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ABSTRACT. Let S° denote the sphere spectrum localized away from 3. The element βλ

is the generator of the homotopy group πw(S°). Toda showed that β\ φ 0 and β\ = 0.

In this paper, we generalize his result and show that β\βgt+\ Φ 0 and β\βgt+ι = 0 for

β9t+ι e π\44t+ιo{S°) with t > 0. In particular, β*βιoφθ and β*βιo = O, where the

existence of βl0 was shown by Oka. This is proved by determining subgroups of

π*{LιS°). Here L2 denotes the Bousfield localization functor with respect to v^BP.

1. Introduction

Let p be a prime number and S° the sphere spectrum localized away from

p. Let E*(X) denote the iv-term of the Adams-Novikov spectral sequence

converging to π*(X) for a spectrum X localized away from p. Miller, Ravenel

and Wilson [1] introduced β-elements βs/jJ+x in E%{S°) for (s,j,i + 1) e B+,

where

B+ = {(s,j,i+ 1) e Z 3 \s = mpn,n >0,pJfm > \J > l,i > 0, subject to

i) j <pn if m = 1, ii) pι\j < an-h and iii) an-i-\ < j if pi+ι\j}

for integers a^ defined by ao = 1 and a^ = pk + pk~λ — 1. Here we use the

abbreviation βs/jX = βs/j and βs/xx = βs.

Let F(l) denote the Toda-Smith spectrum, which is a cofiber of the

Adams map α : Σ2p~2V(0) -+ F(0), where V(0) is the mod/? Moore spec-

trum. Since there exists a map β : Σ2p ~2V{\) -^ V{\) which induces V2 on

.SP-homology at a prime p > 3 by [9], we have homotopy elements βt e

K2t(p2-\)-2p(S°) with t > 0. On the other hand, there is no such self map at

the prime 3. However there are homotopy elements βt for / = 1,2,3,5,6,10

in this case due to Toda and Oka (cf. [2]). Besides, assuming the existence

of the self map B : Σl44V(l) —> V{\) that induces v\ on i?P-homology, we see
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that there exists a family {β9t+i \ i = 0,1,2, 5,6, t > 0} in π*(S°). The existence

of B seems to be shown by Pemmaraju in his thesis. Furthermore, the exis-

tence of β6β eπs2(S°) is shown by Ravenel [4].

In this paper, we obtain the following relations among β9t+x, β2 and β6/3:

THEOREM A. Let t, i, j and k be non-negative integers. Then in the

homotopy groups π*(S°) of sphere spectrum localized away from 3,

β9t+xβ\ ΦOe π*(S°) if and only if i < 5,

β9t+\βiβ{ # 0 e π*(S°) // and only if j < 2, and

β9t+\β(>/φk\ * 0 e π*(S°) if and only if k < 4.

As is seen in [3, p. 624], we have a relation

uvβsβt = stβuβv for s+t = u + v

in the £2-term £2

4(S°). This implies the following:

COROLLARY B. In the homotopy groups π*(S°) localized away from 3,

IX-1

( Π t i β9ti+ι)β9t+2 ^ 0 // and only if k < 2,

for integers t, ti > 0. In particular, βgt+x # 0 if and only if k < 6.

REMARK. If the self-map B does not exist, the above theorems are valid

only for the homotopy elements such as βx and βl0.

We prove Theorem A by determining subgroups of π*(L2S0), where L2 :

^(3) —> ̂ (3) denotes the Bousfield localization functor on the category y^ of

spectra localized away from 3 with respect to the Johnson-Wilson spectrum

E(2). In π*(L2S°), we have generalized yS-elements βs/ji+ι e E%(L2S°) for

(s,j\i+ I) € B, where

B= {(s,j,i+ 1) eZ3\s = mpn,n > 0,3 Jfm e ZJ > 1, i > 0,

such that V \j < an-i and either 3 '+ 1 X j or αΛ_/_i < j}.

