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AsstrACT. Let SO denote the sphere spectrum localized away from 3. The element S,
is the generator of the homotopy group 710(S°). Toda showed that §; # 0 and B =o.
In this paper, we generalize his result and show that ffBy,,, # 0 and f;f,,., =0 for
Borr1 € Miaars10(S®) with 1>0. In particular, fif,, #0 and BB, =0, where the
existence of B, was shown by Oka. This is proved by determining subgroups of
n.(L2S%). Here L, denotes the Bousfield localization functor with respect to v;'BP.

1. Introduction

Let p be a prime number and S° the sphere spectrum localized away from
p. Let EX(X) denote the E,-term of the Adams-Novikov spectral sequence
converging to 7,(X) for a spectrum X localized away from p. Miller, Ravenel
and Wilson [1] introduced f-elements g, ., in E;(S°) for (s,j,i+1) e BY,
where

Bt ={(s,/,i+1)eZ}|s=mp",n=0,pym=>1,j>1,i>0, subject to
i) j<ptif m=1, ii) p'lj <a, and iii) a,;_; < j if p™'|j}

for integers ay defined by a9 =1 and a; = p* + p*~! — 1. Here we use the
abbreviation g, | = B, and B, = B,

Let V(1) denote the Toda-Smith spectrum, which is a cofiber of the
Adams map «:Z%72V(0) — V(0), where V(0) is the mod p Moore spec-
trum. Since there exists a map f: X27'~2 V(1) — V(1) which induces v, on
BP-homology at a prime p >3 by [9], we have homotopy elements S, €
T pz_l)_zp(SO) with £ > 0. On the other hand, there is no such self map at
the prime 3. However there are homotopy elements f; for i =1,2,3,5,6,10
in this case due to Toda and Oka (¢f [2]). Besides, assuming the existence
of the self map B: X'* V(1) — V(1) that induces vJ on BP-homology, we see
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that there exists a family {fq,,;|i =0,1,2,5,6,¢ > 0} in 7.(S°). The existence
of B seems to be shown by Pemmaraju in his thesis. Furthermore, the exis-
tence of f/; € ngy(S°) is shown by Ravenel [4].

In this paper, we obtain the following relations among fy,,, f, and fg;:

THEOREM A. Let t,i,j and k be non-negative integers. Then in the
homotopy groups m.(S°) of sphere spectrum localized away from 3,

Bor1Bi # 0 € m.(S°) if and only if i<5,
BosiBoffl #0e€n.(S°)  if and only if j<2,  and
Bors1Be3Bt #0en(S°)  if and only if k < 4.

As is seen in [3, p. 624], we have a relation
wfp, = stf,p, for s+t=u+v
in the E-term E;(S°). This implies the following:

COROLLARY B. In the homotopy groups m,(S°) localized away from 3,
Hikzlﬁg,iﬂ #0 if and only if k < 6, and

k . .
(T Aot )Borsa #0 if and only if k <2,
for integers t,t; > 0. In particular, ﬂé‘, +1 #0 if and only if k <6.

ReEMARK. If the self-map B does not exist, the above theorems are valid
only for the homotopy elements such as #; and f,.

We prove Theorem A by determining subgroups of z,(L,S°), where L, :
S3) — S3) denotes the Bousfield localization functor on the category (3) of
spectra localized away from 3 with respect to the Johnson-Wilson spectrum
E(2). In m.(LyS°), we have generalized p-elements Byjj,ivt € E}(L,S°) for
(s,7,i+ 1) € B, where

B={(s,j,i+1)eZ|s=mp",n=>03ymeZ,j=>1,i>0,
such that 3'|j < a,_; and either 3"*! ¥ j or a,_;_| < j}.
Consider the Z/3[f,]-modules
G = (Bs{Bors1} ® Ba{Bors1Bs/3}

teZ
@ B3{ﬁ9t+7“l}
@ Bo{ o191, [BorsaBils [BorssP11})s
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G* = (Bs{gis0+7+15} ® Ba{gisor3)47}
teZ

@ Ba{g1441, 916(91+5)+2, 916(91+8)+2 }

® Y (Bs{gisamrrsouss) lu€ Z —I(n)}

nx>1

® Ba{gis3rarioursy [u € 1(n)})).
Here By = Z/3(B,]/(BY),
In)={xeZ|x=03""=1)/2 or x=5-3"24(3"2-1)/2},

X denotes a homotopy element detected by x in the E,-term, [x] is an element
of m,(L,S°) such that i.([x]) = x € n.(L,V(0)) for the inclusion i : S — V(0) =
SOUse!, and g; € m;(L,S°) is the generator. Then the direct sum G @®G* is
generated by

