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ABSTRACT. The purpose of this paper is to prove existence results for a class of

degenerate boundary value problems for second-order elliptic operators in the frame-

work of Sobolev spaces of fractional order. The proofs apply generalized solvability

conditions of Landesman-Lazer type, Leray-Schauder degree arguments and maximum

principles.

1. Introduction and main result

Let Ω c R" be a bounded domain with C°° boundary dΩ. Let

Λ \
GU / x I / \ / x
— (x) + c(x)u(x)
OXJ J

be a second order elliptic differential operator with real C°° functions dy,c on
Ω satisfying the following properties:

(pi) aij(x)=aji(x), ij = l , . . . , n , xeΏ.
(p2) There exists a positive constant CO such that for all xeΩ and all

ζeR"

(p3) c(x) > 0 on Ω.
We consider the following class of degenerate boundary value problems for

semilinear second-order elliptic differential operators

inί2, Bu = a- + bu = Q on dΩ (P)

*partly supported by Deutsche Forschungsgemeinschaft, grant Tr 374/1-2

1991 Mathematics Subject Classification. 35J65, 47H11, 47H15.

Key words and phrases. Degenerate boundary value problems, Landesman-Lazer conditions,

Leray-Schauder degree.



314 Thomas RUNST

in the framework of real-valued Bessel-potential spaces H£(Ω), where B is a
degenerate boundary operator. Here:

(p4) a and b are real-valued C°° functions defined on dΩ.
d n d

(p5) — = Σ aijnj~ϊ~ is ^e conormal derivative corresponding with the

operator A, where n = (n\,. . .,nn) is the unit exterior normal to the boundary
dΩ.

Note that (P) is called to be nondegenerate if and only if either a φ 0
on dΩ or a = 0 and b Φ 0 on δΩ. If a = 1 and b = 0, then we have the
Neumann problem. The case when a = 0 and b = 1 hold coincides with
the Dirichlet problem. Furthermore, if a(x') ^ 0 on dΩ, then we get the
third boundary problem (or Robin problem). We remark that the so-called
Lopatinskij-Shapiro complementary condition does not hold at the points
x' = dΩ with a(x') — 0. By the main theorem for elliptic boundary value
problems, see J. Wloka [17, Hauptsatz 13.1] there exists an equivalence between
the ellipticity of a boundary value problem and the Fredholm property if
one uses the usual boundary value spaces of Besov type Bs

p~p^p(dΩ) for the
boundary operators. To overcome these difficulties one introduces a subspace
of B l

p ~ p p ( d Ω ) which is associated to our degenerate boundary operator B.
For more details, we refer to K. Taira [10] and [7].

We make the following three conditions (H1)-(H3):
(HI) α(jc') > 0 and b(x') > 0 on dΩ.
(H2) ft(jc') > 0 on M = {x1 e dΩ : a(x') = 0}.
(H3) c(x) > 0 in Ω, and c φ 0 in Ω.

Furthermore, g is a smooth real-valued function defined on R which
satisfies a linear growth condition, and λ\ denotes the first eigenvalue of A

together with the homogeneous boundary condition Bu = 0. It is known that
λ\ is positive and simple, see Taira [13]. Let φl e C°°(ί2) be the associated
eigenfunction satisfying φl > 0 in Ω and II^ILooll = 1. Thus we have
keτβ(A — λ\ id) = span{^j}. Note that the boundary condition Bu = 0 on dΩ
implies that

u = 0 on M = {x' E dΩ : a(x'} = 0},

if b > 0 on M. Hence it holds

φ{ = 0 on M, φλ > 0 on Ώ\M and -j^- < 0 on M.

Boundary conditions of this type occur in multidimensional diffusion
processes and Markov processes. We refer to K. Taira [10]. We treat
solutions u of (P) in the Bessel-potential spaces Hp(Ω), s > n/p, 1 < p < oo.
Recall that the spaces Hp(Ω) coincide with the classical Sobolev spaces W*(Ω)
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if s E N. Throughout this paper, both w, / and g are assumed to be real-
valued. Therefore we do not distinguish between a function spaces and its real
part, and we use the same abbreviation.

