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ABSTRACT. Let G be a finte group. We give a short exact sequence for calculating the

group SG(X) of based G-homotopy classes of based G-self-homotopy equivalences of a

G-CW complex X under certain conditions.

0. Introduction

For a based G-space X, the set δG(X) of based G-equivariant homotopy
classes of based G-equivariant self-homotopy equivalences of X forms a group
under composition of maps. In this paper, we study δG{X) for a G-CW
complex X under certain conditions. Throughout the paper, G is a finite
group and H a subgroup of G, all G-CW complexes are G-connected and have
G-fixed base points, and all G-maps and G-homotopies (denoted by ~) preserve
the base points *. For a G-map / : A —> B between G-CW complexes, we
consider the reduced cone CA = A x I/(A x {1}) U ({*} x /), the reduced
suspension SA = CA/A x {0} and the reduced mapping cone Cf = BU/CA
obtained from the topological sum of B and CA by identifying each (a, 0) e CA
with f{a) e B, where G acts trivially on / = [0,1]. Then a G-coaction of
SA on Cf defines a map λ in §1, whose restriction to Iirπ* yields the
homomorphism λ : i*([SA,B]G) —» δG(Cf), where /: B —» Cf is the inclusion
(Lemma 1.3). This homomorphism will be used in §3. In §2 SΌ(Cf) for
A = G/H+ A S", the «-fold reduced suspension of G/H+, is studied. Here
G/H denotes the left coset space of G by H with action given by

g (g'H) = (gg')H for g e G and g'H e G/H, and G/H+ the topological sum
of G/H and a single point *, the base point of G/H+. A homomorphism
φ x φ : δG{Cf) -> δG(A) x δG(B) is obtained when dimB ^ n - 1 and Λ ̂  2.
The image and the kernel of this homomorphism are studied in §2 and §3,
respectively. Then, a short exact sequence for calculating Sc{Cf) is obtained
in Theorem 3.5. The non-equivariant case is due to Barcus and Barratt [1,
Theorem (6.1)]. In §4 we show that if n ^ 2 then δG(G/H+ A Sn) is anti-
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isomorphic to the group U(Z{N(H)/H)) of units of the integral group ring

Z(N(H)/H) of N(H)/H, where N(H) denotes the normalizer of H in G

(Theorem 4.1). In §5 using the above anti-isomorphism and short exact

sequence, we study Sz2{Cf) for each Z 2-map / : Z \ A Sn+k -> Z\ A Sn with

« ^ A : - f 3 ^ 4 (Theorem 5.11) and further calculate Sz2{Cf) in the case of

k—\ (Proposition 5.16). In §6 we also study $z6(Cf) for each Zβ-map

f : Z% A Sn+k -• Z+ Λ Sn with n ̂  k + 3 ̂  4 (Theorem 6.6) and calculate

&z6{Cf) in the case of k = 1 (Proposition 6.10). We use the following

notation: [X, Y]G denotes the set of based G-homotopy classes of based

G-maps of X into Y. XH denotes the //-stationary subspace {x e X \ gx = x

for every geH}. (Zq)
k denotes the direct product of /c-copies of Zq. The

same symbol will be used for a G-map and its G-homotopy class. A G-CW

complex Z i s called G-connected (resp. G-l-connected) if the fixed point set XH

is connected (resp. simply connected) for every subgroup H of G.

1. Preliminalies

For a G-map / : A —> B between G-CW complexes we consider the se-

quence of the induced coίibering

where / and p are G-maps with respect to the natural G-actions. The coaction

(1.1) l:Cf-*CfvSA,

defined by collapsing the subspace A x {1/2} of C/ = BΌf CA to the base

point *, is a G-map and defines a map

(1.2) λ:[SAtCf]G^[Cf,Cf]β

by λ(aΐ) = v ( l v α)/ for oce [SA,Cf]G, where y denotes the folding map.

Then we have the following, which will be used in §3.

