The distribution of zeros of solutions of neutral differential equations

Yong Zhou

(Received July 23, 1998)

Abstract

In this paper we establish an estimate for the distance between adjacent zeros of the oscillatory solutions of the neutral delay differential equation $[x(t)+$ $P(t) x(t-\tau)]^{\prime}+Q(t) x(t-\sigma)=0$, where $P, Q \in C\left(\left[t_{0}, \infty\right), \mathbf{R}^{+}\right)$and $\tau, \sigma \in \mathbf{R}^{+}$.

1. Introduction

Consider the first order neutral delay differential equation

$$
\begin{equation*}
[x(t)+P(t) x(t-\tau)]^{\prime}+Q(t) x(t-\sigma)=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \quad Q \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), \quad \sigma>\tau>0 . \tag{2}
\end{equation*}
$$

When $P(t) \equiv 0$, Eq. (1) reduces to

$$
\begin{equation*}
x^{\prime}(t)+Q(t) x(t-\sigma)=0 . \tag{3}
\end{equation*}
$$

The oscillation theory of neutral differential equations has been extensively developed during the past several years. We refer to the monographs by Györi and Ladas [1], Bainov and Mishev [2], Erbe, Kong and Zhang [3], and the references cited therein. But the results dealing with the distribution of zeros of the oscillatory solution of neutral differential equation are relatively scarce. Recently, Erbe et al. [3] and Liang [4] established estimates for the distance between adjacent zeroes of the solutions of Eq.(3). Zhou and Wang [5] extend the results in [3]. In this paper, by using a new technique, we establish an estimate for the distance between adjacent zeroes of the solutions of Eq.(1). Our results improve the known results in [3-5].

Let $m=\max \{\tau, \sigma\}$. By a solution of Eq.(1) we mean a function $x \in$ $C\left(\left[t_{x}-m, \infty\right), \mathbf{R}\right)$, for some $t_{x} \geq t_{0}$, such that $x(t)+P(t) x(t-\tau)$ is continuously differentiable on $\left[t_{x}, \infty\right)$ and such that Eq.(1) is satisfied for $t \geq t_{x}$.

[^0]Assume that (2) holds and let $\phi \in C\left(\left[t_{0}-m, t_{0}\right], \mathbf{R}\right)$ be a given initial function. Then one can easily see by the method of steps that Eq.(1) has a unique solution $x \in C\left(\left[t_{0}-m, \infty\right), \mathbf{R}\right)$ such that $x(t)=\phi(t)$ for $t_{0}-m \leq t \leq t_{0}$.

2. Main results

First we define a sequence $\left\{a_{i}\right\}$ by

$$
\begin{equation*}
a_{1}=e^{\rho}, \quad a_{i+1}=e^{\rho a_{i}}, \quad i=1,2, \ldots \tag{4}
\end{equation*}
$$

It is easily seen that for $\rho>0$.

$$
a_{i+1}>a_{i}, \quad i=1,2, \ldots .
$$

Observe that when $\rho>\frac{1}{e}$ then

$$
\lim _{i \rightarrow \infty} a_{i}=+\infty,
$$

because otherwise the sequence $\left\{a_{i}\right\}$ would have a finite limit a, such that

$$
a=e^{\rho a} .
$$

Using the known ineqality

$$
e^{x} \geq e x
$$

we have

$$
a=e^{\rho a} \geq e \rho a>a
$$

which is a contradiction.
When $\frac{1}{e}<\rho<1$, we also define a sequence $\left\{b_{j}\right\}$ by

$$
\begin{equation*}
b_{1}=\frac{2(1-\rho)}{\rho^{2}}, \quad b_{j+1}=\frac{2(1-\rho)}{\rho^{2}+\frac{2}{b_{j}^{2}}}, \quad j=1,2, \ldots \tag{5}
\end{equation*}
$$

Observe that for $\frac{1}{e}<\rho<1$

$$
b_{j+1}<b_{j}, \quad j=1,2, \ldots
$$

In the following, $D(x)$ denotes distance between adjacent zeros of the solution $x(t)$ of Eq.(1).

Our main result is the following theorem.