In S. Ahmad [1, 2], S. B. Robinson and E. M. Landesman [5] and T.
Runst and W. Sickel [8] the Dirichlet case was considered. Further results, by
application of the bifurcation theory, may be found in the papers of A. Szulkin
[9], K. Taira and K. Umezu [14], [8, 6.6] and the references therein.

Now we formulate an abstract solvability condition for problem (P)
similar to that in [5], [8, 6.4.5]. Here λi > λ\ denotes the second eigenvalue.

THEOREM. Assume that the conditions (H1)-(H3) are satisfied. Let s >
max(«//7, l/p+l) and ρ> -1, and let g e C°°(R) such that

0 < lim inf < lim sup < λ2 - λλ. (1)
M-κ» * |/|-»oo t

Let f e Hs

p~
2(Ω) Π ̂ >00 (fl). Then (P) has a solution u e Hs

p(Ω) if the function
f satisfies the following generalized Landesman-Lazer condition (GLL) with
respect to the kernel kerg(^4 — λ\).

(GLL): // {uk}^ cfΓ/(fl) such that \\uk\L«>\\ -> oo and Uk/^L^ ->
φ = ±φ\ in the Cl(Ω) norm, then there exists a number K > 0 such that

sign(<p) f (g(uk(x)) + f(x)}φλ (x)dx > 0 for all k>K.
JΩ

Recall that / e 5&)00(β), p > -1, means that (-Δ + id)'1/ belongs to the
Hόlder-Zygmund spaces %P+2(Ω} = BP^(Ω) (A: Laplacian). We note that
our result with s = 2 implies that (P) has a solution u e W? (Ω) for / e LP(Ω),
if (GLL) and p > n hold.

This theorem is a generalization of the paper S. B. Robinson and
T. Runst [6], see also [8, Subsection 6.4.5, Theorem 1], to the degenerate
case. Furthermore, we can show that further solvability conditions can be
viewed as special cases of this abstract result.

For example, if the limits

exist or are infinite, then the solvability condition of Landesman-Lazer type

g(-co) φλ(x)dx < - φl(x)f(x)dx < g(+co) φλ(x)dx
JΩ JΩ JΩ

implies (GLL).
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2. Preliminaries

Linear theory, mapping properties

Let Ω c R" be a bounded and smooth domain with boundary dΩ. Let
/ eHp~2(Ω). We consider the corresponding linear problem

Au = f inί2, Bu = Q on dΩ (1)

in the framework of Bessel-potential spaces Hp(Ω}. As usual, let for s e R and
1 < p < oo the Bessel-potential space (or Sobolev spaces of fractional order)

#/(R") be given by

jy;(R") = {h E ff"(R») : \\h\Hs

p\\ = f-\\ + \ζ\2)s/2&h\Lp\\ < oo},

where J^ and J^"1 denote the Fourier transform and its inverse, respectively,
on the space of tempered distributions &*'(Rn). We assume that /belongs to a
Bessel-potential space Hp~

2(Ω], the space of restrictions to Ω of functions in

#/-2(R").
Then the following existence and uniqueness result for problem (1) holds

(cf. K. Taira [10, 11, 13] and T. Runst [7]):

PROPOSITION 1. Let (H1)-(H3) be satisfied. Then the map

is an algebraic and topological isomorphism for all s > 1 + I /p. Here

HS^B(O) = {UE Hs

p(Ω) :Bu = Oon dΩ}.

We remark that this result was proved in [7] in the framework of the two
scales of function spaces of Besov-Triebel-Lizorkin type, for definition and
properties we refer to H. Triebel [16] and [8]. Especially, Proposition 1 holds
in the case of Hόlder-Zygmund spaces Vs for s > 1. Note that we have the
continuous embedding

if s — n/p > ε > 0.
Now we consider the mapping properties for superposition (or Nemytskiϊ)

operator

Tg : u(x) -> g(u(x))

which may be found in [8, 5.3.4].
In our later considerations, the next proposition is sufficient. For the sake

of simplicity, we suppose that the (real-valued) function g : R — » R is smooth,
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i.e., 0eC°°(R), but the results hold also under weaker smoothness assump-
tions. As usual an operator is called completely continuous if it is compact
and continuous.

