On equivariant self-homotopy equivalences of G-CW complexes

Norichika SAwashita

(Received July 15, 1999)
(Revised April 27, 2000)

Abstract

Let G be a finte group. We give a short exact sequence for calculating the group $\mathscr{E}_{G}(X)$ of based G-homotopy classes of based G-self-homotopy equivalences of a G-CW complex X under certain conditions.

0. Introduction

For a based G-space X, the set $\mathscr{E}_{G}(X)$ of based G-equivariant homotopy classes of based G-equivariant self-homotopy equivalences of X forms a group under composition of maps. In this paper, we study $\mathscr{E}_{G}(X)$ for a G-CW complex X under certain conditions. Throughout the paper, G is a finite group and H a subgroup of G, all G-CW complexes are G-connected and have G-fixed base points, and all G-maps and G-homotopies (denoted by \simeq) preserve the base points $*$. For a G-map $f: A \rightarrow B$ between G-CW complexes, we consider the reduced cone $C A=A \times I /(A \times\{1\}) \cup(\{*\} \times I)$, the reduced suspension $S A=C A / A \times\{0\}$ and the reduced mapping cone $C_{f}=B \cup_{f} C A$ obtained from the topological sum of B and $C A$ by identifying each $(a, 0) \in C A$ with $f(a) \in B$, where G acts trivially on $I=[0,1]$. Then a G-coaction of $S A$ on C_{f} defines a map λ in $\S 1$, whose restriction to $\operatorname{Im} i_{*}$ yields the homomorphism $\lambda: i_{*}\left([S A, B]_{G}\right) \rightarrow \mathscr{E}_{G}\left(C_{f}\right)$, where $i: B \rightarrow C_{f}$ is the inclusion (Lemma 1.3). This homomorphism will be used in §3. In §2 $\mathscr{E}_{G}\left(C_{f}\right)$ for $A=G / H^{+} \wedge S^{n}$, the n-fold reduced suspension of G / H^{+}, is studied. Here G / H denotes the left coset space of G by H with action given by $g \cdot\left(g^{\prime} H\right)=\left(g g^{\prime}\right) H$ for $g \in G$ and $g^{\prime} H \in G / H$, and G / H^{+}the topological sum of G / H and a single point $*$, the base point of G / H^{+}. A homomorphism $\varphi \times \psi: \mathscr{E}_{G}\left(C_{f}\right) \rightarrow \mathscr{E}_{G}(A) \times \mathscr{E}_{G}(B)$ is obtained when $\operatorname{dim} B \leqq n-1$ and $n \geqq 2$. The image and the kernel of this homomorphism are studied in §2 and §3, respectively. Then, a short exact sequence for calculating $\mathscr{E}_{G}\left(C_{f}\right)$ is obtained in Theorem 3.5. The non-equivariant case is due to Barcus and Barratt [1, Theorem (6.1)]. In $\S 4$ we show that if $n \geqq 2$ then $\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right)$ is anti-

[^0]isomorphic to the group $U(Z(N(H) / H)$) of units of the integral group ring $\boldsymbol{Z}(N(H) / H)$ of $N(H) / H$, where $N(H)$ denotes the normalizer of H in G (Theorem 4.1). In $\S 5$ using the above anti-isomorphism and short exact sequence, we study $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ for each \boldsymbol{Z}_{2}-map $f: \boldsymbol{Z}_{2}^{+} \wedge S^{n+k} \rightarrow \boldsymbol{Z}_{2}^{+} \wedge S^{n}$ with $n \geqq k+3 \geqq 4$ (Theorem 5.11) and further calculate $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ in the case of $k=1$ (Proposition 5.16). In $\S 6$ we also study $\mathscr{E}_{Z_{6}}\left(C_{f}\right)$ for each \boldsymbol{Z}_{6}-map $f: \boldsymbol{Z}_{6}^{+} \wedge S^{n+k} \rightarrow \boldsymbol{Z}_{2}^{+} \wedge S^{n}$ with $n \geqq k+3 \geqq 4$ (Theorem 6.6) and calculate $\mathscr{E}_{Z_{6}}\left(C_{f}\right)$ in the case of $k=1$ (Proposition 6.10). We use the following notation: $[X, Y]_{G}$ denotes the set of based G-homotopy classes of based G-maps of X into $Y . \quad X^{H}$ denotes the H-stationary subspace $\{x \in X \mid g x=x$ for every $g \in H\} . \quad\left(\boldsymbol{Z}_{q}\right)^{k}$ denotes the direct product of k-copies of \boldsymbol{Z}_{q}. The same symbol will be used for a G-map and its G-homotopy class. A G-CW complex X is called G-connected (resp. G-1-connected) if the fixed point set X^{H} is connected (resp. simply connected) for every subgroup H of G.

1. Preliminalies

For a G-map $f: A \rightarrow B$ between G-CW complexes we consider the sequence of the induced cofibering

$$
A \xrightarrow{f} B \xrightarrow{i} C_{f} \xrightarrow{p} S A
$$

where i and p are G-maps with respect to the natural G-actions. The coaction

$$
\begin{equation*}
l: C_{f} \rightarrow C_{f} \vee S A \tag{1.1}
\end{equation*}
$$

defined by collapsing the subspace $A \times\{1 / 2\}$ of $C_{f}=B \cup_{f} C A$ to the base point $*$, is a G-map and defines a map

$$
\begin{equation*}
\lambda:\left[S A, C_{f}\right]_{G} \rightarrow\left[C_{f}, C_{f}\right]_{G} \tag{1.2}
\end{equation*}
$$

by $\lambda(\alpha)=\nabla(1 \vee \alpha) l$ for $\alpha \in\left[S A, C_{f}\right]_{G}$, where ∇ denotes the folding map. Then we have the following, which will be used in §3.

Lemma 1.3. $\lambda(\alpha+\beta)=\lambda(\alpha) \lambda(\beta)$ for $\alpha \in\left[S A, C_{f}\right]_{G}$ if β belongs to the image of $i_{*}:[S A, B]_{G} \rightarrow\left[S A, C_{f}\right]_{G}$.

Proof. If $\beta=i \beta^{\prime}$ for some $\beta^{\prime} \in[S A, B]_{G}$, then $\lambda(\alpha) \beta=\beta$ by the definition of λ. For the natural G-comultiplication l^{\prime} on $S A,(l \vee 1) l=\left(1 \vee l^{\prime}\right) l$. These equalities, $\lambda(\alpha) \beta=\beta$ and $(l \vee 1) l=\left(1 \vee l^{\prime}\right) l$, yield

$$
\begin{aligned}
\lambda(\alpha) \lambda(\beta) & =\nabla(\lambda(\alpha) \vee \lambda(\alpha) \beta) l=\nabla(\lambda(\alpha) \vee \beta) l \\
& =\nabla(1 \vee \nabla)(1 \vee \alpha \vee \beta)\left(1 \vee l^{\prime}\right) l=\lambda(\alpha+\beta) . \quad \quad \text { q.e.d. }
\end{aligned}
$$

2. Homomorphism $\varphi \times \psi$ and its image

In this section we assume that $A=G / H^{+} \wedge S^{n}$ with $n \geqq 2$ and B is a G-CW complex; we consider the mapping cone

$$
C_{f}=B \cup_{f}\left(G / H^{+} \wedge e^{n+1}\right)
$$

of a G-map $f: A \rightarrow B$. Note that $G / H^{+} \wedge S^{n}=\bigvee_{i}\left(g_{i} H / H^{+} \wedge S^{n}\right)$, the one point union of n-spheres with action given by $g \cdot\left(g_{i} H / H^{+}\right)=\left(g g_{i}\right) H / H^{+}$.