Theorem 1. Assume that (2) holds. Suppose that
(A) there exist a function $H(t) \in C^{1}\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ such that

$$
P(t-\sigma) \frac{Q(t)}{Q(t-\tau)} \leq H(t) \quad \text { and } \quad H^{\prime}(t) \leq 0
$$

(B) there exist $t_{1}\left(t_{1} \geq t_{0}\right)$ and positive constant ρ such that

$$
\int_{t+\tau-\sigma}^{t} \frac{Q(s)}{1+H(s+\tau-\sigma)} d s \geq \rho>\frac{1}{e} \quad \text { for } t \geq t_{1}
$$

Let $x(t)$ be a solution of Eq.(1) on $\left[t_{x}, \infty\right)$, where $t_{x} \geq t_{1}$. Then $x(t)$ has arbitrarily large zeros and $D(x)<2 \sigma+n_{\rho}(\sigma-\tau)$ on $\left[t_{x}, \infty\right)$, where

$$
n_{\rho}= \begin{cases}1, & \text { when } \rho \geq 1 \tag{6}\\ \min _{i \geq 1, j \geq 1}\left\{i+j \mid a_{i} \geq b_{j}\right\}, & \text { when } 1 / e<\rho<1\end{cases}
$$

and a_{i}, b_{j} are defined by (4) and (5).
Proof. It suffices to prove that for $T_{0} \geq t_{x}$ the solution $x(t)$ of Eq.(1) has zeros on $\left[T_{0}, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right]$. Otherwise, without loss of generality, we assume that $x(t)$ is positive on $\left[T_{0}, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right]$.
Let

$$
\begin{equation*}
z(t)=x(t)+P(t) x(t-\tau) \quad \text { for } t \geq T_{0}+\tau \tag{7}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
z(t)>0 \quad \text { for } t \in\left[T_{0}+\tau, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime}(t)=-Q(t) x(t-\sigma)<0 \quad \text { for } t \in\left[T_{0}+\sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{9}
\end{equation*}
$$

From (1) and (7), we have

$$
\begin{align*}
z^{\prime}(t) & =-Q(t) x(t-\sigma) \\
& =-Q(t)[z(t-\sigma)-P(t-\sigma) x(t-\tau-\sigma)] \\
& =-Q(t) z(t-\sigma)-P(t-\sigma) \frac{Q(t)}{Q(t-\tau)} z^{\prime}(t-\tau) \quad \text { for } t \geq T_{0}+\sigma+\tau . \tag{10}
\end{align*}
$$

By condition (A) and (10), we get

$$
\begin{equation*}
z^{\prime}(t)+H(t) z^{\prime}(t-\tau)+Q(t) z(t-\sigma) \leq 0 \quad \text { for } t \geq T_{0}+\sigma+\tau \tag{11}
\end{equation*}
$$

Set

$$
\begin{equation*}
w(t)=z(t)+H(t) z(t-\tau) \quad \text { for } t \geq T_{0}+2 \tau . \tag{12}
\end{equation*}
$$

From (8) and (12), we have

$$
\begin{equation*}
w(t)>0 \quad \text { for } t \in\left[T_{0}+2 \tau, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{\prime}(t)=z^{\prime}(t)+H^{\prime}(t) z(t-\tau)+H(t) z^{\prime}(t-\tau) \quad \text { for } t \geq T_{0}+2 \tau \tag{14}
\end{equation*}
$$

By (11) and (14), we get

$$
\begin{align*}
& w^{\prime}(t) \leq H^{\prime}(t) z(t-\tau)-Q(t) z(t-\sigma)<0, \quad \text { for } \\
& t \in\left[T_{0}+\sigma+\tau, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] . \tag{15}
\end{align*}
$$

Since $z(t)$ is decreasing for $t \in\left[T_{0}+\sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right]$, by (12) we have

$$
\begin{equation*}
w(t)<(1+H(t)) z(t-\tau) \quad \text { for } t \in\left[T_{0}+\tau+\sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{16}
\end{equation*}
$$

and so

$$
\begin{equation*}
z(t-\sigma)>\frac{w(t+\tau-\sigma)}{1+H(t+\tau-\sigma)} \quad \text { for } t \in\left[T_{0}+2 \sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{17}
\end{equation*}
$$

Substituting (17) into (15), we have

$$
\begin{align*}
& w^{\prime}(t)+\frac{Q(t)}{1+H(t+\tau-\sigma)} w(t+\tau-\sigma)<H^{\prime}(t) z(t-\tau) \leq 0, \quad \text { for } \\
& t \in\left[T_{0}+2 \sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] \tag{18}
\end{align*}
$$