PROPOSITION 2. Let g be a smooth function and s > 0.
(a) Then there exists a positive constant cg such that

\\g(u)\Hp(Ω)\\ < cβ\\u\H'p(Ω)\\(\ + NLooWlΓ*^-0) (2)

holds for all u e Hρ(Ω) Γ\L^(Ω}. Furthermore, Tg is continuous from Hp(Ω)Γ\
Loo(ί2) into Hs

p(Ω}.
(b) Let ε > 0. Then Tg is a completely continuous map from Hρ(Ω) Π

Loo(ί2) Into Hρ~
ε(Ω}.

We remark that part (b) is a consequence of (a), and the fact that the
embedding

is compact.

Maximum principles

The next results are important for our further considerations. We start
with the following assertion which is a consequence of K. Taira and K. Umezu
[15, Lemma 2.1] and [8, 3.5.4]:

PROPOSITION 3. Assume that (H1)-(H3) are satisfied. Let ve
(jε>QBl^ε

ao(Ω). If Av > 0 in Ω,υ>0 but v^O in Ω, then v satisfies the
following conditions:

(a) v = 0 onM= {xf e dΩ : a(x') = 0}.

(b) v > 0 in Ώ\M.

(c) — < 0 on M.
ov

(We use the symbol > in the sense of distributions, see [8, Definition
3.5.4]). The next lemma will be useful in the proof of our theorem.
Therefore we apply arguments which are essentially the same as that due to
S. Ahmad [2, Lemma 2.2] and [6] for the Dirichlet boundary condition. We
recall that for ε > 0 the continuous embedding

holds.
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LEMMA 1. There exists a positive number d,d > λ\, such that if q e C(Ω)
satisfies

λλ<q<d in Ω, (4)

and v e (j£>QB^(Ω) for which

Av = qv in Ω, Bv = 0 on dΩ, (5)

and vφO, then either v(xf) = 0 on M = {xr ε dΩ : a(x') = 0}, v > 0 in Ώ\M

and — < 0 on M, or v(x') = 0 on M , υ < 0 in Ώ\M and — > 0 on M.
dv dv

PROOF. Step 1: First we consider the case, where υe Ue>o^o~ooW *s a

solution of (5) such that v φ 0 and v > 0 in Ω\M. If μ is a positive number

large enough such that

μ + q(x) > 0 for all x e ί2,

then

(Λ+μ)ι?(jc) >0 foΓxeβ.

Now the claim follows from Proposition 3. Similarly, if υ is a solution of

(5) with υ φ 0 and i; < 0 in β\M, then i? < 0 in β\Af and -̂  > 0 on M.
ov

2: If the assertion of Lemma 1 is false, then we can find a sequence

C(5) with

c < qn(x) < λι + - for all x e β (6)

and a corresponding sequence {vn}™=l c yε>05^(β) such that ι?π ^0,

(^Λ)W = ίn(x)ϋπ(x) infl, 5̂  = 0 ondΩ, (7)

and there exists a point xneΩ\M such that ϋπ(xn) = 0. Without loss of
generality we may assume that Ht^C1!! = 1 for all n. Applying the mapping
properties of A, see Proposition 1 or [7], and compactness results of type (3), it
follows that vn —> VQ as n — » oo in Cl(Ω) and Hi^C1!! = 1.

Step 3: We show that there is XQ e Ω such that either XQ ε Ω\M and

VQ(XQ) = 0 or XQ E M and -r-̂  (XQ) = 0. By (7) we have BVQ = 0 on dΩ. If our

claim is false, we have either VQ(X) > 0 for all x e Ω\M and -̂ — < 0 on M, or

fo(*) < 0 for all x e β\Λf and -- > 0 on M. Applying continuity arguments
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this shows that vn would have the same behaviour for n sufficiently large. This
yields a contradiction.