Consider the Z/3[^1]-modules

teZ

®B2{β9l+ιau[β9t+2β[},[β9t+5β[}}),
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teZ

3 { ^ i 6 ( 3 ? + 9 M + 3 ) \ueZ- / ( « )
n>\

Here Bk = Z/3[βι]/{βk

ι)9

I in) = {xeZ\x= (3""1 - l)/2 or x = 5 3r t-2 + (3 r t"2 - l)/2},

x denotes a homotopy element detected by x in the £2 -term, [x] is an element
of π*(L2S°) such that h([x\) =xe π*(L2F(0)) for the inclusion i: S° -+ V(0) =
S°Useι, and gι eπi(L2SQ) is the generator. Then the direct sum G@G* is
generated by

S =

as a Z/3[/?!]-module. Our key lemma is the following:

THEOREM C. The homotopy groups π*(L2»S0) contain the subgroups
G®G\

Consider the localization map 1 : S° ^ L2S0. Then we immediately see
the following:

COROLLARY D. For any element xeπ*(S°) such that ι*(x)eS, we have
xβx Φ0eπ*{S°).

In [7], we showed that the /?-elements βs/jj+\ for (s,j,i+ 1) e Bc do not

exist in π ^ Z ^ S 0 ) , where

\teZ,seZ -3Z,ί> 1}.

Moreover / -̂elements βs/jj+\ for (s,j, i + 1) e Bc do not exist in π*(S0) if ί > 1,
3/^J > 1 and / > 1. We further showed in [7] the existence of ^-elements β9t,
β9t+x and β9t+5 in π*(L2S0) for t e Z. Here we extend the existence theorem of
/^-elements in π^LiS0):

THEOREM E. βs/j,i+\ for {s > J >1• + 1) e B ~ Bc survives to a homotopy element

ofπ*(L2S°).
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Note that βsjj / + 1 are homotopy elements for all (s,j, i + 1) e B at a prime

>5 ([8]).

The following sections 2 to 6 are devoted to proving Theorem C and to

giving subgroups of π*(M 2) for an Z,2-local spectrum M2 with E(2)^(M2) =

E(2)^/(3co,v(^)). Theorems A and E are actually corollaries of Theorem C,

and proved in §7.

2. Basic properties of H*MQ

Let E(2) be the Johnson-Wilson spectrum with coefficient ring

E{2\ = Z{3)[vuv±1]. Then E(2)^E(2) is a Hopf algebroid over £(2) # with

E{2\E{2) = E(2)+[tut2,.. .]/(ηR(vi) : / > 2). For an £(2)+£(2)-comodule M,

Ext£(2) £ ( 2 ) ( ^ ( 2 ) * J ^ ) is the cohomology of the cobar complex Ω*M =

^E{2) E{2)M, and we will denote it by H*M.

The chromatic comodules Nj and My are defined inductively by Nff =

E(2)+, Nf = E(2)J(3), Nξ = E(2)J(3,vι)9 Mj = vj^Nj and the short exact
sequence 0 -> Nj -+ Mj -• Λ(/+1 -^ 0 for i +j + 1 < 2 [1]. Note that TV/ = A//

if / +j = 2. These have £'(2)^£'(2)-comodule structure induced from the right

unit ηR : E(2)+ —> E(2)^E(2). Consider the long exact sequences associated to

these short ones 0 -> 7V0° -> Mo° -> TVj -> 0 and 0 -> JVj -> M j Λ M2 -> 0,

whose connecting homomorphisms are <?' : //WQ —> Hs+lE(2)^ and ^ : / P M ^ —•

//Wj. Then we see that <J'<$: ^ 5 M 0

2 -> HS+2E{2)^ is an epimorphism if J > 1,

and an isomorphism if s > 1, since HSM® = 0 for s > 1 and HSMQ = 0 for

j > 1 by [1]. In particular,

LEMMA 2.1. HSE(2)^ for s > 3 consists of torsion elements.

We have a short exact sequence 0 —> M/ -^ MQ —> MQ ^> 0 (z(x) = x/3)

which induces a long exact sequence

> HS'XM2 Λ HSM{ ±> HSM2 Λ 7TM2 Λ ..

An easy diagram chasing shows the following:

LEMMA 2.2. ([1, Remark 3.11]) Consider the following commutative dia-

gram of modules with horizontal exact sequences and a 3 torsion module Bs\

Bsl —^-> HSM\ —±-+ Bs — L _ Bs —^->

Π 1 r l
—δ—> HιM\ - ^ WM2 — L - , ^^M 0

2 — ^ -

gs+ι are isomorphisms, then fs is an epimorphism. Moreover, if fs~λ

is an epimorphism, then fs is an isomorphism.
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Let &io denote the element of H2E{2)^ represented by the cocycle —t\ ®
t\ — t\®t\. Then 610 acts on H*M for any comodule M. In [7], we show
the following:

PROPOSITION 2.3. The multiplication by b\o yields an isomorphism HSM\ —>

HS+1M\ if s > 3 and an epimorphism if s = 3.