Next, for convenience, we set

$$
q(t)=\frac{Q(t)}{1+H(t+\tau-\sigma)}
$$

Thus, (18) implies that

$$
\begin{equation*}
w^{\prime}(t)+q(t) w(t+\tau-\sigma)<0 \quad \text { for } t \in\left[T_{0}+2 \sigma, T_{0}+2 \sigma+n_{\rho}(\sigma-\tau)\right] . \tag{19}
\end{equation*}
$$

We consider the following two cases:
Case 1. $\rho \geq 1$.
From (13) and (15), we have

$$
\begin{equation*}
w(t)>0 \quad \text { for } t \in\left[T_{0}+2 \tau, T_{0}+2 \sigma+(\sigma-\tau)\right] \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{\prime}(t)<0 \quad \text { for } t \in\left[T_{0}+\sigma+\tau, T_{0}+2 \sigma+(\sigma-\tau)\right] \tag{21}
\end{equation*}
$$

which implies that $w(t)$ is decreasing, and thus

$$
w(t)>w\left(T_{0}+2 \sigma\right) \quad \text { for } t \in\left[T_{0}+\sigma+\tau, T_{0}+2 \sigma\right] .
$$

Integrating both sides of (19) from $T_{0}+2 \sigma$ to $T_{0}+2 \sigma+(\sigma-\tau)$, we obtain

$$
\begin{align*}
w\left(T_{0}+2 \sigma+(\sigma-\tau)\right) & <w\left(T_{0}+2 \sigma\right)-\int_{T_{0}+2 \sigma}^{T_{0}+2 \sigma+(\sigma-\tau)} q(s) w(s+\tau-\sigma) d s \\
& <w\left(T_{0}+2 \sigma\right)\left\{1-\int_{T_{0}+2 \sigma}^{T_{0}+2 \sigma+(\sigma-\tau)} q(s) d s\right\} \tag{22}
\end{align*}
$$

By (22) and condition (B), we have

$$
w\left(T_{0}+2 \sigma+(\sigma-\tau)\right)<w\left(T_{0}+2 \sigma\right)(1-\rho) \leq 0,
$$

which contradicts (20).
Case 2. $1 / e<\rho<1$.
Setting $n_{\rho}=i^{*}+j^{*}$, under the condition (B), when $t \geq t_{x}$ (where $t_{x} \geq t_{1}$), we know that

$$
\int_{t+\tau-\sigma}^{t} q(s) d s \geq \rho>\frac{1}{e} \quad \text { and } \quad \int_{t}^{t-\tau+\sigma} q(s) d s \geq \rho>\frac{1}{e}
$$

Observe that $f(\lambda)=\int_{t}^{\lambda} q(s) d s$ is a continuous function, $f(t)=0$ and $f(t-\tau+\sigma) \geq \rho$ and there exists a λ_{t} such that $\int_{t}^{\lambda_{t}} q(s) d s=\rho$, where $t<\lambda_{t} \leq$ $t+(\sigma-\tau)$. In view of (6), we know that $n_{\rho} \geq 2$. When $T_{0}+2 \sigma+(\sigma-\tau) \leq t$ $\leq T_{0}+2 \sigma+\left(i^{*}+j^{*}-1\right)(\sigma-\tau)$, integrating both sides of (19) from t to λ_{t}, we obtain

$$
\begin{equation*}
w(t)-w\left(\lambda_{t}\right) \geq \int_{t}^{\lambda_{t}} q(s) w(s+\tau-\sigma) d s \tag{23}
\end{equation*}
$$

Since $t \leq s \leq t+(\sigma-\tau)$, we easily see that $T_{0}+2 \sigma \leq t-(\sigma-\tau) \leq s-$ $(\sigma-\tau) \leq t$. Integrating both side of (19) from $s-(\sigma-\tau)$ to t, we get

$$
w(s+\tau-\sigma)-w(t) \geq \int_{s+\tau-\sigma}^{t} q(u) w(u+\tau-\sigma) d u .
$$

From (15), it is clear that $w(u+\tau-\sigma)$ is decreasing on $T_{0}+2 \sigma \leq s-(\sigma-\tau) \leq$ $u \leq t$, thus, we have

$$
\begin{align*}
w(s+\tau-\sigma) & \geq w(t)+w(t+\tau-\sigma) \int_{s+\tau-\sigma}^{t} q(u) d u \\
& =w(t)+w(t+\tau-\sigma)\left\{\int_{s+\tau-\sigma}^{s} q(u) d u-\int_{t}^{s} q(u) d u\right\} \\
& \geq w(t)+w(t+\tau-\sigma)\left\{\rho-\int_{t}^{s} q(u) d u\right\} \tag{24}
\end{align*}
$$

