On non-singular stable maps of 3-manifolds with boundary into the plane

Naoki Shibata

(Received December 10, 1999) (Revised January 19, 2000)

ABSTRACT. Let M be a compact connected orientable 3-manifold with non-empty boundary and $f: M \to \mathbb{R}^2$ a stable map. In this paper we study the existence of an immersion or embedding lift of f to \mathbb{R}^n ($n \ge 3$) with respect to the standard projection $\mathbb{R}^n \to \mathbb{R}^2$. We also characterize the orientable 3-dimensional handlebody in terms of stable maps which have only a restricted class of singularities. Moreover, by using the concept of an embedding lift of a certain map of a 2-dimensional polyhedron into \mathbb{R}^2 , we give a characterization of S^3 .

1. Introduction

Let M be a smooth manifold, $f: M \to \mathbb{R}^m$ a smooth map and $\pi: \mathbb{R}^n \to \mathbb{R}^m$ (n > m) a standard projection. Then we ask if there exists an immersion or embedding $g: M \to \mathbb{R}^n$ which satisfies $f = \pi \circ g$. Such a map g is called an *immersion* or *embedding lift* of f.

In this paper, M will be a compact connected orientable 3-manifold with non-empty boundary, of class C^{∞} . Let $f: M \to \mathbb{R}^2$ be a stable map. We ask if there exists an immersion or embedding lift of f to \mathbb{R}^n $(n \ge 3)$ with respect to the standard projection $\pi: \mathbb{R}^n \to \mathbb{R}^2$, $(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2)$. A point x in M is called a *singularity* if rank $df_x < 2$. S(f) denotes the set of singularities of f. Our main result is the following theorem.

THEOREM 1. Let M be a compact connected orientable 3-manifold with non-empty boundary and $f: M \to \mathbb{R}^2$ a stable map. We consider the condition (I): For any $r \in \mathbb{R}^2$, $f^{-1}(r)$ is either empty or homeomorphic to a finite disjoint union of closed intervals and points. Then the following two conditions are equivalent.

- (a) f has an immersion lift to \mathbb{R}^3 .
- (b) $S(f) = \emptyset$ and f satisfies the condition (I).

²⁰⁰⁰ Mathematics Subject Classification. 57R45, 57R42, 57M99.

Key words and phrases. 3-manifold, boundary, stable map, singularity, immersion lift, embedding lift, Stein factorization.

By Whitehead [13], there exists an immersion $i: M \to \mathbb{R}^3$ for every compact connected orientable 3-manifold M with non-empty boundary. Thus $f = \pi \circ i$ satisfies $S(f) = \emptyset$ and the condition (I), provided that f is stable. We show that a submersion $f: M \to \mathbb{R}^2$ whose restriction to ∂M is stable, is a stable map in Lemma 2 of §3. Hence, after a slight perturbation of i, we may assume that $f = \pi \circ i$ is a stable map. Moreover, it is not difficult to prove that the space of non-singular stable maps is open and dense in the space of submersions of M to \mathbb{R}^2 by using Lemma 2.

Based on the arguments in the proof of Theorem 1, we consider the structure of source manifolds of a certain class of stable maps. For a stable map $f: M \to \mathbb{R}^2$ with $S(f) = \emptyset$, the normal forms around points of ∂M consist exactly of four types: regular, \mathcal{F}_I , \mathcal{F}_{II} and \mathscr{C} (for details, see § 3 and 4). A point of ∂M is of regular type (or of type \mathscr{C}) if it is a regular point (resp. a cusp point) of $f|\partial M$. Fold points of $f|\partial M$ are classified into two types: \mathcal{F}_I and \mathcal{F}_{II} . We consider a stable map which has only points of regular type or of type \mathcal{F}_I on ∂M . Such a map is called a boundary special generic map.

THEOREM 2. A compact connected orientable 3-manifold M with non-empty boundary is an orientable 3-dimensional handlebody (i.e., M is diffeomorphic to $abla^k(S^1 \times D^2)$, $k \ge 0$) if and only if there exists a boundary special generic map $f: M \to \mathbb{R}^2$.

The tool for the proof of Theorems 1 and 2 is the Stein factorization which consists of 2-dimensional polyhedron W_f , $q_f: M \to W_f$ and $\bar{f}: W_f \to \mathbf{R}^2$ with $f = \bar{f} \circ q_f$. Although W_f is not a manifold, we can define an embedding lift of \bar{f} and get the following theorem.

THEOREM 3. Let \hat{M} be a closed, connected, orientable 3-manifold. Suppose that there exists a stable map $f: \hat{M} - \operatorname{Int} D^3 \to \mathbb{R}^2$ with $S(f) = \emptyset$ and the condition (I). If there exists an embedding lift $g_e: W_f \to \mathbb{R}^3$ of \bar{f} , then \hat{M} is homeomorphic to S^3 .

The paper is organized as follows. In §2 we recall some fundamental concepts: stable maps, Stein factorizations and etc. In §3 we clarify the local normal forms of f on the neighborhoods of singular points of $f|\partial M$. In §4 we investigate the semi-local structures of f around simple or non-simple points of ∂M and the Stein factorization. In §5 we prove Theorem 1 using the Stein factorization. In §6 we consider the existence problem of an embedding lift to \mathbb{R}^n and get Proposition 10 which guarantees the existence of an embedding lift for $n \geq 5$. Moreover we give some examples which have no embedding lifts for n = 3, 4. In §7, we prove Theorems 2 and 3.

The author would like to express his sincere gratitude to Professor Osamu Saeki for suggesting the problem and many helpful discussions.

2. Preliminaries

Let M be a smooth 3- or 2-dimensional manifold with or without boundary. We denote by $C^{\infty}(M, \mathbf{R}^2)$ the set of the smooth maps of M into \mathbf{R}^2 with the Whitney C^{∞} topology. For a smooth map $f: M \to \mathbf{R}^2$, S(f) denotes the singular set of f; i.e., S(f) is the set of the points in M where the rank of the differential df is strictly less than two. A smooth map $f: M \to \mathbf{R}^2$ is stable if there exists an open neighborhood N(f) of f in $C^{\infty}(M, \mathbf{R}^2)$ such that every g in N(f) is right-left equivalent to f; i.e., there exist diffeomorphisms $\phi: M \to M$ and $\varphi: \mathbf{R}^2 \to \mathbf{R}^2$ satisfying $g = \varphi \circ f \circ \phi^{-1}$.

We quote an explicit description of a stable map from a closed 3-manifold \hat{M} into \mathbb{R}^2 .

LEMMA 1. ([7]) Let \hat{M} be a closed 3-manifold. Then a smooth map $f: \hat{M} \to \mathbb{R}^2$ is stable if and only if f satisfies the following local and global conditions. For each point $p \in \hat{M}$ there exist local coordinates centered at p and f(p) such that f is expressed by one of the following four types:

(I)
$$(u, x, y) \mapsto (u, x)$$
, p: regular point,

(II)
$$(u, x, y) \mapsto (u, x^2 + y^2)$$
, p: definite fold point,

(III)
$$(u, x, y) \mapsto (u, x^2 - y^2),$$
 p: indefinite fold point,

(IV)
$$(u, x, y) \mapsto (u, y^2 + ux - x^3)$$
, p: cusp point.

