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ABsTRACT. The purpose of this paper is to prove existence results for a class of
degenerate boundary value problems for second-order elliptic operators in the frame-
work of Sobolev spaces of fractional order. The proofs apply generalized solvability
conditions of Landesman-Lazer type, Leray-Schauder degree arguments and maximum
principles.

1. Introduction and main result

Let Q =« R"” be a bounded domain with C* boundary 0Q. Let

Au(x) = — 252— (Z; a;;(x)j—jjj(x)) + e(xu(x)
i= Jj=

be a second order elliptic differential operator with real C* functions a;;,c on
Q satisfying the following properties:

(pl) aj(x) =a(x), i,j=1,...,n, xe Q. B

(p2) There exists a positive constant C; such that for all x e 2 and all
EeR”

n

> a(x)Eg > Golé| .

i,j=1

(p3) ¢(x) =0 on Q.
We consider the following class of degenerate boundary value problems for
semilinear second-order elliptic differential operators

Au—Au=g(u)+ f inQ, Bu:a%+bu=0 on 02 (P)
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in the framework of real-valued Bessel-potential spaces H,(L2), where B is a
degenerate boundary operator. Here:
(p4) a and b are r%al—valued C® functions defined on 0%2.
n
(pS) i > aijnj& is the conormal derivative corresponding with the
i

operator A, whe’f{e ;l: (m,...,ny,) is the unit exterior normal to the boundary
00.

Note that (P) is called to be nondegenerate if and only if either a # 0
on 02 or a=0 and b#0 on 0Q2. If a=1 and b =0, then we have the
Neumann problem. The case when a =0 and b =1 hold coincides with
the Dirichlet problem. Furthermore, if a(x’) #0 on 0Q, then we get the
third boundary problem (or Robin problem). We remark that the so-called
Lopatinskij-Shapiro complementary condition does not hold at the points
x' =0Q with a(x’) =0. By the main theorem for elliptic boundary value
problems, see J. Wloka [17, Hauptsatz 13.1] there exists an equivalence between
the ellipticity of a boundary value problem and the Fredholm property if
one uses the usual boundary value spaces of Besov type B,f;,l/p (0Q) for the
boundary operators. To overcome these difficulties one introduces a subspace
of B,i;,l/” (022) which is associated to our degenerate boundary operator B.
For more details, we refer to K. Taira [10] and [7].

We make the following three conditions (H1)-(H3):

(H1) a(x’) >0 and b(x’) >0 on 0.
(H2) b(x') >0 on M ={x'€dQ:a(x") =0}.
(H3) ¢(x)=01in 2, and ¢# 0 in Q.

Furthermore, g is a smooth real-valued function defined on R which
satisfies a linear growth condition, and 1; denotes the first eigenvalue of A
together with the homogeneous boundary condition Bu = 0. It is known that
Ay is positive and simple, see Taira [13]. Let ¢, € C*(Q) be the associated
eigenfunction satisfying ¢, >0 in Q and |¢||Ls|=1. Thus we have
kerg(4 — 41id) = span{p,;}. Note that the boundary condition Bu =0 on 02
implies that

u=0 onM={x'€dQ:a(x")=0},
if 5> 0 on M. Hence it holds

— 0
=0 onM, ¢ >0 onQ\M and %<O on M.

Boundary conditions of this type occur in multidimensional diffusion
processes and Markov processes. We refer to K. Taira [10]. We treat
solutions u of (P) in the Bessel-potential spaces H,(Q), s >n/p, 1 < p < .

Recall that the spaces H;(£2) coincide with the classical Sobolev spaces W, (£2)
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if se N. Throughout this paper, both u, f and g are assumed to be real-
valued. Therefore we do not distinguish between a function spaces and its real
part, and we use the same abbreviation.

In S. Ahmad [1, 2], S. B. Robinson and E. M. Landesman [5] and T.
Runst and W. Sickel [8] the Dirichlet case was considered. Further results, by
application of the bifurcation theory, may be found in the papers of A. Szulkin
[9], K. Taira and K. Umezu [14], [8, 6.6] and the references therein.