From (23) and (24), we have

$$
\begin{align*}
w(t) & \geq w\left(\lambda_{t}\right)+\int_{t}^{\lambda_{t}} q(s) w(s+\tau-\sigma) d s \\
& \geq w\left(\lambda_{t}\right)+\int_{t}^{\lambda_{t}} q(s)\left\{w(t)+w(t+\tau-\sigma)\left(\rho-\int_{t}^{s} q(u) d u\right)\right\} d s \\
& =w\left(\lambda_{t}\right)+\rho w(t)+\rho^{2} w(t+\tau-\sigma)-w(t+\tau-\sigma) \int_{t}^{\lambda_{t}} d s \int_{t}^{s} q(s) q(u) d u . \tag{25}
\end{align*}
$$

As is well known, the identical relation

$$
\int_{t}^{\lambda_{t}} d s \int_{t}^{s} q(s) q(u) d u=\int_{t}^{\lambda_{t}} d u \int_{u}^{\lambda_{t}} q(s) q(u) d s
$$

holds. On the right hand, exchanging the variable notation of integration s and u, the above equality becomes

$$
\int_{t}^{\lambda_{t}} d s \int_{t}^{s} q(s) q(u) d u=\int_{t}^{\lambda_{t}} d s \int_{s}^{\lambda_{t}} q(u) q(s) d u
$$

which implies

$$
\begin{aligned}
\int_{t}^{\lambda_{t}} d s \int_{t}^{s} q(s) q(u) d u & =\frac{1}{2} \int_{t}^{\lambda_{t}} d s \int_{t}^{\lambda_{t}} q(u) q(s) d u \\
& =\frac{1}{2}\left(\int_{t}^{\lambda_{t}} q(s) d s\right)^{2}=\frac{\rho^{2}}{2}
\end{aligned}
$$

Substituting this into (25), we have

$$
\begin{equation*}
w(t)>w\left(\lambda_{t}\right)+\rho w(t)+\frac{\rho^{2}}{2} w(t+\tau-\sigma) . \tag{26}
\end{equation*}
$$

Noting that

$$
w\left(\lambda_{t}\right)>0 \quad \text { for } t \in\left[T_{0}+2 \sigma+(\sigma-\tau), T_{0}+2 \sigma+\left(i^{*}+j^{*}-1\right)(\sigma-\tau)\right],
$$

(26) implies

$$
\begin{align*}
& \frac{w(t-(\sigma-\tau))}{w(t)}<\frac{2(1-\rho)}{\rho^{2}}=b_{1} \tag{27}\\
& t \in\left[T_{0}+2 \sigma+(\sigma-\tau), T_{0}+2 \sigma+\left(i^{*}+j^{*}-1\right)(\sigma-\tau)\right] .
\end{align*}
$$

When $T_{0}+2 \sigma+(\sigma-\tau) \leq t \leq T_{0}+2 \sigma+\left(i^{*}+j^{*}-2\right)(\sigma-\tau)$, we easily see that $T_{0}+2 \sigma+(\sigma-\tau) \leq t \leq \lambda_{t} \leq t+(\sigma-\tau) \leq T_{0}+2 \sigma+\left(i^{*}+j^{*}-1\right)(\sigma-\tau)$. Thus,
by (27), we have

$$
\begin{equation*}
w\left(\lambda_{t}\right)>\frac{1}{b_{1}} w\left(\lambda_{t}-(\sigma-\tau)\right) \tag{28}
\end{equation*}
$$

Since $w(t)$ is decreasing on $\left[T_{0}+\sigma+\tau, T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)\right]$ and $T_{0}+2 \sigma$ $\leq \lambda_{t}-(\sigma-\tau)<t<\lambda_{t}<T_{0}+2 \sigma+\left(i^{*}+j^{*}-1\right)(\sigma-\tau)$, we get

$$
w\left(\lambda_{t}\right)>\frac{1}{b_{1}} w\left(\lambda_{t}-(\sigma-\tau)\right)>\frac{1}{b_{1}} w(t)>\frac{1}{b_{1}^{2}} w(t-(\sigma-\tau)) .
$$

Substituting this into (26), we have

$$
w(t)>\frac{1}{b_{1}^{2}} w(t-(\sigma-\tau))+\rho w(t)+\frac{\rho^{2}}{2} w(t-(\sigma-\tau))
$$