S = {ﬁ91+17ﬂ91+1ﬁ6/37ﬂ91+7a|’ﬁ9t+lal7 [ﬁ9t+2ﬂi]7 [ﬁ9t+5ﬁ{],

916(91+7)+155 916(9t+3)+7> 14415 F16(91+5)+2> 916(91+8)+25 F16(91+3) |te Z}
as a Z/3[p,]-module. Our key lemma is the following:
) T:HEOREM C. The homotopy groups m.(L,S°) contain the subgroups
Go G
Consider the localization map 1:S° — L,S°. Then we immediately see

the following:

COROLLARY D. For any element x € n.(S°) such that 1.(x) € S, we have
xBy # 0 e m.(S°).

In [7], we showed that the B-elements f,/; ;. for (s,j,i+ 1) € B® do not
exist in 7,(L,S°), where
B = {(9t+4,1,1),(9t+7,1,1),(9¢t+ 8,1,1), (9t + 3,3,1),(9s,3,2), (3%5,3", 1)
|teZ,seZ —-3Z,i>1}.
Moreover B-elements f; ;,; for (s, j,i+ 1) € B do not exist in m,(S°) if 1 > 1,
3¥s>1and i>1. We further showed in [7] the existence of fS-elements fy,,

Bors1 and Bo,, s in 7. (LrS%) for 1€ Z. Here we extend the existence theorem of
B-elements in 7,(L,S°):

TueoreM E. B,/ ;.1 for (s, j,i+ 1) € B — B survives to a homotopy element
of m.(L2S?).
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Note that ), ;,, are homotopy elements for all (s, j,i + 1) € B at a prime
>5 ([8]. 4

The following sections 2 to 6 are devoted to proving Theorem C and to
giving subgroups of n,(M?) for an Ly-local spectrum M? with E(2), (M?) =
E(2),/(3%,v{). Theorems A and E are actually corollaries of Theorem C,
and proved in §7.

2. Basic properties of H*M;

Let E(2) be the Johnson-Wilson spectrum with coefficient ring
E(2), :Z(3)[01,v;—”]. Then E(2),E(2) is a Hopf algebroid over E(2), with
EQ2),EQ2)=E2),[t1,t2,...]/(ng(vi) : i>2). For an E(2),E(2)-comodule M,
ExtEm e@)(E(2),,M) is the cohomology of the cobar complex Q"M =

gyM, and we will denote it by H*M.

The chromatic comodules N; ! and M; I are defined inductively by NQ =
E(2),, N\ =E(_2),/(3), N)=E(_2 ) /(3, ul) M} = v;\N/ and the short exact
sequence 0 — N/ — M/ — N’Jrl —0fori+j+1<2[l]. Note that N/ = M/
ifi+j=2. These have E(2) E(2)-comodule structure induced from the right
unit 7 : E(2), — E(2),E(2). Consider the long exact sequences associated to
these short ones 0 — N — M) - N} —» 0 and 0— N} — M| l»MO2—>O,
whose connecting homomorphisms are 6’ : H*N} — H*T'E(2), and 6 : H*M? —
H*N/}. Then we see that 6’0 : H'M} — HT2E(2), is an epimorphism if s > 1,
and an isomorphism if s> 1, since H*M) =0 for s> 1 and H*M] =0 for
s> 1 by [1]. In particular,

LemMA 2.1. HYE(2), for s >3 consists of torsion elements.
We have a short exact sequence 0 — M| 4 M? 2 MZ — 0 (i(x) = x/3)
which induces a long exact sequence
— HME S HIM S oM S HOM?
An easy diagram chasing shows the following:

Lemma 2.2. ([1, Remark 3.11]) Consider the following commutative dia-
gram of modules with horizontal exact sequences and a 3 torsion module B*:

B! g Hlel b BS 3 BS 4 HsH! Mll

S R T

i

H-'MZ —— H'M] — H'M} — H'MZ —— H*'M]

If g* and g**' are isomorphisms, then f° is an epimorphism. Moreover, if f*~!
is an epimorphism, then f° is an isomorphism.
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Let by denote the element of H2E(2), represented by the cocycle —t; ®
## —12®1. Then by acts on H*M for any comodule M. In [7], we show
the following:

PROPOSITION 2.3.  The multiplication by b\ yields an isomorphism H*M| —
H"2M] if s >3 and an epimorphism if s =3.

This together with Lemma 2.2 implies

COROLLARY 2.4. The multiplication by by yields an isomorphism H SM& —
H*2M? if s >3 and an epimorphism if s = 3.

COROLLARY 2.5. H*MZ =~ (H*M{ ® H’M?) ® Z/3[by] for x> 3.