Now we formulate an abstract solvability condition for problem (P)
similar to that in [5], [8, 6.4.5]. Here 1; > A; denotes the second eigenvalue.

THEOREM. Assume that the conditions (H1)—(H3) are satisfied. Let s >
max(n/p,1/p+1) and p > —1, and let g e C*(R) such that

g(?) g(1)

Osliminf—slimsupT<lz—Al. (1)

tl—o0 t |t| >0

Let f € H(Q) N B ().  Then (P) has a solution u e H3(R) if the function
[ satisfies the following generalized Landesman-Lazer condition (GLL) with
respect to the kernel kerg(A — 41).

(GLL): If {w};2y = Hy(Q) such that |jux|Le| — oo and w/|w|Lo| —
¢ =+, in the C'(Q) norm, then there exists a number K >0 such that

sign(p) L(g(uk(x)) + ) ()dx =0 forall k> K.

Recall that f € B, ,(R2), p > —1, means that (—4 + id) ™' / belongs to the
Holder-Zygmund spaces €°12(Q) = B{,’offo (2) (4: Laplacian). We note that
our result with s = 2 implies that (P) has a solution u € WPZ(Q) for fe L,(Q),
if (GLL) and p > » hold.

This theorem is a generalization of the paper S. B. Robinson and
T. Runst [6], see also [8, Subsection 6.4.5, Theorem 1], to the degenerate
case. Furthermore, we can show that further solvability conditions can be
viewed as special cases of this abstract result.

For example, if the limits

lim g(7) = g(+o0)

t—+ 00

exist or are infinite, then the solvability condition of Landesman-Lazer type

4(~o0) ]Q o1 (x)dx < — jg 91(x) £ (x)dx < g(+00) [Q o1 ()dx

implies (GLL).
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2. Preliminaries

Linear theory, mapping properties

Let @ = R” be a bounded and smooth domain with boundary 0Q2. Let
fe Hlf'z(Q). We consider the corresponding linear problem

Au=f inQ, Bu=0 onoQ (1)
in the framework of Bessel-potential spaces H,(£2). As usual, let for s € R and

1 < p < oo the Bessel-potential space (or Sobolev spaces of fractional order)
H)(R") be given by

HR") = {he &' R") : [WH;| = F7'(1 + |&})/*Fh|L,| < 0},

where # and # ! denote the Fourier transform and its inverse, respectively,
on the space of tempered distributions &’(R”). We assume that f belongs to a
Bessel-potential space HPS‘Z(Q), the space of restrictions to £ of functions in
HPS‘Z(R”).

Then the following existence and uniqueness result for problem (1) holds
(cf. K. Taira [10, 11, 13] and T. Runst [7]):

PropoSITION 1. Let (H1)-(H3) be satisfied. Then the map
A: H; 5(2) — Hy7?(Q)
is an algebraic and topological isomorphism for all s> 1+ 1/p. Here
H, p(2) ={ue H)(2): Bu=0o0n 0Q}.

We remark that this result was proved in [7] in the framework of the two
scales of function spaces of Besov-Triebel-Lizorkin type, for definition and
properties we refer to H. Triebel [16] and [8]. Especially, Proposition 1 holds
in the case of Holder-Zygmund spaces ¢° for s > 1. Note that we have the
continuous embedding

H,(Q) = ¢°(Q) = L (2),

if s—n/p>e>0.
Now we consider the mapping properties for superposition (or Némytskii)
operator

Ty : u(x) — g(u(x))
which may be found in [8, 5.3.4].

In our later considerations, the next proposition is sufficient. For the sake
of simplicity, we suppose that the (real-valued) function g : R — R is smooth,
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i.e., ge C*(R), but the results hold also under weaker smoothness assump-
tions. As usual an operator is called completely continuous if it is compact
and continuous.

