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ABSTRACT. We study the limiting behavior as ε tends to zero of the solution of a

Cauchy problem for an advection-reaction-diffusion equation; this equation arises in

a model for a chemotaxis growth process in biology. We consider the case of an

arbitrary time interval and prove the convergence of the solution of this problem to the

unique viscosity solution of a limit free boundary problem.

1. Introduction

In this paper, we study the limiting behavior as ε tends to zero of
the solution φε of an advection-reaction-diffusion equation arising from a
chemotaxis-growth model proposed by Mimura and Tsujikawa [10]. We
suppose that the density of the chemotactic substance is a known function
v(x,t). More precisely, we consider two Cauchy problems. The first one is
given by

= Aφ* - V.(φεVχ(υ)) + '/(^,εα) in RN x (0, T]

1

where f ( s , £ ) = s ( l — s ) ( s — l / 2 + ci)i and where α is a fixed constant. The
functions φε and υ are respectively the population density and the concentration
of chemotactic substance. Here, χ and v are supposed to be smooth functions.
The population is subjected to three competitive effects: diffusion, growth
induced by the nonlinear term φε(l - φε)(φε - 1/2 + ά) and a tendency of
migrating towards higher gradients of the chemotactic substance induced by the
advection term.

The second problem, that we consider has a slighly different scaling,
namely
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in RN x (0, T]

We study Problem (Pf) in the case that α e [0,0.4]. We remark that if 0 <
^£(.,0)<1, the standard maximum principle implies that the function φε

satisfies

Q<φε < 1 in RN x [0, T]. (1.1)

In the case of a more realistic coupled system describing the chemotaxis
phenomenon, Mimura and Tsujikawa formally derive [10] the free boundary
problem corresponding to taking the limit ε —> 0 in Problem (Pf). As for
Problem (Pf) rigorous results are proved by Bonami, Hilhorst, Logak, and
Mimura [2] in the case of a corresponding Neumann problem on a bounded
domain. In order to state their results in a clear way, we now give hypotheses
which will not be needed further on in this paper. We suppose that ΓQ is a
closed and smooth hypersurface without boundary. As ε tends to zero, φε

converges to a limit function

ί l ί2+

' = \ 0 f l ?

for ίe[0, T] and the equation of motion for the boundary Γ = {\J Γt,

tε [0, T]} where Γt separates ί2+, Ω® is given by

(τ \l Vn = -K + * ~ (^)'(0)α °n Γt, *e[0, T]
(Lι)< on

( /]U = A,
in the case of Problem (Pf) and by

ί=0 = 0

in the case of Problem (P|)- The time Γ is the existence time of a smooth
solution of either Problem (L\) or Problem (Li). Here « denotes the outward

unit normal vector to Γt which points from Ω+ to ί2r°, Vn is the normal velocity
of Γt and K is the mean curvature of Γt. The function c(α) is the velocity of
the one-dimensional travelling wave w(x, t) = q(x — ct, α) of a related equation;
the pair (q(r, α),c(α)), where C(α) = — >/2a, satisfies the problem

f - 1/2 + α) - 0

In this article, we prove convergence properties of the function φε on an
arbitrary time interval [0, T]. In general a classical solution of the limiting free
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Fig. 1. A possible configuration in the limiting free boundary problem

boundary problems does not exist on such a time interval, which leads us to
introduce viscosity solutions of these problems.

In what follows we transform the free boundary problems (Li) and (Li)
by introducing a new unknown function u such that the free boundary Γt is a
level set of u. We suppose that 7"o is a compact set in RN, such that RN\ΓQ =
<9oU/o where OQ and /o are two open disjoint subsets of RN\ΓQ. We define
for each t > 0

Furthermore we set

and

and denote by d(x, t) the signed distance function to 7],

(1.2)

(1.3)

(1.4)

d(x t ) = > Γ ' ) for XEl<
( ' j \-dist(x,Γt) for xεOt

for all (x,f) in RN x [0,Γ].
A standard computation gives

v - _ L _
n IΓ7 ' ^ IΓT I\Vu \Vu\

and K — dίv(n) = div ( —— on Γt.

This leads us to consider Problem (P() in the case of the first scaling,

(Vu.Vχ(v)) - = 0 in RN x (0, T)
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and Problem (P1

2) in the case of the second scaling,

(pi)ί "t + (Vu.Vχ(Ό)) - V2x\Vu\ = 0, in RN x (0, T)
2;U(;c,0)= C/0(x) xeRN.

As it is done by Barles, Soner and Souganidis [1] and by Elliott and Schatzle

[5] we consider viscosity solutions of both the problems (P[) and (P1

2} For
studies about viscosity solutions of partial differential equations we refer to
Giga, Goto, Ishii, and Sato [8] and to Crandall, Ishii and Lions [4], We recall
below the definition of a viscosity solution of a second order parabolic
equation. In the sequel, we denote by LSC(.) and USC(.) the sets of lower
semicontinuous and upper semicontinuous functions, and by K* (K* resp.) the
lower (upper resp.) semicontinuous envelope of K. For instance we recall that

•K*(p, X) = limmfε^{K(q, Y), \p - q\ < e, \X - Y\ < ε}, and ** - -(-K),.

DEFINITION 1.1. Let F e C(RN x (0, T) x R x (RN\{0}) x S(N)), where
S(N) is the set of symmetric N x TV matrices such that

F is elliptic, i.e. F(x,t,s,p,X) <F(x,t,s,p, Y) if X > Y.

A function u : RN x (0, T) — > R is called a viscosity sub solution (resp. super-

solution) of

ut + F(x,t,u,Du,D2u)=Q, (x,ήeRN x (0, T) (1.5)

which we formally write as ut + F(x, t, u, Du, D2u) < 0, (x, t) e RN x (0, T) (resp.

> 0) if u is USC(RN x [0, T]) (resp. LSC(RN x [0, T]) and if

0)) < 0

(resp. ψt(xQ,to)+F*(xQ,ΐo,u(xo,to),Dφ(xo,tQ),D2φ(xo,to)) > 0)

for all φ in C2'l(RN x [0, T]) and all local maxima (resp. local minima) (XQ, fo)
of the function (u-φ).

The function v is a viscosity solution of (1.5) if it is both a sub- and a
super solution.

The paper is organised as follows:
We prove in Section 2 the existence and uniqueness of the viscosity

solution of both the limiting free boundary problems (P{) and (P^)-
We show in Section 3 that as ε tends to zero, the solution φε of Problem

(Pf) tends to the characteristic function of the moving domain It a RN. More
precisely we prove the following result.

THEOREM 1.2. Let φε be the solution of Problem (P\) with φε(χ,Q) =

q( ,0 1 in RN and let u be the viscosity solution of Problem (P{). Then
V ε /
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φε(x,t) —> 0 // (x, t) e O
φε(x,ή-*l if (x,t)εl

as ε tends to 0, where O := { ( x , t) e RNx [0, T],u(x, t) < 0} and I := {(x, t) e
RN x [0, Γ], u(x, t) > 0}. Moreover this convergence is uniform on compact sets

of O and I.

The main steps of the proof are the following: one constructs approx-
imate solutions uδ^a for a class of problems related to Problem (P{), one
introduces an approximate distance to O which is the key ingredient for
constructing viscosity supersolutions of Problem (Pf); one finally proves the
uniform convergence of the sequence uδ^a to the solution u of Problem (P{) on
compact sets of RN x [0, T] and concludes that φε converges uniformly to zero
on compact sets of O as ε [ 0. The proof that φε converges uniformly to one
on compact sets of 7 as ε j. 0 is very similar.

In Section 4 we show how one can adapt the proof given in Section 3 to

prove the convergence of the solution of Problem (P^)- More precisely we
prove the following result.

THEOREM 1.3. Let φε be the solution of Problem (P|) with φε(x,ty =

q( ,0 j in RN and let u be the viscosity solution of Problem (P1

2). Then
\ £ /

φε(x, t) —> 0 if (x, t) E O

φε(x,t)->l if (x ,0e/

as ε tends to 0. Moreover this convergence is uniform on compact sets of O
and I.

Properties of travelling wave solutions q are described in the Appendix.

We remark that q ί , α j = q ί ——, 0 J .

Our methods of proof are closely related to those of Barles, Soner and
Souganidis [1]. However the problems which we consider involve convection
as well as reaction so that many proofs are much more technical. In particular
[1] hardly consider the case of the scaling of Problem P| for which we use
new perturbations of both the travelling wave equation and the limiting free
boundary problem in order to be able to construct super- and subsolutions.