3. Some formulae in Q*E(2),

The Adams-Novikov E,-term for computing n.(L,X) is the cohomology
H*E(2),(X) of the cobar complex Q*E(2),(X), and in particular, H*E(2), =
H*N] is the Ej-term for m,(L,S°).

Take X to be the Toda-Smith spectrum V(1). Then E(2),(V (1)) =
K(2), = Z/3[v"] and H*K(2), = K(2),[b10)] ® F ® A(;). Here F denotes
the module Z/3{1, hio, h11,b11, & Yo, ¥y, b1} satisfying the following relations
(¢f [6, Prop. 5.9]):

vshiobio = hiibn, v2hi1b1o = —hiobn
(3.1) biié = vy, = v2hnYy, bio¢ = —hioy = 03 hiy,
v3bdy = —bi, bioy; = —v3 by, bioWo = v3 b1y,

If X is the mod 3 Moore spectrum V(0), then the E,-term for V(0) is
H*E(2),/(3), which is determined in [7]. In particular, we see the following:

LEmMmA 3.2
H>°E(2),/(3) =
H>°E(2),/(3) = {v;"¥o, 03" hobro}
H*°E(2),/(3) = {03 b1ob11, 03 'Wola, v3  hrobiols}
H*°E(2),/(3) = {07 b1ob1ila}-

Consider the long exact sequence

© = HUEQ),/(3) S HUEQ2), S H'E(Q2), ™ H'E(2),/(3) > -

2 EQ), L EQ)./(3) - o.

*

associated to the short exact sequence 0 — E(2),
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Lemma 3.3. The map dy = jJ:H*E(2),/(3) — H*'E(2),/(3) sends
Dz_lhloblo (resp. l)z_lhlobl()Cz) to Uz_ablobll (resp. Uz_sblobllcz).

ProOF. Note that v; ‘hwbl_o is represented by a cochain whose leading
term is v;38} ® byy. Since d(£}"') = 3by; by definition, we compute

(34) d(02_3t13®b11):3(02_3b10®b”+...),
which shows 6(v3 hiobio) = v53biobi1 + - For v;'higbiols, the result follows
immediately from (3.4) and Proposition 4.2 in the next section. q.e.d.

Let x denote a cochain that represents . Then it is shown in [7, Lemma
4.4] that d(x) = v3f, mod (3) for f, that represents —v; 'y, mod (3,v;) (In
[7], x is denoted by X(0)). So we have a cochain 4 such that

(3.5) dix)=vif, mod (3) and d(f,) =34

in the cobar complex Q*E(2),. Then A is a cocycle of H*°E(2),.
Furthermore, we have

LEMMA 3.6. d(fy) = +3f,®z mod (9) in the cobar complex Q*E(2),.
Here z denotes a cocycle that represents the generator (.

Proor. The projection E(2), — E(2),/(3) sends A4 in (3.5) to a cocycle,
which is also denoted by 4. By virtue of Lemmas 3.2 and 3.3, we put

[4] = kivy ' hiobiola + kavy ' oL,

where [A4] denotes a cohomology class represented by 4 € Q*E(2),/(3). In
fact, f, may be replaced by f, -+ kv;313 ® by; for some k € Z/3 if necessary.
Since d;([A]) =0 and d,(v3'yy) = 3[4] by definition,

0 = k103 °b1ob11 (s + ka(k1vy ' hiob10ls + kavy 'Wola)Cs,

by Lemma 3.3. Noticing that C% =0 and v2‘3b10b11£2 # 0, we see that k) =
0. On the other hand, if 4 represents 0, then we have an element v5'y, in
H*PE(2),. Since H*°E(2),/(3) =0 by Lemma 3.2, v;'y, generates a Z3)-
free submodule in H*°E(2),, which contradicts Lemma 2.1. Therefore A
represents a non-zero element. This means that k, = +1. g.e.d.

LEMMA 3.7.  Put vyt = vpty + 017 and v38; = v38] + vi0pt.  Then d(vy1y) =
vibio and d(v3t}) = —vlbyy. Furthermore, there exists a cochain ue Q*E(2),
such that

d(u) = 026 @ by + v26 @ by mod (3, 07).

