j (27)

t e [To + 2cr + (σ - τ), 7b + 2<r + (i* -h 7* - l)(σ - τ)].

When Γ0 H- 2σ + (σ - τ) < t < TQ + 2σ + (i* H- 7* - 2)(σ - τ), we easily see that
TO -h 2σ -h (σ - τ) < / < λt < t + (σ - τ) < Γ0 -h 2σ + (Γ + 7* - l)(σ - τ). Thus,
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by (27), we have

w(λt)>±-w(λt-(σ-τ)). (28)
b\

Since w(t) is decreasing on [To + σ + τ, TO + 2σ -f (Γ + j*)(σ - τ)] and TO + 2σ
< A, - (σ - τ) < f < λt < TQ + 2σ + (/* + y* - l)(σ - τ), we get

w(λ,) > ̂  wμ, - (σ - τ)) > — w(ί) > ̂  w(f - (σ - τ)).

Substituting this into (26), we have

1 P2

w(ή > — w(ί - (σ - τ)) + /7w(0 + ̂ -w(ί - (σ - τ)).

Therefore

vφ-(σ-τ)) 2(1-p)

f e [7b + 2σ + (σ - τ), Γ0 + 2σ + (i* + f - 2)(σ - τ)].

Repeating the above procedure, we obtain

W(f-(σ-τ)) ^ 2(1-p) = f e^

p2+^r; (29)
ί e [To + 2cr + (σ - τ), Γ0 4- 2<7 4- i*(σ - τ)].

Setting f = Tb + 2σ 4-1*((7 - τ) in (29), we get

w(
(30)

On the other hand, from (15) we know that w(t) is decreasing on [TO

To + 2(7 4- (i* + j*)(σ - τ)], hence

w(/-(σ-τ)) T 9 r 9 r* *W— > o r ί e [ 0 + σ, o+ σ+(ι +7)(^-τ)J.

When TO 4- 2σ H- (σ - τ) < r < TO H- 2σ H- (i* 4- j*)(σ - τ), dividing (19) by w(t),
and integrating from t — (σ — τ) to /, we get

, ( w(t) \ f
fcU-(α-τ))J+L«)

- (σ - τ))
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By using (31) and (B), we have

7 (w(t - (σ - τ))\ f ' ,.w(s-(σ- τ)) .
ln\— - 7^ - - > q(ή— - T^ — —ds>p.v ;

If follows that

vφ-(σ-τ)) .
— ̂ - ϊ— - LL > ep = aλ for

w(t) (32)

/ 6 [7b + 2σ + (σ - τ), Γ0 -h 2σ + (Γ + 7*)(σ - τ)].

Repeating the above procedure, we get

- - _
, λ χ> e — uz*w(0 (33)

t e [To + 2σ + f (σ - τ), Γ0 + 2σ -f (i* + /)(σ - τ)].

Seting ί = 7o-h2σ-M*(σ-τ) in (33), we have

^ }
w(7b+2σ + ι*(σ-τ))

From (30) and (34), we obtain

which contradicts (6) and completes the proof of the theorem.

REMAKE 1. If we choose H(t) = P(t - σ)Q(i)/Q(t - τ) or H(t) = α e R+,
then conditions (B) becomes

fv _ * \ i
-ds > p > - for t > t\

or

\ ds > p > —
Jt+τ-σ 1 + Oί ^

COROLLARY 1. Assume that

(Ai) P(0 = /? > 0, β(/) = ^ > 0 are constants, σ > τ > 0;

<-) ̂ -'4
Lei c(ί) fee α solution of Eq.(l) on [tx, oo). TTzew x(ί) /zα,y arbitrarily large zeros

and D(x) <2σ + np(σ — τ) on [tx, oo), where np is defined by (6).
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COROLLARY 2. Assume that

(A2) P(t) = 0, Q(t) > 0, σ > 0;
(62) there exist t\ (t\ > ί0) and positive constant p such that

f 1
Q(s)ds>ρ>- fort>t\.

Jί-τ e

Let x(t) is a solution of Eq. (3) on [ix, oo), w/zere ^ > t\. Then x(t) has
arbitrarily large zeros and D(x) < 2σ + np(σ — τ) on [tx, oo), where np is defined
by (6).

REMARK 2. Theorem 1 improve Theorem 1 in [5]. Corollary 2 improve
the Theorem 2.2.1 and 2.2.2 in [3] and all theorems in [4].

EXAMPLE 1. Consider the delay differential equation

where Q(t) = 1. We have p = σ = 0.4 and a\ = 1.491 . . . , a2 = 1.816 . . . , . . . ,
Λ I O = 4.387..., an =5.784..., βι2 = 10.111. . . , . . . ; Z>ι -7.500, £2 = 6.136...,
ό3 - 5.631 . . . , b4 = 5.379 . . . , . . . ; Thus, we find

ai<5<bj, l < ι < 1 0 , 7 > 1 ; ΛH > 6/, 7 > 3; au>bh y > l ;

Hence, by Corollary 2, we have ^ = 12+1 = 13 and /)(*) < 15 x 0.4. This
improves the result in [3, 4]: D(x) < 28 x 0.4.

EXAMPLE 2. Consider the neutral differential equation

[x(ή + x(t - 0.45)] ' -f 2x(ί - 1) = 0

where p = 1, q = 2, and τ = 0.45, σ = 1. We have /? = -̂ — - - j — - = 0.55 and

ΛI = 1.733..., α2 = 2.594..., a3 =4.165..., Λ4 = 9.884... , . . . ; b\ =2.975...,
b2 = 1.703 . . . , Z>3 = 0.907 . . . , . . . ; Thus, we find

a\>bj, 7 > 2 ; a2>bj, j > 2; α3 > fty , y ' > l .

Hence, by Corollary 1, we have fy = 1 + 2 = 3 and D(x) < 2 x l - h 3 x ( l -
0.45) =3.65.
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