LEMMA 1.3. λ(<x + β) = λ(aΐ)λ(β) for ote[SA,Cf]G if β belongs to the

image of 4 : [SA,B]G -> [SA, Cf]G.

PROOF. If β = ίβ' for some βf e [SA,B]Φ then λ{μ)β = βhy the definition

of λ. For the natural G-comultiplication /' on SA, (/ v 1)/ = (1 v /')/. These

equalities, λ(<ήβ = β and (/ v 1)/= (1 v /')/, yield

λ{μ)λ(β) = V μ ( α ) v λ(a)β)l =

a v β)(l vΓ)l = λ(a + β). q.e.d.
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2. Homomorphism φ x φ and its image

In this section we assume that A = G/H+ A Sn with n ^ 2 and B is a

G-CW complex; we consider the mapping cone

Aen+ι)

of a G-map f : A ^ B. Note that G/H+ Λ Sn = \/.(#,77///+ Λ Sn), the one

point union of ^-spheres with action given by g (giH/H+) = (ggi)H/H+.

LEMMA 2.1. Tf άimB £n-l, then U : [£,£]<? -> [£, C/]G am/ p* :
are bijectίve.

PROOF. Let L be a subgroup of G. Since the fixed point set Cj? =

BLUf(((G/H)L)+ A en+ι), ( C / , 5 L ) is ^-connected (cf. [8, II, (3.9) Theorem]).

Hence i* : [B,B]G -• [Λ, C/]G is bijective by [2, II, (5.3) Corollary]. Also

SA = G/H+ A Sn+ι implies that [SB,SA]G = [B,SA]G = 0 by [2, II, (5.2)

Lemma]. Therefore, the Puppe sequence (cf. [2, III, (2.2)])

> [SB,SA]G ^ [SA,SA]G - C [Cf,SA]G - ^ [B,SA]G >

shows that p* is bijective. q.e.d.

Since the suspension S :[A,A]G^> [SA, SA]G is bijective (see §4), the above

lemma allows us to define a map

(2.2) ψ x ψ : [C/, C/]G - , μ , 4 G x [5, B]G

by φ = S~~ιp*~ιp* and ψ = i~ιi* under the assumption of Lemma 2.1.

Namely, *SV(λ) and ^(A) are the elements uniquely determined by the G-

homotopy commutative diagram

B —^ Cf —P-^ SA

(2.3) L(Λ) \h \sφ(h)

B —?—> C/ — ^ 5 ^ .

Therefore ^ x ^ is a homomoφhism of monoids, and hence a homomorphism

(2.4) p x ^

of groups can be defined as the restriction of the map φ x φ in (2.2) to

when dim B ^n — 1. From now on, we study the image of this homo-

moφhism φ x φ. Let £&4 = (SA)1, the space of free paths (not necessary

equivariant) in &4, and P&4 = {σ e ESA \ σ(l) = *}, the space of paths in &4,

where CJ acts on ESA and /\Ŝ 4 by (g σ)(ή = g - σ(t) for g e G and σ e ESA
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(or PSA), and let

Fp^Cf (q(x,σ)=x)

be the path ίibering induced from the fibering ΩSA —> PSA —> SA by

p : Cf-+ SA, where G acts diagonally on Fp = {(JC, σ) e Cf x P&4 |/?(JC) = σ(0)}.

Then a G-lifting i : £ -> Fp of i : 5 -> C/ can be defined by /(ft) = (6,0*) e ^ ,

where 0* denotes the constant path, 0*(ί) = *,/e J.

LEMMA 2.5. (i) Tfdimi? ^ Λ - 1, fλeΛ #* : [2*,/>]G —• [B, C/]G is bίjectiυe.

(ii) If B is G-l-connected, then z* \[A,B\G-* [A,FP]G is bijective.

PROOF, (i) Let L be a subgroup of G. Since &4 L = ((G/H)L)+ A

Sn+ι, πi{ΩSAL) = 0 for all i^n—l. Therefore, the homotopy sequence

of the fibering ΩSAL -> Ff -* C/ shows that #* : π z (F/) -> π/(C/-) is iso-

morphic for all i ^n — I and epimorphic for / = n. Hence, if dim B ^ n — 1,

then q* : [2?,/^—> [B,C/]G is bijective in the same way as in [2, II, (5.4)

Theorem].