Step 4: Using the boundedness of {qn}™=\ in L2(Ω) and Mazur's theorem
we may assume that qn —» q§ in L2(Ω) (for a subsequence) which satisfies

c < qo(x) < λ\ a.e. in Ω. (8)

Applying similar arguments as in S. Ahmad [2, p. 150] then we can deduce
from (7) that

(Avo)(x) = qo(x)vQ(x) in Ω, BvQ = 0 on dΩ (9)

holds. Let φl be as above. By the properties of VQ, i.e., H^ol^ 1 ! ! = 1, ^o Φ 0,
we may assume that there is x\ e Ω with ι>o(*ι) > 0. (If necessary, one has to
replace VQ by — VQ.) Furthermore, for sufficiently small k > 0 we get φ\(x) —
kvo(x) > 0 for all xeΩ. Let k* be the supremum of all such k. Now we
define a function z by z(x) = φ\(x) — k*vo(x). Then we have z(x) > 0 for all

x e Ω and, by the properties of VQ and φl9 — < 0 on M. The definition of &*

shows that there is either a point x* e Ω\M such that z(x*) = 0, or a point

x* ε M with — (x*) = 0. Finally, for γ > 0 so large that γ -f q$ > 0 a.e. in Ω,

(4 + γ)z = (γ + #o)z + (Λ i - ^0)^ι > 0 in Ω, Bz = 0 on δΩ,

and maximum principle argument, see [8, 3.5.4], [11, Proposition 5.6] show that
z = 0. Hence Step 3 yields a contradiction to the properties of φλ. The proof
is finished. Π

For our further investigations, the following consequences of Lemma 1
suffices.

COROLLARY. Let all assumptions of Lemma 1 be satisfied, and let v e

U>o^%(β) be a solutίon of (5). Then v e kerB(A - λ\ id).

PROOF. By Lemma 1 we may conclude that either υ = 0, v > 0 in Ω\M

and — < 0 on M, or v < 0 in Ω and — > 0 on M. If v = 0, then we are
cv ov

finished. Now we assume that v > 0 on Ω\M. The other case can be
investigated similarly. We choose k > 0 small enough such that v — kφ{ > 0 in
Ω. Now we use the same arguments as in the proof of Step 4 of Lemma 1.
Thus the corollary is proved. Π

Let d* be the supremum of all numbers d > λ\, such that if q e C(Ω)
satisfies (4), then Lemma 1 holds. Now we prove that

d* = λ2. (10)
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For it one applies some known results concerning eigenvalue problems
with indefinite weight functions, which may be found in [8, Proposition 6.4.5].
We refer also to A. Manes and A. M. Micheletti [4].

Let q e C(Ω). Then the eigenvalue problem (Pq) with real parameter μ is
given by

Av = μqv in Ω, Bυ = 0 on dΩ. (Pq)

Now we are in position to prove (10).

LEMMA 2. Let 0 < λ\ < λ2 < ••• denote the eigenvalues, each appearing as
often in the sequence as its multiplicity, of

Au = λu inΩ, Bu = Q on dΩ. (11)

Then d* = λ2 holds.

PROOF. Let u2 e C°° (Ω) be a nontrivial eigenfunction to the second
eigenvalue. We know that φλ is positive everywhere in Ω\. Hence u2 has to
change the sign on Ω. This gives d* < λ2. Now we suppose that d is an
arbitrary number satisfying λ\ < d < λ2, q e C(£2) with λ\ < q < d in Ω, and
that v e (Jε>QBl^ε

QO(Ω) is a nontrivial solution of (9). Since μ = 1 is a positive
eigenvalue of (Pq), [8, Proposition 6.4.5(i)] implies that q is positive on a set of
positive Lebesgue measure and μk(q) = 1 for some k > 1. It holds μ^i) =
λk/λ2 for k > 1. By our assumption q < d < λ2 in Ω, we can conclude from
[8, Proposition 6.4.5(iii)] that 1 = μ2(λ2) < μ2(q) and μλ(q) = 1. Applying [8,
Proposition 6.4.5(ii)] it follows that the corresponding nontrivial eigenfunction v
is strictly positive (negative) on Ω. Now we choose a positive constant γ such
that γ + q > 0 in Ω. We obtain

(A + γ)v= (q + γ)v

in Ω. Thus either v or —v satisfies the hypotheses of Lemma 1. This shows

</* > λ2.