This together with Lemma 2.2 implies

COROLLARY 2.4. The multiplication by b\o yields an isomorphism HSM% —•

HS+2MQ if s > 3 and an epimorphism if s = 3.

COROLLARY 2.5. H*M2 ^ (H4M2 ® H5M$) ® Z/3[6i0] /or * > 3.

3. Some formulae in Ω*E(2)^

The Adams-Novikov ^2-term for computing π*(LιX) is the cohomology
H*E(2)^(X) of the cobar complex Ω*E(2)^(X), and in particular, H*E(2)^ =
i/*7V0° is the £2-term for π * ^ ^ 0 ) .

Take X to be the Toda-Smith spectrum F(l). Then E(2)+(V(l)) =
A:(2), = Z/3[ι;2

±1] and H*K{2)^ = K(2)^[bl0}® F ® Λ(ζ2). Here F denotes
the module Z/3{l,/zio,/*π,&π, ξ,\l/0,ιl/ι,bnξ} satisfying the following relations
(cf. [6, Prop. 5.9]):

(3.1) buζ =

If Z is the mod 3 Moore spectrum F(0), then the ̂ -term for V(0) is
H*E(2)^/(3), which is determined in [7]. In particular, we see the following:

LEMMA 3.2.

H2'°E(2)J(3) = 0

Consider the long exact sequence

• - H*-ιE(2)J(3) Λ H*E(2), Λ H*E(2), ± H*E(2)J{3) Λ .

associated to the short exact sequence 0 -> £1(2)H, Λ £(2) t -Λ E(2)J{3) -^ 0.
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LEMMA 3.3. The map dx = j\δ : H*E(2)J(3) -> H*+ιE{2)J(3) sends

\obιo {resp. v2

xhxφχQζ2) to v2

3bιObn {resp. v2

3bxφnζ2).

PROOF. Note that v2

xh\φ\Q is represented by a cochain whose leading

term is υ^t] ®b\\. Since d{t\'+x) = 3b\t by definition, we compute

(3.4) d{υ?t\ ® bn) = 3(ι>2 3&io ® * n + )i

which shows ^(i^λio^io) = v^biobn H For v2

ιh\ob\oζ2, the result follows

immediately from (3.4) and Proposition 4.2 in the next section. q.e.d.

Let x denote a cochain that represents ξ. Then it is shown in [7, Lemma

4.4] that d{x) = υ\f0 mod (3) for f0 that represents -v2 Vo m ° d (3, ϋi) (In

[7], x is denoted by ^(0)). So we have a cochain A such that

(3.5) </(*) = t??/o mod (3) and </(/0) = 3Λ

in the cobar complex Q*E(2)^. Then i is a cocycle of H4>°E(2)^.

Furthermore, we have

LEMMA 3.6. d(f0) = ± 3 / 0 ( χ ) z mod (9) in the cobar complex Ω4E(2)^.

Here z denotes a cocycle that represents the generator ζ2.

PROOF. The projection E(2)^ —> E(2)^/(3) sends A in (3.5) to a cocycle,

which is also denoted by A. By virtue of Lemmas 3.2 and 3.3, we put

[A] = kιv2

ιhιobιOζ2 +k2v2

ιψ0ζ2,

where [A] denotes a cohomology class represented by A e Ω*E(2)^/(3). In

fact, / 0 may be replaced by / 0 + kυ2

ιt\ ® b\\ for some k e Z/3 if necessary.

Since d\([A]) = 0 and d\(v2

ιψ0) = 3[A] by definition,

0 = kiv2

3bi0bnC2 + k2{k\v2

xh\φmζ2 + k2v2

ιψ0ζ2)ζ2,

by Lemma 3.3. Noticing that £2 = 0 and v2

3b\ob\\ζ2 φ 0, we see that k\ —

0. On the other hand, if A represents 0, then we have an element y^Vo i n

H3'°E(2)^. Since H2>°E{2)J{3) = 0 by Lemma 3.2, ^ V o generates a Z ( 3 ) -

free submodule in H3'°E(2)^, which contradicts Lemma 2.1. Therefore A

represents a non-zero element. This means that k2 = + 1 . q.e.d.