2. Existence and uniqueness of viscosity solutions of the Problems P{ and

In this section we recall a result due to Giga, Goto, Ishii, and Sato [8]
about the existence and the uniqueness of the viscosity solution of a general
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evolution problem. We apply their result to prove the existence and
uniqueness of viscosity solutions of the problems (P[) and (/^). We consider
the evolution problem

ut + F(x, t, u, Du, D2u) = 0 (jc, 0 6 RN x (0, T) (2. 1 )

ιφc,0) = ι«,(jc) xe^, (2.2)

where F satisfies for all (x, t,s,p,X) e RN x (0, T] x R x ^\{0} x S(7\0 the

hypotheses

(HI) F(x,t,s,μp,μX+ ηpp') = μF(x, t,s,p,X) forμeR+, η e R,

(H2) F is elliptic, i.e. F(x,t,s,p,X) <F(x,t,s,p, Y) if X > 7,

as well as the following technical hypotheses

r The mapping (x, t,s,p, X) —> F(x, t,s,p, X) is bounded for

(H3) < bounded ( p , X ) , and continuous for (x,M) e RN x (0, Γ] x R,

(pε 5(0, r)\{0}, and \\X\\ < r for all r > 0,

For every R > p > 0 there exists a modulus σ — GRP such that

(H4) { for all (*,/,*) e RN x (0, Γ] x R,p < \p\, \q\ < R, \X\, \Y\ < R,

\F(x,t,s,P,X}-F(x,t,s,q,Y}\<σRp(\p-q\ + \X- 7|),

(H5)

There exists p0 > 0 and a modulus σ\ such that

for all (x,f,,y) eΛ" x (0, T] x #, and |^|,|^| .< Pΰ

There exists a modulus σi such that( for all (x, t, s) e RN x (0, T]xR,pe RN\{Q}, X e S(N)

( There exists a constant CQ such that

(H7) ^ for all (jc, ί, j, /?, JT) e ^^ x (0, T] x Λ x RN x

t the map s — > F(x, t,s,p,X) -f CQ^ is nondecreasing.

Finally we suppose that for all ( c, ί) in ^^ x (0, Γ]

(H8) F is elliptic, i.e. F(x, t, s, p, X) < F(x, t, s, p, Y) if X > Y,

and

( There exists a function c(q) e C l ( [ Q , oo)) such that c(^) > CQ > 0

and such that for all (x, *,/>) e RN x (0, Γ] x RN,

F*(x,t,p,-I)£
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We recall that F* and F* denote the upper- and lower-semicontinuous

envelopes of F, respectively.

Giga, Goto, Ishii, and Sato [8] show the following result

THEOREM 2.1. Assume that the function F is independent of s, and satisfies

the hypotheses (H1)-(H3), (H6), (H8), and (H9). Let UQ e C(RN) be such that

UQ(X) = a for large values of \x , where a is some fixed real constant. Then

there exists a unique viscosity solution u e C(RN x [0, 71]) of Problem (2.1)-(2.2)

such that u is equal to a for large values of \x\.

We remark that the evolution of the front Γt only depends on F and

on the sets /<{ = {x ε RN , u(x, 0) > 0}, <9< = {x ε RN , u(x, 0) < 0} and ΓJ =

{xeRN,u(x,Q) = Q}.

In both the cases of the problems (P{) and (P1

2] the limiting equations are

of the form (2.1) with respectively

F, (x, ί, />, JΓ) = -/r( JΓ) + L + (PVχ(v)) - V2*\p\ (2.3)
\P\

F2(xΛp) = (p.Vχ(υ))-^*\p\. (2.4)

Giga and Goto [7] check that the hypotheses of Theorem 2.1 are satisfied for

a large class of geometric equations containing the equations in the prob-

lems (P{) and (PI)- However for the sake of completeness, we check below

that the function F\ satisfies the asumptions (H1)-(H3), (H6), (H8), and (H9).

As a trivial consequence F2 will satisfy these hypotheses as well so that we will

be able to apply Theorem 2.1 to both the problems (P{) and (P^)-
We first check that F\ satisfies (HI). We have that

-*κ/>®/o ,
\P\

If we denote by (Pi)i=\ „ the coordinates of p and use that p®p = pp{,

we deduce that tr(p ® p) = Σp\ and ((p ® pp).p} = (Σp\γ . Therefore F\

satisfies (HI).

Let X be an arbitrary symmetric matrix. We denote by (λi(X})i=l N its

eigenvalues and suppose that λ\(X) < ••• < λN(X). In what follows, we
suppose that all the symmetric matrices which we consider are written in

the basis of their eigenvectors. Next we check the hypotheses (H2), and

(H3). Let Z = X - Y. We prove below that Z > 0 implies -tr(Z) +

- - 'γ^ < 0, for all p E RN. (We say that a symmetric matrix Z is positive if
\P\

(Zp.p) > 0 for all p e RN). Since Z is symmetric, we present our computation
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in its basis of eigenvectors,

-ίr(Z) + = - (-Σp^Σλt(Z) + Σλ,(Z)pϊ)
\P\ LPi

( '"7 \

Since Z > 0, its eigenvalues are nonnegative so that -tr(Z) + ^ ^ 0-
\P\

This completes the proof of (H2). Furthermore we have for all X e S(N)

Nλ{(X} < trX < NλN(X), and 0 < ' = _ < λN(X). Since more-
\P\ ΣPi

over p e B(Q, r)\{0}, the quantities Cp.F/(u)) and α|/?| are also bounded, so
that FI satisfies (H3).

Since D2(χ(v)) is bounded we deduce that

^^^
so that (H6) is satisfied.

In order to prove (H8) and (H9) we define G(p,X) = -
,

First we note that G*(p,X) = -Σ^λ^X), and G*(p, X] = -Σ^λ^
so that in particular (Fι)#(x,^0,0) = G*(0,0) = 0 and also (Fι)*(jt,f,0,0) =
G*(0,0) = 0. This implies (F8).

Finally we check that (H9) is satisfied. We have that

x, t,p, -I) = G.(p, -I) + (PVχ(v)) - V2a\p\

= N - l + (p.Vχ(v)) - V2a\p\

and

x,ί,p,7) = G*(/»,7) + (p.Vχ(v)) - V2a\P\

Therefore we have shown that (F\) satisfies all the assumptions of Theorem 2.1,
and trivially (^2) satisfies the same assumptions. Thus we conclude that there
exists a unique viscosity solution of the problems (P[) and (/^). Next we
recall the comparison theorem given in [8], and we check that we can apply this
result to the viscosity sub- and super-solutions of Problems (P[) and (P^), and
to the solutions of Problems (P\ ) and (Pξ) involving variants of the Allen-Cahn
equation.
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THEOREM 2.2. Suppose that F satisfies (H2)-(H8). Let u and v be re-
spectively viscosity sub- and super solutions of equation (2.1) in RN x (0, T].
Assume that u and v satisfy the following assumptions

There exists a positive constant K such that for all (x, t) e RN x (.0, T]

u(x,t}<K(\x\ + l),v(x,t)>-K(\x\ + l);

there exists a modulus mj such that for all (x, y) E RN x RN

u*(x,0)-υ*(y,0)<Zmτ(\x-y\);

there exists a constant K > 0 such that for all (x, y) e RN x RN

Then there exists a modulus m such that

M*(JC, 0 - v*(y, t) < m(\x - y\) on RN x (0, T].

We check below that we can apply this comparison principle to the viscosity
sub- and supersolution of the problems (P[) and (P^)- Since we have already
checked the conditions (H2), (H3), (H6), (H8), we only have to prove that
(H4) and (H5) are satisfied. Moreover we only write the proof for (P[). By
definition, we have that

Fι(x,t,p,X)-Fl(x,t,q,Y) = -tr(X) + tr(Y) +
\p\ \q\

((P - q) Vχ(v)) - <S2a.(\p\ - \q\).

Since the map X — > tr X is Lipschitz continuous, and since (p, X) — > - - 'j-^ is
\P\

continuously differentiable on the compact set

{p € RN,p < \p\ < R] x [X e S(N), \X\ < R},

it follows that

|F,(jc, t,p, X) - F,(x, /, q, Y}\ < K(\X -Y\ + \p- q\).

Next we check (H5):

F,*(*, r, 5, p, X) - F{(x, t, s, 0, 0) = G* Op, X) + (P.Vχ(v)) - V2α|/>|

(P.Vχ(v)) - Vϊα^l
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Similarly we have that

.Vχ(υ)) - \/2α|/>|

Next we check that we can apply this comparison principle to the problems

(P{) and (P'j). We define

x, f, ̂ ε , Vφε, D2φε) = -tr(D2φε) + (Vφe.Vχ(v)) + </>εVχ(v)

and

JT2(x, t, φε, Vφε, D2φe) = -ε tr(D2φe) + (Vφε.Vχ(υ)) + φeVχ(υ)

- %«(! -φε}(φs- 1/2 + α).
o

We have to check that 3tf\ and Jf2 satisfy (H2)-(H8). We only write the

proof for j^ . Since 2tf\ (x, t, s, p, X) - 3tf\ (x, t, s, p, Y) = -tr(X - 7), (F2) is
satisfied.

Moreover the mapping (x, t,s,p, X] — > 3?ι(x, t,s, p,X) is continuous on

RN x(Q,T]xRxRN x S(N), so that the hypotheses (H3)-(H6), (H8) are
trivially satisfied. Next we check (H7).