Proor. The first statement is checked by a routine computation.
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Turn to the second. We obtain an element u’e Q*E(2), such that
d(') = vty ® by + bio ® v35 mod (3,v;) from the relation v2h11b1o = —hiobiy
in H3E(2),/(3,n1) of (3.1). Put d(u') = vt; ® b1y + b1o ® v3£} + vyw mod
(3,v3) for some cochain w. Sending this by d, we have 0 = v?b1o ® by — b1o ®
vZby + vid(w) mod (3,v3). Then we H>32E(2),/(3,0}), which is 0 since
H?%E(2),/(3,v1) = {v2b113} by [6, Th. 5.8] and d(vzb11(;) # 0 mod (3,07)
by [7, Lemma 3.3]. Therefore, we see that there is a cochain w such that
d(w) = w, and put u” = u' — v;w to obtain d(u") = vyt ®bii +bi® vt mod
(3,v}). There is also a cochain a such that d(a) = vt} ® big — b1o @ V31
mod (3,v?), and so we have the lemma by putting u = u” + a. q.e.d.

LeMMA 3.8. There exists a cochain w such that
dw)=06; ® fo— X' @by mod (3,0}).

Here x' denotes a cocycle that represents ¢ mod (3,v1) and t, ® x' is ho-
mologous to ty ® x mod (3,v}).

ProoF. This is shown in the same way as the above lemma. By the
equation Aoy, = —&bjp in (3.1), we have a cochain w’ such that d(w') = v2t) ®
fo—b1o®x mod (3,v1). Putd(w') = Tl ® fo — b1o ® x + v1a for a cochain
a, and send this by d. Then we see that a is a cocycle of Q41°E(2),/(3,v?).
Since we see that H*!9E(2), /(3,v}) = {hiob10{2} by [7], a =kt ® z ® by for
some k € Z/3. Furthermore, b9 ® x is homologous to x ® byo, which yields a
cochain w such that d(w) = 0,; ® f, — (x — kvt ® z) @ byp. Now put x’ =
x —kvity ® z, and we have the lemma. q.e.d.

LemMA 3.9. In the cobar complex Q*E(2),, there exists a cochain y such
that

d(y) =1 ®x—vlv2_lf| — vlz®x—-kvlv2‘2t1 ® b1y mod (3,0,2)

for some ke Z/3. Here f| denotes a cocycle that represents .

Proor. It is shown in [7, Lemma 6.4] that there exists a cochain Yj
such that d(Yo) =t @ X + v105°7° @ X + vv;'f ® X mod (3,v7). It is also
shown that x =X +v1v;'Y) +kv102‘2b11 for some ke Z/3 in [7, Proof of
Lemma 4.4.]. Take now y to be Yj, and we obtain

dly) =1 ®(x—vlvz_1Y1 —kvlvz"zb”) — vlz®X+v|vz_lt2®X

mod (3,v}). Since f; =1 ® Y1 — 1 ® X by the proof of [7, Lemma 4.4], we
have the result. q.e.d.



352 Katsumi SHIMOMURA

4. The E,-terms HSMg for s> 3.

Let E(2,1), denote Z/3[v;,v53). In [7), H*M] is given as the direct sum
of three E(2,1),-modules A4;:

H*M|! = 40 ® 4) @ 4,.
In order to describe the modules 4;, we use the following notation:

k(1), = Z/3[v]

K(1), = Z/3pf"]
PE = Z/3[b1o] ® 4({2)

E(2,n), = Z/3[v1, ;']

Fuy = Z/3[v53){v2/01, v2h10/01,v3h11 /01, 02b11 01}
Fy = Z/3[F[{v;" /o1, 010/07, 03 k11 [0}, 03 b fo1}
Fiiy = Z /3o 1{&/v1, Yo /v1, 029 /01, b11& /01 }
Fo = Z[3[vF’{&/v}, 0320 /01,03 ¥, Jo1, b é/vi}
F,=EQ2,n+ 2)*{0%3"“ o3 v§"+]h|0/vf'3"+1,

8.37 103741 . 37(5 +3)+(3"=1)/2 » ;. 4.3n
vy hio/v; ) &/}

Then the modules 4; are given as follows:
AO = (K(l)*/k(l)*) @ A (hIO,C2)
A=Y F®A4)

n>0
A2 = (Fpy © Fy) © Fjy ® F)) © PE,

Consider the exact sequence H'OM| KA H*°E(2),/(3,v}") —» H>=*¥ M|

. i 103 v
associated to the short exact sequence 0 — E(2),/(3,v}') —> M| — M|

— 0. Then the structure of H*M| shows immediately the following:

i

LemMa 4.1.  For each i > 0, each element of H*°E(2),/(3,v}') is divisible

3i_3i—|
by v .

Now we obtain the next proposition corresponding to [5, Lemma 2.6]. In
fact, the proof of [5, Lemma 2.6] also works at the prime 3 by the above
lemma.
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PROPOSITION 4.2.  For each integer i> 0, there exists a cocycle z; of
QLOEQ2), /(3 0}") such that z; = z € Q'K(2),.