Lemma 2.1. If $\operatorname{dim} B \leqq n-1$, then $i_{*}:[B, B]_{G} \rightarrow\left[B, C_{f}\right]_{G}$ and $p^{*}:$ $[S A, S A]_{G} \rightarrow\left[C_{f}, S A\right]_{G}$ are bijective.

Proof. Let L be a subgroup of G. Since the fixed point set $C_{f}^{L}=$ $B^{L} \cup_{f}\left(\left((G / H)^{L}\right)^{+} \wedge e^{n+1}\right),\left(C_{f}^{L}, B^{L}\right)$ is n-connected (cf. [8, II, (3.9) Theorem]). Hence $i_{*}:[B, B]_{G} \rightarrow\left[B, C_{f}\right]_{G}$ is bijective by [2, II, (5.3) Corollary]. Also $S A=G / H^{+} \wedge S^{n+1}$ implies that $[S B, S A]_{G}=[B, S A]_{G}=0$ by [2, II, (5.2) Lemma]. Therefore, the Puppe sequence (cf. [2, III, (2.2)])

$$
\longrightarrow[S B, S A]_{G} \xrightarrow{(S f)^{*}}[S A, S A]_{G} \xrightarrow{p^{*}}\left[C_{f}, S A\right]_{G} \xrightarrow{i^{*}}[B, S A]_{G} \longrightarrow
$$

shows that p^{*} is bijective.
q.e.d.

Since the suspension $S:[A, A]_{G} \rightarrow[S A, S A]_{G}$ is bijective (see §4), the above lemma allows us to define a map

$$
\begin{equation*}
\varphi \times \psi:\left[C_{f}, C_{f}\right]_{G} \rightarrow[A, A]_{G} \times[B, B]_{G} \tag{2.2}
\end{equation*}
$$

by $\varphi=S^{-1} p^{*-1} p_{*}$ and $\psi=i_{*}^{-1} i^{*}$ under the assumption of Lemma 2.1. Namely, $S \varphi(h)$ and $\psi(h)$ are the elements uniquely determined by the G homotopy commutative diagram

Therefore $\varphi \times \psi$ is a homomorphism of monoids, and hence a homomorphism

$$
\begin{equation*}
\varphi \times \psi: \mathscr{E}_{G}\left(C_{f}\right) \rightarrow \mathscr{E}_{G}(A) \times \mathscr{E}_{G}(B) \tag{2.4}
\end{equation*}
$$

of groups can be defined as the restriction of the map $\varphi \times \psi$ in (2.2) to $\mathscr{E}_{G}\left(C_{f}\right)$ when $\operatorname{dim} B \leqq n-1$. From now on, we study the image of this homomorphism $\varphi \times \psi$. Let $E S A=(S A)^{I}$, the space of free paths (not necessary equivariant) in $S A$, and $P S A=\{\sigma \in E S A \mid \sigma(1)=*\}$, the space of paths in $S A$, where G acts on ESA and PSA by $(g \cdot \sigma)(t)=g \cdot \sigma(t)$ for $g \in G$ and $\sigma \in E S A$
(or PSA), and let

$$
\Omega S A \xrightarrow{j} F_{p} \xrightarrow{q} C_{f} \quad(q(x, \sigma)=x)
$$

be the path fibering induced from the fibering $\Omega S A \rightarrow P S A \rightarrow S A$ by $p: C_{f} \rightarrow S A$, where G acts diagonally on $F_{p}=\left\{(x, \sigma) \in C_{f} \times P S A \mid p(x)=\sigma(0)\right\}$. Then a G-lifting $\imath: B \rightarrow F_{p}$ of $i: B \rightarrow C_{f}$ can be defined by $l(b)=\left(b, 0_{*}\right) \in F_{p}$, where 0_{*} denotes the constant path, $0_{*}(t)=*, t \in I$.

Lemma 2.5. (i) If $\operatorname{dim} B \leqq n-1$, then $q_{*}:\left[B, F_{p}\right]_{G} \rightarrow\left[B, C_{f}\right]_{G}$ is bijective.
(ii) If B is G-1-connected, then $l_{*}:[A, B]_{G} \rightarrow\left[A, F_{p}\right]_{G}$ is bijective.

Proof. (i) Let L be a subgroup of G. Since $S A^{L}=\left((G / H)^{L}\right)^{+} \wedge$ $S^{n+1}, \pi_{i}\left(\Omega S A^{L}\right)=0$ for all $i \leqq n-1$. Therefore, the homotopy sequence

$$
\longrightarrow \pi_{i}\left(\Omega S A^{L}\right) \xrightarrow{j_{*}} \pi_{i}\left(F_{p}^{L}\right) \xrightarrow{q_{*}} \pi_{i}\left(C_{f}^{L}\right) \xrightarrow{\delta} \pi_{i-1}\left(\Omega S A^{L}\right) \longrightarrow
$$

of the fibering $\Omega S A^{L} \rightarrow F_{p}^{L} \rightarrow C_{f}^{L}$ shows that $q_{*}: \pi_{i}\left(F_{P}^{L}\right) \rightarrow \pi_{i}\left(C_{f}^{L}\right)$ is isomorphic for all $i \leqq n-1$ and epimorphic for $i=n$. Hence, if $\operatorname{dim} B \leqq n-1$, then $q_{*}:\left[B, F_{p}\right]_{G} \rightarrow\left[B, C_{f}\right]_{G}$ is bijective in the same way as in [2, II, (5.4) Theorem].
(ii) Since $A=G / H^{+} \wedge S^{n}$, it suffices to show that $l_{*}: \pi_{n}\left(B^{H}\right) \rightarrow \pi_{n}\left(F_{p}^{H}\right)$ is isomorphic by [4, Lemma 2.1']. Let $E_{p}=\left\{(x, \sigma) \in C_{f} \times E S A \mid p(x)=\sigma(0)\right\}$, where G acts diagonally on E_{p}. Then the fibering

$$
F_{p} \xrightarrow{\mathrm{u}} E_{p} \xrightarrow{\mathrm{r}} S A \quad(r(x, \sigma)=\sigma(1))
$$