We have that

Jfi (x, t, s, p, X) - JTi (x, t, r, p, X] = (s - r}Aχ(υ] - 1 (f(s, eα) - /(r, eα))
o

where ί is the maximum of /' on R. If we choose

then the function 5- — * J^\(x^t^s^p^X] + CQS is nondecreasing. Therefore (H7)

is satisfied and we can apply the comparison principle to solutions of the

problems (Pf) and (P|); to that purpose we remark that the unique classical
solutions of the problems (Pf ) and (P|) are also viscosity solutions in the sense
of Definition 1.1.
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3. Proof of the convergence Theorem 1.2

The convergence proof is organized as follows. In Section 3.1 we prove
the convergence of the function φε to zero in the subdomain O. The key idea
of the proof is to construct sub- and super-viscosity solutions of Problem (P{);
to that purpose we make use of travelling wave solutions of a related one-
dimensional parabolic problem and of a modified distance function. In
Section 3.2 we prove the convergence of φε to 1 in the subdomain I.

3.1. Convergence of the solution φε of Problem (Pj) in the set where u < 0

3.1.1. First definitions and preliminary lemmas

First we denote by Λ_(εα,εα) <ho(εa,εa) <Λ+(εα,εα) the three solutions
of the equation f(s,εa,)=s(l—s)(s—l/2 + εoί) = —εa. Note that λ_(εα,0)
= 0, λo(εα,0) = 1/2-εα, and /z+(εα,0) = 1.

We define by (#(r,εα,εα),c(εα,εα)) the travelling wave solution of the
equation ut — urr + /(w, εα) + εa. Then (q, c) satisfies the problem

(TW}{qrr + c^£a^r + V(l ~ q^q ~ l/2 + εα) = ~εa

\ <l(— °o,εα,εfl) = /z_(εα,εfl), </(+oo,εα,εα) = Λ+(εα,εα),

and q is unique up to translation in r by constants. Finally, we set C(α,α) :=
c(εoc.εa) ^ . _

lim fi_o — - F°r more precise miormation about the travelling wave q and
ε

the computation of C(α,<z) we refer to the appendix. Next we introduce a
sequence of problems related to Problem (P(), namely

. C(α, α)|\7M = 0

where ί/o(x) = max(— \,min(l,d(x, 0))), and (5 is a small enough positive
constant. We set

F?(x, t,p,X) = -tr(X) + --+(p.Vχ(υ)) + C(*,a)\p\.
\P\

One can check just as in Section 2 that Ff1 satisfies the asumptions of both the
theorems 2.2 and 2.1. Therefore Problem (Pfα) has a unique viscosity so-
lution uδ>a wich satisfies a comparison principle.

We define the distance function

d*>°(x,t)= inf χ-y\ (3.1)
{y,u*>a(

and give some properties of dδ'a.
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LEMMA 3.1. dδ'a(x,Q) > M*f l(x,0), for all xeRN.

PROOF. If uδ'a(x, 0) < 0 this inequality is obvious. Next we consider the
case that z/'fl(;c,0) > 0. There exists y such that dδ'a(x,Q) = \x - y\ and
uδ'a(y, 0) < 0. Since t/o has Lipschitz constant one, we have

\UQ(x) - UQ(y)\ = |κ*'β(x,0) - ι**β(;F,0)| < \x - y\ = </*'(*, 0),

which in turn implies that «^β(jc,0) - uδ'a(y,Q) <dδ'a(x,Q). Since uδ>a(y,Q)
<0 we deduce that dδ>a(x,Q) >uδ'a(x,Q). This completes the proof of
Lemma 3.1.

Next we state three lemmas, which are proved in [5].

LEMMA 3.2. dδ^a is lower-semicontinuous, that is if (xj,tj) — + (xo,to), then

dδ'a(x0, fo) < lim inf w+oo dδ>a(xj, tj).

LEMMA 3.3. dδ'a is continuous in time from below, that is if (xj.tj) — >

(*o, fe) and tj < ί0, then dδ'a(xQ, ί0) = Iim7 ̂ +oo dδ'a(xj, tj}.

LEMMA 3.4. There exists a positive constant K such that dδ^a satisfies the
inequality

\dδ'a (3.2)

in RN x (0, T) in the sense of viscosity. Moreover dδ'a satisfies

\Vdδ'a\ > 1 (3.3)

-\Vdδ'a\ > -1 (3.4)

-(D2dδ>aVdδ*a.Vdδ'a) >0

in {(x,t),dδ'a(x,t) > 0} in the sense of viscosity.

We remark that in the case where dδ'a is continuous and diίferentiable the
inequalities (3.3) and (3.4) imply that \Vdδ^a\ = 1. Next we prove the fol-
lowing result

LEMMA 3.5. We have that

d^a - Δdδ'a + (Vdδ*a.Vχ(v)) + C(κ,

in {(x,i),dδ^a(x,t) > 0} in the sense of viscosity
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PROOF. Let φε C2'l(RN x (0,Γ)), we assume that dδ>a - φ has a strict

minimum at point (XQ^O) e RN x (0, T). According to Lemma 3.4 we have

that

φt^(Fl

aΓ(x,t,Vφ,D2φ) > -K\Vφ\dδ'a (3.5)

\Vφ\ = 1 (3.6)

-(D2φVφ.Vφ) >0 (3.7)

at the point (*o,fo)- Since Vφ(xQ,to) Φ 0, we have that (Ff)*(xo,t

D2φ(xQ,to)) = Ff(xo,to,Vφ(xQ,to),D2φ(xo,to)). In view of (3.7) we deduce

from (3.5) that at the point (jto,fo)

φt-Jφ+(Vφ.Vχ(Ό)) + C(a,a)\Vφ\ > -K\Vφ\dδ'a.

This complete the proof of lemma 3.5.

Following the proof of Theorem 9.1 in [1], we define

( X , t ) ) , (3.8)

where, as in [1], ηδ is a smooth function satisfying

(Def,

We remark that this definition implies that for all z e R

ηδ(z} = -δ if z<δ/4

ηδ(z)=z-δ if z>ό/2

ηδ(z}<-δ/2 if z<δ/2

<ηδ<C and \η$\ < Cδ~l on R.

(3.9)

LEMMA 3.6. There exists positive constants K and C such that for δ small

enough we have that

and

-\Vwδ'a\ > -C,

a + (Vwδ>a.Vχ(υ)) +

(3.10)

in /Λe ie/iίe of viscosity in RN x (0, T).

Moreover we have that

\Vws'a\ > 1,

-\Vws'a\ > -1,

(3.11)

(3.12)

(3.13)
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and

^a _ Avyδ,a + (^w^a.Vχ(v)) + C(α, 4|Fn/^| + K\Vwδ>a\dδ>a > 0 (3.14)

/« the sense of viscosity in {(x,t),dδ'a(x,t) >δ/2}.

PROOF. Let φ e C2>l(RN x (0, Γ)); we suppose that wδ'a - φ has a

local minimum at the point (XQ, ίo) e ̂  x (0, Γ). Subtracting if necessary a

constant from φ we may assume that φ(x$,tQ) — w^xo^o), and moreover
modifying ^ we may also suppose that (xo»ίo) is a strict minimum. (For

instance we may replace φ by #?+ \x — XQ\4 + |ί - ίo|4 — ̂ (xo,fo), which does
not modify the values of the first and second derivatives of φ at the point

(xo, fo) ) Using the notation 5p(*o, ίo) := {(*, 0> I* ~ χo| + k ~ ίo| < /?} we
deduce that

w*fl(*, 0 > (^(x, ί) for all (x, ή in ^0(x0, ίo)\{(^o, ίo)}, (3.15)

with equality at the point ( Xo^o)
(i) We first consider the case where d^ cojίo) > 0.

Let e > 0; we set ηe(z) = ηδ(z] + ez for z e R and /?e = (ηe)~l Next we
prove the following result, which will be useful to complete the proof of
Lemma 3.6.

LEMMA 3.7. The function ηe(dδ'a) — φ attains its minimum in BPo(xo,tQ)

at a point (xe,te). Moreover for e small enough we have that (xe,te) is in

BpQ(xQ,to), and that lime-+o(xe, te) = (jco,ίo). Furthermore

\ime^ηδ(dδ'a(xe,te}} =ife(rf>'β(*o,ίo)). (3.16)

PROOF. Since ηe(dδ^a) — φ is lower-semicontinuous on the compact set

BPo(xQ,tQ), there exists (xe,te) such that ηe(dδ'a) — φ attains its minimum in

(xe,te) in SPo(xQ,tQ). We now prove that (xe,te) is in BpQ(xQ,tQ), and

moreover we show that for e small enough (xe,te) tends to (*o,ίo) For all
p < PQ we set

inf (ηό(d*>°)-φ).