By virtue of this proposition, we abuse the notation z for a cocycle that
represents {, as we did in the previous papers for a prime >3.

Consider the connecting homomorphlsm 5:HSM? — H**' M| associated
to the short exact sequence 0 — M| - M} EA MZ —0.

LEMMA 4.3. 6(v3¢/3v3) = vay /vy

Proor. In [7, Lemma 4.4], it is shown that there exists a cochain X (2)
such that d(X(2)) = v}z* ® X3 — v}v;3f] mod (3,0). Since H>M) —0
the congruence holds mod (3,0$) if we replace X (2) by a suitable cochain x”
Put now d(x")=viz>® X3 - vlvz3f1+3A mod (9,0%). Then 0= 30111
®z2>® X3 - 3vit ®v33f] +3d(4) mod (9,v%). This implies that Ae
H*®E(2),/(3,v}), which is Z/3{vivayy} by [7]. Note that 3v} ® z2* ® X3
and v}t ® v;°f; are homologous to zero and v}h;; ® X mod (9,v}), re-
spectively, by Lemma 3.9 and (3.1), and that d(—viv:(vaf,)) = vivat; ®
fo+v3b1; ® X mod (3,v}) by [7, Lemma 4.3] whose right hand side is homol-
ogous to —vib;; ® X by (3.1). Thus d(4) = d(—viv3fy+---), and we see
that 4 is homologous to —v?v3f,, and that d(x") = —3vlvzf0 mod (9, v7).
Since x” and f, represent v2¢ and —v; 'V, respectively, we have the lemma.

q.e.d.

Put
G* = (i (Fuy © F}p)) ® EQ2,1), [bio] ® A(0))* = H M}

for i, : H*M] — H*M} given by i.(x) = x/3.

LEMMA 4.4.  For the connecting homomorphism & : H* M} — H*T' M/, 6(x)
for a generator x of G° is obtained by the following equations:

3(v2/3v1) = —vah1o/0},

8(vah1o/301) = v b1 Jv1 + v2hiola/v1,
d(v3hy1/301) = v3bio/v1 + V21 Co /01,
d(v2b11/301) = v3hy1b1o/vF;
S(va(v; 'Wo)/301) = Eb1o/v} + va(v;'Wo)Ca /01,
8(&/3v1) = vy /o1 + (1 & 1)E /vy + kvy  hyrbio /vy
8(bni&/3v1) = 03 (v " Wo)bro/v1 + (1 £ 1)b11&l /vy + kvahiobly /1,
S(vah1/301) = bué/vi £ vy 5o/ v1.
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Proor. Note that vphyg is represented by a cochain vyf) = nr(v2)ty — vi1ta
of Lemma 3.7. In the cobar complex Q*E(2),/(9,v;), we compute

d(vlzvz) = 6u1t17g(v2) + 3012t2 = 601527;;
d(vlzvztl) =6v1ty @ vat + 31712t2 ® t

= 6vvat; ® I, + 61)12‘L'® 1,

d(3l)102[12) = 31712[? ® t123 — 6vit ® I,

d(3vint) = 3]} @, + @1, + 1 ® T+ 1@ 1,)

d(—3v12v2‘2t3) = 3012052(t1 ® 123 +16H® t?z + l)zb]]);
(4.5)
d(viv3it]) = 6vit) ® V35 + 6vivat, ® 1] + 3viv3big

= 6vlu§t1 ® t134 + 1201202t‘1‘ ® t]37

+ 61)%1)2[2 ® 1137 + 30120%1)106

2 2,2
d(6vlv§t2) = 1211121)2t13 ® L, — 6viv3t ® t134 — 6v; Uzb106

d(3viv;'8) = =303, /(8 @ 65 + 65 ® £ + v3b3))

= 30,88 ® Lo+ 0,8 ® t137 + vgb10)6.

The underlined terms with the same number sum up to zero except for the
terms numbered 6 and 7. The terms numbered 6 and 7 sum up to 3v?v3byo
and 6v}v3(, ® 13, respectively. These imply the first three equations. In fact,
8(la/3w1]) = [(i.)"d(v?a) /9v3], where [a] denotes a homology class represented
by a. Since d(b11a) = b116(a), the first equation gives 5(v2b11/3v1) = —vahiob11/
v?, which equals v?hy1b9/v? by Lemma 3.7. Thus we have the fourth
equation.

By Lemma 3.6 and the first equation in (4.5), we compute
(4.6) d(vivyfo) = 6v1028] ® fo + 3viv,fo ®z mod (9,07).