induces the isomorphism $r_{*}: \pi_{i}\left(E_{p}^{H}, F_{p}^{H}\right) \rightarrow \pi_{i}\left(S A^{H}\right)$ for all i. Also, since $\left.C_{f}^{H}=B^{H} \cup_{f}\left((G / H)^{H}\right)^{+} \wedge e^{n+1}\right)$, Blakers-Massey Theorem implies that $p_{*}: \pi_{i}\left(C_{f}^{H}, B^{H}\right) \rightarrow \pi_{i}\left(S A^{H}\right)$ is isomorphic for all $i \leqq n+1$ (cf. [8, VII, (7.12) Theorem]). The inclusion $e: C_{f} \rightarrow E_{p}$ defined by $e(x)=\left(x, 0_{p(x)}\right)$ is a G-homotopy equivalence satisfying $p=r e$. Therefore, in particular, $(e, t)_{*}=r_{*}^{-1} p_{*}: \pi_{n+1}\left(C_{f}^{H}, B^{H}\right) \rightarrow \pi_{n+1}\left(E_{p}^{H}, F_{p}^{H}\right)$ and $e_{*}: \pi_{i}\left(C_{f}^{H}\right) \rightarrow \pi_{i}\left(E_{p}^{H}\right)$ for $i=n$ and $n+1$ are isomorphic. Thus, the equality $e i=u l$ gives rise to the commutative diagram

$$
\begin{aligned}
& \longrightarrow \pi_{n+1}\left(C_{f}^{H}\right) \longrightarrow \pi_{n+1}\left(C_{f}^{H}, B^{H}\right) \xrightarrow{\delta} \pi_{n}\left(B^{H}\right) \xrightarrow{i_{*}} \pi_{n}\left(C_{f}^{H}\right) \longrightarrow 0 \\
& e_{*} \downarrow \cong \quad\left(e, l_{*} \mid \cong \quad \quad_{*} \downarrow \cong\right. \\
& \longrightarrow \pi_{n+1}\left(E_{p}^{H}\right) \longrightarrow \pi_{n+1}\left(E_{p}^{H}, F_{p}^{H}\right) \xrightarrow{\delta} \pi_{n}\left(F_{p}^{H}\right) \xrightarrow{u_{*}} \pi_{n}\left(E_{p}^{H}\right) \longrightarrow 0
\end{aligned}
$$

whose top and bottom rows are the homotopy sequences of the pairs $\left(C_{f}, B^{H}\right)$ and $\left(E_{p}^{H}, F_{p}^{H}\right)$, respectively. This diagram shows that $l_{*}: \pi_{n}\left(B^{H}\right) \rightarrow \pi_{n}\left(F_{p}^{H}\right)$ is isomorphic by the five lemma.

Let $\varphi \times \psi$ be the homomorphism in (2.4). Then we show the following in the same way as in the non-equivariant case due to Rutter [6, Theorem 4.6].

Lemma 2.6. If B is G-1-connected and $\operatorname{dim} B \leqq n-1$, then the image of $\varphi \times \psi$ is equal to

$$
M=\left\{\left(h_{1}, h_{2}\right) \in \mathscr{E}_{G}(A) \times \mathscr{E}_{G}(B) \mid h_{2} f=f h_{1} \text { in }[A, B]_{G}\right\} .
$$

Proof. Let $\left(h_{1}, h_{2}\right)$ be any element of M. Then, each G-homotopy $h_{2} f \simeq f h_{1}$ allows us to construct a G-map $h: C_{f} \rightarrow C_{f}$ such that $h i \simeq i h_{2}$ and $S h_{1} p \simeq p h$, that is, $\psi(h)=h_{2}$ and $S \varphi(h)=S h_{1}$ in (2.3). Therefore, to prove $M \subset \operatorname{Im}(\varphi \times \psi)$, it suffices to show that the above element h is a G-homotopy equivalence. For each subgroup L of G, h_{1} and h_{2} induce the isomorphisms $h_{1 *}: H_{i}\left(A^{L} ; \boldsymbol{Z}\right) \rightarrow H_{i}\left(A^{L} ; \boldsymbol{Z}\right) \quad$ and $\quad h_{2 *}: H_{i}\left(B^{L} ; \boldsymbol{Z}\right) \rightarrow H_{i}\left(B^{L} ; \boldsymbol{Z}\right)$ for all i, respectively. Therefore, h induces the isomorphism $h_{*}: H_{i}\left(C_{f}^{L} ; \boldsymbol{Z}\right) \rightarrow$ $H_{i}\left(C_{f}^{L} ; \boldsymbol{Z}\right)$ for all i by the five lemma, and hence it induces the isomorphism $h_{*}: \pi_{i}\left(C_{f}^{L}\right) \rightarrow \pi_{i}\left(C_{f}^{L}\right)$ for all i by Whitehead Theorem. By [2, II, (5.5) Corollary], this shows that h is a G-homotopy equivalence. Thus, $M \subset \operatorname{Im}(\varphi \times \psi)$. Next, let h be any element of $\mathscr{E}_{G}\left(C_{f}\right)$. Then, $p_{*} h=p^{*} S \varphi(h)$ by the definition of φ, and each G-homotopy $p h \simeq S \varphi(h) p$ allows us to construct a G-map $\bar{h}: F_{p} \rightarrow F_{p}$ such that the diagram

is G-homotopy commutative. Let $l: B \rightarrow F_{p}$ be the G-lifting of $i: B \rightarrow C_{f}$ in Lemma 2.5. Then, the equality $q l=i$ and the commutativity of the diagrams (2.3) and (2.7) yield

$$
q \downarrow \psi(h)=i \psi(h) \simeq h i=h q l \simeq q \bar{h} l,
$$

and hence $l \psi(h) \simeq \bar{h} l$ by Lemma 2.5 (i). Furthermore, let $\tau: A \rightarrow \Omega S A$ be a G-map defined by $\tau(a)(t)=(a, 1-t)$ for $a \in A$ and $t \in I$. Then, $\Omega S \varphi(h) \tau=$ $\tau \varphi(h)$. Let $\tau_{s}: A \rightarrow P S A$ be a G-homotopy defined by $\tau_{s}(a)(t)=p(a, s(1-t))$ for $a \in A$ and $s, t \in I$, and let $h_{s}: A \rightarrow F_{p}$ be a G-homotopy defined by $h_{s}(a)=\left((a, s), \tau_{s}(a)\right)$. Then this G-homotopy h_{s} shows that $i f \simeq j \tau$. Now, these G-homotopies and the equality, $\tau \psi(h) \simeq \bar{h} l, \imath f \simeq j \tau$ and $\Omega S \varphi(h) \tau=\tau \varphi(h)$, and the commutativity of the diagram (2.7) yield

$$
\imath \psi(h) f \simeq \bar{h} r f \simeq \bar{h} j \tau \simeq j \Omega S \varphi(h) \tau=j \tau \varphi(h) \simeq \imath f \varphi(h) .
$$

Hence, $\psi(h) f \simeq f \varphi(h)$ by Lemma 2.5 (ii). Thus, $\operatorname{Im}(\varphi \times \psi) \subset M$. q.e.d.