LEMMA 3/7^ Put \ζf\ = v2t\ +v\τ and v\t\ = υ\t\ + υ\υ2t\. Then d(tζf\) =
vjb\o and d^t]) = —υ\b\\. Furthermore, there exists a cochain u e Ω2E(2)^
such that

d(u) = v2f\®buΛ- υ\t\ ® b\0 mod (3, υ\).

PROOF. The first statement is checked by a routine computation.
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Turn to the second. We obtain an element u' e Ω2E(2)^ such that

d(ur) = V2h ® b\\ + b\Q ® υ\t\ mod (3,v\) from the relation t^ii^io = —h\Φ\\

in H3E(2)J(3,υ\) of (3.1). Put d(u') = υ^h ® bu + *io ® ϋf'i + υ\w mod

(3, ι>j*) for some cochain w. Sending this by d, we have 0 = v2b\o ® b\\ — b\o ®

υ\b\\ +υχd(w) mod (3,ι?f). Then w e i / 3 ' 5 2 £ ( 4 / ( 3 , ^ ) , which is 0 since

// 3 ' 5 2^(2),/(3,t; 1) = {ι;2fc11C2} by [6, Th. 5.8] and d&bn&ϊfO mod (3,ι>?)

by [7, Lemma 3.3]. Therefore, we see that there is a cochain w such that

ί/(w) = w, and put w" = u' — υ\ w to obtain d{u") = VJM ®b\\ + Z?io ® ϋf̂ i m o c ^

(3,ι^). There is also a cochain a such that J (Λ) = v\t\ ® b\o — &io ® v\t\

mod (3,t?f), and so we have the lemma by putting u = u" + a. q.e.d.

LEMMA 3.8. There exists a cochain w such that

d(w) = vit\ ® /o — x' ® b\o mod (3, v3).

Here x' denotes a cocycle that represents ξ mod(3,t;i) and t\®x' is ho-

mologous to t\ ® x mod (3,I;J*).

PROOF. This is shown in the same way as the above lemma. By the

equation h\oψo = —ζb\o in (3.1), we have a cochain wf such that d(wf) = V2h ®

/o — b\§®x mod (3, v\). Put d(w') = υ^Jx ® f0 — b\o ® x + v\a for a cochain

a, and send this by d. Then we see that a is a cocycle of ί24 '1 6is(2)+/(3,ι^).

Since we see that HAΛ6E{2)J(},v2

x) = {̂ 10^10(2} by [7], a = kt\ ®z®bί0 for

some k e Z/3. Furthermore, b\o ® x is homologous to x ® b\o, which yields a

cochain w such that d(w) = v^h ® f0 — (x — kv\t\ ® z) ® b\o. Now put xf =

x — kv\t\ ®z, and we have the lemma. q.e.d.

LEMMA 3.9. In the cobar complex Ω*E(2)^, there exists a cochain y such

that

d(y) = t\ ®x — v\V2lf\ — v\z®x — kv\v^2t\ ®b\\ mod (3,υ\)

for some keZ/3. Here fx denotes a cocycle that represents φγ.

PROOF. It is shown in [7, Lemma 6.4] that there exists a cochain Yo

such that d(Yo) = h ® X + viv^τ3 ® X + v\v^xt\ ® X mod (3, v\). It is also

shown that x = X + viv^1 Y\ + kv\v^2b\\ for some keZ/3 in [7, Proof of

Lemma 4.4.]. Take now y to be Yo, and we obtain

d(y) = t\ ® (x - v\V2l Y\ - kv\V22bn) -υ\z®X

mod (3, v2). Since fλ = t\ ® Y\ — tι ® X by the proof of [7, Lemma 4.4], we

have the result. q.e.d.
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4. The £2-terms HSM$ for s > 3.

Let E(2,1), denote Z/3[vuυ£3]. In [7], H*M{ is given as the direct sum

of three E{2,1 )„-modules Λ, :

In order to describe the modules Au we use the following notation:

Fn = E{2,n + 2Uυfn+X /vr-\υΓh

,r"Λ.oΛΓ 3"+ i,fr ( 5

Then the modules At are given as follows:

A0 = (K(l)Jk(l),)φΛ(hmζ2)

n>0

A2 = (F{h) 0 F(ή 0 Ffa θ i7^)) θ PE,

Consider the exact sequence Hλ*M\ Λ H2^E{2)J(3,vf) -^ H2^vM\
. 1 ^ 3 ' ' y3''

associated to the short exact sequence 0 —> E(2)^/(3, v3')—U M/—x—*Ml

-+ 0. Then the structure of H*M\ shows immediately the following:

LEMMA 4.1. For eαcΛ / > 0, each element of H2^E(2)^/{3,v\1) is divisible

by , ? ' - ' " .