Also f should satisfy the following global conditions:

$$(\mathbf{G}_1)$$
 if p is a cusp point, then $f^{-1}(f(p)) \cap S(f) = \{p\}$, and

$$(\mathbf{G}_2)$$
 $f|S(f) - \{\text{cusps}\}\$ is an immersion with normal crossings.

Let us recall the definition of the Stein factorization. Let M be a compact orientable 3-manifold with or without boundary, and let $f: M \to \mathbb{R}^2$ be a stable map. For $p, p' \in M$, we define $p \sim p'$ if f(p) = f(p') and p, p' are in the same connected component of $f^{-1}(f(p)) = f^{-1}(f(p'))$. Let W_f be the quotient space of M under this equivalence relation and we denote by $q_f: M \to W_f$ the quotient map. By the definition of the equivalence relation, we have a unique map $\bar{f}: W_f \to \mathbb{R}^2$ such that $f = \bar{f} \circ q_f$. The quotient space W_f or more precisely the commutative diagram

$$M \xrightarrow{f} \mathbf{R}^2$$
 W_f

is called the Stein factorization of f. In general, W_f is not a manifold, but is

homeomorphic to a 2-dimensional finite CW complex. This fact has been obtained for the case $\partial M = \emptyset$ in [7] and [9] (see also [6]). In the case where $\partial M \neq \emptyset$ with $S(f) = \emptyset$ and the condition (I), this will be shown in §4.

3. Local normal forms of f around singular points of $f \mid \partial M$

Our purpose of this section is to investigate the local normal forms of a stable map f around singular points of $f|\partial M$.

Throughout this section, M is a compact orientable 3-manifold with nonempty boundary, and $f: M \to \mathbb{R}^2$ is a stable map with $S(f) = \emptyset$. Since f is stable, $f | \partial M$ is also stable by [10, p. 2564, Lemma].

Recall the theorem of Whitney ([14]): Let N be a closed 2-manifold, and let $h: N \to \mathbb{R}^2$ be a stable map. Then for each point x in N, there exist local coordinates (x_1, x_2) centered at x and (y_1, y_2) centered at h(x) such that h is given by one of the following local normal forms:

(i)
$$(x_1, x_2) \mapsto (y_1, y_2) = (x_1, x_2),$$
 x: regular point,

(ii)
$$(x_1, x_2) \mapsto (y_1, y_2) = (x_1^2, x_2),$$
 x: fold point,

(iii)
$$(x_1, x_2) \mapsto (y_1, y_2) = (-x_1^3 + x_1x_2, x_2),$$
 x: cusp point.

PROPOSITION 1. Let x be a fold point of $f|\partial M$. Then there exist local coordinates (T, X_1, X_2) of M centered at x and (Y_1, Y_2) of \mathbf{R}^2 centered at f(x) such that f is given by one of the local normal forms $(Y_1, Y_2) = (X_1^2 \pm T, X_2)$, where ∂M corresponds to $\{T = 0\}$ and Int M corresponds to $\{T > 0\}$.

PROOF. By the theorem of Whitney, for $x \in \partial M$, we can choose local coordinates (t, x_1, x_2) centered at x and (y_1, y_2) centered at f(x) such that $f|\partial M$ is expressed by $(0, x_1, x_2) \mapsto (x_1^2, x_2)$, where ∂M corresponds to $\{t = 0\}$ and Int M corresponds to $\{t > 0\}$. Then we put $f(t, x_1, x_2) = (\varphi(t, x_1, x_2), \psi(t, x_1, x_2))$ so that

$$\varphi(0, x_1, x_2) = x_1^2,$$

 $\varphi(0, x_1, x_2) = x_2.$

Since the Jacobian matrix of f at x = (0, 0, 0) is

$$Jf(0) = \begin{pmatrix} \frac{\partial \varphi}{\partial t}(0) & 0 & 0\\ \frac{\partial \psi}{\partial t}(0) & 0 & 1 \end{pmatrix}$$

and rank Jf(0) = 2 by our assumption that $S(f) = \emptyset$, we obtain $(\partial \varphi / \partial t)(0) \neq 0$.

Then, we define the map $\Phi: (t, x_1, x_2) \mapsto (T, X_1, X_2)$ by

$$\begin{cases} T = \varphi(t, x_1, x_2) - x_1^2, \\ X_1 = x_1, \\ X_2 = \psi(t, x_1, x_2). \end{cases}$$

By the condition $(\partial \varphi/\partial t)(0) \neq 0$, we see that the determinant of the Jacobian matrix of Φ at (0,0,0), $|J\Phi(0)|$, is not equal to 0, since

$$J\Phi(0) = egin{pmatrix} rac{\partial arphi}{\partial t}(0) & 0 & 0 \ 0 & 1 & 0 \ rac{\partial \psi}{\partial t}(0) & 0 & 1 \end{pmatrix}.$$

Hence, (T, X_1, X_2) forms local coordinates. Then we get $f(T, X_1, X_2) = (\varphi(t, x_1, x_2), \psi(t, x_1, x_2)) = (X_1^2 + T, X_2)$. Moreover, $\{t = 0\}$ corresponds to $\{T = 0\}$ by this coordinate change, since $\Phi(0, x_1, x_2) = (\varphi(0, x_1, x_2) - x_1^2, x_1, \psi(0, x_1, x_2)) = (0, x_1, x_2)$.

Then on a neighborhood of x, $\{t \ge 0\}$ corresponds to $\{T \ge 0\}$ or to $\{T \le 0\}$ by Φ . By replacing T with -T if necessary, we may always assume that $\{T > 0\}$ corresponds to $\{T = 0\}$ cor

PROPOSITION 2. Let x be a cusp point of $f|\partial M$. Then there exist local coordinates (T, X_1, X_2) of M centered at x and (Y_1, Y_2) of \mathbb{R}^2 centered at f(x) such that f is given by the local normal form $(Y_1, Y_2) = (-X_1^3 + X_1X_2 + T, X_2)$, where ∂M corresponds to $\{T = 0\}$ and Int M corresponds to $\{T > 0\}$.