(ii) Since A = G/H+ A Sn, it suffices to show that u : πn(BH) -> π Π (F/)

is isomorphic by [4, Lemma 2.1']. Let Ep = {(x,σ) e C / X £&4 |/?(x) = σ(0)},

where G acts diagonally on Ep. Then the fibering

induces the isomorphism r* : πi(Ep

H,Fp

H) —> Ui{SAH) for all /. Also, since

C/7 = £ " U/ {{G/H)Hγ A en+ι), Blakers-Massey Theorem implies that

p*:m(Cf,BH)^ni(SAH) is isomorphic for all / g j i + 1 (cf. [8, VII,

(7.12) Theorem]). The inclusion e : Cf -^ Ep defined by e(x) — (x,0p^) is a

G-homotopy equivalence satisfying p = re. Therefore, in particular,

(e,ι), = r:xp*:πn+x{Cf

H,BH)^πn+ι{Ep

H,Fp

H) and e* : m(Cf)^ m{Ef) for

/ = n and n + 1 are isomorphic. Thus, the equality ei = ui gives rise to the

commutative diagram

> π Λ + i ( C / ) > πn+ι(Cf,BH) -±+ πn(BH) ^ U π n ( C / ) > 0

> πn+χ(Ef*) > π w + i ( £ / , F / ) -i-> πn(Fp

H) -?U πn(Ep

H) > 0

whose top and bottom rows are the homotopy sequences of the pairs (Cf,BH)

and (Ep

H,Fp

H), respectively. This diagram shows that ι* : πn(BH) -^ πn(Fp

H) is

isomorphic by the five lemma. q.e.d.
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Let φ x φ be the homomorphism in (2.4). Then we show the following in

the same way as in the non-equivariant case due to Rutter [6, Theorem 4.6].

LEMMA 2.6. If B is GΛ-connected and dimB ^n—\, then the image of

φ x φ is equal to

M={(huh2)eSG{A)xSG{B)\h2f=fh in [A,B]G}.

PROOF. Let (h\,h2) be any element of M. Then, each G-homotopy

h2f~fh\ allows us to construct a G-map h : C/ —> C/ such that hi ~ ih2 and

Sh\p ~ ph, that is, φ(h) —h2 and Sφ(h) = Sh\ in (2.3). Therefore, to prove

M c Im(^ x φ), it suffices to show that the above element h is a G-homotopy

equivalence. For each subgroup L of G, h\ and h2 induce the isomorphisms

hu : Hi(AL; Z) -> Hι(AL; Z) and Λ2* : # / ( £ L ; Z) -* H^B1; Z) for all /,

respectively. Therefore, h induces the isomorphism A* : Hi(Cf Z) —•

Hi(Cf Z) for all / by the five lemma, and hence it induces the isomor-

phism K : π, (C^) -> π, (C^) for all i by Whitehead Theorem. By [2, II,

(5.5) Corollary], this shows that A is a G-homotopy equivalence. Thus,

M a Im(^ x φ). Next, let h be any element of SG(Cf). Then, p*h = p*Sφ(h)

by the definition of φ, and each G-homotopy ph ^ Sφ{h)p allows us to

construct a G-map h : Fp ^ Fp such that the diagram

ΩSA —ί—> i> —^-> C/

(2.7) L^(Λ) \h \h

is G-homotopy commutative. Let i : B —> Fp be the G-lifting of /: 5 —> C/ in

Lemma 2.5. Then, the equality ẑ = / and the commutativity of the diagrams

(2.3) and (2.7) yield

qιφ(h) — iφ(h) ^ hi = hqi ^ #/»,

and hence ιφ{h) ~ hi by Lemma 2.5 (i). Furthermore, let τ : A —• β ^ be a

G-map defined by τ(α)(0 = (α, 1 - 0 for a e A and f e /. Then, ΩSφ{h)τ =

τφ(h). Let τ̂  : A —> P ^ be a G-homotopy defined by T5(a)(i) = p{a,s(l — ή)