Now by Lemma 3.8, we have the fifth equation. Multiplying 4o to the fifth
equation yields 8(hjo\o/3v1) = hio&bio/v} + hioYola/v1. Lemma 3.9 says that
hioé = U]Uz_lllll + 0 & + kvlvz_zhlob“ for some k € Z/3 Since hlol/IO = —¢byo,
we have the sixth equation. The seventh follows immediately from the product
of b;; and the sixth equation. The multiplication of by and the fifth equation
gives the last one by the relations (3.1). Here note that 5%, = —v53b% holds in
H4E(2),/(3,v3). q.e.d.
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ProrosiTION 4.7. HSMO2 = G* for s=4,5. In other words, H*M} and
H’M} are Z/3[v}®]-modules generated by

v2b%, /301, v2h10b1002 /301, V3h11b10C /301, V2b11B10 /301

4.
¢ Yola/3v1,Ebro/ 301, b1 /301, 029,85 /301,
and
G5 v262,81/3v1, v2h1obdy /301, v3h11 b /3v1, vabi1biola /3ur;
Yobio/3v1,Eb102 /301, 01188 /301, 291 b10 /301,
respectively.

PrOOF. Put BS= G°. Then there is a canonical map f*: B* — H*M¢
sitting in the commutative diagram

Hs—IMOZ é Hlel b BS 3 B* 4 Hs+1Mll

| I T

HIME s HM! s B ME — HME 2 H™'M].

Lemma 4.4 implies that the J-images of the generators of B° are linearly
independent. Therefore we see that the above sequence is exact, and Lemma
2.2 shows that f* is an isomorphism. q.e.d.

5. On the E,-terms H°M? for s <3
We write down fhe submodules 45 = HSM|:
A3 = Z/3{vz2/v1,0;" /o1}
A} = Z/3{vzh10/v}, v2h0/v1,v3h11 /0], V3R [o1, 0200 /01,07 ' Ca for )}
A3 = Z/3{vaby1 /1,05 " b1y /o1, v2h1005/ 0}, v2h10la /01,
v3h1182 /08, v3hiCa /o1, vabio/v1, 03 ' bio/v1, €/}, &/}
A3 = Z/3{v2b110a/v1,v3 " b118a/v1, v2hobio/ VT, v2hiob1o /1
vahi1bio/v?, v3h11bro /o1, V261082 01, V5 b0l /01,
Wo/v1, 2o /v1, 020 /o1, 03 Wy Jo1, EG [0, EG o}
Now consider the map d, = di, : H*M] — H**'M]. Then [1, Prop. 6.9] shows
(5.1) di(v3/v}) = v3hy v

Here we compute:
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LEMMA 5.2. The Bockstein differential dy = 6i, acts up to sign as follows:
di(v2/v1) = vah1o/ V3, '

di(vy" /1) = 03"/ o1;

dy(v2ho/v1) = 03" b1y /01 + v2h1ola /1,

di(v3h11/v1) = v3 'b1o/v1 + v3 hila /o1,
di (0205 /1) = v2h1002/vF;

dy(v2b11/v1) = v3hy1b1o/ v},

dy (121082 /v1) = vy by /vt

di (v3h11 Gy /v1) = v3biola /v,
di(v2b10/v1) = v2hiobio/v7,
di(&/v}) = EG/vt,
di(&/v1) = vy "y fo1 + EG s
di(v2b11(3 /1) = UzhllbIOCz/Dla
dy (v2h10b10/v1) = v5 'b11b1o/V? + vahiobiola /1,
di (v3hnbio/v1) = vy b3 o1 + v3 hibrola /v,

di (v2b1002/v1) = v2hiob10l2 /15
di(E8/v1) = vy "G/,
di(Yo/v1) = Ebro/v} + Wola/v1,
di(v2yy /v1) = b &/vi.
The other elements of A, missing in the left hand sides are in the image of d.

ProoF. Lemma 4.3 and (5.1) show that v32y,/v; and v3hy;/v? are in the
image of d|. The other parts follow from Lemma 4.4, except for dj on v;!/v,
and &/vl.

For the exceptional cases, consider the diagram

oM — HM) s HMZ s HMZ —— HM]

S N L

i

1 x 3
Hs+1M02 Hs+2Mll HH_ZMg Hs+2Mg é Hs+3M11 .
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If we have a relation d(x/3) = fb1o + o, in Lemma 4.4, then we see that
Bbro/3 = —aly/3 in H*M, since i.(x) = x/3. Therefore, we compute

b10d(B/3) = d(Bbro/3) = —6(alz/3) = —06(a/3)(2 = —Pb10ols,

and so we obtain

3(B/3) = —BL,
up to Ker b;p. Note that b)y acts monomorphically on 4;. Now take § to be
the exceptional cases, and we have all dj. q.e.d.