Therefore

$$
\begin{aligned}
& \frac{w(t-(\sigma-\tau))}{w(t)}<\frac{2(1-\rho)}{\rho^{2}+\frac{2}{b_{1}^{2}}}=b_{2} \\
& t \in\left[T_{0}+2 \sigma+(\sigma-\tau), T_{0}+2 \sigma+\left(i^{*}+j^{*}-2\right)(\sigma-\tau)\right]
\end{aligned}
$$

Repeating the above procedure, we obtain

$$
\begin{align*}
& \frac{w(t-(\sigma-\tau))}{w(t)}<\frac{2(1-\rho)}{\rho^{2}+\frac{2}{b_{j^{*}-1}^{2}}}=b_{j^{*}} \tag{29}\\
& t \in\left[T_{0}+2 \sigma+(\sigma-\tau), T_{0}+2 \sigma+i^{*}(\sigma-\tau)\right] .
\end{align*}
$$

Setting $t=T_{0}+2 \sigma+i^{*}(\sigma-\tau)$ in (29), we get

$$
\begin{equation*}
\frac{w\left(T_{0}+2 \sigma+\left(i^{*}-1\right)(\sigma-\tau)\right)}{w\left(T_{0}+2 \sigma+i^{*}(\sigma-\tau)\right)}<b_{j^{*}} \tag{30}
\end{equation*}
$$

On the other hand, from (15) we know that $w(t)$ is decreasing on $\left[T_{0}+\sigma+\tau\right.$, $\left.T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)\right]$, hence

$$
\begin{equation*}
\frac{w(t-(\sigma-\tau))}{w(t)}>1 \quad \text { for } t \in\left[T_{0}+2 \sigma, T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)\right] \tag{31}
\end{equation*}
$$

When $T_{0}+2 \sigma+(\sigma-\tau) \leq t \leq T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)$, dividing (19) by $w(t)$, and integrating from $t-(\sigma-\tau)$ to t, we get

$$
\ln \left(\frac{w(t)}{w(t-(\sigma-\tau))}\right)+\int_{t-(\sigma-\tau)}^{t} q(s) \frac{w(s-(\sigma-\tau))}{w(s)} d s<0 .
$$

By using (31) and (B), we have

$$
\ln \left(\frac{w(t-(\sigma-\tau))}{w(t)}\right)>\int_{t-(\sigma-\tau)}^{t} q(s) \frac{w(s-(\sigma-\tau))}{w(s)} d s>\rho .
$$

If follows that

$$
\begin{align*}
& \frac{w(t-(\sigma-\tau))}{w(t)}>e^{\rho}=a_{1} \quad \text { for } \tag{32}\\
& t \in\left[T_{0}+2 \sigma+(\sigma-\tau), T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)\right] .
\end{align*}
$$

Repeating the above procedure, we get

$$
\begin{align*}
& \frac{w(t-(\sigma-\tau))}{w(t)}>e^{\rho a_{i^{*}-1}}=a_{i^{*}} \tag{33}\\
& t \in\left[T_{0}+2 \sigma+i^{*}(\sigma-\tau), T_{0}+2 \sigma+\left(i^{*}+j^{*}\right)(\sigma-\tau)\right]
\end{align*}
$$

Seting $t=T_{0}+2 \sigma+i^{*}(\sigma-\tau)$ in (33), we have

$$
\begin{equation*}
\frac{w\left(T_{0}+2 \sigma+\left(i^{*}-1\right)(\sigma-\tau)\right)}{w\left(T_{0}+2 \sigma+i^{*}(\sigma-\tau)\right)}>a_{i^{*}} \tag{34}
\end{equation*}
$$

From (30) and (34), we obtain

$$
a_{i^{*}}<b_{j^{*}}
$$

which contradicts (6) and completes the proof of the theorem.
Remake 1. If we choose $H(t)=P(t-\sigma) Q(t) / Q(t-\tau)$ or $H(t)=\alpha \in \mathbf{R}^{+}$, then conditions (B) becomes

$$
\int_{t+\tau-\sigma}^{t} \frac{Q(s) Q(s-\tau)}{Q(s-\tau)+P(s-\sigma) Q(s)} d s \geq \rho>\frac{1}{e} \quad \text { for } t \geq t_{1}
$$

or

$$
\int_{t+\tau-\sigma}^{t} \frac{Q(s)}{1+\alpha} d s \geq \rho>\frac{1}{e} \quad \text { for } t \geq t_{1}
$$

Corollary 1. Assume that

($\left.\mathbf{A}_{1}\right) \quad P(t)=p \geq 0, Q(t)=q>0$ are constants, $\sigma>\tau>0$;
($\left.\mathbf{B}_{1}\right) \quad \frac{q(\sigma-\tau)}{1+p}=\rho>\frac{1}{e}$.
Let $x(t)$ be a solution of Eq.(1) on $\left[t_{x}, \infty\right)$. Then $x(t)$ has arbitrarily large zeros and $D(x)<2 \sigma+n_{\rho}(\sigma-\tau)$ on $\left[t_{x}, \infty\right)$, where n_{ρ} is defined by (6).