for α e i and s,t e /, and let hs : A —> Fp be a G-homotopy defined by

λj(tf) = ((fl,.s),τ.y(0)). Then this G-homotopy hs shows that if ~jτ. Now,

these G-homotopies and the equality, ιφ(h) ~ hi, if ~jτ and ΩSφ(h)τ = τφ(h),

and the commutativity of the diagram (2.7) yield

ιφ(h)f - hf c* hjτ ~jΩSφ(h)τ =jτφ{h) - ιfφ{h).

Hence, φ(h)f ~fφ(h) by Lemma 2.5 (ii). Thus, Im(^ x φ) a M. q.e.d.
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3. Kernel of φ x φ and a short exact sequence

In this section we assume that A' = G/H+ A Sn~ι with n ^ 2 and B' is a

(7-CW complex; we also assume that f':A'-+B' is any G-map and that

/ = Sf : A = SA' -> B = ££'. Then we have

LEMMA 3.1. If B is G-l-connected, then there is an exact sequence of

groups

[SA,B]G - ^ [SA, Cf]G ±+ [SA,SA]G.

PROOF. An isomorphism πn+ι(Cf,BH) * πn+ι({(G/H)H)+ A Sn+ι)

obtained by Blakers-Massey Theorem yields an exact sequence

πn+λ{BH) -±+ πn+ι{C?) -^ πn+ι(((G/H)H)+ A Sn+ι),

which implies this lemma by [4, Lemma 2.1']. q.e.d.

Let λ be the map in (1.2) and φ x ψ the homomorphism in (2.4). Then

we have

LEMMA 3.2. (i) λ(oc) = 1 + up for oce [SA, Cf]G.

(ii) If B is GΛ-connected and dimi? ^ n — I, then the kernel of φ x φ is

isomorphίc to

K = U[SA,B]G/{SfY[SB,Cf]G.

PROOF, (i) Since Cf ~ SC/> by the assumption / = Sf, Cf has the

natural G-comultiplication /' : Cf —> Cf v Cf, and / ̂  (1 v p)V for the G-

coaction / in (1.1). Therefore, by the definition of λ in (1.2),

A(α) = v ( l v α)(l v p)V = 1 + aφ.

(ii) The equality of (i) and the definitions of φ and φ in (2.2) give rise to the

commutative diagram

Since the row sequence in (3.3) is an exact sequence of groups if we replace λ

by p*, we have

(3.4) φ-\l) = 1 + lA"1^) - 1 +p*[SA, Cf]G = λ([SA, Cf]G).

Also, (3.4), (3.3) and Lemma 3.1 yield



On equivariant self-homotopy equivalences 549

Ker(p xψ)* (Sφ)-\l) Π λ([SA, Cf]G)

= λ(U[SA,B]G).

Moreover, by (3.3) and Lemma 3.1 we have (Sf)*[SB, Cf]G c U[SA,B)G and by

Lemma 1.3 and (i) of this lemma we have a group isomorphism

λ(h[SA,B]G) * k[SA,B]G/(Sfy[SB,Cf}G. q.e.d.

Now Lemmas 2.6 and 3.2 give the following theorem, which is due to Barcus

and Barratt in the non-equivariant case [1, Theorem (6.1)] (cf. [5, Theorem

2.12]).

THEOREM 3.5. Let A' = G/H+ A Sn~ι with n ^ l and B' a G-CW

complex, and let f': A' —> B' be a G-map. If B = SB' is GΛ-connected and

dimB ^n- \, then for the mapping cone Cf = BUf {G/H+ A en+x) of the

G-map f = Sf : A = SA1 —> B = SB' with the natural G-action, there is an

exact sequence of groups

0 > K -±-> SG{Cf) A M > 1

with

K = U[SA,B]G/(Sf)*[SB, Cf]G and

M={(huh2)egG(A)x£G(B)\h2f=fhι in [A,B}G}.