PROOF. By the theorem of Whitney, for $x \in \partial M$, we can choose local coordinates (t, x_1, x_2) centered at x and (y_1, y_2) centered at f(x) such that $f|\partial M$ is expressed by $(0, x_1, x_2) \mapsto (-x_1^3 + x_1x_2, x_2)$, where ∂M corresponds to $\{t = 0\}$ and Int M corresponds to $\{t > 0\}$. Then we put $f(t, x_1, x_2) = (\varphi(t, x_1, x_2), \psi(t, x_1, x_2))$ so that

$$\varphi(0, x_1, x_2) = -x_1^3 + x_1 x_2,$$

$$\psi(0, x_1, x_2) = x_2.$$

In this case, we consider the map $\Phi:(t,x_1,x_2)\mapsto (T,X_1,X_2)$ defined by

$$\begin{cases} T = \varphi(t, x_1, x_2) + x_1^3 - x_1 \psi(t, x_1, x_2), \\ X_1 = x_1, \\ X_2 = (t, x_1, x_2). \end{cases}$$

Then, by an argument similar to that in the proof of Proposition 1, we see that (T, X_1, X_2) forms local coordinates. So, by the same reason, we get the local normal form $f(T, X_1, X_2) = (-X_1^3 + X_1X_2 \pm T, X_2)$. However, these two types of normal forms coincide with each other through the changes of coordinates $(T, X_1, X_2) \mapsto (T, -X_1, X_2)$ and $(Y_1, Y_2) \mapsto (-Y_1, Y_2)$. This completes the proof.

We can also obtain the following proposition.

PROPOSITION 3. Let x be a regular point of $f|\partial M$. Then there exist local coordinates (T, X_1, X_2) of M centered at x and (Y_1, Y_2) of \mathbb{R}^2 centered at f(x) such that f is given by the local normal form $(Y_1, Y_2) = (X_1, X_2)$, where ∂M corresponds to $\{T = 0\}$ and Int M corresponds to $\{T > 0\}$.

Now, we show the following Lemma 2. This lemma guarantees the existence of a stable map which satisfies the condition (b) of Theorem 1 as explained in §1.

LEMMA 2. Let M be a compact 3-manifold with non-empty boundary and $f: M \to \mathbb{R}^2$ a submersion such that $f \mid \partial M$ is a stable map. Then f is also stable.

$$w = (d\alpha) \circ s + t \circ \alpha$$

where $d\alpha: TM \to T\mathbb{R}^2$ is the differential of α .

By using an argument similar to that of Mather [11], we can show that a strongly infinitesimally stable map is stable. Thus, it is sufficient to prove that f is strongly infinitesimally stable.

Since $f|\partial M$ is stable and hence infinitesimally stable, for any w, $w|\partial M$ is expressed by $w|\partial M=d(f|\partial M)\circ s_{\partial}+t_{\partial}\circ (f|\partial M)$, where s_{∂} is a vector field on ∂M and t_{∂} is a vector field on \mathbf{R}^2 . It is easy to see that there exists a vector field $\overline{s_{\partial}}$ on M such that $\overline{s_{\partial}}|\partial M=s_{\partial}$. If we define the new vector field w' along f by $w'=w-(df)\circ \overline{s_{\partial}}-t_{\partial}\circ f$, then w' satisfies $w'|\partial M=0$. By the argument in the proof of [4, p. 78, Proposition 2.1], we see that there exists a smooth subbundle H complementary to $\operatorname{Ker}(df)$ in TM and that the isomorphism $df_x: H_x \to T_{f(x)}\mathbf{R}^2$ $(x \in M)$ induces an isomorphism on sections, $C^{\infty}(H) \to T_{\sigma}(u)$

 $C_f^{\infty}(T\mathbf{R}^2)$. Here, $C^{\infty}(H)$ denotes the set of sections of $H \subset TM$ over M and $C_f^{\infty}(T\mathbf{R}^2)$ denotes the set of vector fields along f. Hence we can construct a vector field $s^{\circ}: M \to H \subset TM$ such that $w' = (df) \circ s^{\circ}$. Obviously we have $s^{\circ}|\partial M = 0$, since $w'|\partial M = 0$, and w is expressed by $w = (df) \circ (\overline{s_{\partial}} + s^{\circ}) + t_{\partial} \circ f$. Note that the vector field $\overline{s_{\partial}} + s^{\circ}$ is tangent to ∂M on ∂M . This completes the proof.

4. Stein factorization

In §3, we gave the local normal forms of a stable map $f: M \to \mathbb{R}^2$ with $S(f) = \emptyset$ around singular points of $f | \partial M$. In this section, we investigate the structure of the Stein factorization of a stable map $f: M \to \mathbb{R}^2$. Our purpose is to show that (b) implies (a) in Theorem 1. So, throughout this section we assume $S(f) = \emptyset$ and the condition (I).

DEFINITION 1. Let M be a compact orientable 3-manifold with non-empty boundary, and $f: M \to \mathbb{R}^2$ a stable map with $S(f) = \emptyset$. Then $p \in S(f|\partial M)$ is a *simple point* if the connected component of $f^{-1}(f(p))$ containing p intersects $S(f|\partial M)$ only at p.

Let \mathscr{F}_I (or \mathscr{F}_{II}) be the set of fold points of $S(f|\partial M)$ around which f is expressed by the local normal form $(Y_1,Y_2)=(X_1^2+T,X_2)$ (resp. (X_1^2-T,X_2)) as in Proposition 1. Note that a point in \mathscr{F}_I is always simple and that \mathscr{F}_{II} may contain non-simple points. We denote the set of non-simple points by \mathscr{F} . Let \mathscr{C} be the set of cusp points of $f|\partial M$. Note that a cusp point is always simple, since $f|\partial M$ is a stable map. We denote the images of \mathscr{F}_I , \mathscr{F}_{II} , \mathscr{C} and \mathscr{F} by f in f by f by f by f in f by f by f in f in f by f in f in

```
p: regular point \Leftrightarrow p \in W_f - \Sigma,
```

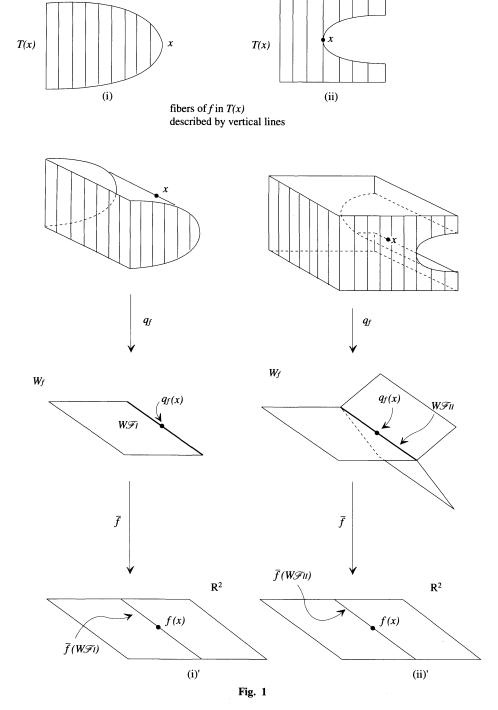
p: fold point of type $I \Leftrightarrow p \in W\mathcal{F}_I$,

p: fold point of type $II \Leftrightarrow p \in W\mathcal{F}_{II}$,

p: cuspidal point $\Leftrightarrow p \in W\mathscr{C}$,

p: $tridental\ point \Leftrightarrow p \in W\mathcal{T}$.