D

3. Proof of the main result, generalizations

Proof of the main result

Applying the results from the last section we can prove our main results.

PROOF OF THEOREM. Step 1: From our assumptions we can conclude the
existence of a positive number K such that λ\ +κ < λ2. Thus λ\ + K is not an
eigenvalue of problem (11) in Section 2. For τ e [0,1] we define a family of
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boundary value problems

Au = (λ\ + τκ)u + (1 - τ)(g(u) + /) in Ω, Bu = 0 on dΩ. (Pτ)

The arguments in [8, Lemma 6.4.2] show that it is sufficient to prove the
existence of a positive number R such that if uτ is a solution of (Pτ), then

KILooll <Λ, (i)
where .R is independent of τ e [0, 1]. Therefore on applies Proposition 1 and
Proposition 2. Afterwards we obtain that there is a constant c > 0 such that

IKI#;il < c, (2)

holds for all solutions uτ of problem (Pτ), when τ e [0, 1]. Recall that the
definition of K implies the invertibility of the linear map T = id — (λ\ + κ)A~λ

in Hp B(Ω). Let c be given by (2). Since λ\ is the principal eigenvalue of A
under homogeneous boundary condition Bu = 0 we can deduce from the index
formula for compact linear operators, see [8, Subsection 6.2.3, Theorem 7],

dLS[id - A(0, - ),*2c,0] = dLS[id - A ( l , - ),52c,0] - -1. (3)

Here h : [0, 1] x H*(Ω) — > H£(Ω) is the completely continuous operator
which assigns to each u e H^(Ω] and f e [0, 1] the unique solution w e H*(Ω) of
the problem

Aw = (λι +τκ)u+(\ -τ)(0(κ)+/) in β, £w = 0 on δfl.

Finally, (3) and the properties of the Leray-Schauder degree imply the solv-
ability of (P).

Step 2: It remains to prove (2). Assume the contrary. Then there exists
a sequence of numbers {τk}^=\ <= [0, 1] and a corresponding sequence of
functions {uk}™=\ c= H*(Ω) such that u^ satisfies (PτJ and ||«A:|^OO|| —> °o as
k — >• oo. Without loss of generality we may suppose that | |wfc|£oo| | > 0 for all
k E N. Now we define the functions H^ by w^ = U]</ \\Uk\Lw\\. Consequently,
we obtain

= 0 on dΩ. (4)

Here we put

(1 - τk)

and
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We may assume that τ^ —> τ e [0,1]. By our assumptions there exists
σ, — 1 < σ < 0, such that / e ££> ^(Ω). Now the linear growth condition on g
and the mapping properties show that right-hand side of (4) is bounded in

**>00(fl), independently of k. Note that ||Λ|^J| < cλ and ||<7*I^,JI ^
c'||#fc|Loo|| < ^2- Thus we obtain the estimate ||.4wfc|l?£)j00|| < M for some
M > 0, independently of k e N. Therefore, compactness arguments show that
Wk —> w as k —> oo in the Cl(Ω) norm by passing to a subsequence if necessary.
Clearly, ||w|Loo|| = 1. Applying the arguments from the proof of [8, Sub-
section in 6.4.5, Theorem 1] we derive that there is a q e C(Ω) which satisfies
λ\ < q < λ2 in Ω, and w satisfies (Pq), i.e., we have

Aw = qw in Ω, Bw — 0 on dΩ.