3. Kernel of $\varphi \times \psi$ and a short exact sequence

In this section we assume that $A^{\prime}=G / H^{+} \wedge S^{n-1}$ with $n \geqq 2$ and B^{\prime} is a G-CW complex; we also assume that $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ is any G-map and that $f=S f^{\prime}: A=S A^{\prime} \rightarrow B=S B^{\prime}$. Then we have

Lemma 3.1. If B is G-1-connected, then there is an exact sequence of groups

$$
[S A, B]_{G} \xrightarrow{i_{*}}\left[S A, C_{f}\right]_{G} \xrightarrow{p .}[S A, S A]_{G} .
$$

Proof. An isomorphism $\quad \pi_{n+1}\left(C_{f}^{H}, B^{H}\right) \cong \pi_{n+1}\left(\left((G / H)^{H}\right)^{+} \wedge S^{n+1}\right)$ obtained by Blakers-Massey Theorem yields an exact sequence

$$
\pi_{n+1}\left(B^{H}\right) \xrightarrow{i_{*}} \pi_{n+1}\left(C_{f}^{H}\right) \xrightarrow{p_{*}} \pi_{n+1}\left(\left((G / H)^{H}\right)^{+} \wedge S^{n+1}\right),
$$

which implies this lemma by [4, Lemma 2.1^{\prime}].
q.e.d.

Let λ be the map in (1.2) and $\varphi \times \psi$ the homomorphism in (2.4). Then we have

Lemma 3.2. (i) $\lambda(\alpha)=1+\alpha p$ for $\alpha \in\left[S A, C_{f}\right]_{G}$.
(ii) If B is G-1-connected and $\operatorname{dim} B \leqq n-1$, then the kernel of $\varphi \times \psi$ is isomorphic to

$$
K=i_{*}[S A, B]_{G} /(S f)^{*}\left[S B, C_{f}\right]_{G} .
$$

Proof. (i) Since $C_{f} \simeq S C_{f}$, by the assumption $f=S f^{\prime}, C_{f}$ has the natural G-comultiplication $l^{\prime}: C_{f} \rightarrow C_{f} \vee C_{f}$, and $l \simeq(1 \vee p) l^{\prime}$ for the G coaction l in (1.1). Therefore, by the definition of λ in (1.2),

$$
\lambda(\alpha)=\nabla(1 \vee \alpha)(1 \vee p) l^{\prime}=1+\alpha p
$$

(ii) The equality of (i) and the definitions of φ and ψ in (2.2) give rise to the commutative diagram

Since the row sequence in (3.3) is an exact sequence of groups if we replace λ by p^{*}, we have

$$
\begin{equation*}
\psi^{-1}(1)=1+\psi^{-1}(0)=1+p^{*}\left[S A, C_{f}\right]_{G}=\lambda\left(\left[S A, C_{f}\right]_{G}\right) \tag{3.4}
\end{equation*}
$$

Also, (3.4), (3.3) and Lemma 3.1 yield

$$
\begin{aligned}
\operatorname{Ker}(\varphi \times \psi) & \cong(S \varphi)^{-1}(1) \cap \lambda\left(\left[S A, C_{f}\right]_{G}\right) \\
& =\lambda\left(i_{*}[S A, B]_{G}\right)
\end{aligned}
$$

Moreover, by (3.3) and Lemma 3.1 we have $(S f)^{*}\left[S B, C_{f}\right]_{G} \subset i_{*}[S A, B]_{G}$ and by Lemma 1.3 and (i) of this lemma we have a group isomorphism

$$
\lambda\left(i_{*}[S A, B]_{G}\right) \cong i_{*}[S A, B]_{G} /(S f)^{*}\left[S B, C_{f}\right]_{G}
$$

Now Lemmas 2.6 and 3.2 give the following theorem, which is due to Barcus and Barratt in the non-equivariant case [1, Theorem (6.1)] (cf. [5, Theorem 2.12]).

THEOREM 3.5. Let $A^{\prime}=G / H^{+} \wedge S^{n-1}$ with $n \geqq 2$ and B^{\prime} a G-CW complex, and let $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ be a G-map. If $B=S B^{\prime}$ is G-1-connected and $\operatorname{dim} B \leqq n-1$, then for the mapping cone $C_{f}=B \cup_{f}\left(G / H^{+} \wedge e^{n+1}\right)$ of the G-map $f=S f^{\prime}: A=S A^{\prime} \rightarrow B=S B^{\prime}$ with the natural G-action, there is an exact sequence of groups

$$
0 \longrightarrow K \xrightarrow{\bar{\lambda}} \mathscr{E}_{G}\left(C_{f}\right) \xrightarrow{\varphi \times \psi} M \longrightarrow 1
$$

with

$$
\begin{aligned}
K & =i_{*}[S A, B]_{G} /(S f)^{*}\left[S B, C_{f}\right]_{G} \quad \text { and } \\
M & =\left\{\left(h_{1}, h_{2}\right) \in \mathscr{E}_{G}(A) \times \mathscr{E}_{G}(B) \mid h_{2} f=f h_{1} \text { in }[A, B]_{G}\right\} .
\end{aligned}
$$

4. Anti-isomorphism: $\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right) \cong U(\boldsymbol{Z}(N(H) / H))(n \geqq 2)$

Let G be a finite group and H a subgroup of G. Note that $(G / H)^{H}=$ $N(H) / H$, where $N(H)$ denotes the normalizer of H in G. Then we have

THEOREM 4.1. If $n \geqq 2$, then the group $\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right)$ is anti-isomorphic to the group $U(\boldsymbol{Z}(N(H) / H)$) of units of the integral group ring $\boldsymbol{Z}(N(H) / H)$ of $N(H) / H$.

Proof. To prove this theorem, it suffices to show that there is a ring antiisomorphism $\left[G / H^{+} \wedge S^{n}, G / H^{+} \wedge S^{n}\right]_{G} \cong \boldsymbol{Z}(N(H) / H)$. Let $\left\{g_{i} H\right\}$ be the left decomposition of $N(H)$ with respect to H, and let the homotopy class of the composite of a map $m: S^{n}=H / H^{+} \wedge S^{n} \rightarrow S^{n}=g_{i} H / H^{+} \wedge S^{n}$ of degree m and the inclusion of $g_{i} H / H^{+} \wedge S^{n}$ into $N(H) / H^{+} \wedge S^{n}$ be identified with $m g_{i} H \in \boldsymbol{Z}(N(H) / H)$. Then by [4, Corollary 2.2], the restriction to $S^{n}=H / H^{+} \wedge S^{n}$ and this identification yield the following isomorphism Φ of additive groups.

$$
\Phi:\left[G / H^{+} \wedge S^{n}, G / H^{+} \wedge S^{n}\right]_{G} \cong \pi_{n}\left(N(H) / H^{+} \wedge S^{n}\right) \cong \boldsymbol{Z}(N(H) / H)
$$

Let u and v be any two elements of the set $\left[G / H^{+} \wedge S^{n}, G / H^{+} \wedge S^{n}\right]_{G}$ and $j: N(H) / H^{+} \wedge S^{n} \rightarrow G / H^{+} \wedge S^{n}$ the inclusion. Since v is equivariant,

$$
v\left|\left(g_{i} H / H^{+} \wedge S^{n}\right)=g_{i} H \cdot v\right|\left(H / H^{+} \wedge S^{n}\right)
$$

If $u \mid\left(H / H^{+} \wedge S^{n}\right)=m_{0} H+m_{1} g_{1} H+\cdots+m_{k} g_{k} H \in \pi_{n}\left(N(H) / H^{+} \wedge S^{n}\right)$, then

$$
\begin{aligned}
\Phi(v u) & =v j\left(m_{0} H+m_{1} g_{1} H+\cdots+m_{k} g_{k} H\right) \\
& =\left(v \mid\left(H / H^{+} \wedge S^{n}\right)\right) m_{0}+\cdots+\left(v \mid\left(g_{k} H / H^{+} \wedge S^{n}\right)\right) m_{k} \\
& =m_{0}\left(H \cdot v \mid\left(H / H^{+} \wedge S^{n}\right)\right)+\cdots+m_{k}\left(g_{k} H \cdot v \mid\left(H / H^{+} \wedge S^{n}\right)\right) \\
& =m_{0} H \cdot \Phi(v)+\cdots+m_{k} g_{k} H \cdot \Phi(v) \\
& =\Phi(u) \cdot \Phi(v) .
\end{aligned}
$$

Thus Φ is an anti-isomorphism of rings. q.e.d.