4. Anti-isomorphism: SG(G/H+ A Sn) s U(Z(N(H)/H)) (n ^ 2)

Let G be a finite group and H a subgroup of G. Note that (G/H)H =

N(H)/H, where N(H) denotes the normalizer of H in G. Then we have

THEOREM 4.1. Ifn ^ 2, then the group SG{G/H+ A Sn) is anti-isomorphίc

to the group U(Z(N(H)/H)) of units of the integral group ring Z(N(H)/H) of

N(H)/H.

PROOF. TO prove this theorem, it suffices to show that there is a ring anti-

isomorphism [G/H+ ASn,G/H+ A S"]G^Z(N(H)/H). Let {giH} be the

left decomposition of N{H) with respect to H, and let the homotopy class of

the composite of a map m : Sn = H/H+ A Sn -» S" = giH/H+ A Sn of degree

m and the inclusion of giH/H+ A Sn into N(H)/H+ A Sn be identified

with mgiH eZ(N(H)/H). Then by [4, Corollary 2.2], the restriction to

Sn — H/H+ A Sn and this identification yield the following isomorphism Φ of

additive groups.

Φ : [G/H+ A Sn, G/H+ A Sn}G ^ πn(N{H)/H+ A Sn) ^ Z(N(H)/H).
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Let u and υ be any two elements of the set [G/H+ A Sn,G/H+ A Sn]G and
j : N{H)/H+ A Sn -+ G/H+ A Sn the inclusion. Since v is equivariant,

v\(giH/H+ A Sn) = QiH • v\(H/H+ A Sn).

If u\(H/H+ A Sn) = m0H + m^jtf + + m ^ t f e πn(N(H)/H+ A S"), then

Φ(iw) = vj(m0H -\-rn{gιH + - + mkgkH)

= (Ό\(H/H+ A Sn))m0 + + (v\(gkH/H+
 A Sn))mk

= mo(H v\(H/H+ A Sn)) + + mk(gkH v\{H/H+ A Sn))

= m0H Φ(v) H h mkgkH Φ(v)

= Φ{u) Φ{v).

Thus Φ is an anti-isomorphism of rings. q.e.d.

For a finite abelian group G, let «2 denote the number of its elements of
order 2 and c the number of its cyclic subgroups (including {e}). Then we
have the following theorem due to Higman (cf. [3, Theorem 4.1]).

THEOREM 4.2 (Higman). Let G be a finite abelian group. Then

U{ZG)= ± G x F ,

where F is a free abelian group of rank (\G\ + «2 + l)/2 — c.

Now Theorems 4.1 and 4.2 immediately give the following.

THEOREM 4.3. Let G be a finite abelian group and H a subgroup of G. If
n^2, then

£G{G/H+ A Sn) ^ Z 2 x G/H x (Z)*, fc = ( |G/#| + Λ2 + l)/2 - c,

where Z2 = {1,-1}, n2 denotes the number of elements of order 2 and c denotes
the number of cyclic subgroups of G/H.

Let Eq be the q x q identity matrix and Fq the q x q matrix defined by

(4.4) F,= (El '
If G/H is isomorphic to the cyclic group Zq of order q, then SG(G/H+ A Sn)
has the torsion subgroup Z 2 x Zq generated by — Eq and Fq.

COROLLARY 4.5. In the above theorem, if G/H is isomorphic to the cyclic
group Zq, then

SG{G/H+ A Sn) ^Z2xZqx (Z)*, k = [q/2] + 1 - d(q),
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where d(q) is the number of divisors of q and the torsion subgroup Z2 x Zq is

generated by —Eq and Fq, and, in particular,

( Z2 xZq, if q = 2,3,4,6
SG(G/H A& ) = < _ „ /7vfc r - ^c

yZ2x Zqx (Z) , if q is a prime ̂ 5 ,

where k = (q - 3)/2.