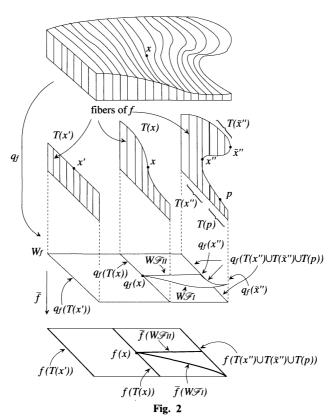
DEFINITION 2. Let M be a compact orientable 3-manifold with non-empty boundary, and $f: M \to \mathbb{R}^2$ a stable map with $S(f) = \emptyset$. For any $y \in \mathbb{R}^2$, an embedding of a closed interval $\alpha: J \to \mathbb{R}^2$ is called a *transverse arc* at y if y is in $\alpha(\operatorname{Int} J)$, α is transverse to $f|\partial M$, and $\alpha(J) \cap f(S(f|\partial M)) = \{y\} \cap f(S(f|\partial M))$. For $x \in M$, if $\alpha: J \to \mathbb{R}^2$ is a transverse arc at f(x), then the component of $f^{-1}(\alpha(J))$ containing x is called a *transverse manifold* at x and is denoted by T(x).



Let us first consider simple singular points of $f|\partial M$. By using local normal forms obtained in §3 and by repeating Levine's argument as described in [9, Chapter I], we obtain the following propositions, the proofs of which are easy exercises. In [9], Levine considers compact 3-dimensional manifolds without boundary, while we treat the case with boundary. Thus a main difference from the argument of [9] is the structures of the transverse manifolds. But, we can easily obtain the structures of transverse manifolds based on the local normal forms near singularities of $f|\partial M$ as described in Propositions 1, 2 and 3.

PROPOSITION 4. Let x be a simple point in \mathcal{F}_I (or \mathcal{F}_{II}). Then the transverse manifold, T(x), of f at x is as in Figure 1 (i) (resp. Figure 1 (ii)), and the Stein factorization W_f and the map \bar{f} near $q_f(x)$ are as in Figure 1 (ii)' (resp. Figure 1 (ii)').

PROPOSITION 5. Let x be a cusp point in \mathscr{C} . Then the transverse manifold, T(x), of f at x, the Stein factorization W_f and the map \bar{f} near $q_f(x)$ are as in Figure 2.



Let us now consider a non-simple singular point of $f \mid \partial M$.

PROPOSITION 6. Let x be a non-simple point in $S(f|\partial M)$. Then there exists a neighborhood of $q_f(x)$ in the Stein factorization W_f as in Figure 3.

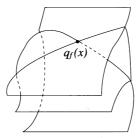


Fig. 3

PROOF. Since $f|\partial M$ is stable, $f(S(f|\partial M))$ forms a normal crossing around f(x). Furthermore, non-simple points must belong to \mathscr{F}_{II} . By the condition (I), a component of $f^{-1}(f(x))$ containing x is homeomorphic to a closed interval, and it contains two singular points of $f|\partial M$.

As in Levine [9, p. 15, 1.4] we investigate how the fibers are situated around a non-simple point. Then we see that the connected component of $f^{-1}(U)$ containing x is as in Figure 4, where U is a certain compact neighborhood of f(x) in \mathbb{R}^2 . Thus, the corresponding Stein factorization is easily seen to be as in Figure 3.

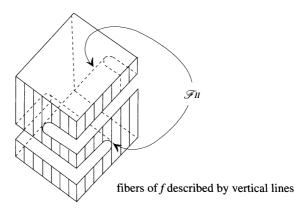
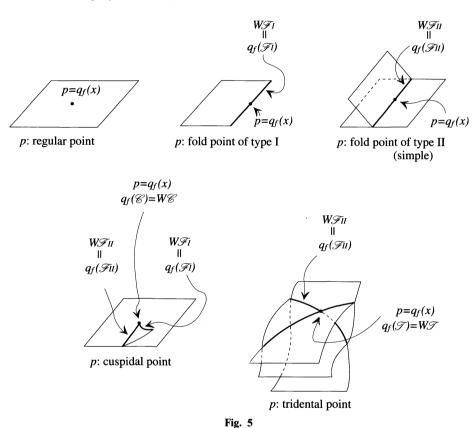


Fig. 4

Summarizing the above results, we obtain the following proposition.

PROPOSITION 7. Let M be a compact orientable 3-manifold with non-empty boundary, and let $f: M \to \mathbb{R}^2$ be a stable map with $S(f) = \emptyset$ and the condition (I). For each $x \in M$, there exists a neighborhood of $q_f(x)$ in W_f which is homeomorphic to one of the polyhedrons as in Figure 5. Moreover, W_f is a 2-dimensional polyhedron.



REMARK 1. Note that $W_f - \Sigma$ has a natural structure of a C^{∞} -manifold of dimension two which is induced from \mathbf{R}^2 by the local homeomorphism \bar{f} , and that $\Sigma - (W\mathscr{C} \cup W\mathscr{T})$ also has a natural structure of a C^{∞} -manifold of dimension one.

5. Immersion lift from M to \mathbb{R}^3

In this section, we prove Theorem 1. We may suppose that M and \mathbb{R}^2 are oriented. Then each connected component of fibers of f which is homeo-

morphic to a closed interval has the induced orientation.

We first prove the implication (a) \Rightarrow (b) in Theorem 1. Since $f = \pi \circ F$ for an immersion F and a submersion π , we have $S(f) = \emptyset$. Let r be a point of f(M). Then by Propositions 1, 2 and 3, for every $x \in f^{-1}(r)$, there exists an open neighborhood U of x in M such that U satisfies one of the following:

- (1) $U \cap f^{-1}(r) \approx (-1,1)$ $(x \in \operatorname{Int} M \cup \mathscr{F}_{II}),$
- (2) $U \cap f^{-1}(r) \approx [0,1)$ $(x \in (\partial M \cap (M \setminus S(f | \partial M))) \cup \mathscr{C}),$
- (3) $U \cap f^{-1}(r)$ is a point $(x \in \mathcal{F}_I)$,

where " \approx " denotes a homeomorphism. Thus, $f^{-1}(r)$ is a disjoint union of 1-dimensional manifolds with or without boundary and discrete points. By the compactness of $f^{-1}(r)$, $f^{-1}(r)$ must be homeomorphic to a finite disjoint union of circles, closed intervals and points. However, since $f^{-1}(r) \subset \{r\} \times \mathbf{R}$, $f^{-1}(r)$ cannot contain circles. This implies the condition (I) and hence (b).

The remainder of this section is devoted to the proof of the implication $(b) \Rightarrow (a)$ in Theorem 1 or its restatement, Proposition 9.