For a finite abelian group G, let n_{2} denote the number of its elements of order 2 and c the number of its cyclic subgroups (including $\{e\}$). Then we have the following theorem due to Higman (cf. [3, Theorem 4.1]).

Theorem 4.2 (Higman). Let G be a finite abelian group. Then

$$
U(\boldsymbol{Z} G)= \pm G \times F
$$

where F is a free abelian group of rank $\left(|G|+n_{2}+1\right) / 2-c$.
Now Theorems 4.1 and 4.2 immediately give the following.
Theorem 4.3. Let G be a finite abelian group and H a subgroup of G. If $n \geqq 2$, then

$$
\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right) \cong Z_{2} \times G / H \times(Z)^{k}, \quad k=\left(|G / H|+n_{2}+1\right) / 2-c,
$$

where $\boldsymbol{Z}_{2}=\{1,-1\}, n_{2}$ denotes the number of elements of order 2 and c denotes the number of cyclic subgroups of G / H.

Let E_{q} be the $q \times q$ identity matrix and F_{q} the $q \times q$ matrix defined by

$$
F_{q}=\left(\begin{array}{cc}
\mathbf{0} & 1 \tag{4.4}\\
E_{q-1} & \mathbf{0}
\end{array}\right) .
$$

If G / H is isomorphic to the cyclic group \boldsymbol{Z}_{q} of order q, then $\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right)$ has the torsion subgroup $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{q}$ generated by $-E_{q}$ and F_{q}.

Corollary 4.5. In the above theorem, if G / H is isomorphic to the cyclic group \boldsymbol{Z}_{q}, then

$$
\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right) \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{q} \times(\boldsymbol{Z})^{k}, \quad k=[q / 2]+1-d(q),
$$

where $d(q)$ is the number of divisors of q and the torsion subgroup $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{q}$ is generated by $-E_{q}$ and F_{q}, and, in particular,

$$
\mathscr{E}_{G}\left(G / H^{+} \wedge S^{n}\right) \cong \begin{cases}Z_{2} \times Z_{q}, & \text { if } q=2,3,4,6 \\ \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{q} \times(\boldsymbol{Z})^{k}, & \text { if } q \text { is a prime } \geqq 5\end{cases}
$$

where $k=(q-3) / 2$.
5. $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ for $f: \boldsymbol{Z}_{\mathbf{2}}^{+} \wedge S^{n+k} \rightarrow \boldsymbol{Z}_{\mathbf{2}}^{+} \wedge S^{n}(n \geqq k+3 \geqq 4)$

In this section $A=Z_{2}^{+} \wedge S^{n+k}$ and $B=Z_{2}^{+} \wedge S^{n}$ with $n \geqq k+3 \geqq 4$; for each Z_{2}-map $f: A \rightarrow B$ we consider its mapping cone

$$
\begin{equation*}
C_{f}=\left(\boldsymbol{Z}_{2}^{+} \wedge S^{n}\right) \cup_{f}\left(\boldsymbol{Z}_{2}^{+} \wedge e^{n+k+1}\right) \tag{5.1}
\end{equation*}
$$

Since $[A, B]_{Z_{2}} \cong \pi_{n+k}\left(Z_{2}^{+} \wedge S^{n}\right) \cong \pi_{n+k}\left(S^{n}\right) \oplus \pi_{n+k}\left(S^{n}\right)$ by [4, Lemma 2.1'], the Z_{2}-homotopy class $f \in[A, B]_{Z_{2}}$ can be written as $f=S f^{\prime}$ for some $f^{\prime} \in\left[\boldsymbol{Z}_{2}^{+} \wedge S^{n+k-1}, \boldsymbol{Z}_{2}^{+} \wedge S^{n-1}\right]_{\boldsymbol{Z}_{2}}$ and

$$
f=\left(\begin{array}{cc}
f_{1} & f_{2} \tag{5.2}\\
f_{2} & f_{1}
\end{array}\right), \quad f_{i} \in \pi_{n+k}\left(S^{n}\right), \quad i=1,2
$$

We first calculate the group K in Theorem 3.5. By an argument similar to the proof of Lemma 2.1 we have

$$
\begin{equation*}
i_{*}:[S B, B]_{Z_{2}} \rightarrow\left[S B, C_{f}\right]_{Z_{2}} \text { is epimorphic. } \tag{5.3}
\end{equation*}
$$

Let η_{n} denote the generator of $\pi_{n+1}\left(S^{n}\right)=\boldsymbol{Z}_{2}$. Then by [7, Proposition 3.1]

$$
\begin{equation*}
\eta_{n} S f_{i}=f_{i} \eta_{n+k} \quad \text { for any } f_{i} \in \pi_{n+k}\left(S^{n}\right)(n \geqq k+3 \geqq 4) . \tag{5.4}
\end{equation*}
$$

Since $\quad[S B, B]_{Z_{2}} \cong \pi_{n+1}\left(S^{n}\right) \oplus \pi_{n+1}\left(S^{n}\right)=\boldsymbol{Z}_{2}\left\{\eta_{n}\right\} \oplus \boldsymbol{Z}_{2}\left\{\eta_{n}\right\} \quad$ and \quad similarly $[S A, A]_{\boldsymbol{Z}_{2}} \cong \boldsymbol{Z}_{2}\left\{\eta_{n+k}\right\} \oplus \boldsymbol{Z}_{2}\left\{\eta_{n+k}\right\}$, (5.4) yields

$$
\begin{equation*}
(S f)^{*}[S B, B]_{Z_{2}}=f_{*}[S A, A]_{Z_{2}} \tag{5.5}
\end{equation*}
$$

Now, (5.3) and (5.5) yield

$$
\begin{equation*}
(S f)^{*}\left[S B, C_{f}\right]_{Z_{2}}=(S f)^{*} i_{*}[S B, B]_{Z_{2}}=i_{*} f_{*}[S A, A]_{Z_{2}}=0 . \tag{5.6}
\end{equation*}
$$

As in the proof of Lemma 3.1 we have an exact sequence of groups

$$
[S A, A]_{Z_{2}} \xrightarrow{f_{*}}[S A, B]_{Z_{2}} \xrightarrow{i_{*}}\left[S A, C_{f}\right]_{Z_{2}} .
$$

Therefore, (5.6) yields

$$
\begin{align*}
K & =i_{*}[S A, B]_{Z_{2}} \cong[S A, B]_{Z_{2}} / f_{*}[S A, A]_{Z_{2}} \tag{5.7}\\
& \cong \pi_{n+k+1}\left(S^{n}\right) \oplus \pi_{n+k+1}\left(S^{n}\right) /\left\{\left(f_{1} \eta, f_{2} \eta\right),\left(f_{2} \eta, f_{1} \eta\right)\right\},
\end{align*}
$$

where $\eta=\eta_{n+k}$ and $\{x, y\}$ denotes the subgroup generated by x and y. We next calculate the subgroup M of $\mathscr{E}_{Z_{2}}(A) \times \mathscr{E}_{Z_{2}}(B)$ in Theorem 3.5. Let $E=E_{2}$ be the 2×2 identity matrix and $F=F_{2}$ the 2×2 matrix of order 2 defined in (4.4), and let

$$
a=(-E,-E), \quad b=(F, F), \quad c=(E,-E), \quad \text { and } \quad d=(E, F)
$$

Then, by Corollary 4.5

$$
\begin{equation*}
\mathscr{E}_{Z_{2}}(A) \times \mathscr{E}_{Z_{2}}(B) \cong\left(Z_{2}\right)^{4} \text { generated by } a, b, c \text { and } d, \tag{5.8}
\end{equation*}
$$

and for the presentation of \boldsymbol{Z}_{2}-homotopy class f in (5.2) we have

$$
\begin{array}{lll}
f(-E)=(-E) f & \text { and } f F=F f & \text { always hold, } \\
f=(-E) f & \text { if and only if } & 2 f_{i}=0 \text { for } i=1 \text { and } 2, \tag{5.9}\\
f=F f & \text { if and only if } & f_{1}=f_{2}, \\
f=(-F) f & \text { if and only if } & f_{1}=-f_{2} .
\end{array}
$$

Now by Theorem 3.5, (5.8) and (5.9) we have

$$
M \cong \begin{cases}\left(\boldsymbol{Z}_{2}\right)^{2} & \text { if } f_{1} \neq f_{2}, f_{1} \neq-f_{2} \text { and } 2 f_{i} \neq 0 \text { for } i=1 \text { or } 2, \tag{5.10}\\ \left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1} \neq f_{2} \text { and } 2 f_{i}=0 \text { for } i=1 \text { and } 2, \\ \left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1}=f_{2} \text { and } f_{1} \neq-f_{2} \\ \left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1} \neq f_{2} \text { and } f_{1}=-f_{2} \\ \left(\boldsymbol{Z}_{2}\right)^{4} & \text { otherwise } .\end{cases}
$$

Consequently by Theorem 3.5 we have
Theorem 5.11. If $n \geqq k+3 \geqq 4$, then for each \boldsymbol{Z}_{2}-map $f: \boldsymbol{Z}_{2}^{+} \wedge S^{n+k} \rightarrow$ $\boldsymbol{Z}_{2}^{+} \wedge S^{n}$, its \boldsymbol{Z}_{2}-homotopy class $f \in\left[\boldsymbol{Z}_{2}^{+} \wedge S^{n+k}, \boldsymbol{Z}_{2}^{+} \wedge S^{n}\right]_{\boldsymbol{Z}_{2}}$ can be written as (5.2), and for its mapping cone C_{f} there is an exact sequence of groups

$$
0 \rightarrow K \rightarrow \mathscr{E}_{Z_{2}}\left(C_{f}\right) \rightarrow M \rightarrow 1
$$

where K and M are the groups in (5.7) and (5.10) respectively.
Using this theorem, we further calculate the group $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ for $k=1$. Since the group $\pi_{n+1}\left(S^{n}\right)$ in (5.2) is isomorphic to \boldsymbol{Z}_{2} generated by η_{n}, for each \boldsymbol{Z}_{2}-map $f: A \rightarrow B$ its \boldsymbol{Z}_{2}-homotopy class $f \in[A, B]_{Z_{2}}$ can be written as

$$
f=\left(\begin{array}{cc}
s \eta & t \eta \\
t \eta & s \eta
\end{array}\right), \quad \eta=\eta_{n}, \quad s, t=0,1
$$

Also, since the group $\pi_{n+2}\left(S^{n}\right)$ in (5.7) is isomorphic to \boldsymbol{Z}_{2} generated by $\eta_{n} \eta_{n+1}$, the group K in (5.7) is trivial when $s \neq t$, and hence by Theorem 5.11 and

$$
\begin{equation*}
\mathscr{E}_{Z_{2}}\left(C_{f}\right) \cong\left(\boldsymbol{Z}_{2}\right)^{3} \quad \text { if } s \neq t \tag{5.10}
\end{equation*}
$$

We now assume that $s=t=0$. Then the group K is isomorphic to $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$, and hence Theorem 5.11 and (5.10) yield the exact sequence of groups

$$
\begin{equation*}
0 \longrightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \xrightarrow{\lambda} \mathscr{E}_{\boldsymbol{Z}_{2}}\left(C_{f}\right) \xrightarrow{\varphi \times \psi}\left(\boldsymbol{Z}_{2}\right)^{4} \longrightarrow 1, \tag{5.13}
\end{equation*}
$$

where (5.8) shows that the right-hand group $\left(\boldsymbol{Z}_{2}\right)^{4}$ is generated by a, b, c and d. Furthermore, since $C_{f} \simeq\left(\boldsymbol{Z}_{2}^{+} \wedge S^{n}\right) \vee\left(\boldsymbol{Z}_{2}^{+} \wedge S^{n+2}\right)$ by (5.1), the right inverse $\sigma:\left(\boldsymbol{Z}_{2}\right)^{4} \rightarrow \mathscr{E}_{\boldsymbol{Z}_{2}}\left(C_{f}\right)$ of the homomorphism $\varphi \times \psi$ can be given by
$\sigma(a)=-E_{4}, \quad \sigma(b)=\left(\begin{array}{cc}F & \mathbf{0} \\ \mathbf{0} & F\end{array}\right), \quad \sigma(c)=\left(\begin{array}{cc}-E & \mathbf{0} \\ \mathbf{0} & E\end{array}\right), \quad \sigma(d)=\left(\begin{array}{cc}F & \mathbf{0} \\ \mathbf{0} & E\end{array}\right)$.
Therefore, (5.13) is a split extension, and hence $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ is isomorphic to the semi-direct product $\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right) \rtimes\left(\boldsymbol{Z}_{2}\right)^{4}$. Furthermore, for $\eta^{2}=\eta_{n} \eta_{n+1}$ we define

$$
\begin{align*}
P & =\left(\begin{array}{cc}
\eta^{2} & 0 \\
0 & \eta^{2}
\end{array}\right), & Q & =\left(\begin{array}{cc}
0 & \eta^{2} \\
\eta^{2} & 0
\end{array}\right), \\
P_{4} & =\left(\begin{array}{ll}
E & P \\
\mathbf{0} & E
\end{array}\right), & Q_{4} & =\left(\begin{array}{cc}
E & Q \\
\mathbf{0} & E
\end{array}\right) . \tag{5.14}
\end{align*}
$$

Then, P_{4} and Q_{4} generate $\lambda\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right)$ by the definition of λ, and hence $\mathscr{E}_{Z_{2}}\left(C_{f}\right)$ is generated by $\sigma(a), \sigma(b), \sigma(c), \sigma(d), P_{4}$ and Q_{4}. Thus, we have

$$
\begin{equation*}
\mathscr{E}_{Z_{2}}\left(C_{f}\right) \cong D_{4} \times\left(\boldsymbol{Z}_{2}\right)^{3} \quad \text { if } s=t=0 \tag{5.15}
\end{equation*}
$$

where the direct factor D_{4} is the dihedral group of order 8 , and $\left(\boldsymbol{Z}_{2}\right)^{3}$ is generated by $\sigma(a), \sigma(b)$ and $\sigma(c)$. If $s=t=1$, then the group K is isomorphic to Z_{2} by (5.7) and the group M is isomorphic to $\left(Z_{2}\right)^{4}$ by (5.10). Therefore, by (5.12), (5.15) and Theorem 5.11 we have

Proposition 5.16. If $n \geqq 4$, then for each \boldsymbol{Z}_{2}-map $f: \boldsymbol{Z}_{2}^{+} \wedge S^{n+1} \rightarrow$ $\boldsymbol{Z}_{2}^{+} \wedge S^{n}$, its \boldsymbol{Z}_{2}-homotopy class $f \in\left[\boldsymbol{Z}_{2}^{+\cdot} \wedge S^{n+1}, \boldsymbol{Z}_{2}^{+} \wedge S^{n}\right]_{\boldsymbol{Z}_{2}}$ can be written as

$$
f=\left(\begin{array}{cc}
s \eta & t \eta \\
t \eta & s \eta
\end{array}\right), \quad \eta=\eta_{n}, \quad s, t=0,1,
$$

and for its mapping cone C_{f}, we have

$$
\mathscr{E}_{\boldsymbol{Z}_{2}}\left(C_{f}\right)= \begin{cases}\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } s \neq t \\ D_{4} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } s=t=0\end{cases}
$$

If $s=t=1$, then there is an exact sequence of groups

$$
0 \rightarrow \boldsymbol{Z}_{2} \rightarrow \mathscr{E}_{\boldsymbol{Z}_{2}}\left(C_{f}\right) \rightarrow\left(\boldsymbol{Z}_{2}\right)^{4} \rightarrow 1
$$

6. $\mathscr{E}_{Z_{6}}\left(C_{f}\right)$ for $f: \boldsymbol{Z}_{\mathbf{6}}^{+} \wedge S^{n+k} \rightarrow \boldsymbol{Z}_{\mathbf{2}}^{+} \wedge S^{n}(n \geqq k+3 \geqq 4)$

We take $A=Z_{6}^{+} \wedge S^{n+k}$ and $B=Z_{2}^{+} \wedge S^{n}$ with $n \geqq k+3 \geqq 4$, where $\boldsymbol{Z}_{2}=\boldsymbol{Z}_{6} / \boldsymbol{Z}_{3}$. Since $[A, B]_{\boldsymbol{Z}_{6}} \cong \pi_{n+k}\left(S^{n}\right) \oplus \pi_{n+k}\left(S^{n}\right)$, each \boldsymbol{Z}_{6}-homotopy class $f \in[A, B]_{Z_{6}}$ can be written as $f=S f^{\prime}$ for some $f^{\prime} \in\left[\boldsymbol{Z}_{6}^{+} \wedge S^{n+k-1}, \boldsymbol{Z}_{2}^{+} \wedge S^{n-1}\right]_{\boldsymbol{Z}_{6}}$ and

$$
f=\left(\begin{array}{llllll}
f_{1} & f_{2} & f_{1} & f_{2} & f_{1} & f_{2} \tag{6.1}\\
f_{2} & f_{1} & f_{2} & f_{1} & f_{2} & f_{1}
\end{array}\right), \quad f_{i} \in \pi_{n+k}\left(S^{n}\right), \quad i=1,2
$$

Let K be the group in Theorem 3.5. Then, as in $\S 5$ we have

$$
\begin{equation*}
K \cong \pi_{n+k+1}\left(S^{n}\right) \oplus \pi_{n+k+1}\left(S^{n}\right) /\left\{\left(f_{1} \eta_{n+k}, f_{2} \eta_{n+k}\right),\left(f_{2} \eta_{n+k}, f_{1} \eta_{n+k}\right)\right\} \tag{6.2}
\end{equation*}
$$

We calculate the subgroup M of $\mathscr{E}_{Z_{6}}(A) \times \mathscr{E}_{Z_{6}}(B)$ in Theorem 3.5. Let E_{q} be the $q \times q$ identity mątrix and F_{q} the $q \times q$ matrix of order q defined in (4.4), and let

$$
a=\left(F_{6}, F_{2}\right), \quad b=\left(-E_{6},-E_{2}\right), \quad c=\left(E_{6},-E_{2}\right) \quad \text { and } \quad d=\left(E_{6}, F_{2}\right)
$$

Then by Corollary 4.5

$$
\begin{equation*}
\mathscr{E}_{Z_{6}}(A) \times \mathscr{E}_{Z_{6}}(B) \cong \boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{3} \text { generated by } a, b, c \text { and } d \tag{6.3}
\end{equation*}
$$

and

$$
\begin{align*}
& f\left(-E_{6}\right)=\left(-E_{2}\right) f \text { and } f F_{6}=F_{2} f \text { always hold, } \\
& f=\left(-E_{2}\right) f \quad \text { if and only if } \quad 2 f_{i}=0 \text { for } i=1 \text { and } 2, \\
& f=F_{2} f \quad \text { if and only if } f_{1}=f_{2}, \tag{6.4}\\
& f=\left(-F_{2}\right) f \quad \text { if and only if } \quad f_{1}=-f_{2}
\end{align*}
$$

for f in (6.1). Now by Theorem 3.5, (6.3) and (6.4) we have

$$
M \cong \begin{cases}\boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{2} & \text { if } f_{1} \neq f_{2}, f_{1} \neq-f_{2} \text { and } 2 f_{i} \neq 0 \text { for } i=1 \text { or } 2, \tag{6.5}\\ \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1} \neq f_{2} \text { and } 2 f_{i}=0 \text { for } i=1 \text { and } 2, \\ \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1}=f_{2} \text { and } f_{1} \neq-f_{2} \\ \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } f_{1} \neq f_{2} \text { and } f_{1}=-f_{2} \\ \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{4} & \text { otherwise } .\end{cases}
$$