Corollary 2. Assume that

$\left(\mathrm{A}_{2}\right) \quad P(t) \equiv 0, Q(t) \geq 0, \sigma>0 ;$
$\left(\mathrm{B}_{2}\right)$ there exist $t_{1}\left(t_{1} \geq t_{0}\right)$ and positive constant ρ such that

$$
\int_{t-\tau}^{t} Q(s) d s \geq \rho>\frac{1}{e} \quad \text { for } t \geq t_{1}
$$

Let $x(t)$ is a solution of Eq. (3) on $\left[t_{x}, \infty\right)$, where $t_{x} \geq t_{1}$. Then $x(t)$ has arbitrarily large zeros and $D(x)<2 \sigma+n_{\rho}(\sigma-\tau)$ on $\left[t_{x}, \infty\right)$, where n_{ρ} is defined by (6).

Remark 2. Theorem 1 improve Theorem 1 in [5]. Corollary 2 improve the Theorem 2.2.1 and 2.2.2 in [3] and all theorems in [4].

Example 1. Consider the delay differential equation

$$
x^{\prime}(t)+x(t-0.4)=0
$$

where $Q(t)=1$. We have $\rho=\sigma=0.4$ and $a_{1}=1.491 \ldots, a_{2}=1.816 \ldots, \ldots$, $a_{10}=4.387 \ldots, a_{11}=5.784 \ldots, a_{12}=10.111 \ldots, \ldots ; b_{1}=7.500, b_{2}=6.136 \ldots$, $b_{3}=5.631 \ldots, b_{4}=5.379 \ldots, \ldots$; Thus, we find

$$
a_{i}<5<b_{j}, \quad 1 \leq i \leq 10, \quad j \geq 1 ; \quad a_{11}>b_{j}, \quad j \geq 3 ; \quad a_{12}>b_{j}, \quad j \geq 1
$$

Hence, by Corollary 2, we have $n_{\rho}=12+1=13$ and $D(x)<15 \times 0.4$. This improves the result in [3, 4]: $D(x)<28 \times 0.4$.

Example 2. Consider the neutral differential equation

$$
[x(t)+x(t-0.45)]^{\prime}+2 x(t-1)=0
$$

where $p=1, q=2$, and $\tau=0.45, \sigma=1$. We have $\rho=\frac{2(1-0.45)}{1+1}=0.55$ and $a_{1}=1.733 \ldots, a_{2}=2.594 \ldots, a_{3}=4.165 \ldots, a_{4}=9.884 \ldots, \ldots ; b_{1}=2.975 \ldots$, $b_{2}=1.703 \ldots, b_{3}=0.907 \ldots, \ldots$; Thus, we find

$$
a_{1}>b_{j}, \quad j \geq 2 ; \quad a_{2}>b_{j}, \quad j \geq 2 ; \quad a_{3}>b_{j}, \quad j \geq 1 .
$$

Hence, by Corollary 1, we have $n_{\rho}=1+2=3$ and $D(x)<2 \times 1+3 \times(1-$ $0.45)=3.65$.

References

[1] I. Györi and G. Ladas, Oscillation Theory of Differential Equation with Applications, Clarendon Press, Oxford, 1991.
[2] D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Briston, 1991.
[3] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[4] F. X. Liang, The distribution of zeros of solutions of first-order delay differential equations, J. Math. Anal. Appl. 186 (1994), 383-392.
[5] Yong Zhou and Z. C. Wang, The distribution of zeros of solutions of neutral equations, Appl. Math. Mech. 18 (1997), 1197-1204.

Department of Mathematics
Xiangtan University
Xiangtan, Hunan 411105
People's Republic of China

[^0]: 1991 Mathematics Subject Classification. Primary 34K15, Secondary 34C10.
 Key words and Phrases. Neutral equation, oscillatory solution, zeros.
 Research supported by National Natural Science Foundation of P.R. China