PROPOSITION 2. Let g be a smooth function and s > 0.
(@) Then there exists a positive constant cg such that

llg () | H ()1 < cgllul Hy (@NI(1 + |l Lo (2)["*1) 2)

holds for all u e H,)(22) N Le,(£2). Furthermore, T, is continuous from H;(L)N
L () into H(R).

(b) Let €>0. Then T, is a completely continuous map from H,(2)N
Ly, (2) into H,75(£2).

We remark that part (b) is a consequence of (a), and the fact that the
embedding

H¥ (@) - H)(@), >0, (3)

is compact.

Maximum principles

The next results are important for our further considerations. We start
with the following assertion which is a consequence of K. Taira and K. Umezu
[15, Lemma 2.1] and [8, 3.5.4]:

PropoSITION 3. Assume that (H1)-(H3) are satisfied Let ve
Upo B2 (R2). If Av=0 in Qv>0 but v#0 in Q, then v satisfies the

>0 700,00
following conditions:

(@v=0 onM={x"e€eiQ:a(x')=0}.
(b)v>0 inQ\M.

ov
(c) 5<0 on M.

(We use the symbol > in the sense of distributions, see [8, Definition
3.54]). The next lemma will be useful in the proof of our theorem.
Therefore we apply arguments which are essentially the same as that due to
S. Ahmad [2, Lemma 2.2] and [6] for the Dirichlet boundary condition. We
recall that for ¢ > 0 the continuous embedding

Bl (2)—C'(®Q)
holds.
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LEMMA 1. There exists a positive number d,d > Ay, such that if q € C(2)
satisfies

M<gqg<d inQ, 4)
and ve |, (B (Q) for which
Av=qv inQ, Bv=0 ondQ, (5)

and v# O, then either v(x') =0 on M = {x' € :a(x') =0},v>0 in Q\M
0

0 _
and6—3<0 on M, or v(x')=0 on M,v<0 in Q\M anda—:>0 on M.

PrROOF. Step 1: First we consider the case, where ve () 8>OB})0+, c(R)is a
solution of (5) such that v# 0 and v >0 in Q\M. If u is a positive number

large enough such that
u#+4g(x)>0  forall xeQ,
then
(A+pwo(x) =0 for x € Q.
Now the claim follows from Proposition 3. Similarly, if v is a solution of
(5) with v#0 and v <0 in Q\M, then v <0 in Q\M and %>0 on M.

Step 2: If the assertion of Lemma 1 is false, then we can find a sequence
{gn}2 = C(R2) with

1
c<gn(x) <A + for all x e Q (6)

and a corresponding sequence {v,} >, < B+t (Q) such that v, # 0,
n=1

£>0"" 00,00

(Avn)(x) = gn(x)vu(x) in 2, Bv, =0 on 09, (7)

and there exists a point x, € Q\M such that v,(x,) =0. Without loss of
generality we may assume that [|v,|C!|| =1 for all n. Applying the mapping
properties of A, see Proposition 1 or [7], and compactness results of type (3), it
follows that v, — vy as n — oo in CY(Q) and |jvp|C!| = 1.

Step 3: We show that there is xo € Q such that either xo € Q\M and

vo(xp) = 0 or xp € M and %(xo) =0. By (7) we have Bvy =0 on 0Q2. If our

. . — 0

claim is false, we have either vg(x) > 0 for all x e Q\M and % <0 on M, or
0 . .
o >0 on M. Applying continuity arguments

vo(x) < O for all xe Q\M and =
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this shows that v, would have the same behaviour for »n sufficiently large. This
yields a contradiction.