Consequently by Theorem 3.5 we have

TheOrem 6.6. If $n \geqq k+3 \geqq 4$, then for each \boldsymbol{Z}_{6}-map $f: \boldsymbol{Z}_{6}^{+} \wedge S^{n+k} \rightarrow$ $\boldsymbol{Z}_{2}^{+} \wedge S^{n}$, its \boldsymbol{Z}_{6}-homotopy class $f \in\left[\boldsymbol{Z}_{6}^{+} \wedge S^{n+k}, \boldsymbol{Z}_{2}^{+} \wedge S^{n}\right]_{\boldsymbol{Z}_{6}}$ can be written as (6.1), and for its mapping cone C_{f} there is an exact sequence of groups

$$
0 \rightarrow K \rightarrow \mathscr{E}_{Z_{6}}\left(C_{f}\right) \rightarrow M \rightarrow 1
$$

where K and M are the groups in (6.2) and (6.5) respectively:
We further calculate the group $\mathscr{E}_{\mathbb{Z}_{6}}\left(C_{f}\right)$ for $k=1$. Since the group $\pi_{n+1}\left(S^{n}\right)$ in (6.1) is isomorphic to Z_{2} generated by η_{n}, we have $f_{1}=s \eta, f_{2}=t \eta$, $\eta=\eta_{n}$ with $s, t=0,1$ in (6.1). Also, since the group $\pi_{n+2}\left(S^{n}\right)$ in (6.2) is isomorphic to \boldsymbol{Z}_{2} generated by $\eta_{n} \eta_{n+1}$, the group K in (6.2) is trivial when $s \neq t$, and hence by Theorem 6.6 and (6.5)

$$
\begin{equation*}
\mathscr{E}_{Z_{6}}\left(C_{f}\right) \cong \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} \quad \text { if } s \neq t \tag{6.7}
\end{equation*}
$$

We now assume that $s=t=0$. Then the group K is isomorphic to $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$, and hence Theorem 6.6 and (6.5) yield the exact sequence of groups

$$
\begin{equation*}
0 \longrightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \xrightarrow{\lambda} \mathscr{E}_{\boldsymbol{Z}_{6}}\left(C_{f}\right) \xrightarrow{\varphi \times \psi} \boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{3} \longrightarrow 1, \tag{6.8}
\end{equation*}
$$

where (6.3) shows that the right-hand group $\boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{3}$ is generated by a, b, c and d. Furthermore, since $C_{f} \simeq\left(\boldsymbol{Z}_{2}^{+} \wedge S^{n}\right) \vee\left(\boldsymbol{Z}_{6}^{+} \wedge S^{n+2}\right)$, the right inverse $\sigma: \boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{3} \rightarrow \mathscr{E}_{\boldsymbol{Z}_{2}}\left(C_{f}\right)$ of the homomorphism $\varphi \times \psi$ can be given by

$$
\begin{array}{ll}
\sigma(a)=\left(\begin{array}{cc}
F_{2} & \mathbf{0} \\
\mathbf{0} & F_{6}
\end{array}\right), & \sigma(b)=-E_{8}, \\
\sigma(c)=\left(\begin{array}{cc}
-E_{2} & \mathbf{0} \\
\mathbf{0} & E_{6}
\end{array}\right), & \sigma(d)=\left(\begin{array}{cc}
F_{2} & \mathbf{0} \\
\mathbf{0} & E_{6}
\end{array}\right),
\end{array}
$$

where F_{q} is the matrix in (4.4). Therefore, the sequence (6.8) is a split extension, and hence $\mathscr{E}_{\boldsymbol{Z}_{6}}\left(C_{f}\right) \cong\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right) \rtimes\left(\boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{3}\right)$. Let P_{8} and Q_{8} be 8×8 matrices defined by

$$
\begin{aligned}
P_{12} & =\left(\begin{array}{lll}
P & P & P
\end{array}\right), \\
P_{8} & =\left(\begin{array}{cc}
E_{2} & P_{12} \\
\mathbf{0} & E_{6}
\end{array}\right),
\end{aligned} \quad Q_{12}=\left(\begin{array}{lll}
Q & Q & Q
\end{array}\right), ~\left(\begin{array}{cc}
E_{2} & Q_{12} \\
\mathbf{0} & E_{6}
\end{array}\right), ~ \$, ~ \$
$$

where P and Q are the 2×2 matrices in (5.14). Then, P_{8} and Q_{8} generate $\lambda\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right)$ by the definition of λ, and hence $\mathscr{E}_{Z_{6}}\left(C_{f}\right)$ is generated by $\sigma(a), \sigma(b), \sigma(c), \sigma(d), P_{8}$ and Q_{8}. Thus, we have

$$
\begin{equation*}
\mathscr{E}_{Z_{6}}\left(C_{f}\right) \cong D_{4} \times \boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{2} \quad \text { if } s=t=0 \tag{6.9}
\end{equation*}
$$

where the direct factor $\boldsymbol{Z}_{6} \times\left(\boldsymbol{Z}_{2}\right)^{2}$ is generated by $\sigma(a), \sigma(b)$ and $\sigma(c)$. If $s=t=1$, then the group K is isomorphic to Z_{2} by (6.2) and the group M is isomorphic to $Z_{3} \times\left(Z_{2}\right)^{4}$ by (6.5). Therefore, by (6.7), (6.9) and Theorem 6.6 we have

Proposition 6.10. If $n \geqq 4$, then for each \boldsymbol{Z}_{6}-map $f: \boldsymbol{Z}_{6}^{+} \wedge S^{n+1} \rightarrow$ $\boldsymbol{Z}_{2}^{+} \wedge S^{n}$, its \boldsymbol{Z}_{6}-homotopy class $f \in\left[\boldsymbol{Z}_{6}^{+} \wedge S^{n+1}, \boldsymbol{Z}_{2}^{+} \wedge S^{n}\right]_{\boldsymbol{Z}_{6}}$ can be written as

$$
f=\left(\begin{array}{cccccc}
s \eta & t \eta & s \eta & t \eta & s \eta & t \eta \\
t \eta & s \eta & t \eta & s \eta & t \eta & s \eta
\end{array}\right), \quad \eta=\eta_{n}, \quad s, t=0,1,
$$

and for its mapping cone C_{f} we have

$$
\mathscr{E}_{Z_{6}}\left(C_{f}\right)= \begin{cases}\boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } s \neq t \\ D_{4} \times \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{3} & \text { if } s=t=0\end{cases}
$$

If $s=t=1$, then there is an exact sequence of groups

$$
0 \rightarrow \boldsymbol{Z}_{2} \rightarrow \mathscr{E}_{Z_{6}}\left(C_{f}\right) \rightarrow \boldsymbol{Z}_{3} \times\left(\boldsymbol{Z}_{2}\right)^{4} \rightarrow 1
$$

References

[1] W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
[2] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math. 34, SpringerVerlag, 1967.
[3] E. Jespers, Units in integral group rings: a survey, Lecture Notes in Pure and Applied Math. 198 (1998), 141-169.
[4] T. Matumoto, Equivariant cohomology theories on G-CW complexes, Osaka J. Math. 10 (1973), 51-68.
[5] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
[6] J. W. Rutter, Maps and equivalences into equalizing fibrations and from coequalizing cofibrations, Math. Z. 122 (1971), 125-141.
[7] H. Toda, Compositon methods in homotopy groups of spheres, Ann. of Math. Studies, 49, Princeton Univ. Press, 1962.
[8] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math. 61, SpringerVerlag, 1978.

Department of Mathematics
Faculty of Engineering
The University of Tokushima
Tokushima 770-8506, Japan
sawasita@pm.tokushima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 55P10, 55P15, 55P91, 55Q05
 Key words and phrases. G-self-homotopy equivalence, G-homotopy set, G-CW complex