Since ηe(dδ'a] -φ attains its minimum at (xe, te] in BPo(xQ,to) we have

< (ηs(dδ>a) - φ)(xo, ίo) + ed'^xo, t0) = edδ'a(x0, to). (3.17)

Moreover since (XQ, to) is a strict minimum of ηδ(dδ'a) — φ we have that λp >
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(ηδ(dδ'a] -φ)(xQ,to) = 0. Thus we deduce from (3.17) that if we define

then

(ηό(d*>a) - φ)(xe, te) < (ηe(dδ^

for all 0 < e < e(p). This implies that (xe,te) is not in

Thus we conclude that (xe,te) is in BP(XQ^Q). More precisely we have

shown that for all p < pQί there exists e(p) such that for all ee(Q,e(p)),

(xe,te) EBp(xQ,to), which implies that lime_>o (**>**) = (xQ,to).
Next we prove (3.16). It follows from the definition of (xo,to) that

(η°(d*<a) - φ)(xe, te) > (ls(dό'a) ~ φ)(*>, to) + edδ'a(xe, te) (3.18)

>(ηs(dδ'a)-φ)(xo,t0). (3.19)

Letting e tend to zero in (3.17), and (3.19) we deduce that

lim^faV ") - φ)(xe, te) = (ηδ(dδ<a) - φ)(x0, t0). (3.20)

Using (3.20), and letting e tend to zero in (3.18) we deduce that

lime-+Qedδ>a(xe,te)=Q. In view of (3.20) and the fact that φ(xe,te] tends

to φ(xo,tQ) it follows that ]χme^ηδ(dδ>a(xe,te)) =ηδ(dδ>a(xo,to)). This com-
pletes the proof of Lemma 3.7.

We now return to the proof of Lemma 3.6. From Lemma 3.7 we deduce

that for all (x,i) in a neighborhood Bpo(xo,to) of (XQ^Q) we have thai

(ηe(dδ'a) -φ)(x,i) > (ηe(dδ'a) -φ)(xe,te), which in turn implies that

^'β(x, 0 > Pe[(ηe(dδ^ - φ}(xe, te) H- φ(x, /)] =: ψe(x, t), (3.21)

where we have used the strict monotonicity of the function pe. Note that the

definition of ψe in (3.21) implies that \ l / e ( x e , t e ) = dδ'a(xe,te}. Moreover since

dδ'a(xQ,to) > 0 and since by Lemma 3.3 dδ*a is lower semicontinuous we have

that dδ>a(xe,te} >0 for e small enough. Using (3.21) and Lemma 3.5 we

deduce that at the point (xe, te)

xe,te)\ = l (3.22]

[ ( φ e ) t - Aφe + (Vψe.Vχ(υ)) + C(α, a)\Vψe\ + K\V\l/e\dδ>a](xe, te) > 0. (3.23;

We now show (3.10). We deduce from (3.21) and (3.22) that

\Vφ(xe, te)\ \(p°y(ηe(d*>a(xe, n})\ = 1. (3.24
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Moreover we note that (pe}'(ηe(dδ'a(xe,te}}}.(ηe)'(dδ'a(xe,te}} = 1, which we
substitute in (3.24) to obtain

Finally using that e < (ηe}f <e+C and letting e tend to zero in (3.25), we

obtain

— \Vφ(xQ,t$)\ > —C (3.26)

which proves (3.10). Next we show (3.11). In view of (3.23) and the de-
finition of ψe in (3.21) we obtain

(peY(ηe(dδ>a(xe,te)))[<Pt -Λ<ϊ> + (Vφ.Vχ(υ)) + C(*,a)\Vφ\

+ K\Vφ\d*>a](xe, te] - \Vφ\2(pe)"(ηe(dδ'a(xe, t e ) ) ) > 0. (3.27)

Futhermore differentiating ηe[pe(s)} = s we obtain

'(ηe(dδ'a(xe,te)}}}2, (3.28)

which we substitute in (3.27) to deduce that

J(φ)(xe,te) := (φt-Δφ+(Vφ.Vχ(v}) + C(*,a)\Vφ\)(xe, te)

>-K(\Vφ\dδ<a)(X*,te)

-\Vφ(xe, n\2(ηe)"(φe(X

e, te))[(pe)'(ηe(xe, te))}2. (3.29)

Moreover since KJ/*)"! = \η'l\ < Cδ~l and in view of (3.24) we obtain

J(φ)(xe,te) > -K\Vφ(xe,te)\dδ'a(xe,te] - Cδ~l. (3.30)

Furthermore we deduce from (3.8), and (3.9) that wδ>a > dδ>a - 2δ, which we
substitute in (3.30) to obtain

J(φ}(xe,te] > -K\Vφ(xe,te}\ \wδ'a(xe,te)\-2Kδ\Vφ(xe,te)\ - Cδ~l.

Finally letting e tend to zero in the inequality above we conclude from the

continuity of wδ'a in (xoj'o) (see (3.16)), (3.26), and the definition of J(φ) that
for δ small enough

J(φ)(xo,tQ) > -K\Vφ(xo,tQ)\ wδ'a(xQ,tQ)\ - 2Kδ~l.

This completes the proof of (3.11). Next we show (3.12) and (3.13). We

assume that dδ*a(xQ,tQ) > δ/2, which implies, since dδ'a is lower semicon-

tinuous, that dδ>a(xe,te)) >δ/2 and thus that (ηe)'(dδ>a(xe,te)) = I+e.
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Substituting this in (3.25) and letting e tend to zero yields

o)| = l, (3.31)

which completes the proof of (3.12) and (3.13). We finally show (3.14). We
first note that dδ'a(xe,te}} > δ/2 implies that (ηe}"(dδ>a(xe,te)) = 0, which
we substitute into (3.29) to obtain

J(φ)(xe, te) > ~K\Vφ(xe, te}\dδ'a(xe, te). (3.32)

Using again that dδ'a>δ/2 at the points (XO^G) and (xe,te) we have that
at these two points wδ'a = dδ'a —δ and thus we deduce from the continuity of

wδ>a at the point (x0,fo) and from (3.16) that \ime^dδ'a(xe,te] = d^a(xQ,tQ).
Finally letting e tend to zero in (3.32) we conclude that

which coincides with (3.14).
(ii) We now consider the case where dδ>a(xQ, to) = 0, which in view of (Defv)

implies that wδ>a(xo, to) = -δ. Set Bh(xQ) := {x e RN , \x - XQ\ < h}. It follows
from Lemma 3.3 that for h small enough,

dδ'a(x, t) < δ/4 for all (x, t) e Bh(xQ) x [ί0 - A, ίo],

which in turn implies that wδ'a(x, t) = —δ. Furthermore since the point (XQ, ίo)
is a local minimum of the function wδ'a — φ, we conclude that for h small
enough,

φ(x, t) < φ(xo, to) for all (x, t) e Bh(xQ) x [ί0 - A, tQ].

This implies that

(D2φ(x0, to)p.p) < 0 for all p e RN ,

and

We conclude that inequality (3.10) is satisfied and that

(φt - tr(D2φ) + (Vφ.Vχ(v)) + C(α,fl)|^| + ΛΓ|^| |^'β|)(x0,ίo) > 0,

which gives (3.11). This completes the proof of Lemma 3.6.

3.1.2. A supersolution for Problem (Pf)

We suppose that Λ e [0, 1] and define

φ\x,t] :=q(™ ^^^.εoc.εa] for all (*,f) e Λ* x [0, Γ]. (3.33)
V ε /
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LEMMA 3.8. For all a > 0, ε <<52, and ε small enough φ is a viscosity

super solution of the parabolic equation in Problem (Pf).

PROOF. Let φ e C2'l(RN x (0, T)). We assume that φ8 - φ has a local

minimum at the point (xo»*o) Ξ RN x (0, T). Subtracting, if necessary, a
constant from φ we may assume that there exists a neighborhood N(XQ, to)
of (xo,to) such that

(φε - <p)(x, t) > (φε - φ)(xo, to) = 0 for all (x, t) e N(xQ, to).

Next we prove that

£ίO(*o, to)) = (φt -Aφ + (Vφ.Vχ(v)) 4- φΔχ(v) - -^f(φ, eα)) (XQ, ίo) > 0,
\ ε /

(3.34)

which is the result of Lemma 3.8. In view of the strict monotonicity of the

travelling wave q we have that h-(εvί,εa) < φε(xo,to) = φ(xo,to) < //+(εα,εα).

This implies that for all (x,t) in a neighborhood N\(xo,to) of (XQ^O) we have
that /*_(εα,ε#) < φ(x, t) < h+(εa,εa). Using that qr is strictly positive we

deduce that there exists a function y = y(x,t) e C2'l(N\(xQ,to)) such that for

all (x,t) in N\(xo,to) we have that

(3.35)

(3.36)

with equality at the point (.xo^o)- Substituting (3.35) into (3.34) we deduce
that

= -qrr( — ,εa,εa ] (1 - \Vy\2)(xo,to)
ε \ ε /

+ qr — , eα, εa yt -Ay+ (Vy.Vχ(υ)) + c^ε

o). (3.37)

It follows from computations performed in the appendix (cf. (A. 12) Lemma

A.3) that

= = _^α _ 6^a
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We also recall that by Lemma A.2

M (3.39)

for all r in R. Furthermore since q is strictly increasing we deduce from (3.36)
that

y(x, t) < wδ'a(x, t) for all (*, r) € AT, (xo, to), (3.40)

with equality at the point (JCQ,<O). This implies in view of Lemma 3.6 that

-\Vy(x0,to)\*-C (3.41)

(y, -Δy + (Vy.Vχ(v)) + C(a,a)\Vy\)(x0, tϋ)

> -Kδ~l - K\Vy\ \wδ'a\(x0, to) (3.42)

and moreover when dδ'a(xo, to) > δ/2 the function y satisfies

\Vy(xϋ,tϋ)\ = l (3.43)