Set $Y = \{re^{\sqrt{-1}\theta} \in \mathbb{C} \mid 0 \le r \le 1, \theta = \pi/3, \pi, 5\pi/3\}, \ Y_0 = \{re^{\sqrt{-1}\theta} \in Y \mid r \ne 0, \theta = \pi\}, \ Y_1 = \{re^{\sqrt{-1}\theta} \in Y \mid r \ne 0, \theta = \pi/3\} \ \text{and} \ Y_2 = \{re^{\sqrt{-1}\theta} \in Y \mid r \ne 0, \theta = 5\pi/3\}.$ Define $\sigma: Y \to [-1, 1/2]$ by $\sigma(z) = \operatorname{Re} z$. Assume that $x \in \mathscr{F}_{II} - \mathscr{F}$. Then, there exist homeomorphisms $\Lambda: q_f(T(x)) \to Y$ and $\lambda: f(T(x)) \to [-1, 1/2]$ such that $\sigma \circ \Lambda = \lambda \circ \overline{f} | q_f(T(x))$. We say that $\Lambda^{-1}(Y_0)$ is the stem and $\Lambda^{-1}(Y_1)$ and $\Lambda^{-1}(Y_2)$ are the arms of $q_f(T(x))$. The transverse manifold T(x), its image $q_f(T(x))$ in W_f and their images in \mathbb{R}^2 are described in Figure 6. The fibers of f in T(x) are described by vertical lines with arrows consistent with their orientations. The two arms in $q_f(T(x))$ are classified into the upper arm α_+ and the lower arm α_- by the images of the upper branch $\tilde{\alpha}_+$ contains the upper part of the fiber passing through the point x as in Figure 6, and the lower branch $\tilde{\alpha}_-$ contains the lower part.

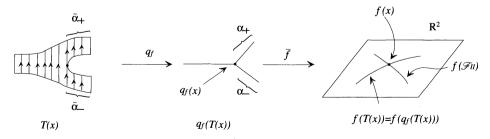


Fig. 6

Since W_f is a polyhedron by Proposition 7, we can take sufficiently small regular neighborhoods N(p) of $p \in W\mathscr{C} \cup W\mathscr{T}$ so that $N(p) \cap N(p') = \emptyset$ if $p \neq p'$, and that N(p) coincides with a component of $\bar{f}^{-1}(D)$ for some $D \subset \mathbb{R}^2$, where D is homeomorphic to $I \times I$, I = [0,1]. Moreover, if c is a connected component of $W\mathscr{F}_I - \bigcup_p \operatorname{Int} N(p)$ (or $W\mathscr{F}_{II} - \bigcup_p \operatorname{Int} N(p)$), then c has a regular neighborhood N(c) relative boundary in W_f which is homeomorphic to $I \times c$ (or $Y \times c$ resp.). In fact, since \bar{f} is an immersion on $W_f - \Sigma$, a regular neighborhood N(c) is homeomorphic to an I-bundle (or Y-bundle resp.) over c. When $c \subset W\mathscr{F}_I - \bigcup_p \operatorname{Int} N(p)$, this I-bundle is immersed in \mathbb{R}^2 and hence trivial. Furthermore, suppose that $c \subset W\mathscr{F}_{II} - \bigcup_p \operatorname{Int} N(p)$ and N(c) contains a non-trivial Y-bundle over a circle c_1 in c which exchanges the arms along c_1 . Then for a section s of the sub I-bundle consisting of the stems along c_1 , $q_f^{-1}(s)$ forms a non-orientable I-bundle, i.e., Möbius band. This contradicts the induced orientations of fibers.

We may assume that $N(c) \cap N(c') = \emptyset$ if $c \neq c'$. We may also assume $(\bigcup_p N(p)) \cup (\bigcup_c N(c)) = N(\Sigma)$, the regular neighborhood of Σ .

DEFINITION 3. Let M be a compact orientable 3-manifold with non-empty boundary, and let $f: M \to \mathbb{R}^2$ be a stable map with $S(f) = \emptyset$ and the condition (I). Then a continuous map $g: W_f \to \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ is said to be an immersion lift of \bar{f} to \mathbb{R}^3 if $\bar{f} = \pi \circ g$ and the following conditions (1), (2), (3) and (4) are satisfied.

- (1) $g|(W_f \Sigma)$ is a smooth immersion with normal crossings.
- (2) $g|\Sigma$ is an injection, and $g|(\Sigma (W\mathscr{C} \cup W\mathscr{T}))$ is a smooth embedding.
- (3) $g|N(\Sigma)$ is an injection, and $g|(N(\Sigma) \Sigma)$ is a smooth embedding.
- (4) For each $x \in \mathscr{F}_H \mathscr{F}$, we have $\pi' \circ g(a) > \pi' \circ g(b)$ for any point a of the upper arm and any point b of the lower arm of $q_f(T(x))$, where $\pi' : \mathbf{R}^3 \to \mathbf{R}$ is the projection to the last coordinate.

PROPOSITION 8. Let M be a compact orientable 3-manifold with non-empty boundary, and let $f: M \to \mathbb{R}^2$ be a stable map with $S(f) = \emptyset$ and the condition (I). Then there exists an immersion lift $g: W_f \to \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ of the form $g(x) = (\bar{f}(x), h_0(x))$.

PROOF. Let p be a point of $W\mathscr{C} \cup W\mathscr{T}$. Then we define $g|(N(p) \cap \Sigma): N(p) \cap \Sigma \to \mathbf{R}^2 = \mathbf{R}^2 \times \{0\} \subset \mathbf{R}^3$ by $g|(N(p) \cap \Sigma) = \bar{f}|(N(p) \cap \Sigma)$. Then $g|(N(p) \cap \Sigma)$ is injective. Moreover, g can be extended all over Σ by separating normal crossing points of $\bar{f}|(\Sigma - (W\mathscr{C} \cup W\mathscr{T}))$ into extra dimension. Thus we can define $g|\Sigma$ so that $g|\Sigma$ satisfies the above condition (2).

Let us extend g over $N(\Sigma)$. First, we lift the neighborhoods N(p), $p \in W\mathscr{C} \cup W\mathscr{T}$, to $\mathbf{R}^3 = \mathbf{R}^2 \times \mathbf{R}$ so that g|N(p) satisfies the condition (4), and so that the angle between the images of two arms contained in N(p) – Int N(p)

is δ (0 < δ < π) and that the image of each stem contained in N(p) – Int N(p)is horizontal. To extend g all over $N(\Sigma)$, let \mathcal{S} be the set of the connected components of $\Sigma - \bigcup_p \operatorname{Int} N(p)$, $p \in W\mathscr{C} \cup W\mathscr{F}$. We consider lifts on each $N(c), c \in \mathcal{S}$. Let $\Pi: N(c) \to c$ be the natural bundle projection whose fibers are homeomorphic to I = [0, 1] if $c \subset W \mathcal{F}_I$ or to Y if $c \subset W \mathcal{F}_{II}$.