Step 4: Using the boundedness of {g,},., in Ly(£2) and Mazur’s theorem
we may assume that g, — go in L,(Q) (for a subsequence) which satisfies

c<qo(x) <A ae. inQ. (8)

Applying similar arguments as in S. Ahmad [2, p. 150] then we can deduce
from (7) that

(Avo)(x) = go(x)vo(x) in Q, Byy=0 on R 9)
holds. Let ¢, be as above. By the properties of v, i.c., ||vo|C!|| =1, vo # 0,
we may assume that there is x; € 2 with vo(x;) > 0. (If necessary, one has to
replace vg by —vy.) Furthermore, for sufficiently small £ > 0 we get ¢,(x) —

kvo(x) > 0 for all xe 2. Let k* be the supremum of all such k. Now we
define a function z by z(x) = ¢;(x) — k*vo(x). Then we have z(x) > 0 for all

. 0 ..
x € Q and, by the properties of vy and ¢, a—i <0 on M. The definition of k*
shows that there is either a point x* € Q\M such that z(x*) =0, or a point

.. 0 . .
x* € M with a—i(x*) = 0. Finally, for y > 0 so large that y+¢qo > 0 a.e. in ©Q,

A+y)z=(H+90)z+ (A —q0)p; =0 inQ, Bz=0 ondQ,

and maximum principle argument, see [8, 3.5.4], [11, Proposition 5.6] show that
z=0. Hence Step 3 yields a contradiction to the properties of ¢,. The proof
is finished. O

For our further investigations, the following consequences of Lemma 1
suffices.

COROLLARY. Let all assumptions of Lemma 1 be satisfied, and let v e
U,so BL5,(2) be a solution of (5). Then v € kerg(A4 — A;id).

PrOOF. By Lemma 1 we may conclude that either v = 0,0 > 0 in Q\M
ov
v
finished. Now we assume that v >0 on Q\M. The other case can be
investigated similarly. We choose k& > 0 small enough such that v — kg, > 0 in
Q. Now we use the same arguments as in the proof of Step 4 of Lemma 1.
Thus the corollary is proved. O

and%<OonM, or v<0in @ and —>0 on M. If v=0, then we are

Let d* be the supremum of all numbers d > A, such that if g e C(Q)
satisfies (4), then Lemma 1 holds. Now we prove that

d* = 4,. (10)
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For it one applies some known results concerning eigenvalue problems
with indefinite weight functions, which may be found in [8, Proposition 6.4.5].
We refer also to A. Manes and A. M. Micheletti [4].

Let g€ C(22). Then the eigenvalue problem (Py) with real parameter u is
given by

Av=pqv in Q, Bv=0 ondQ. (Pg)
Now we are in position to prove (10).

LemMMa 2. Let 0 < A) < A2 < --- denote the eigenvalues, each appearing as
often in the sequence as its multiplicity, of

Au=Au inQ, Bu=0 ondQ. (11)
Then d* = A, holds.

PrOOF. Let u; € C*°(Q) be a nontrivial eigenfunction to the second
eigenvalue. We know that ¢, is positive everywhere in ;. Hence u; has to
change the sign on Q. This gives d* < 1. Now we suppose that d is an
arbitrary number satisfying A1 < d < 4, g C(Q) with 4; <¢<d in Q, and
that ve |, Béjf,o (£2) is a nontrivial solution of (9). Since u =1 is a positive
eigenvalue of (Py), [8, Proposition 6.4.5(i)] implies that g is positive on a set of
positive Lebesgue measure and g (q) = 1 for some k> 1. It holds y(1;) =
Ax/42 for k> 1. By our assumption ¢ < d < 4, in €, we can conclude from
[8, Proposition 6.4.5(iii)] that 1 = u,(42) < i5(q) and y;(q) = 1. Applying [8,
Proposition 6.4.5(ii)] it follows that the corresponding nontrivial eigenfunction v
is strictly positive (negative) on 2. Now we choose a positive constant y such

that y+¢ >0 in Q. We obtain

(A+yo=(q+y)
in Q. Thus either v or —v satisfies the hypotheses of Lemma 1. This shows
d* > 1.
O

3. Proof of the main result, generalizations

Proof of the main result
Applying the results from the last section we can prove our main results.