5. «zτ{Cf) for / : Z+ Λ Sn+k -> Z+ Λ S"1 (Λ ̂  A: + 3 ̂  4)

In this section A = ZJ Λ 5 W + / : and B = Z^ A Sn with « ^ it + 3 ̂  4; for

each Z2-map / : A —• 5 we consider its mapping cone

(5.1) Cf = {Z\ A S") Of (Z+ Λ en+k+ι).

Since [A,B]Zi^πn+k(Z^ A Sn) ^πn+k{Sn) ®πn+k{Sn) by [4, Lemma 2.Γ],

the Z2-homotopy class fe[A,B]Z2 can be written as f = Sf for some

/ ' G [Zj Λ 5 w + / : - 1 ,Zj Λ 5rn~1]Z2 and

(«) / = ( ; ; •

We first calculate the group K in Theorem 3.5. By an argument similar to the

proof of Lemma 2.1 we have

(5.3) U : [SB,B}Zi -> [SB,Cf]Z2 is epimoφhic.

Let ηn denote the generator of πn+\(Sn) — Z2. Then by [7, Proposition 3.1]

(5.4) ηnSft = fηn+k for any f e πn+k{Sn) (n ̂  k + 3 ̂  4).

Since [SB, B]Zi s π n + 1 (5") φ πM +i(Sn) = Z2{ηn} θ Z 2 {^} and similarly

[SA,A}Z2sZ2{ηn+k}ΘZ2{ηn+k}, (5.4) yields

(5-5) (Sfy[SB,B]Zl=f.[SA,A]22.

Now, (5.3) and (5.5) yield

(5.6) (SfYlSB, Cf]Z2 = (S/)*i;[5Λ,2?]Z2 = i ,/ φ [S^,4 Z 2 = 0.

As in the proof of Lemma 3.1 we have an exact sequence of groups

[SA,A]Zi Λ [SA,B]Z2 - ^ [SA,Cf]Zl.

Therefore, (5.6) yields

(5.7) K = i.[SA,B]Zi s [SA,B]Z2/f>[SA,A}Z2

S πn+k+ι(S")φπn+k+1(S'')/{(fιη,f2η),U 2η,fιη)},
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where η = ηn+jζ and {x,^} denotes the subgroup generated by x and y. We

next calculate the subgroup M of Sz2{A) x $z2(B) in Theorem 3.5. Let

E = E2 be the 2 x 2 identity matrix and F = F2 the 2 x 2 matrix of order 2

defined in (4.4), and let

a=(-E,-E), b = (F,F), c=(E,-E), and d=(E,F).

Then, by Corollary 4.5

(5.8) δZl{Λ) x $z2(B) ^ ( Z 2 ) 4 generated by a,b,c and d,

and for the presentation of Z2-homotopy class / in (5.2) we have

f(-E) = (-E)f and fF = Ff always hold,

(5.9)

Now

(5.10)

/ =

/ =

/ =

= (-£)/

-Ff

- (~F)f

by Theorem 3.5,

M s <

' {ZiΫ

{z2γ
(ZiΫ

(ZiΫ
(Zi)4

if and only

if and only

if and only

(5.8) and (5.9) we

if /1//2, fxΦ •
if /, φ f2 and lft

if /j = f2 and /]

if /1 # h a n d /1

otherwise.

if 2/,=

if fx =

if / , =

have

- f2 and

= 0 for

Φ - / 2 ,

0 for / = 1 and 2,

-fi

If φ 0 for i = 1 or 2,

/ = 1 and 2,

Consequently by Theorem 3.5 we have

THEOREM 5.11. Ifn^k + 3^4, then for each Z2-map f : Z\ A Sn+k -+

Z\ A Sn, its Z2-homotopy class f e [Zj Λ Sn+k,Z% A Sn]Zi can be written as

(5.2), and for its mapping cone Cf there is an exact sequence of groups

where K and M are the groups in (5.7) and (5.10) respectively.