First, for $c \subset W\mathcal{F}_I$, define $g: N(c) \to \mathbf{R}^3$ by $x \mapsto (\bar{f}(x), h_0(\Pi(x)))$, where $h_0: c \to \mathbf{R}$ is the smooth function which gives the third coordinate. Second, for $c \subset W\mathcal{F}_{II}$, N(c) is homeomorphic to $Y \times c$. Then define $g: N(c) \to \mathbb{R}^3$ by $x \mapsto (\bar{f}(x), h_0(\Pi(x)) + Z(x)),$ where $h_0 : c \to \mathbb{R}$ is the smooth function which gives the third coordinate and $Z:N(c)\to \mathbf{R}$ is defined as follows: if x belongs to a stem, then we define Z(x) = 0, and if x belongs to an upper (resp. lower) arm, then we define $Z(x) = \|\bar{f}(x) - \bar{f}(\Pi(x))\| \tan \delta/2$ (resp. $-\|\bar{f}(x) - \bar{f}(\Pi(x))\|\tan \delta/2$. Here note that our construction of the lifts on N(p) and on N(c) are consistent, and then we may assume that $q|N(\Sigma)$ is an injection and that $g|(N(\Sigma) - \Sigma)$ is a smooth embedding by choosing a sufficiently small δ . Thus a lift on $N(\Sigma)$ which satisfies the conditions (3) and (4) has been constructed.

Finally, we can extend the lift to whole W_f by using an argument similar to that of [7, pp. 26-27] and complete the proof.

Proposition 9. Let M be a compact orientable 3-manifold with non-empty boundary, and $f: M \to \mathbb{R}^2$ a stable map with $S(f) = \emptyset$ and the condition (I). Then there exists an immersion $F: M \to \mathbb{R}^3$ which makes the following diagram commutative.

PROOF. We use the same notations as in the proof of Proposition 8, and construct an immersion lift $F: M \to \mathbb{R}^3$ based on $g: W_f \to \mathbb{R}^3$.

First, let us construct a lift on $q_f^{-1}(N(\Sigma))$ to \mathbb{R}^3 . We lift $q_f^{-1}(N(p)) \times$ $(p \in W\mathscr{C} \cup W\mathscr{T})$ as the top figure in Figure 2 and Figure 4, and then we lift the other part of $q_f^{-1}(N(\Sigma))$ as the top figures in (i)', (ii)' of Figure 1 so that $F|q_f^{-1}(N(\Sigma))$ is expressed by $x \mapsto g(q_f(x)) + (0,0,h_0(x))$, where $h_0:q_f^{-1}(N(\Sigma))\to \mathbf{R}$ is an orientation preserving embedding on each q_f fiber. In the construction, we can arrange so that the orientation of the Fimage of each oriented fiber of q_f contained in $\{r\} \times \mathbf{R} \ (r \in \mathbf{R}^2)$ coincides with that of the last coordinate of \mathbb{R}^3 . By (3) of Definition 3, we can construct the lift $F|q_f^{-1}(N(\Sigma))$ as an embedding. Similarly, for $q_f^{-1}(\overline{W_f-N(\Sigma)})$, we can construct a smooth function

REMARK 3. Haefliger [5, Théorème 1] showed that for a stable map from a closed 2-manifold N into \mathbb{R}^2 , there exists an immersion lift to \mathbb{R}^3 with respect to the standard projection $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ if and only if each connected component of its singular set has an orientable (or non-orientable) neighborhood if the number of cusps on the connected component is even (resp. odd).

Let F be an immersion lift of a stable map $f: M \to \mathbb{R}^2$ as in Theorem 1. Then the stable map $f|\partial M:\partial M\to \mathbb{R}^2$ is also lifted to \mathbb{R}^3 by $F|\partial M$. Then, by Haefliger [5], each connected component of $S(f|\partial M)$ must have an even number of cusps, since ∂M is an orientable closed surface.

In fact, cusps of $f|\partial M$ correspond exactly to cuspidal points of W_f by q_f . From the structure of W_f obtained in Proposition 7, the connected components of \mathscr{F}_I and those of \mathscr{F}_{II} must connect one after the other alternately at cusp points of $f|\partial M$ as their connecting points, and all of them must form circles. Hence, the number of cusps on each circle is even. Therefore, the stable map $f|\partial M$ automatically satisfies the condition of Haefliger.

REMARK 4. Kushner-Levine-Porto [7] have given a sufficient condition for the existence of an immersion lift to \mathbf{R}^4 with respect to the projection $\pi: \mathbf{R}^4 \to \mathbf{R}^2$, $(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2)$, for a stable map from a closed orientable 3-manifold to \mathbf{R}^2 . Of course, there is no immersion lift to \mathbf{R}^3 for a closed 3-manifold.

6. Embedding lift from M to \mathbb{R}^n

In §5, we considered the existence problem of an immersion lift F to \mathbb{R}^3 for a stable map from M into \mathbb{R}^2 . We will consider the embedding lift to \mathbb{R}^n , n = 3, 4 and $n \ge 5$.

REMARK 5. There is a stable map f which satisfies the condition (b) in Theorem 1 but has no embedding lifts to \mathbb{R}^3 .

We take the compact orientable 3-manifold with boundary $S^2 \times S^1 - \operatorname{Int} D^3$ for M. No stable map from M into \mathbb{R}^2 can have an embedding lift F to \mathbb{R}^3 . In fact, if M is embedded into \mathbb{R}^3 , then $\partial M = S^2$ bounds an embedded 3-ball in \mathbb{R}^3 by the theorem of Schönflies. This means that M itself is homeomorphic to D^3 ; a contradiction. We identify $M = S^2 \times S^1 - \operatorname{Int} D^3$ with $D^2 \times I \cup_{\varphi} S^2 \times I$ and give an immersion $i: M \to \mathbb{R}^3$ as in Figure 8, where $\varphi: D^2 \times \partial I \to S^2 \times \partial I$ is a handle attaching map. We can see that the map $f = \pi \circ i$ is stable by Lemma 2. Moreover, $S(f) = \emptyset$ and f satisfies the condition (I).

In this example, two cusps appear around each component of $\varphi(D^2 \times \partial I)$. The upper and lower arms in $q_f(T(x)) \subset W_f$ at the fold points $x \in \partial M$ of type \mathscr{F}_{II} are drawn in the figure so as to satisfy the condition (4) of Definition

 $h_1: q_f^{-1}(\overline{W_f - N(\Sigma)}) \to \mathbf{R}$, where $h_1 = h_0$ on $q_f^{-1}(\overline{W_f - N(\Sigma)}) \cap q_f^{-1}(N(\Sigma))$, and define $F|q_f^{-1}(\overline{W_f - N(\Sigma)})$ by $x \mapsto g(q_f(x)) + (0, 0, h_1(x))$ so that the restriction of h_1 to each q_f -fiber (which is homeomorphic to a closed interval by the condition (I)) is an orientation preserving embedding, and that $F|q_f^{-1}(\overline{W_f - N(\Sigma)})$ is an immersion. This completes the proof of Proposition 9.