Now we obtain the next proposition corresponding to [5, Lemma 2.6]. In

fact, the proof of [5, Lemma 2.6] also works at the prime 3 by the above

lemma.
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PROPOSITION 4.2. For each integer i > 0, there exists a cocycle z\ of
Ωλ^E(2)J{V+\v\i) such that Zi = ze

By virtue of this proposition, we abuse the notation z for a cocycle that
represents ζ2 as we did in the previous papers for a prime >3.

Consider the connecting homomorphism δ : HSMQ —> HS+XM\ associated
to the short exact sequence 0 —> Af/ Λ A/Q —> Af<J —> 0.

LEMMA 4.3. δ{v\ξj3v\) = v2φ0/v\.

PROOF. In [7, Lemma 4.4], it is shown that there exists a cochain X{2)
such that d(X(2)) = υ\z3 ® X3 - v\vγf\ mod (3, v\). Since 7/3'20M2° = 0,
the congruence holds mod (3, v\) if we replace X{2) by a suitable cochain x".
Put now d{x") = v\z3 ® X3 - υ\υ^f] + 3A mod (9, υ\). Then 0 = 3ι;3/i
® z3 ® X3 - 3υ\t\ ® V23f\ + 3d(A) mod (9, v\). This implies that A e
H3'40E(2)J(3,v3), which is Z/3{vjv2φ0} by [7]. Note that 3υ\tx®z3®X3

and v3t\®V23fl are homologous to zero and v3b\\ ® X mod (9,v4), re-
spectively, by Lemma 3.9 and (3.1), and that d(—vjv2(v2f0)) = v3v2t

3 ®
f0 + v\b\\ ® J m o d (3, v\) by [7, Lemma 4.3] whose right hand side is homol-
ogous to — i ; 3 ^ ! ! ® ^ by (3.1). Thus d(A) — d{—υ\υ\j\ -\ ), and we see

that A is homologous to —v\v\f^ and that d(x") = —3v\v\f§ mod (9, ι?f).
Since x" and / 0 represent v\ξ and —V^ΦQ, respectively, we have the lemma.

q.e.d.

Put

for i; : H*Ml -> H*M$ given by h(x) = x/3.

LEMMA 4.4. For the connecting homomorphism δ : HSMQ —> Hs+λM\, δ(x)
for a generator x of Gs is obtained by the following equations:

δ(v2/3vι) = - v *

δ(v2hι0/3vι) = U2

δ{vlhn/3vλ) = vj

δ(v2bu/3vι) = υ\h\\b\blυ\\

δ(v2(v2

ιψ0)/3vι) = ξbio/vj ± v2(v2

ι\l/0)ζ2/vu

δ(ξ/3υx) = i>2 Vi/i>i + (1 ± l)ζζ2/vi+kvϊιhn

δ{b\\ξ/3υ\) = υl(υ2lφo)bιo./vι + (1 ± l)buξζ2/v\

= b\\ξ/v\ ± V2



354 Katsumi SHIMOMURA

PROOF. Note that υ2h\o is represented by a cochain v2t\ — ηR{v2)t\ — v\t2

of Lemma 3.7. In the cobar complex Ω*E(2)^/(9,υ\), we compute

d(v\v2) = 6v\t\ηR{υ2) + 3v\t2 =

= 6v\t\ ® v2t\ + 3υ\t2 ® t\

— 6v\v2t\ ® t\χ + 6v\τ ® t\.

d(3vxv2t\) = 3vf/f <g> ^ - 6υ\V2t\ ® t\

(4.5)
d(v\v\t\) = 6v\t\ ® v\t\ + 6

= 6v\vlt\ ®ή4 + \2v\υ2t\ ® t\η

= \2v\v2t\

4
t\η

The underlined terms with the same number sum up to zero except for the

terms numbered 6 and 7. The terms numbered 6 and 7 sum up to 3ι̂ t>2&io

and 6v\v\C2 ® t\, respectively. These imply the first three equations. In fact,

δ([a/3v\]) = \(u)~xd{v\a)/9v\), where [a] denotes a homology class represented

by a. Since δ{b\\ά) = b\\δ(ά), the first equation gives δ(v2b\\/3v\) = —v2h\ob\\/

υ\, which equals v\h\\b\§lv\ by Lemma 3.7. Thus we have the fourth

equation.