(y, - Δy+(Vy.Vχ(v)) + C(<x,a)\Vy\)(x0,t0) > -K\Vy\d*'a(x0,t0). (3.44)

(i) We first consider the case where dδ>"(x0, t0) > δ/2. Substituting (3.43)
and (3.44) in (3.37) we obtain

(φ(x0, 16)) > ίr 1 , βα, «, - C(α, a) - Kd*>°(x0, tϋ)

y \
— ,εα,ε<2 }Aχ(v)(xQ,t$). (3.45)
6 )

Moreover using that by (Def^Xxo, *0) = w* f l(*o,fo) = dδ'a(xQ,t0) -δ, and
(3.39) we obtain,

εa,εa)

\ ε

fy \ , ,+ a + εq[ —,εα,ε# ]Λχ(v)(XQ,to). (3.46)
\ ε /

Using again (3.39), and the inequality se~s < 1, we deduce that
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Thus we deduce from (3.46) that

χ,fi<z)
-K^ε-Cε,

K2

where C is an upper bound for the term q(.,ε&,εά)Aχ(v). Finally we deduα

from (3.38) that for all 0 < a < 1 there exist OQ and εo such that for al

δ ε (0,<J0) and ε e (0, ε0) we have that εL\(φ(x^ f0)) > a/2 > 0.
(ii) Next we consider the case dδ'a(xQ,t$) <δ/2. We substitute (3.42) intc
(3.37) to obtain

[
/ \

£^-c(β>β;

Moreover by (Def^) we have that y(xo, to) = w^'f l(xo, ίo)

from (3.9) that y(xQ, ί0) > ^'e(^o, ίo) - 25 > -25; thus

We deduce from (3.48) and (3.39) that

(lίrrl + lirl)

which we substitute in (3.47); also using (3.41) we obtain

(l + C 2 ) -

We choose ό > Λ/ε in (3.49) to deduce that

-(1 + C2)
c(εα, εα)

(3.47;

, and it follow;

(3.48

(3.49

(3.50
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Moreover since C(α,α) is bounded, we deduce from (3.38) that the quantity

εα, εa)
C|C(α,α)

is bounded. Finally we conclude that for 0 < a < 1, and ε small enough we

have εLl(φ)(xo,tQ) > a/2 > 0. This completes the proof of the Lemma 3.8.

3.1.3. Uniform convergence of uδ>a

In this section we prove the following result.

THEOREM 3.9. uδ*a (resp. u~δ'~a) tends to u uniformly on compact sets
of RN x [0, T] as (δ,ά) tends to (0,0).

We first state three preliminary lemmas.

LEMMA 3.10. Let (^0,^0) be fixed positive real numbers. Then for all
0 < δ < SQ and 0 < a < a$ we have that

iΓ*'-^*, 0 < «*'"(*, 0 < u^°°(x, 0, (3.51)

for all (x,t)eRN x [0,Γ].

PROOF. We note that for all 0 < a < aQ (cf. Lemma A.3), we have that

C(α, a) = -V2a - βV2a > C(α, ΛO),

which implies that uδ'a is a subsolution of the equation

Moreover for all δ <SQ we have uδ'a(x,Q) = UQ(x) + 2δ < u^^(x,0), for all

x E RN. Thus we deduce from the comparison principle that

w* f l(x, 0 < uδ^(x, 0, for all (x, t] e RN x [0, Γ]. (3.52)

In a similar way we can prove that u~00'~a° < uδ^a, which completes the proof
of Lemma 3.10.

As it is done by Crandall, Ishii and Lions [4], we define

w+(;c, t) = lim {v_^o} sup {uδ^a(z, θ), for all 0 < a < v, 0 < δ < v, and for all

(z, 0) e RN x (0, Γ) such that x-z\<v, and |ί - θ\ < v},

and

u~(x, t} = lim{v^o} inf {uδ'a(z, θ), for all 0 < a < v,0 < δ < v, and for all

(z, θ)eRN x (0, Γ) such that |x - z < v, and t - θ\ < v}.

Next we give some properties of u+ and u~.
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LEMMA 3.11. ir(x,0) = w(*,0) - w+(x,0), for all xεRN.

PROOF. Let (<5o5#o) be fixed positive real numbers, v e (0,min(<Jo,0o))>
and let (δ,ά) be such that 0 < δ < v and 0 < a < v; also let xe RN. We
deduce from Lemma 3.10 that

tt*'fl(z,0) <zA"°(z,60, (3.53)

for all (z, 0) such that |x — z| < v and |0| < v. Since w^0'α° is continuous,
we deduce by letting v tend to zero in (3.53) that limv_^0 supw j'α(z, 0) <
^°'fl°(x,0). Thus

w+(x, 0) < iΛ^jt, 0) = l/o(jc) + 2J0, for all x e Λ*.

Similarly one can check that u~(x, 0) > C/o(x) — 25o Thus we have shown
that for all SQ > 0 we have

UQ(x) -2δQ< ιr(x, 0) < w+(x, 0) < t/o W + 2^o,

for all x in RN. Letting OQ tend to zero we finally obtain that

ιΓ(x,0) - w+(jc,0) - ϋb(jc), for all x e tf^.

This completes the proof of Lemma 3.11.

LEMMA 3.12. u+ (resp. u~ ) is a viscosity subsolution (resp. super solution)

PROOF. First we note that w+ is upper-semicontinuous. Indeed let μ
positive be arbitrary and let (.x/, tj) converge to a point (x, t) as j tends to
+ 00. It follows from the definition of u+ that there exists VQ positive such that
for all v < VQ

u+(x,t}- sup
a,δ,\z-x\,\t-θ\<v

< μ. (3.54)

Q Q
For j large enough we have that \Xj -x\<— and \tj - t\ <— so that

sup uδ'a(z, θ] < sup uδ'a(z, θ) < u+(x, ή + μ,
a,δ, \z-Xjl \θ-ΐj\<v/2 a,δ, \z-x\, \θ-t\ <v0

which together with the definition of u+ implies that for j large enough

u+(xj, tj) < u+(x, t)+μ for all μ > 0.

Letting j tend to +00 and μ tend to 0 we deduce that u+ is upper-
semicontinuous.
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Let φ 6 C2'l(RN x (0, Γ)); we suppose that u+ — φ has a local maximum at

the point (XQ, /o) e /^ x (0, T). Modifying φ if necessary, we may assume that

(xo, fo) is a strict maximum of u+ — φ in a neighborhood BP(XQ, /o). Next we
prove the following result, which will be useful in the proof of Lemma 3.12.

LEMMA 3.13. There exists a subsequence (<5*/,fl/) such that (<$/,#/) —* 0 0,57
teπflfc to -foo α«d swc/z ί/zύtf the function uδj'aj — φ attains its maximum in

Bpo(xQ,to) at a point (x^,^.,/1^.,^.). Moreover for (<J/,α/) STra*// enough we have

that (xδj,aj^δj,aj) £ BPo(xQ,tQ) and lim^^^.^^OjO)^^,^/?^/,^/) = (-^05^0)-

PROOF. Since the function (uδ'a — φ) is continuous, it admits a maximum

at a point (xj,α,fe, f l) in ^(XQ^O). Moreover by the definition of u+ there

exists a subsequence (δj,aj,Xj,tj) such that (δj,aj,Xj,tj) tends to (0,0,xo,ίo) as 7
tends to +00 and

Since the sequence (x^.,^.,^,^.) is in the compact set ^0(xo,ίo) there exists a

subsequence (xδk(j),ak(j)ιtδk(j),ak(j))> which converges to some point (x, 7) in
BPQ(XQ^Q) as 7 tends to +00. Furthermore we note that for all (x, t) e

BPo(xo,to) and all sequences (δn,an,xn,tn) converging to (0,0, x, t) we have

>a"(xn,tn} < u+(x,ή. (3.56)
n— >oo

Applying (3.56) at the point (x, t) we deduce that

(u+ - φ)(x, t) > limsup(^)'^) - φ}(xsk(^ak(j},tόk(j^ak(j}). (3.57)
y-> GO

Using the fact that the function tA(-/)'α*o) — ?̂ attains its maximum at the point

^ ^ we obtain

Substituting this into (3.57) and using (3.55) we deduce that

(u+ - φ)(x, 7) > li

Since (XQ, to) is a strict maximum of (u+ - φ) we conclude that (jc, 7) = (XQ, to).

We have thus shown that the sequence (x^,^,^.,^) tends to (XQ^Q) and

consequently that for 7 large enough the point (x^.,^^.) is in BpQ(xo,to).

This completes the proof of Lemma 3.13.

We now return to the proof of Lemma 3.12. Using Lemma 3.13 and the

fact that uδJ^aJ is a solution of the equation ut + F?(x, t, Vu,D2u) = 0, we
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deduce that

By definition of (/y7)* this can be rewritten as

-2V2aj\Vφ(xδj,aj,tδj,aj)\<Q. (3.58)

Next we let q and δj tend to zero in (3.58) and we use the lower

semicontinuity of (F\\ and the fact that lim^.^^^^o)^,^,^^,) = (*o,fo) to
deduce that

Therefore u+ is a viscosity subsolution of the equation ut + F\ (x, t, Vu, D2u)
= 0. Similarly we can prove that u~ is a viscosity supersolution of this same
equation, which completes the proof of Lemma 3.12.