PrOOF OF THEOREM. Step 1: From our assumptions we can conclude the
existence of a positive number x such that 1; + x < 4. Thus A; + k is not an
eigenvalue of problem (11) in Section 2. For 7€ [0,1] we define a family of
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boundary value problems
Au= (A +m)u+ (1 —7)(gu) + f) in Q, Bu=0 on 09Q. (Py)

The arguments in [8, Lemma 6.4.2] show that it is sufficient to prove the
existence of a positive number R such that if u, is a solution of (P;), then

[l Loo || < R, (1)

where R is independent of 7 € [0,1]. Therefore on applies Proposition 1 and
Proposition 2. Afterwards we obtain that there is a constant ¢ > 0 such that

llue| H, || < e, ()

holds for all solutions u, of problem (P,), when 7 e [0,1]. Recall that the
definition of x implies the invertibility of the linear map T =id — (4; + x)4~!
in Hy p(£2). Let ¢ be given by (2). Since 4 is the principal eigenvalue of 4
under homogeneous boundary condition Bu = 0 we can deduce from the index
formula for compact linear operators, see [8, Subsection 6.2.3, Theorem 7],

dLS[id - h(oa : ))BZ(_"O] = dLS[lcl - h(lv : )aB2c70] =-1 (3)

Here h:[0,1] x H)(Q2) — H;(£2) is the completely continuous operator
which assigns to each u € H,(Q) and ¢ € [0, 1] the unique solution w € H,(£2) of
the problem

Aw= (A +m)u+(1-1)(9(u)+ f) inQ, Bw=0 ondQ.

Finally, (3) and the properties of the Leray-Schauder degree imply the solv-
ability of (P).

Step 2: It remains to prove (2). Assume the contrary. Then there exists
a sequence of numbers {7x};.; =[0,1] and a corresponding sequence of
functions {ux};2, = H;(2) such that u; satisfies (P,) and [jux|Lo| — oo as
k — co. Without loss of generality we may suppose that |jux|L|| > 0 for all
ke N. Now we define the functions wy by wx = uy/|lux|Le||. Consequently,
we obtain

Awg =gk + f in Q, Bw, =0 on 0Q. 4)
Here we put

g(uk)

gk = (A1 + ) wie + (1 — Tk)”—um
0

and

f

fe=( —Tk)m~
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We may assume that 7, — 7€[0,1]. By our assumptions there exists
o,—1 < ¢ <0, such that f € B, (€2). Now the linear growth condition on g
and the mapping properties show that right-hand side of (4) is bounded in
BY, (), independently of k. Note that ||f;|BZ .|l <c1 and [|gk|BE, |l <
¢'||gk|Lo|l < c2. Thus we obtain the estimate |Awg|B% | <M for some
M > 0, independently of k € N. Therefore, compactness arguments show that
wy — w as k — oo in the C!() norm by passing to a subsequence if necessary.
Clearly, ||w|Lo|| =1. Applying the arguments from the proof of [8, Sub-
section in 6.4.5, Theorem 1] we derive that there is a ¢ € C(2) which satisfies
Al £g< 2 in £, and w satisfies (Pg), i.e., we have

Aw=gw in Q, Bw =0 onoQ.

Since ||w|Ly]|| =1, it follows from Corollary in Section 2 that w = +¢,.
Thus we can apply condition (GLL) to ux/|lux|L||. Because of the definition
of wy and the properties of ¢;, we may assume that for all k > K > 0 the
function u; is either strictly positive and lim;_,,ux = +00 for all xe Q, or
strictly negative and limy_,,, ux = —oo for all x e 2. We suppose that the first
alternative holds, the other case can be handled similarly. Now we compute
the L, inner product of P, with ¢, and simplify. Then we get

0=z JQ u(x)g1 (x)dx + (1 — ) L(g(uk (%) + £ (x)) o1 (x)ax. (5)

It follows that

0> jg(g(uk(x) + ()0 (x)dx (6)

which contradicts (GLL).