Now we have completed the proof of Theorem 1 by proving $(b) \Rightarrow (a)$ by Proposition 9 and $(a) \Rightarrow (b)$ at the beginning of this section. We give some remarks before closing the section.

REMARK 2. The condition $S(f) = \emptyset$ does not imply the condition (I) in Theorem 1 as follows. Let N be an annulus, and consider $M = N \times S^1$. Let $\rho: N \to \mathbf{R}$ be a height function as in Figure 7 such that ρ is non-singular, while $\rho | \partial M$ is a Morse function with exactly four critical points, and that ρ contains a fiber homeomorphic to S^1 . Then define $\rho \times \operatorname{id}: N \times S^1 \to \mathbf{R} \times S^1$ by $(x,t) \mapsto (\rho(x),t)$. Finally, consider an embedding $\eta: \mathbf{R} \times S^1 \to \mathbf{R}^2$ and we define $f = \eta \circ (\rho \times S^1): M \to \mathbf{R}^2$. This f is stable, $S(f) = \emptyset$, and we can find a point $r \in \mathbf{R}^2$ such that $f^{-1}(r)$ is homeomorphic to S^1 .

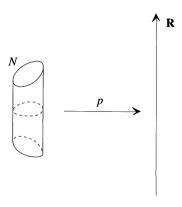


Fig. 7

However, the condition (I) does imply $S(f) = \emptyset$ under the condition that $S(f) \cap \partial M = \emptyset$. To show this, suppose $S(f) \neq \emptyset$. Then there exists a definite fold or an indefinite fold point as a singularity of f. If M contains a definite fold point $p \in \operatorname{Int} M$, then there must exist a fiber near p which contains a connected component homeomorphic to S^1 . If M contains an indefinite fold point $p' \in \operatorname{Int} M$, then the connected component of the fiber containing p' cannot be diffeomorphic to a closed interval or a point. Hence, if $S(f) \neq \emptyset$, then f does not satisfy the condition (I). Thus the condition (I) implies $S(f) = \emptyset$, provided that $S(f) \cap \partial M = \emptyset$.

3. We understand that it is difficult to modify the immersion lift of \bar{f} to an embedding keeping this condition.

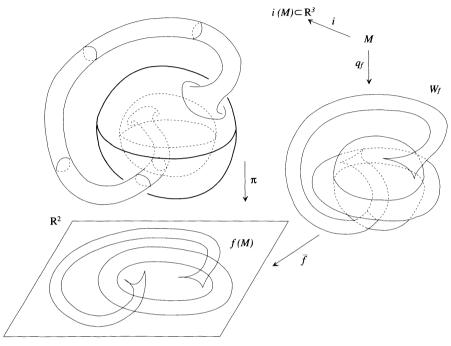


Fig. 8

REMARK 6. There is a stable map f which satisfies the condition (b) in Theorem 1 but has no embedding lifts to \mathbb{R}^4 .

Let M be a punctured lens space $L(2n,q)^{\circ}$. It is a compact orientable 3-manifold with boundary S^2 . Then we can construct a stable map $f: M \to \mathbb{R}^2$ with $S(f) = \emptyset$ and our condition (I) by Lemma 2. However, it has been shown in [3] that a punctured lens space $L(2n,q)^{\circ}$ cannot be embedded in \mathbb{R}^4 . Hence f cannot have an embedding lift to \mathbb{R}^4 .

DEFINITION 4. Let M be a compact orientable 3-manifold with non-empty boundary, and let $f: M \to \mathbb{R}^2$ be a stable map with $S(f) = \emptyset$ and the condition (I). Then, a continuous map $g_e: W_f \to \mathbb{R}^n$ is said to be an *embedding* lift of \bar{f} to \mathbb{R}^n if g_e satisfies $\bar{f} = \pi \circ g_e$ with respect to the projection $\pi: \mathbb{R}^n \to \mathbb{R}^2$, $(x_1, x_2, \ldots, x_n) \mapsto (x_1, x_2)$, and the following.

- (1) g_e is a topological embedding.
- (2) $g_e|(W_f \Sigma)$ is a smooth embedding.
- (3) $g_e|(\Sigma (W\mathscr{C} \cup W\mathscr{T}))$ is a smooth embedding.
- (4) $g_e(N(\Sigma)) \subset \mathbb{R}^3 \times \{0\} \subset \mathbb{R}^n$, and $g_e(N(\Sigma))$ satisfies the condition (4) of

Definition 3 as a map into \mathbb{R}^3 .

REMARK 7. In the example given in Remark 5 (see Figure 8), we can see that \bar{f} has a lift to \mathbf{R}^3 which is a topological embedding. But we have no embedding lift of \bar{f} as defined in Definition 4, because it contradicts the following proposition.

PROPOSITION 10. Let M be a compact orientable 3-manifold with nonempty boundary, and let $f: M \to \mathbb{R}^2$ be a stable map with $S(f) = \emptyset$ and the condition (I). If there exists an embedding lift $g_e: W_f \to \mathbb{R}^n$ of \overline{f} with respect to $\pi: \mathbb{R}^n \to \mathbb{R}^2$, $(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2)$, then there exists an embedding lift $F_e: M \to \mathbb{R}^n$ of f. In particular, for $n \geq 5$, there always exists an embedding lift F_e of f.

PROOF. By virtue of the condition (4) of Definition 4, we can construct an embedding lift on $q_f^{-1}(N(\Sigma))$ so that $F_e(q_f^{-1}(N(\Sigma))) \subset \mathbf{R}^3 \times \{0\}$ by using an argument similar to that in the proof of Proposition 9.

Then, we construct the lift on $q_f^{-1}(\overline{W_f-N(\Sigma)})$ as follows. By the construction of $F_e|q_f^{-1}(N(\Sigma))$, we have $F_e(q_f^{-1}(p)) \subset \bar{f}(p) \times \mathbb{R} \times \{0\} \subset \mathbb{R}^3\{0\} \subset \mathbb{R}^n$ for any $p \in N(\Sigma)$. Hence, we can construct F_e on $q_f^{-1}(\overline{W_f-N(\Sigma)})$ by $x \mapsto g_e(q_f(x)) + (0,0,h_0(x),0,\dots,0)$, where h_0 is an orientation preserving embedding on each q_f -fiber. Since $g_e|q_f(\overline{W_f-N(\Sigma)})$ is a smooth embedding, we can arrange so that $F_e(x) \neq F_e(x')$ if $q_f(x) \neq q_f(x')$. Thus an embedding lift F_e of f has been constructed.

The existence of an immersion lift $g:W_f\to \mathbf{R}^3$ is guaranteed by our Proposition 8. In general, the lift $g|(W_f-N(\Sigma))$ has normal crossings. However, if $n\geq 5$, then we can separate the normal crossings into extra dimensions in \mathbf{R}^n by Thom's transversality theorem so that g satisfies $\pi\circ g=\bar{f}$. Therefore, for $n\geq 5$, we can always construct an embedding lift from W_f to \mathbf{R}^n and hence from M to \mathbf{R}^n . This completes the proof.