Since ||w|Loo|| = 1, it follows from Corollary in Section 2 that w = +φ\.
Thus we can apply condition (GLL) to M^/||"Λ:|^OO|| Because of the definition
of Wk and the properties of φl, we may assume that for all k > K > 0 the
function Uk is either strictly positive and lim^-^ooWA: = +°o for all x e Ω, or
strictly negative and lim^oo Uk = — oo for all x e Ω. We suppose that the first
alternative holds, the other case can be handled similarly. Now we compute
the L2 inner product of PTk with φ{ and simplify. Then we get

0 = τkκ f uk(x)φl(x)dx+ (1 - τ*) f (g(uk(x) + f(x)}φι(x)dx. (5)
JΩ JΩ

It follows that

0> f (g(uk(x)+f(x))φl(x)dx (6)
JΩ

which contradicts (GLL).
A careful look at our arguments reveals that an a priori bound has been

established for τ e (0,1) and that is trivial to include the case τ = 0. However,
it is possible that the solution set corresponding to τ = 1 is unbounded, as it is
in the linear case, where g = 0 and \Ωg(x)φl(x)dx = 0. Thus we are left with
the possibilities that there are infinitely many solutions, and the proof is
finished, or that there is an a priori bound on the solutions for all τ e (0,1).
Thus (1) is proved, and by the first step we can finish the proof of our theorem.

Some remarks and examples

REMARK 1. In S. Ahmad [1], the following two point boundary value
problem was considered

-u"(x)-u(x) = g(u(x))+f(X), xe(0,π), κ(0) = u(n) = 0, (7)
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where /eLι(0, π). It was proved that if g satisfies a linear growth condition
of the type

\ g ( t ) \ < c l + c 2 \ t \ ,

where c\ > 0 and 0 < CΊ < 3, then (7) is solvable if the following Landesman-
Lazer condition is satisfied:

(π (π (π

g — sinxdx < — f ( x ) sinxdx < g+ sinxdx, (LL*)
Jo Jo Jo

where the finite or infinite values g- and g+ are defined by

lim sup g(t) = g-, lim inf g(ή = g+.
/-*-oo '-»+«>

Since the boundary value problem

-u"(x] - u(x) = 3u(x) + sin 2.x, x e (0, π), u(0) = u(n) = 0,

has no solution, the growth condition (1) in Section 1 is sharp. Observe that
in this case λi — λ\ = 3, where λ\ and λi are the first two eigenvalues of

-u"(x) = λu(x), x 6 (0, π), w(0) - u(π) = 0,

i.e., the distance between λi and λ\ limits the linear growth of the nonlinear
term g, see also P. Drabek [3].

REMARK 2. The ^-dimensional analogue of this assertion was proved by
Ahmad [2]. Consider the condition of Landesman-Lazer type

g - \ φι(x)dx < - ( f(x)φι(x)dx < g+ f 9l(x)dx, (LL**)
JΩ JΩ JΩ

where g+ are defined as before. Assume that there is a constant ΓQ > 0 such
that

^-<λ2-λl i f | ίo |>r 0 . (8)

It is not hard to check that these conditions which are used in [2] imply
(GLL) in the nondegenerate case. Thus we can extend the Landesman-Lazer
condition (LL**) to degenerate boundary conditions. Note that the lower
bound lim inf g ( t ) / t > 0 is implicit in (LL**), but not in (GLL).

IΉ«

REMARK 3. One can prove that if g+ exist or are infinite, and

0_ < g(t) < g+ for all real ί,

then (LL**) is also necessary for the solvability of (P).
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REMARK 4. Note that the growth condition

lim sup g(ί)/t < λ2 - λ\
M->αo

cannot be improved. This follows from the fact that

Au - λju = f in β, Bu = 0 on dΩ

is solvable if and only if the Fredholm condition $Ωf(x)φ2(χ)dx = 0 f°Γ everY
eigenfunction φ2 e ker#(,4 - /12) holds. Now we choose g(t) = (Λ.2 — λ\)t.

Furthermore, one can give examples for which the set of function /
satisfying (LL**) may be empty. The next result is an analogue to [8,
Subsection 6.4.5, Theorem 2], and can be proved similarly.