LEMMA 3.14. υr(x, t) = u(x, t) = u+(x, t), for all (x, t) e RN x (0, T].

PROOF. We deduce from the lemmas 3.11, 3.12 and from the comparison
principle that

u+(x, t) < u(x, t) < u~(x, 0, for all x e RN x [0, T].

Moreover, since by definition u+ >u~, we conclude that u~(x,t) = u(x,t) =
u+(x,t) for all x e RN x [0, T]. This completes the proof of Lemma 3.14.

We are now in a position to prove Theorem 3.10. We give a proof by
contradiction. Suppose that uδ>a does not tend to u uniformly on a compact
set K of RN x [0, T] as (δ,a) tends to (0,0). This implies that there exists a
real number m > 0, and a subsequence (dj,dj) such that (dj,aj)—*Q as
7 —> +00, and a sequence (xj,tj) eK such that

u(xh tj) - uδ^(xj, tj) < -m or u(xj, tj) - uδ^aJ(xj, tj) >m. (3.59)

Since K is compact we may suppose that the sequence (*/, tj) converges to a
point (x, t) e K. Moreover using (3.56) we have that

l imsupu δ j ' a j (x j , tj) < u+(x, t). (3.60)

Similarly we have that for all (x,t) eBPo(xo,tQ) and all sequences (<J y-,a/,x 7,i/)
converging to (0,0, x, t)

liminf w^(.x7, tj) > u~(x, t). (3.61)
/->00
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Letting j tend to +00 in (3.59) and using (3.60) and (3.61) yields

u(x, t) -u+(x, t) < -m or u(x, t) - u~ (x, t) > m. (3.62)

Since u+ = u = u~ and m is strictly positive we deduce that (3.62) is
impossible and we finally conclude that uδ'a tends to u uniformly on compact
sets of RN x [0, T] as (δ,ά) tends to (0,0). This completes the proof of
Theorem 3.9. One can prove in a similar way that u~δ^~a tends to u uniformly
on compact sets of RN x [0, T] as (δ,ά) tends to (0,0).

We are now able to prove the first part of Theorem 1.2.

3.1.4. Proof of Theorem 1.2

We first prove the following Lemma.

LEMMA 3.15. Let K be a compact set of O. Then

limsup sup φε(x, t) < 0.
ε->0 (x,t}eK

PROOF. Let K c O be a compact set. We first note that the uniform

convergence of uδ^a to u on the compact set K implies that there exists (5o,αo)
such that for all δ < SQ and a < <ZQ we have

n*'e(jc, 0 < 0 for all ( c, t) e K. (3.63)

Moreover in view of Lemma 3.1, and the fact that ηδ is nondecreasing,
we deduce that ηδ(dδ'a(x,Q)) >ηδ(UQ(x) + 2δ) for all xeRN. It follows
from (3.9) that H^'β(jt,0) > UQ(X). Since qr > 0 and qa > 0 (see Lemma A.2)
we deduce that

ι > q ^ < for

Since by (A. 10) the function s — > ^r(r, 5-, 0) is constant we conclude that

for all xe RN. Moreover since by Lemma 3.8 ^ε is a viscosity supersolution
of the parabolic equation in Problem (Pf) for all a e [0, 1] and ε < δ2, we
deduce by the comparison principle Theorem 2.2 that

> ψε(x,ή for all (x,t) ε RN x (0,Γ). (3.64)

Furthermore using the inequality (3.63) we deduce that for all δ < δo and
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a < do dδ^a(x, t) = 0 for all (x,t)εK, which implies by the definition of
ηδ(Deΐη] that wδ'a(x, t) = —δ. Applying (3.64) for δ < SQ and a < ao we obtain

q(--,εa,εa\ >φε(x,i), for all (x,t)eK. (3.65)
\ £ /

Integrating the inequality qr(r,εoc,εa) < K\e~Kl\r\ (cf (A.ll)), on ( — oo, — ) we
V £J

obtain

q(--,εa,εa) < ^-e~
K^^ + A_(eα,«ι). (3.66)

\ ε / A2

Substituting (3.66) into (3.65) and using that δ2 > ε we obtain

sup φε(x,t) <
(x,t)eK K2

where we let ε tend to zero to deduce that

limsup sup ψε(x, t) < λ_(0,0) = 0. (3.67)
ε^O (x,ήeK

This completes the proof of Lemma 3.15.

Inequality (3.67) together with the fact that φε > 0 implies the uniform
convergence of φε to zero as ε tends to zero in all compact sets of O. This
concludes the first part of the Theorem 1.2.

3.2. Convergence of the solution φε of Problem (P\) in the set where u > 0

In a similar way we prove that φε tends to 1 uniformly on compact sets
of I. Since the proof is based on the same method we only give the results.
First we consider the sequence (P\δ'~a) of problems related to Problem (P{),
namely

, f_β ut - Au+ + (Vu.Vχ(v}} + C(α, -a)\Vu\ = 0

(jc,0) = Uo(x)-'2δ.

We remark that Problem (P^ό'~a) has a unique viscosity solution, which we
denote by u~δ^~a. We define the distance function

£/-*-fl(jc,0 = - inf \x-y\ (3.68)
{y,u^-a(y,t}>Q}

As in Section 3.1 we obtain the results
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LEMMA 3.16. d~δ^a(x,ϋ) < ιτδ*-a(x,U), for all xeRN.

LEMMA 3.17. We have that

in {(x,i),d <5' α(x, t) < 0} in the sense of viscosity.

Following the proof of Section 3.1 we define

where ήδ : R —> R is a a smooth function such that

(ήδ(z)=δ if z>-δ/4

(3.69)

if z>-δ/2

0 < < C and | r | < C '̂1 on

One can show that

LEMMA 3.18. There exist positive constants K and C such that for δ small

enough

-\Vw -δ,-a

and

4-

< -Kδ~l -

in the sense of viscosity in RN x (0, T).
Moreover we have that

\Vw~δ'~a

-\V\v~δ'-a

and

-a <0

in the sense of viscosity in {(x,i),d~δ^~a(x,i) < —δ/2}.

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)
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As in Section 3.1.2 we define

/w~δ,-a(χ f \ \

ψε(x, t) := q( ^-Aeα, -εa for all (x, t) e R" x [0, Γ]. (3.75)
V £ /

We deduce from Lemma 3.18 that

LEMMA 3.19. For all a>0 and ε<δ2, φε is a viscosity subsolution of
the parabolic equation in Problem (P\).

Using Lemma 3.19 and the fact that u~δ'~a tends to u uniformly on
compact sets of RN x [0, T], we obtain a result analogous to that of Lemma
3.15 namely

LEMMA 3.20. Let K be a compact subset of I. Then

liminf inf φε(x,i) > 1.
ε^O (x,t)eK~

Lemma 3.20 together with the fact that φε < 1 implies the uniform convergence
of φε to 1 on all compact sets of I as ε tends to zero. This completes the proof
of Theorem 1.2.

4. Convergence proof in the case of Problem (PJ)

In what follows we prove that the solution φε of Problem (P|) converges
to 0 in the set where u < 0. The proof that φε converges to 1 in the set where
u > 0 is similar.

4.1. First definitions and preliminary lemmas

As in Section 4, we denote by h+(a,εl/4ά) < ho((x,εl/4a) < h-(a,εl/4a)
the three solutions of the equation f(s, α) := s(\ - s)(s — 1/2 + α) = — ε1//4α,
and remark that λ+(α,0) = 0, A0(a,0) = 1/2 - α,λ_(α,0) = 1.

We define by (q,c) = (^(α,ε1/4α),c(α,β1/4β)) the solution of the problem

Γ qπ + c(*,εV*ά)qr + q(\ - q)(q - 1/2 + α) = -ε^a
{ )\q(-oo,^ε^4a}=h+(^εl^a),q(^ao,^ε^4a)=h-(^ε^4a).

Finally, as previously we introduce a sequence of approximating problems

of (^2), namely

(pδ,bJ u* + (Vu.Vχ(υ)) 4- c(α 4 i, 0)\Vu\ = 0
1 2 )\u(x,0} = U0(x)+2δ

where c(α 4 6,0) = ->/2(α + 6). We define
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We have checked in Section 2 that FΊ satisfies the hypotheses of the theorems

2.1 and 2.2; this immediately implies that the function Fb satisfies them as

well. Thus there exists a unique viscosity solution uδ^b of Problem (P^) and

we can apply the comparison principle to the equation ut + Fb(x, t, Du) = 0.

Next we define a distance function, namely

dδ'b(x,t)= inf \x-y\. (4.1)

As in Section 3.1 we give some properties of dδ'b

LEMMA 4.1. dδ>b(x,0) > u*>b(x,Q), for all xεRN.

The proof of Lemma 4.1 is similar to that of Lemma 3.1. As in Section

3.1 we state for the function dδ>b some results, which are proved in [5].