By Lemma 3.6 and the first equation in (4.5), we compute

(4.6) d(vfv2f0) = 6vιtζfι®f0 ± 3υ\υ2f0®z mod (9,v\).

Now by Lemma 3.8, we have the fifth equation. Multiplying fi\o to the fifth

equation yields δ(h\oψo/3v\) = h\Qξb\o/v\ + h\oψoζ2/v\. Lemma 3.9 says that

h\oζ = v\V2lφ\ + v\ξζ2 + kυ\V22h\φ\\ for some k e Z/3. Since MoiAo = ~ ^ i o ,

we have the sixth equation. The seventh follows immediately from the product

of b\\ and the sixth equation. The multiplication of &io and the fifth equation

gives the last one by the relations (3.1). Here note that b\0 = —v^b^ holds in

H4E(2)J(3,υl). q.e.d.
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PROPOSITION 4.7. HSM% = Gs for s = 4,5. In other words, H4M$ and

H5MQ are Z/3[v^3)-modules generated by

4

and

φobιo/3vγ, ζbιOζ2/3vι, bnξζ2/3vι,

respectively.

PROOF. Put Bs = Gs. Then there is a canonical map fs:Bs

sitting in the commutative diagram

Hs~xMl —?—> HSM\ —U-^ Bs —*-+ Bs δ

fs\ fs

$ HSM\ —±-+ HSM% —^ HSM% —^ HS+XM{.

Lemma 4.4 implies that the ^-images of the generators of Bs are linearly

independent. Therefore we see that the above sequence is exact, and Lemma

2.2 shows that fs is an isomorphism. q.e.d.

5. On the £2-terms HSM$ for s < 3

We write down the submodules As

2 a HSM\:

A\ =

A\ =

A\ =

Now consider the map d\ = δU : HSM\ -> HS+XM\. Then [1, Prop. 6.9] shows

(5.1) dι(υl/υ3

ι) = vlhn/v2

ι.

Here we compute:
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LEMMA 5.2. The Bockstein differential d\ = δu acts up to sign as follows:

dχ{v2/vχ) = \

dχ(v2hχ0/vχ) = V2Xb\\/v\ + v2hχOζ2/vχ,

d\(υ2ζ2/υι) =

d\{v2bχX/vχ) = v

dχ(v2hχoζ2/vχ) = V

dχ(v2bχ0/vχ) =

dχ(ζ/v2

ι)=ξζ2/vl

dχ(vlhχχζ2/vχ) = vjbιoζ2/vχ,

dχ(v2bχχζ2/vχ) =

dχ(v2hχObχo/vχ) = V2lbχχbl0/v2 + v2hχ0bχ0ζ2/vχ,

dχ(vjhχχbχO/vχ) = V2

dχ(v2bχOζ2/vχ) =

dχ(ξζ2/vχ) = V2lψχζ2/vχ,

d\(Φo/vχ) = ζbxo/vj + Ψ0ζ2/vχ,

dχ(v2φχ/vχ) =bχχζ/v\.

The other elements of A2 missing in the left hand sides are in the image of dx.

PROOF. Lemma 4.3 and (5.1) show that v^Φo/vx and v\hχχ/v\ are in the

image of d\. The other parts follow from Lemma 4.4, except for dx on v^} jv\

and ξ/v\.

For the exceptional cases, consider the diagram

H*-lM$ —^-> HSM\ — ^ HsMl —3-^ HsMl —i-> HS+XM\

b\o

HS+2M\ - ^ HS+2M% - ^ HS+2M2 ^ U Hs+iM\.
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If we have a relation S{OL/3) = βb\$ + ocζ2 in Lemma 4.4, then we see that
βb\o/3 = -ocζ2/3 in 77*M0

2, since h(x) = x/3. Therefore, we compute

bιoδ(β/3) = δ(βbl0/3) = -δ(<xζ2/3) = -δ(oc/3)ζ2 = -βbl0ζ2,

and so we obtain

δ(β/3) = -βζ2

up to Ker b\Q. Note that b\o acts monomorphically on A2. Now take β to be
the exceptional cases, and we have all d\. q.e.d.

Hence, we have

PROPOSITION 5.3. HSM$ contains E(2,l)^/(3,v\)-module as follows:

^ E(2,\),{v2hl0/3vuvjhn/3vuv2ζ2/3vι}

0

2 3 £(2, l ) > 2 W 3 ^ 2 / * i o ^

// 3 M 0

2

ζζ2/3υuψ0/3vuv2ιl/ι/3vι}.

6. The Adams-Novikov differentials

Now consider spectra defined by cofiber sequences:

(6.1) S 0 - ^ - 1 ^ 0 ^ ^ 1 , Nι -*LxN
ι ^ N2, F(0) -+ v^1 V(0) -* W,

and M2 = L2N
2. The Adams-Novikov differentials on π*(L2W) is determined

in [7]. Let / : L2 W —• M2 denote the canonical map that induces /: M\ —> MQ .
Suppose that dr(x) = y in the isr-term for L2W. Then dr(x/3) = dr(ux) =
Uy = y/3. In this way, we determine the differentials except for dg(v2

 ι/3v\)
and d5(v\^/3v2).

LEMMA 6.2. The Adams-Novikov differential dr is given (up to sign) by

dr(v2/3v{) = 0, d5(υ%/3υι) = v\hλ\b\j3vx, d5(vΊ

2/3v{) = v5

2hXλb
2

X0/3vu

dr(v2/3vx) = 0, dr(v5

2/3vx) = 0, d9(v2

ι/3vι) = v2

5bnbU2/3vλ,

dr(v2hιo/3v\) = 0, d9(v2hιo/3v{) = v2bl0/3vγ, dr(vΊ

2h\o/3vι) = 0,

dr(v2hnl3vx) = 0, dr(v5

2hn/3vx) = 0, d9(vs

2hu/3vι) = v4

2bnb
4j3vu

= v2hιOb3

ιo/3vι, dr(v2bu/3v\) = 0,
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d5(v7

2bu/3vι) = v7

2hi0b
3

l0/3vu d5{ξ/3v2

ι) = v2

dr(v3ζ/3v2) = 0, d5(vβ

2ξ/3v2) = v\bxx

dr{ξ/3υλ) = 0, dr{υ3

2ξ/3υx) = 0, d9(v6

2ξ/3v{) = v3ψob
4

ιo/3vu

d5(φ0/3v{) = υ?bnξb\j3υu dr(v3

2φ0) = 0, d5{vlφj3υx) = vlbuζb2

l0/3vu

ds&Ψiβvi) = ξb\j3υx, d5(v4

2ψι/3vι) = v3

2ξb3

l0/3vu ^ ( t ^ i ^ i ) = 0.

d9{buξ/3vx) = υ2

2φλb\j3υu dr(υ\bnξβυ{) = 0, dr{υ6

2bnξ/3υx) = 0.

PROOF. Here we show the exceptional cases. Lemma 4.4 shows

i ̂ i o ^ i = -v2

xhnζ2/3υx and υ^ξb^βv] = ±vltψoζ2/3vι.

Now we compute

bι0d9(v2

ι/3vι) = d9(v2

ιbχo/3vχ) = -d9(v2

lhnC2/3vi) = v2

5bnbχOζ2/3vu

and we have d9{υ2

ι/3v\) = v2

5b\\b\0/3v\ as desired. In the same way, we

have the other case. q.e.d.

Now we display the chart of the Adams-Novikov spectral sequence:

2C

33 36
39 46
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20

81 84
94

129 132
1 3 5 Γ 4 2

Some of survivors are killed by other differentials derived from [7]:

υl) = !>?-2Aio*?oC2/3i>i,
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(6.3) ^Γ' + 3 " + 1 W3.r + ' + ' ) = ±vΓ

d5(vΓ2'+^h10/3vr^) = -vΓ'^^-^ξb^ (n > 1).

This shows that,

THEOREM 6.4. The E^-term of π,(M2) contains the module G © G*

GZφGZ*. Here E(2,l)t-modules are given as follows:

G* = B5(2,2\{vΊ

2φJ3vx} θ B4(2,2).{»

θ J2 )M
«>i

Φ Λ2(2, it + 2)>f+ 3<S/3 l>i I« e /(«)}),

GZ* = Bs(2,2),{vΊ

2φιζ2/3vι} φ

φ Σ ( Λ 3 ( 2 , » + 2) t{ϋ2

9»+3^2/3ri \ueZ-

« 6 /(*)}),

Bk(2,n)^ = (Z/3)[v^3\b\o]/(b^0) and I(n) are given in the introduction.

PROOF. Suppose that dr{x) = y φ 0 in the Adams-Novikov spectral se-

quence for π*(M 2 ). Then y is in the image of /* : H*M\ —> H*MQ, since y has

filtration >5. Lemma 5.2 shows that δ(y) φ 0 for the connecting homo-

morphism δ : H*MQ —• H*M\, and so we have J(x) # 0 and dr(δ(x)) =

<5(jμ) in the Adams-Novikov spectral sequence for n*(LiW). Observing the

differentials given in [7] with Lemma 4.4, we see that there is no more new

differentials, and obtain the theorem. q.e.d.
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7. Application to ^-elements

In [1], H°MQ is determined and we see that

υl/3Mv{ e 77°M0

2 if and only if (s, j \ i + 1) e £.

Consider the universal Greek letter map η =δ'δ : H°MQ -+H2E(2)^, where

(5: //°M0

2 -> J / 1 ^ 1 and <$' : T / 1 ^ 1 -> H2E(2)^ are the connecting homomor-

phisms associated to the short exact sequences 0 —> Nj —> Mj —> MQ —> 0 and

0 —» 1?(2)^ —* MQ —> iVj —» 0, respectively. Then the ^-elements are defined by

βs/J,i+ι=η(vs

2β
i+ιv{).

We obtain the following immediately.

LEMMA 7.1. Mod (3,v\), βx = b\o, β2 = ^ihwζi and ββ/3 = v\b\\ in the

E2-term E2(S°).

Furthermore, note that β[ = hn e £ 2 ( F ( 0 ) ) and OLX =hι0eE2(S°). The

generators of G then yields the following elements:

= β9l+ι, η{vl'+%x/2>vx) = β9t+ιβ6β

η{υl'+2hnβvx) = [β9l+2β[], η{t>\t+%φv\) = [β9l+Sβ[]

Now we prove the theorems in the introduction.

PROOF OF THEOREM C. Consider the long exact sequences

and

> π*(LλN
x) -> π*(M 2) - . π*+ι(L2N

ι) -> •

associated to the cofiber sequences of (6.1). Note that π*(LoS°) = β and

shown in [1], where yl is the Z(3)-module generated by v\p'/3/+1 for / > 0 and

3 | ί e Z . Therefore, the module G © ό * 0 G Z 0 GZ* given in Theorem 6.4

is isomorphically sent to π±(L2S°). Theorem C now follows. q.e.d.

PROOF OF THEOREM A. Consider the localization map / : S° —> L2S°.

Since the induced map z* : π*(S°) —> π*(L2S°) sends a /^-element to the cor-

responding ^-element, the non-triviality of products of ^-elements in π*(S°) is

deduced from the one in π*(L2S°). The necessity follows immediately from
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Theorem C except for β2. For β2, note that β9t+χβ2 = [β9t+2β[]ζ2 e η{GZ) for

the universal Greek letter map η. Thus the necessity for β2 is shown.

In Lemma 6.2, we have d^v^hxo/^) = v\t+xb{J?>vx and d9{υ9

2

mhn/3vλ)

= vlt+4b\\bγO/3v\, which yield

(7.2) * ( / W i ) = /ff/Wi and d9(β9t+shn) = β9t+ιβφβΐ

in the ^9-term Eg(L2S°) as the image of the universal Greek letter map. In

the same manner, the equation ds(vlt+4ζ2/3v\) = v\t+2h\\ζ2b\Q/3v\ in Lemma

6.2 yields

(7-3) d5(β9t+4ζ2) = β9t+ιβ2β
2

x

in the ^9-term £5*(Z,2S°). If t > 0, then the equations (7.2) and (7.3) also hold

in the Adams-Novikov spectral sequence for π*(>S0), since the elements

appeared in (7.2) and (7.3) are also defined in E2(S°). q.e.d.

PROOF OF THEOREM E. In the proof of Theorem 6.4, we read off that the

elements on the 0-th line hit nothing except for the /^-elements given by Bc.

Therefore, we obtain Theorem E. q.e.d.
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