A careful look at our arguments reveals that an a priori bound has been
established for 7 € (0, 1) and that is trivial to include the case 7 =0. However,
it is possible that the solution set corresponding to 7 = 1 is unbounded, as it is
in the linear case, where g = 0 and [, g(x)@,(x)dx = 0. Thus we are left with
the possibilities that there are infinitely many solutions, and the proof is
finished, or that there is an a priori bound on the solutions for all 7 € (0, 1).
Thus (1) is proved, and by the first step we can finish the proof of our theorem.

Some remarks and examples

RemMArRK 1. In S. Ahmad [1], the following two point boundary value
problem was considered

—u"(x) —u(x) = gu(x) + f(x), xe(0,7), u(0)=u(x)=0, (7)
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where f e L;(0,7). It was proved that if g satisfies a linear growth condition
of the type

lg(2)] < c1 + ealt],

where ¢; > 0 and 0 < ¢; < 3, then (7) is solvable if the following Landesman-
Lazer condition is satisfied:

1 n n
g- J sin xdx < —J f(x)sinxdx < g, J sin xdx, (LL*)
0 0 0
where the finite or infinite values g_ and g, are defined by
lim supg(¢) = g, lim inf g(¢) = g
t——o0 =+

Since the boundary value problem
—u"(x) —u(x) = 3u(x) +sin2x, xe (0,n), u(0) = u(n) =0,
has no solution, the growth condition (1) in Section 1 is sharp. Observe that
in this case 4 — 4, = 3, where A, and 1, are the first two eigenvalues of
—u"(x) = Au(x), xe(0,n), u(0) = u(n) =0,
i.e., the distance between 1, and A; limits the linear growth of the nonlinear

term g, see also P. Drabek [3].

ReMArk 2. The n-dimensional analogue of this assertion was proved by
Ahmad [2]. Consider the condition of Landesman-Lazer type

g—j ¢1(x>dx<—] f(x>¢l<x>dx<g+j o(dx,  (LL™)
Q Q2 Q

where g, are defined as before. Assume that there is a constant rg > 0 such
that

t .
%)—<ﬂ.2—11 if |t0| = ro. (8)

It is not hard to check that these conditions which are used in [2] imply
(GLL) in the nondegenerate case. Thus we can extend the Landesman-Lazer

condition (LL**) to degenerate boundary conditions. Note that the lower
bound lllr{l inf g(¢)/t = 0 is implicit in (LL**), but not in (GLL).
tj— oo

REMARK 3. One can prove that if g4 exist or are infinite, and
g- <g(t) < g+ for all real ¢,
then (LL*) is also necessary for the solvability of (P).
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REMARK 4. Note that the growth condition

lim sup g(¢)/t < A» — A4

|t|— 0
cannot be improved. This follows from the fact that
Au—Jou=f in Q, Bu=0 on o

is solvable if and only if the Fredholm condition [, f(x)@,(x)dx =0 for every
eigenfunction ¢, € kerg(4 — 4;) holds. Now we choose g(¢) = (4, — 4))t.

Furthermore, one can give examples for which the set of function f
satisfying (LL**) may be empty. The next result is an analogue to [8,
Subsection 6.4.5, Theorem 2], and can be proved similarly.

COROLLARY. Let s >n/p, p> —1, and let g be the smooth function from
Theorem which satisfies the following additional properties.
(1) The finite limits G_ = lim inf tg(¢t) and G, = lim inf tg(¢) exist.
.. t——00 t—+00
(i) G+>0.

Let fe Hy?(Q)N B o (2) with [, f(x)p(x)dx =0. Then (P) has at
least one solution u € H;(£).

REMARK 5. Let rp > 0 be a constant. Suppose that g(¢)z > 0 for all |¢| >
ro. Then the proof shows that one can replace (ii) by G4 > 0.

REMARK 6. Finally, we remark that one can prove analogous results in
the framework of the two scales of function spaces of Besov-Triebel-Lizorkin
type which cover many classical function spaces. We refer to [6] and [8, 6.4],
where it was done in the case of nondegenerate boundary value problems.
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