COROLLARY. Let s > n/p, / ? > — ! , and let g be the smooth function from
Theorem which satisfies the following additional properties.
(i) The finite limits G_ = lim inf tg(t) and G+ = lim inf tg(t) exist.
.... Λ „ f—>—oo /—>+oo
(n) G± > 0.

Let feH^-2(Ω)ΓiB^(Ω) with fΩf(x)φι(x)dx = 0. Then (P) has at
least one solution u e H*(Ω).

REMARK 5. Let r0 > 0 be a constant. Suppose that g(t)t > 0 for all \t\ >
ΓQ. Then the proof shows that one can replace (ii) by G± > 0.

REMARK 6. Finally, we remark that one can prove analogous results in
the framework of the two scales of function spaces of Besov-Triebel-Lizorkin
type which cover many classical function spaces. We refer to [6] and [8, 6.4],
where it was done in the case of nondegenerate boundary value problems.

References

[ 1 ] Ahmad, S., A resonance problem in which the nonlinearity may grow linearly, Proc.

Amer. Math. Soc. 92 (1984), 381-384.

[ 2 ] Ahmad, S., Nonselfadjoint resonance problems with unbounded perturbations, Nonlinear

Analysis TMA 10 (1986), 147-156.

[ 3 ] Drabek, P., On the resonance problem with nonlinearity which has arbitrary linear growth,

J. Math. Anal. Appl. 127 (1987), 435-442.

[ 4 ] Manes, A., Micheletti, A. M., Un' estensione della teoria variazionale classica degli

autovalori per operator! elliticci del secondo ordine, Boll. Un. Mat. Ital. 7 (1973), 285-301.

[ 5 ] Robinson, S. B., Landesman, E. M., A general approach to solvability conditions for

semilinear elliptic boundary value problems at resonance, Diff. Int. Equations 8 (1995),

1555-1569.

[ 6 ] Robinson, S. B., Runst, T., Solvability conditions for semilinear elliptic boundary value

problems at resonance with bounded and unbounded nonlinear terms, Advances in Diff.

Equations 3 (1998), 595-624.



Existence of solutions 325

[ 7 ] Runst, T., Degenerate boundary value problems in Sobolev spaces of fractional order,

Forschungserg. FSU Jena, Math/Inf/98/03 (1998).

[ 8 ] Runst, T., Sickel, W., Sobolev spaces of fractional order, Nemytskij operators, and

nonlinear partial differential equations, (de Gruyter Series in Nonlinear Analysis and

Applications, 3) Berlin-New York: de Gruyter 1996.

[ 9 ] Szulkin, A., On the number of solutions of some semilinear elliptic boundary value

problems, Nonlinear Analysis TMA 6 (1982), 95-116.

[10] Taira, K., Diffusion processes and partial differential equations. Boston-San Diego-New

York-Berkeley-London-Sydney-Tokyo-Toronto: Academic Press 1988.

[11] Taira, K., Analytic semigroups and semilinear initial boundary value problems. (London

Mathematical Society Lecture Notes Series, 223) London-New York: Cambridge University

Press 1995.

[12] Taira, K., The Yamabe problem and nonlinear boundary value problems, J. Differential

Equations 122 (1995), 316-372.

[13] Taira, K., Bifurcation for nonlinear elliptic boundary value problems I, Collectanea

Mathematica 47 (1996), 207-229.

[14] Taira, K., Umezu, K., Bifurcation for nonlinear elliptic boundary value problems

II, Tokyo J. Math. 19 (1996), 381-396.

[15] Taira, K., Umezu, K., Bifurcation for nonlinear elliptic boundary value problems

III, Advances in Diίf. Equations 1 (1996), 709-727.

[16] Triebel, H., Theory of function spaces. Basel Boston Stuttgart: Birkhauser 1983; and

Leipzig: Akad. Verlagsges. Geest & Portig 1983

[17] Wloka, J., Partielle Differentialgleichungen. Stuttgart: Teubner 1982.

Friedrich-Schiller- Universitάt Jena

Fakultάt fur Mathematik und Informatik
D-07740 Jena

Germany
e-mail: runst@minet.uni-jena.de