Hence, we have

PROPOSITION 5.3. H’M} contains E(2,1),/(3,v))-module as follows:

HM? > E(2,1), {vf"/301}

H>*M§ > E(2,1),{v2b11/3v1, 0211002/ 3v1, v3h112 /301, v2b10 /301, & /307, & /301 }
H3M? > E(2,1),{v2b11(3/301, v2h10b10/ 301, 03 h11b10/ 301, 0261082/ 301
&Lo/3v1, Y9/ 3v1, 029, /301 }.

(2, 1),

H'M§ > E(2,1),{v2h10/3v1,05h11 /301,028, /301 }
2,1),
2, 1),

6. The Adams-Novikov differentials
Now consider spectra defined by cofiber sequences:
6.1) S°— p's® - N!  N'SLN' - N2 V(0) — o'V (0) — W,

and M? = L,N?. The Adams-Novikov differentials on 7,(L, W) is determined
in [7]. Leti: LW — M? denote the canonical map that induces i : M| — M.
Suppose that d,(x) =y in the E,-term for L,W. Then d,(x/3) =d,(i.x) =
i,y =y/3. In this way, we determine the differentials except for dy(v3'/3v;)
and ds(v3'¢/30}).

LEMMA 6.2. The Adams-Novikov differential d, is given (up to sign) by
d,(v2/3v;) =0, a’s(vg/3vl) = vghnbfo/&)., d5(0§/3vl) = vfh“blzo/3vl,
d,(v3/301) =0,  d.(05/301) =0,  do(vy'/301) = v3°b11b3y(2 /301,
d,(v2h1o/301) =0,  do(v3hio/301) = v2b3y/3v1,  d,(vIhio/301) = 0,

d (0311 /301) =0,  d(v3hi/3v1) =0,  do(v3hyi/301) = v3biibt, /301,
ds(v2b11/301) = vahiobiy /301, dy(v3b11/301) =0,
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ds(v]b11/301) = v]hiobiy/3v1,  ds(&/3v}) = v3°buibiola/301,
d(035/307) =0, ds(v3¢/307) = v3b11&biola /301,
d.(E/3v1) =0,  d(v3E/3v1) =0,  dy(v5E/3v1) = v3YebTy/301,
ds(o/3v1) = v3°buhiy/3v1,  dr(v3g) =0, ds(v5¥o/301) = v3b11EBT, /301,
ds(v29,/301) = Ebjo/3v1,  ds(v3¥1/301) = v3¢byy/3v1,  di(v3Yy/301) =
dy(b11E/301) = 0320, bip /301, d,(3b1E/301) =0,  dy(v3b11E/3v1) = 0.
ProoF. Here we show the exceptional cases. Lemma 4.4 shows
v3'b1o/301 = —v;'hnly/3 and  03'Ebyo/3vF = +03'Wela/301.
Now we compute
biods(v3"' /301) = dy(vy ' b1o/301) = —dy(vy ' hiila/301) = v3 bubiyCa/3v1,

and we have do(v3'/3v1) = v;°b11b},/3v1 as desired. In the same way, we
have the other case. q.e.d.

Now we display the chart of the Adams-Novikov spectral sequence:

2

(=]

\
L e e
\\w\l’?\ 1\\11)\1%,\ \1\\%‘\ \lvz \%\1 \;b£
DRI
hy o A, 0 1\ :

¢ gih
i ‘—%3 ho ! Ua .hl !
%15 3 39 75
0 ® 33 36
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[
f==)

/

48

2

(=)

/

96

Some of survivors are killed by other differentials derived from [7]:
ds(v3%3 /303) = 03" hyob3, /301,
d5(1)2’“1h11/9vl) = 021_2h10b10C2/3vl,
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(63)  ds(u3" " hyo /3023 ) = 4 p3 O 2ep2 130 (> 0),

ds(vg"+2t+8-3"h10/30110-3"+1) _ _v§”+21+5-3"+3(3""—1)/zéb%0/3vl (n>1).
This shows that,