Using this theorem, we further calculate the group $z2{Cf) for k=\.

Since the group πn+\(Sn) in (5.2) is isomorphic to Z 2 generated by ηn, for each

Z2-map / : A —> B its Z2-homotopy class / e [A,B]Zi can be written as

«->*• * ' - > • • •

Also, since the group π w + 2 (5") in (5.7) is isomorphic to Z 2 generated by ηnηn+\,

the group K in (5.7) is trivial when s φ t, and hence by Theorem 5.11 and
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(5.10)

(5.12) SZ2{Cf)^{Z2γ if sΦt.

We now assume that s = t = 0. Then the group K is isomorphic to Zι © Z2,

and hence Theorem 5.11 and (5.10) yield the exact sequence of groups

(5.13) 0 >Z2®Z2^ SZl{Cf) ^U ( Z 2 ) 4 ,1,

where (5.8) shows that the right-hand group (Z2)4 is generated by a,b, c and d.

Furthermore, since Cf ~ (Z\ A Sn) v ( Z j Λ Sn+2) by (5.1), the right inverse

σ : (Z2)4 —> Sz2{Cf) of the homomorphism φ x ψ can be given by

Therefore, (5.13) is a split extension, and hence $z2(Cf) is isomorphic to

the semi-direct product (Z2 θ Z2) x (Z2)4. Furthermore, for τ/2 = ηnηn+\ we

define

(5.14)

Then, P4 and QΔ> generate λ(Z2 Θ Z2) by the definition of λ, and hence $z2(Cf)

is generated by σ(ά),σ(b),σ(c),σ(d),P4 and ^4. Thus, we have

(5.15) SZl{Cf) ^D4x ( Z 2 ) 3 if s = t = 0,

where the direct factor D4 is the dihedral group of order 8, and (Z2)3 is

generated by σ(a),σ(b) and σ(c). If s = t — 1, then the group K is isomorphic

to Z2 by (5.7) and the group M is isomorphic to (Z2)4 by (5.10). Therefore,

by (5.12), (5.15) and Theorem 5.11 we have

PROPOSITION 5.16. If n ^ 4, then for each Z2-map f : Z\ A Sn+ι —>

Z\ A Sn, its Z2-homotopy class f e [ Z J ' Λ Sn+x,Z^ A Sn)Zi can be written as

and for its mapping cone Cf, we have

Λ i > \ z ) 4 x ( Z 2 ) 3 ifs = t = O.
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If s = t = I, then there is an exact sequence of groups

6. for / : Z% A S n+k
A Sn

We take A = Z+ Λ Sn+k and B = Z\ A Sn with n ^ it + 3 ^ 4, where
Z 2 = Z 6 /Z 3 . Since [^,5]Zό ^ ^^(S" 1 ) θ πw+^(5'n), each Z6-homotoρy class
/ G [yί?JS]Z6 can be written as/ = Sf for some/' e [Z£ Λ Sn+k~\Z^ A Sn~ι]Z6

and

(6-1) / =
/i Λ /i /, fi /, e πn+fc(.S"), 1 = 1,2.

/i fi fx h /i

Let K be the group in Theorem 3.5. Then, as in §5 we have

(6.2) K ^ πn+k+ι(Sn) Θ πn+k+x{Sn)l{(fληn+kJ2ηn+k), (f2ηn+kJ\ηn+k)}

We calculate the subgroup M of S'z^A) x $ze(B) in Theorem 3.5. Let Eq be
the q x q identity matrix and Fq the q x q matrix of order q defined in (4.4),
and let

a = (Fβ,F2), b = (-E6,-E2),

Then by Corollary 4.5

(6.3) £Z6(A)x£z,{

and

f{-Eβ) = (~

(6.4)

c=(E6,-E2) and d=(E6,F2).

= Z^ x (Z2) generated by a,b,c and d,

and / F 6 = F 2 / always hold,

/ = (-E2)f if and only if If = 0 for / = 1 and 2,

/ = Fif if and only if fx = /2,

/ = (-F 2 )/ if and only if /J = - / 2

for / in (6.1). Now by Theorem 3.5, (6.3) and (6.4) we have

(6.5)

M =*

Z 3 x (Z2)
2 if /, ^ /2, /, φ -f2 and 2/) φ 0 for i = 1 or 2,

Z3 x (Z2γ if /, ^ /2 and 2ft = 0 for / = 1 and 2,

Z3 x (Z2γ if /, = /2 and /, # -/ 2 )

Z3 x (Z2γ if /, Φ f2 and /, = -f2,

. Z3 x (Z 2 ) 4 otherwise.

Consequently by Theorem 3.5 we have
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THEOREM 6.6. If n^k + 3^4, then for each Z6-map f \ Z% /\ Sn+k -»

Z j Λ Sn, its Z6'homotopy class f e \Z% A Sn+k,Z^ A Sn]Zβ can be written as

(6.1), and for its mapping cone Cf there is an exact sequence of groups

where K and M are the groups in (6.2) and (6.5) respectively.

We further calculate the group Sz6{Cf) for k=\. Since the group

πn+\(Sn) in (6.1) is isomorphic to Z 2 generated by ηn, we have fx— sη, f2 = tη,

η = ηn with s, t = 0,1 in (6.1). Also, since the group πn+2(Sn) in (6.2) is

isomorphic to Z2 generated by ηnηn+\, the group K in (6.2) is trivial when s φ t,

and hence by Theorem 6.6 and (6.5)

(6.7) SZβ{Cf) ^ Z 3 x ( Z 2 ) 3 ΊϊsΦt.

We now assume that s = t = 0. Then the group K is isomorphic to Z2 Θ Z2,

and hence Theorem 6.6 and (6.5) yield the exact sequence of groups

(6.8) o > Z 2 Θ Z 2 -L* Sz^Cf) ^ Z 6 x ( Z 2 ) 3 > 1,

where (6.3) shows that the right-hand group Zβ x ( Z 2 ) 3 is generated by a, b,c

and d. Furthermore, since Cf ^ (Z2 A Sn) v ( Z j Λ Sn+2), the right inverse

σ : Zβ x ( Z 2 ) 3 —> Sz2{Cf) of the homomorphism ?̂ x ^ can be given by

F2

0

-E2

0

0 1

0

E6

where i^ is the matrix in (4.4). Therefore, the sequence (6.8) is a split

extension, and hence ^Zό(C/) ^ (Z 2 0 Z 2) x (Z 6 x (Z 2) 3). Let Ps and Q%

be 8 x 8 matrices defined by

βi2 = ( β β δ),

where P and β are the 2 x 2 matrices in (5.14). Then, Pg and βg generate

λ(Z2@Z2) by the definition of λ, and hence $z6(Cf) is generated by

σ(α),σ(Z?),σ(c),ίτ(ί/),P8 and g δ Thus, we have

(6.9) £Ze(Cf) ^D4xZ6x (Z2)
2 if j = t = 0,
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where the direct factor Z§ x (Z2)2 is generated by σ(a),σ(b) and σ(c). If

s = t — 1, then the group K is isomorphic to Z2 by (6.2) and the group M is

isomorphic to Z3 x (Z2)4 by (6.5). Therefore, by (6.7), (6.9) and Theorem 6.6

we have

PROPOSITION 6.10. If n^4, then for each Z6-map f : Z% A Sn+ι —>

Z\ A Sn, its Z6-homotopy class f e \Z% A Sn+ι,Z% A Sn]Zβ can be written as

Ssr, trj sr, trj sr, tη\

\tη sη tη sη tη sη)

and for its mapping cone Cf we have

(Z3X(Z 2) 3 if sΦt

\ D4 x Z 3 x (Z 2 ) 3 if s = t = 0.

If s = t = \, then there is an exact sequence of groups

0 _> z 2 -> SZe{Cf) ^ Z 3 x (Z 2 ) 4 -+ 1.
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