LEMMA 4.2. (i) dδ>b is lower semicontίnuous, that is if (xj,tj) —> (XQ,ΪQ),

then dδ>b(xQ,to) < liminf;^+00 dδ>b(xj, tj).

(ii) dδ'b is continuous in time from below, that is if (x/, //) — > (XQ^Q) and

tj < /o, then dδ>b(xo, ί0) = Iim7w+00 d
δ>b(xj, tj).

LEMMA 4.3. There exists a positive constant K such that dδ'b satisfies the

inequality

\dδ>b (4.2)

in RN x (0, J") in the sense of viscosity. Moreover we have that

-\Vdδ>b\ > -1

in RN x (0, T) in the sense of viscosity.

Next we prove a lower bound on —Δdδ^b which is useful in this scaling.

LEMMA 4.4. We have that

in {(x,i),dδ>b(x,t) > 0} in the sense of viscosity.

PROOF. Let φ e C2'l(RN x (0, Γ)); we assume that dδ>b - φ has a strict

minimum at the point (xo^o) e RN x (0, Γ). Since uδ^b is continuous, there

exists y e RN such that

J^(xo, /o) = \xo - y\, and uδ>b(y, ί0) < 0. (4.3)
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Moreover in view of (4.1) and (4.3) we have that

\x-y\- φ(x, fo) > </**(*, ί0) - φ(x, /o), for all x e R
N

Using the fact that (*o, fo) is a minimum of the function dδ*b — φ we deduce
that

\x-y\- φ(x, to) > dδ>b(xo, /o) - p(*o, *o) = |*o - y\ - <P(XΌ, to)

for all x e RN , which implies that XQ is a minimum of the function \x — y\ —
φ(x,to). Thus we deduce that

N - 1
- y\) = -

~ y\ '

N - 1
Finally using (4.3) we conclude that —Aφ(xQ,t$) > —-^j-( - r This com-

d ' (XQ, to)
pletes the proof of Lemma 4.4.

As in Section 3.1.1 we define

wδ>b(x,t)=ηδ(dδ>b(x,t)) (4.4)

where ηδ is the function defined by (Def^) in Section 3.1.1.

LEMMA 4.5. There exists positive constants K and C such that for δ small
enough we have that

-\Vwδ'b\ > -C, (4.5)

and

b,Q)\Vwό>b\ > -Kδ'1 - K\Vwδ>b\\w*'b\ (4.6)

in the sense of viscosity in RN x (0, T).

Moreover we have that

\Vwδ>b > 1, (4.7)

-\Vwδ'b\ > -1, (4.8)

and

wδ'b + (Vwδ>bVχ(v)) -f c(α + b, Q)\Vwδ'b\ + K\Vwδ>b\dδ'b > 0 (4.9)

in the sense of viscosity in {(x,t),dδ'b(x,t) >δ/2}.

PROOF. One can prove that Lemma 4.5 follows from Lemma 4.3 in the
same way as we have deduced the result of Lemma 3.6 from that of Lemma
3.5. Next we deduce from Lemma 4.4 the following result.
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LEMMA 4.6. There exists a positive constant L such that

-Δ^b > ~ (4.10)
o

in the sense of viscosity in {(x,i),dδ'b(x,i) >δ/4}.
Moreover we have that

-Δwδ'b>Q (4.11)

in the sense of viscosity in {(x,i),dδ'b(x,i) <δ/4}.

PROOF. Let φ e C2^(RN x (0, Γ)); we suppose that wδ>b - φ has a strict
minimum at the point (.xo^o) This implies that there exists ρQ > 0 such that

(w** - φ)(x, t) > (wδ'b - φ)(xQ, ί0) for all (x, t] e Bpo(xQ, f0). (4.12)

Next we prove (4.11); we suppose that dδ'b(xQ,to) < 5/4. First we note that

rf**(jc,fo)-</**(*<>, *o) < \X-XQ\ for all x e RN. (4.13)

Let p be such that 0 < p < mm(pQ,δ/4 — dδ'b(xo, f0)) Using (4.13) we deduce
that dδ'b(x,to) <δ/4 for all x e BP(XQ). This implies by (4.4) and (Def^) that
wδ'b(x,tQ) = -δ. Substituting this in (4.12) gives

φ(x, to) < φ(xo, ίo)j f°r all x e BP(XQ).

Therefore XQ is a maximum of the function ^(.,ίo) m BP(XQ). Thus
-Aφ(xQ,to) > 0, which implies (4.11).

Next we prove (4.10); we suppose that dδ>b(xQ,to) > δ/4. As in the
proof of Lemma 3.6 we introduce the functions ηe(z) =ηδ(z) + ez for z e R
and ρe = (ηe)~l. Applying Lemma 3.7 we have that ηe(dδ'b) — φ attains its
minimum in BPO(XQ, to) at a point (xe,te) and that moreover \ime->o(xe, te) =
(xo,to). By the definition of (xe,te) we have that

(ηe(dό<b) - φ)(x, t) > (ηe(ds'b) - φ)(X*, t*), for all (x, t) e *ft(jc0, ίo),

which in turn implies that

dδ*(x, t} > pe((ηe(dδ'b) - φ)(xe, te] + φ(x, t)} =: ψe(x, t). (4.14)

Note that the definition of ψe in (4.14) implies that ψe(xe, te) = dδ^b(xe, te).
Moreover since dδ'b(xQ,t$) > 0 and since by Lemma 3.2 dδ^b is lower-
semicontinuous we have that dδ'b(xe,te] > 0 for e small enough. Using (4.14)
and Lemma 4.3 we deduce that

xe,f)\ = l (4.15)
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In view of Lemma 4.4 ψe also satisfies the inequality

-Λψe(xe,te) > - J^"1 ,. (4.16)
ψ \ ι J - dδ'b(xe,te) v ;

Following the computation of the proof of Lemma 3.6 we have also using

(3.28)

,te) + \Vφ(xe,te)\2

(^'V, O))]2}. (4.17)

Moreover we deduce from (4.14), and (4.15) that

Substituting (4.18) in (4.17) we obtain

Jψe(xe,te) = (pe)'{ηe(dδ>b(xe,te})[Δφ(X

e,te) - (ηe)"(ψe(xe, t*)}}.

Substituting this in (4.16) and using the fact that (pe)'(ηe(z)) = — — r— > 0
(ηe) (z)

we obtain that

,t'} > ~(rie)\ηe(dδ>\xe,te)))δ

N

b~e - (η<)"(ψe(X

e,t*)). (4.19)

Moreover since 0 < (ηe)' <C + e and \(ηe)"\ < Cδ~l we deduce that

Letting e tend to zero in the inequality above we deduce from the lower
semicontinuity of dδ'b that

Finally since in this case dδ'b(xQ,t$) > δ/4 we conclude that —

— —. This completes the proof of Lemma 4.6.

4.2. A supersolution for Problem (P|)

We suppose that a e [0, 1] and define

, ή := q^^^B1'* a\ for all ( c, t) e RN x [0, T] (4.20)
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LEMMA 4.7. For all a > 0, ε1/3 > δ > ε1/2, b > ε1/8 and ε small enough,
φ is a viscosity super solution of the parabolic equation in Problem (P|)

PROOF. Let φ e C2'l(RN x (0, T)). We assume that φε - φ has a local

minimum at the point ( CQ, fo) £ ̂  x (0? T) and that (^£ — φ)(x$, fa) = 0. We
proceed in a similar way as in the proof of Lemma 3.8. There exist a
neighborhood N\ (XQ, fa) and a function y = y(x, t) e C2'! (7Vι(x0, ίo)) such
that

for all (x,ί) 67Vι(x0,ίo). (4.21)

Moreover the function y satisfies

y(x, ή < wδ'b(x, t) for all (x, ή e M (x0, /o), (4.22)

with equality at the point (xo,io). This implies in view of Lemma 4.5 that

-\Vy(x0,t0)\>-C (4.23)

(y, + (Vy VxW + c(* + b,0)\Vy\)(xo, to)

> -Kδ~l - K\Vy\ IW^KXQ, fo) (4.24)

and in the case that dδ'b(xo,to) >δ/2 that the function y satisfies

l (4.25)

0,ίo) > -K\Vy\ds>b(Xϋ,t0). (4.26)

Moreover in view of Lemma 4.6 we also have

-Δy(xϋ,tϋ)>-~ (4.27)
d

in the case that d δ ' b ( x o , f a ) > 5/4, and

-ΛX*o,ίo)>0 (4.28)

in the case that dδιb(xQ,fa) < 5/4. Next we prove that

fa)) =φt-εAφ+ (Vφ Vχ(v)) + ̂ χ(ι ) - -/(<?, α) (x0, *o) > 0,

(4-29)

which is the result of Lemma 4.7. Substituting (4.21) into (4.29) we deduce
that
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,a,ε^4a(l - \Vy\2)(x0,t0)

qr(-, α, £1/4α) [y, -εAy + (Vy.Vχ(v)) + c(α,
V £ /

o). (4-30)

(i) We first consider the case that d0'b(xQ,tQ) >δ/2. Substituting (4.25)
and (4.26) in (4.30) we obtain

(α5 fiι/4fl) _ c(α + b^ 0)

^,ε]/4aΛχ(υ)(Xo,t0). (4.31)

Next we use that by (Def^Xxo^o) = wδ'b(xo, to) = dδ'b(xQ, t0) - δ,
inequality (3.39) and the fact that se~s < 1 to obtain

^ ί0)| +5)

(4.32)

In view of (4.27) we deduce that

(4.33)

for all <52 > ε. Furthermore we have that

c(α, ε1/4α) - c(α -f 6, 0) = 2b + ε1/4« (α, 0) + 6>(ε1/2).

Since -r-(α.O) = — = -̂  — TTT (cf. Lemma A.3) we have that for all 0 < a < I
da v/2 α2 - 1/4

and * > ε1/8

/ λ p J /8 \
c(α, ε1/4^ - c(α + 6, 0) > ε1/8 (-^-f-^ +V2- Cε^J , (4.34)

which is positive for ε small enough. Substituting (4.32), (4.33), (4.34) in (4.31)
we obtain
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- Cε + εl/4a,
2

where C is an upper bound for the term q(.,εu,,εά)Δχ(υ). Finally we deduce
that for all 0 < a < 1, ε1/3 > δ > ε1/2 and b > ε1/8 and ε small enough, the

inequality L|(p(*o,fo)) > 0.
(ii) Next we consider the case that dδ'b(xo,to) <δ/2. We deduce from

(4.24) and (4.30) that

>^(^^α,ε^\ £ / \ £ /

[-εJj + c(Λ,εV4a) - C(Λ + b,0)\Vy(xo, ί0)| - Kδ~l

"( i ')(xo,ίo). (4.35)

Moreover by (Def^) we have that y(xo,to) = wδ'b(xQ,to) < — δ/2, and also
use (3.9) to deduce that y(xo,tQ) > dδ'b(xo,t0) -2δ> -2δ; thus

o)|<2^. (4.36)

We deduce from (4.36) and (3.39) that

( I f t r l + I?r|

which we substitute in (4.35); also using (4.23) and (4.27) or (4.28) we obtain

+ C2 + Z + Kδ~l

(α, Λ) - c(α + ft, 0)\Vy(xo, /0) l - Ce + β1/4« (4.37)

Moreover using (4.23) and the fact that c(α,5) is bounded we obtain

that |c(α,ε1/4fl) - c(α + ft,0)|FX^o,ίo)| I < C2. Substituting this in (4.37) and
choosing δ > y^ we deduce that

> - [(1 + C2) 4- Ljε + C2 + 2AΓC -h ^4=
I v ε

(4.38)

Thus we have that L|(^)(XO, /o) > 0. This completes the proof of Lemma 4.7.
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4.3. Uniform convergence of uδ>b

In this section we prove the following result.

THEOREM 4.8. uδ'b, (resp. u~δ'~b ) tends to u uniformly on compact sets of

RN x [0,Γ] as (δ,b) tends to (0,0).

The proof of Theorem 4.8 is very similar to that of Theorem 3.9. As in

Section 3.1.3 we first give three preliminary lemmas.

LEMMA 4.9. Let (<J0, &o) be fixed. Then for all 0 < δ < SQ and 0 < b < bQ

we have that

u~δ^~b°(x, t) < uδ^b(x, t} < zA6°0, 0, (4.39)

for all (x,t)εRN x [0,Γ].

PROOF. For all 0 < b < bo we deduce from Lemma A. 1 and (A.4) that

c(u + 6, 0) = -\/2(α + b)> c(a + £>o, 0),

which implies that uδ'b is a subsolution of the equation

Moreover for all δ < SQ we have uδ'b(x,Q) = UQ(x) + 2δ < uδ°'b°(x,Q), for

all x e RN. As previously we deduce from the comparison principle that

uδ>b(x, t) < uδ°'b°(x, 0, for all (x, t) e RN x [0, T]. (4.40)

In a similar way we can prove that u~δ°'~b° < uδ^b, which together with (4.40)

completes the proof of Lemma 4.9.

As we have done in Section 3.1.3 we define

w+(x, t) = lim{v_o} sup {uδ'b(z, θ), for all 0 < b < v, 0 < δ < v, and for all

(z, θ) e RN x (0, Γ) such that \x - z\ < v, and \t-θ\< v},

and

u~(x, t} = lim{v^o} inf {uδj)(z, θ), for all 0 < b < v, 0 < δ < v, and for all

(z, θ) E RN x (0, T) such that |jc - z| < v, and \t - θ\ < v}.

The proof of Theorem 4.8 then exactly follows as that of Theorem 3.9. We

are now able to prove the first part of Theorem 1.3.

4.4. Proof of Theorem 1.3

We prove below the following result.
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LEMMA 4.10. For all K compact set of O, we have that

limsup sup φε(x, t) < 0.

PROOF. Let K c O be a compact set. We first note that the uniform
convergence of uδ'b to u on the compact set K implies that there exists

(<5o,Z?o) such that for all δ < SQ and b < b$ we have

«*'*(*, 0 < 0 for all (jc, ί) e £. (4.41)

Moreover in view of Lemma 3.1 and the fact that ηδ is nondecreasing,

we deduce that ηδ(dδ>b(x,Q)) > ηδ(UΌ(x) + 2δ) for all x e RN, which together
with (3.9) implies that wδ>b(x,Q) > UQ(X). Since by Lemma A.2 #r > 0 and
qa > 0 for α 6 [0,0.4], we deduce that

for all xe^.

Since by (A. 10) the function s^q(r,s, 0) is constant we conclude that

for all c e 7^^. Moreover choosing (5 such that ε1/3 > <5 > ε1/2 we have by
Lemma 4.7 that φε is a viscosity supersolution of the parabolic equation in

Problem (P|) for all a > 0, Z> > ε1/8, and ε small enough. This implies by the
comparison principle Theorem 2.2 that

/w » ( *»0 > α > e ι /4Λ >^(^/)5 for all (x,t)eRN x (0,Γ). (4.42)

Furthermore using the inequality (4.41) we have for all (5 < ̂ o and b<b$
that dδ^b(x, t) = 0 for all (x, r) 6 A^, which implies by the definition of ^(Def^)

that wδ>b(x,t) = -δ. Applying (4.42) for δ < δ0 and b < b0 we obtain

q(--,a,εl/4a >φε(x,t], for all (x,ήeK. (4.43)

Integrating the inequality qr(r, εα,εα) < K\e~K2\r\ (cf. (A.ll)) on ( — oo, — )
V £J

we obtain

m +/,_(α,ε1/^). (4.44), , _ , .
ε / A2

Substituting (4.44) into (4.43) and using that <S2 > ε we obtain
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sup φe(x,t) < —

where we let ε tend to zero to deduce that

lim sup sup φε(x, f) < A_ (α, 0) = 0. (4.45)

This completes the proof of Lemma 4.10.

Inequality (4.45) together with the fact that φε > 0 implies the uniform
convergence of φε to zero as ε tends to zero in all compact sets of O. This
concludes the first part of the Theorem 1.3.

The proof that φε converges uniformly to 1 as ε tends to zero on compact
subsets of / is similar (see Section 3.2).

A Appendix. Travelling wave solutions

In this appendix we describe the main properties of travelling wave
solutions of the equation

ut = urr + u(\ - u)(u - 1/2 + S) + ά. (A.I)

We will use the results of this appendix with ά = εα, and ά = ±εa in the case
of Problem (Pf) and with α = α, and a— ±εl/4a in the case of Problem
(Pf). First we note that if ά e [0,1/2) is a fixed constant and if ά is a small
enough positive constant, then the equation

/(j, α) := s(l - s)(s - 1/2 + α) = -δ (A.2)

has three solutions

A_(α,δ) < A0(α,δ) < A+(α,δ); (A.3)

in the case that ά = 0, they are explicitely given by

Λ_(α,0) =0, Ao(α,0) - 1/2-α, Λ+(α,0) = 1. (A.4)

Next we compute a travelling wave solution (q, c) of the equation

ut = urr + /(«, ά) + δ, (A.5)

that is the solution of the problem

rr + c(α, ά)qr + #(1 — q)(q — 1/2 + α) = — ά

(-oo,α,δ) = A_(α,δ),gr(+oo,α,δ) = A+(α,δ).

One can show the following result.
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LEMMA A.I.
The pair

,φ, J
c(α, a) = — (2/20 - A_ - A+)(α, α)

where

Λ,(α, 5) = —-p (A+ — A_)(α, α) (A. 6)

w ίAe unique solution of the system (TW) up to a translation constant.

Next we describe some qualitative properties of the travelling wave so-
lution, which are proved for instance in [9].

LEMMA A.2. There exist K\, K^ positive constants such that, for all r e R,
α e [0,0.4] and a small enough, we have that

A_(α,5) - 0(5),Λ+(α,2) - 1 + 0(5) (A.I)

0 r(r,α,5)>0, (A.8)

^(r,α,β)>0, (A.9)

?α(r,α,0)=0, (A. 10)

(A.ll)

In order to be able to evaluate the coefficient of α in the equations for

the moving boundaries in the problems (Pf) and (P|)5

 one uses the
following results.

LEMMA A. 3.

C(α,α) := limC(€α>fig) = ->/2α -
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