___ THEorReM 6.4. The E-term of n,(M?) contains the module G® G* ®
GZ ® GZ*. Here E(2,1),-modules are given as follows:

G = Bs(2,2),{v2/3v1} @ Ba(2,2),{v3b11/301}
@ B3(2,2),{v]hio/3v1}
® By(2,2),{vah10/3v1,v5h11 /301, 03011 /301 },
G* = B5(2,2).{v]y1/301} @ Ba(2,2).{v3%0/301}
@ B2(2,2),{¢/301,03611¢ /301, 03b11&/301}
® Y (Bs(2,n+2) {03"¢/301 |ue Z — I(n)}
@ B2 P 0 ue I,
GZ = B5(2,2),{v2(>/301}
@ B3(2,2),{v3b11{2/301}
@ B2(2,2),{v2h10la/301, v3h1ila /301, v3h1185 /301, 03 k1o 301},
GZ* = Bs5(2,2),{v]y(2/301} @ B4(2,2),{v3¥ol2/301}
® B2(2,2),{¢0,/301}
® B1(2,2),{v3611&02 /301, v5b11EL5 /301 }
D Y (B3(2,n+2), {03 301 |ue Z — 1(n)}

n>1

® By(2,n+2) {03 *¢L /301 [u e I(n)}),
where Bi(2,n), = (Z/3)[vF>",b1o]/(bk,) and I(n) are given in the introduction.

PrOOF. Suppose that d,(x) =y # 0 in the Adams-Novikov spectral se-
quence for z,(M?). Then y is in the image of i, : H*M] — H*MZ, since y has
filtration >5. Lemma 5.2 shows that J(y) #0 for the connecting homo-
morphism 6: H*MZ — H*M|, and so we have d(x) #0 and d,(0(x)) =
d(y) in the Adams-Novikov spectral sequence for m,(L,W). Observing the
differentials given in [7] with Lemma 4.4, we see that there is no more new
differentials, and obtain the theorem. q.e.d.
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7. Application to f-elements

In [1], H'M¢} is determined and we see that
v3/3%/ e HOM?  if and only if (s,j,i+ 1) € B.

Consider the universal Greek letter map 1 =66 : H'M} — H?E(2),, where
J:H°M} — H'N; and 6': H'N} — H?E(2), are the connecting homomor-
phisms associated to the short exact sequences 0 — N} — M} — M — 0 and
0 — E(2), —» M{ — Nj — 0, respectively. Then the S-elements are defined by

Bojpivs = n(03/37v]).
We obtain the following immediately.

Lemma 7.1. Mod (3,v1), By = b, By = v2h11, and ﬁ6/3 = vgb” in the
E>-term Ez(So).

Furthermore, note that B =hiy € Ex(V(0)) and oy = hyp € E»(S°). The
generators of G then yields the following elements:

’7(”§I+1/301) = o1, ’7(”§’+4bll/3”1) = Por1Pes3,
103" hio/3v1) = Borprar,  n(v3 hio/301) = Boryou,
n(v3 2 /301) = [BoaBl),  n(03 " hi/3v1) = [BorssBil-
Now we prove the theorems in the introduction.
Proor oF THEOREM C. Consider the long exact sequences
o= . (LpS®) — . (LaNY) — 71 (L2S°) — - -
and
= (LINY) - 1,(M?) = 1 (LN — -
associated to the cofiber sequences of (6.1). Note that 7z,(LyS°) = Q@ and
n(LiN') = Q/Z3 ® A(y) ® 4

shown in [1], where 4 is the Z(3)-module generated by v, i /31 for i > 0 and
3fse Z. Therefore, the module G® G* ® GZ P GZ* given in Theorem 6.4
is isomorphically sent to 7,(L,S°). Theorem C now follows. q.e.d.

ProoF OF THEOREM A. Consider the localization map 1:S° — L,S°.
Since the induced map i, : 7,(S°) — 7.(L,S°) sends a f-element to the cor-
responding S-element, the non-triviality of products of f-elements in 7, (S?) is
deduced from the one in 7,(L,S°). The necessity follows immediately from
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Theorem C except for $,. For f,, note that By, 18> = [Bo,2B11C2 € 7(GZ) for
the universal Greek letter map #. Thus the necessity for f#, is shown.

In Lemma 6.2, we have dy(v3""*h19/3v1) = 05153, /301 and do (03 8h11/301)
= v3"**b,b},/3v1, which yield

(7.2)  do(Borya1) =PBiBors  and  do(Bosighi) = Por1Be/3Bt

in the Eo-term Eg(L,S°) as the image of the universal Greek letter map. In
the same manner, the equation d5(vg’+4C2/301) = v3"2hy1{,b% /30; in Lemma
6.2 yields

(7.3) ds(Bor14l2) = Pors1B2B1

in the Eo-term EJ(L,S°). If ¢ >0, then the equations (7.2) and (7.3) also hold
in the Adams-Novikov spectral sequence for ,(S°), since the elements
appeared in (7.2) and (7.3) are also defined in E,(S?). q.ed.

ProOF OF THEOREM E. In the proof of Theorem 6.4, we read off that the
elements on the 0-th line hit nothing except for the f-elements given by B¢.
Therefore, we obtain Theorem E. q.e.d.
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