7. Applications

In this section, first we prove Theorem 2 as an application of the results obtained in §4. For a closed orientable 3-manifold \hat{M} , Burlet-de Rham [1] have proved that there exists a special generic map $f: \hat{M} \to \mathbb{R}^2$ if and only if \hat{M} is diffeomorphic to S^3 or to a connected sum $\sharp^k(S^2 \times S^1)$, where a special generic map is a stable map which has only definite fold points as its singularities. Saeki [12] has obtained a characterization of graph manifolds by using simple stable maps (defined in [12]), where a graph manifold is defined to be a 3-manifold built up of S^1 -bundles over surfaces attached along their torus boundaries. As an analogy, we consider the structure of source manifolds of

the boundary special generic maps defined as follows.

DEFINITION 5. Let M be a compact orientable 3-manifold with non-empty boundary, and $f: M \to \mathbb{R}^2$ a stable map with $S(f) = \emptyset$. Then f is called a boundary special generic map if $S(f|\partial M) = \mathscr{F}_I$.

LEMMA 3. Let M be a compact orientable 3-manifold with non-empty boundary. Then any boundary special generic map $f: M \to \mathbb{R}^2$ satisfies the condition (I).

PROOF. Let r be a point in f(M) and r' a point such that $r' \notin f(M)$. Consider a smooth embedding $C: [0,1] \to \mathbb{R}^2$ such that C(0) = r', C(1) = r and C is transverse to $f|\partial M$. Then $f|f^{-1}(C([0,1])): f^{-1}(C([0,1])) \to C([0,1])$ is a non-singular function on a surface with boundary, and each singularity of $f|\partial M$ in $f^{-1}(C([0,1]))$ belongs to \mathscr{F}_I so that only arcs appear or disappear in the inverse image. Set

$$A = \{ t \in [0,1] \mid f^{-1}(C(t)) \not\supset S^1 \}.$$

Then we have (1) $A \ni 0$, in particular, $A \ne \emptyset$, (2) A is open, and (3) the complement of A is open. Since [0,1] is connected, we see A = [0,1]. Hence $f^{-1}(r)$ does not contain a circle component. Then the result follows as in the proof of (a) \Rightarrow (b) in Theorem 1 given at the beginning of §5.

PROOF OF THEOREM 2. Suppose that M is a compact orientable 3-dimensional handlebody. Then, we can construct a boundary special generic map f from M into \mathbb{R}^2 as in Figure 9, where i is an embedding so that $\pi \circ i$ has only singularities of type \mathscr{F}_I at ∂M .

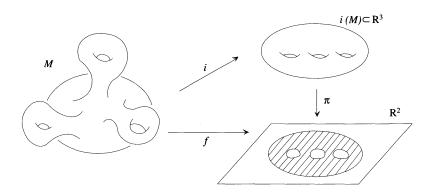


Fig. 9

Conversely, suppose that $f: M \to \mathbb{R}^2$ is a boundary special generic map. Then W_f must be a connected surface with non-empty boundary by Lemma 3 and Propositions 4 and 7. Since M is compact, so is W_f . By the smooth structure of $\overline{W_f - N(\Sigma)}$ defined in Remark 1, the continuous map $q_f|q_f^{-1}(\overline{W_f - N(\Sigma)})$ is a differentiable map, and moreover a submersion. Here, note that rank $d(f|\partial M)_x = \dim \mathbb{R}^2$ for all $x \in \partial M \cap q_f^{-1}(\overline{W_f - N(\Sigma)})$. So, by applying Lemma 3 and Ehresmann's fibration theorem ([2] and [8, p. 23]), $q_f^{-1}(\overline{W_f - N(\Sigma)})$ has a structure of an I-bundle over $\overline{W_f - N(\Sigma)}$. On the other hand, by the local structure given by Proposition 4 for the fold points of type \mathscr{F}_I , we see that $q_f^{-1}(N(\Sigma))$ is a trivial I-bundle over $N(\Sigma)$ which is homeomorphic to $\partial W_f \times I$. Thus we see that M is an I-bundle over a compact connected surface W_f with non-empty boundary and hence that M is a 3-dimensional handlebody.

Let us prove Theorem 3 as an application of the arguments in §5 and 6.

PROOF OF THEOREM 3. If there exists an embedding lift $g_e: W_f \to \mathbb{R}^3$, then there also exists an embedding lift $F_e: \hat{M} - \operatorname{Int} D^3 \to \mathbb{R}^3$ by Proposition 10. Since $\partial(\hat{M} - \operatorname{Int} D^3) = S^2$, S^2 is embedded in \mathbb{R}^3 by F_e . By the theorem of Schönflies, $S^2 = \partial(\hat{M} - \operatorname{Int} D^3)$ bounds a 3-ball in \mathbb{R}^3 ; i.e., $\hat{M} - \operatorname{Int} D^3$ must be homeomorphic to D^3 . Hence $\hat{M} = (\hat{M} - \operatorname{Int} D^3) \cup D^3 \approx D^3 \cup D^3 \approx S^3$, where each " \approx " denotes a homeomorphism. This completes the proof.

References

- [1] O. Burlet and G. de Rham, Sur certains applications génériques d'une variété close à 3-dimensions dans le plan, Enseign. Math. 20 (1974), 275-292.
- [2] C. Ehresmann, Sur l'espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947), 1611– 1612.
- [3] D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math. Soc. 16 (1965), 175-176.
- [4] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Math. 14, Springer-Verlag (1973).
- [5] A. Haefliger, Quelques remarques sur les applications différentiables d'une surface dans le plan, Ann. Inst. Fourier (Grenoble) 10 (1960), 47-60.
- [6] M. Kobayashi and O. Saeki, Simplifying stable mappings into the plane from a global viewpoint, Trans. Amer. Math. Soc. 348 (1996), 2607–2636.
- [7] L. Kushner, H. Levine and P. Porto, Mapping 3-manifolds into the plane I, Bol. Soc. Mat. Mexicana 29 (1) (1984), 11-34.
- [8] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15-51.
- [9] H. Levine, Classifying immersions into R⁴ over stable maps of 3-manifolds into R², Lecture Notes in Math. 1157, Springer-Verlag (1985).
- [10] H. Levine, Computing the Euler characteristic of a manifold with boundary, Proc. Amer.

- Math. Soc. 123 (1995), 2563-2567.
- [11] J. N. Mather, Stability of C^{∞} mappings: II. Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254–291.
- [12] O. Saeki, Simple stable maps of 3-manifolds into surfaces, Topology 35 (1996), 671-698.
- [13] J. H. C. Whitehead, The immersion of an open 3-manifold in Euclidean 3-space, Proc. London Math. Soc. (3) 11 (1961), 81-90.
- [14] H. Whitney, On singularities of mappings of Euclidean spaces: I, mappings of the plane into the plane, Ann. of Math. 62 (1955), 374-410.

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan