
Hiroshima Math. J.

37 (2007), 111–117

Confidence regions of parameters in a nonlinear repeated

measurement model with mixed e¤ects

Dedicated to Professor Y. Fujikoshi on his retirement from

Hiroshima University

Yuko Baba, Hirofumi Nishimaru and Hiroto Hyakutake

(Received March 8, 2006)

(Revised September 27, 2006)

Abstract. There are several nonlinear models for analyzing repeated measurements.

The mean response for an individual depends on the regression parameter specific

to that individual. One of the simple form is the sum of a vector of fixed parameters

and a vector of random e¤ect. In this paper, we give a confidence region of the fixed

parameters approximately.

1. Introduction

Let yi ¼ ðyi1; . . . ; yipÞ0 be a p dimensional observation of the ith individual

ði ¼ 1; . . . ; nÞ, in which the element yij is measured at point tj. yi is called the

repeated measurement data. For each element yij , we assume

yij ¼ f ðtj; biÞ þ eij; ð1:1Þ

where f is a known (nonlinear) function, eij is the error, and bi ¼ ðbi1; . . . ; biqÞ
0

is unknown parameter ðq < pÞ. For example, such data arise in pharmaco-

kinetics, growth processes, and so on; see Davidian and Giltinan [1] or Vonesh

and Chinchilli [7]. Let f ðt; biÞ ¼ ð f ðt1; biÞ; . . . ; f ðtp; biÞÞ
0, then

yi ¼ f ðt; biÞ þ ei; ð1:2Þ

where ei ¼ ðei1; . . . ; eipÞ0 and t ¼ ðt1; . . . ; tpÞ0. In the model, bi ¼ fþ bi is as-

sumed, where f ¼ ðf1; . . . ; fqÞ
0 is the fixed parameter and bi ¼ ðbi1; . . . ; biqÞ0 is

the random e¤ect. We assume that ei’s are independent and have multinormal

distribution with mean 0 and covariance matrix s2Ip, that is Npð0; s2IpÞ, that
bi’s are independent and have Nqð0;CÞ, and that ei and bi are independent.

Then we wish to construct a confidence region for f.
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For analysis of nonlinear repeated measurements, Pinheiro and Bates [4]

reviewed statistical analysis, Vonesh [5] gave an estimation algorithm and a

confidence interval of a parameter, and Nagahisa and Hyakutake [3] gave

simultaneous confidence intervals of the parameters. But the confidence in-

terval by Vonesh [5] is only for one parameter of f and Nagahisa and

Hyakutake [3] gave confidence intervals based on an asymptotic distribution.

In Section 2, we give an approximate confidence region for f by the first order

linearization. Vonesh [5] examined the e‰ciency of four types of estimators by

simulation, in which no one estimator is universally better or worth than the

others. We use the estimated generalized least squares (EGLS). In Section 3,

the accuracy of approximation is examined by simulation.

2. Confidence region

By the first order Taylor expansion at bi ¼ f, the nonlinear function

f ðt; biÞ is approximated by

f ðt; biÞA f ðt; fÞ þ ZðfÞbi; ð2:1Þ

where ZðfÞ ¼ qf ðt; biÞ=qb 0
i jbi¼f. Since the model (1.2) can be approximated by

yiA f ðt; fÞ þ ZðfÞbi þ ei; ð2:2Þ

the distribution of yi is Npð f ðt; fÞ;W�1Þ approximately, where

W�1 ¼ W�1ðC ; s2Þ ¼ ZCZ 0 þ s2Ip: ð2:3Þ

Given model (2.2), Vonesh and Carter [6] and Vonesh [5] described EGLS

procedure:

Stage 1: Obtain the ordinary least square (OLS) estimator ~ff.

Stage 2: Set ~ZZ ¼ Zð ~ffÞ and treat as a known matrix. Let ~eei ¼ yi � f ðt; ~ffÞ,
~bbi ¼ ð ~ZZ 0 ~ZZÞ�1 ~ZZ 0~eei, and ~ss2i ¼ ~ee 0ifIp � ~ZZð ~ZZ 0 ~ZZÞ�1 ~ZZ 0g~eei=ðp� qÞ.

Stage 3: Obtain estimates of s2 and C as

ŝs2 ¼
Xn

i¼1

~ss2i =n and ĈC ¼
S~bb � ŝs2ð ~ZZ 0 ~ZZÞ�1 ðl̂l > ŝs2Þ
S~bb � l̂lð ~ZZ 0 ~ZZÞ�1 ðl̂la ŝs2Þ

(
; ð2:4Þ

where S~bb ¼
Pn

i¼1
~bbi~bb

0
i=n and l̂l is the minimum root of

jS~bb � lð ~ZZ 0 ~ZZÞ�1j ¼ 0.

Stage 4: Obtain the EGLS estimator f̂f by minimizing

Xn

i¼1

fyi � f ðt; fÞg0
ŴWfyi � f ðt; fÞg; ð2:5Þ

where ŴW ¼ ð ~ZZĈC ~ZZ 0 þ ŝs2IpÞ�1.
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If C and s2 were known, then the generalized least squares (GLS) estimator is

obtained by minimizing

Xn

i¼1

fyi � f ðt; fÞg0
Wfyi � f ðt; fÞg; ð2:6Þ

and its covariance matrix is approximated by W ¼ ðnZ 0WZÞ�1. So, ŴW ¼
ðnẐZ 0ŴWẐZÞ�1 is used as the covariance matrix of the EGLS estimator f̂f, where

ẐZ ¼ Zðf̂fÞ. But Vonesh [5] recommended to use the following robust cova-

riance matrix estimate

ŴWR ¼ ŴWẐZ 0ŴW
Xn

i¼1

fyi � f ðt; f̂fÞgfyi � f ðt; f̂fÞg0
ŴWẐZŴW: ð2:7Þ

Vonesh [5] gave a confidence interval for fl ðl ¼ 1; . . . ; qÞ by using a Student’s

t approximation with n� q degrees of freedom (df ). This is extended to a

100ð1� aÞ% confidence region for f as

ðf̂f� fÞ0ŴW�1
R ðf̂f� fÞa qðn� qÞ

n� 2qþ 1
Fq;n�2qþ1ðaÞ; ð2:8Þ

where Fr1; r2ðaÞ is an upper a point of F -distribution with ðr1; r2Þ df.

Here we wish to give another confidence region. Let xi ¼ ZðfÞbi þ ei,

then the model (2.2) is written by

yiA f þ xi; ð2:9Þ

where f ¼ f ðt; fÞ. Hyakutake [2] derived simultaneous confidence intervals for

pairwise comparisons under the model (2.9), in which the OLS esimators were

used. By the first order Taylor expansion at f̂f ¼ f, we have

f̂f ¼ f ðt; f̂fÞA f ðt; fÞ þ Zðf̂f� fÞ: ð2:10Þ

Since the EGLS estimator is obtained by minimizing (2.5), Z 0W
Pn

i¼1ðyi � f̂f Þ
A0. Hence

0AZ 0W
Xn

i¼1
ðyi � f̂f Þ

AZ 0W
Xn

i¼1
fyi � f � Zðf̂f� fÞg

AZ 0W
Xn

i¼1
xi � nZ 0WZðf̂f� fÞ ð2:11Þ

Hence Z 0WZðf̂f� fÞAZ 0Wx, where x ¼
Pn

i¼1 xi=n. Since xi is approxi-

mately distributed as Npð0;W�1Þ, the distribution of f̂f� f is approximately
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Nqð0; ðZ 0WZÞ�1=nÞ. We assumed that ei and bi have normal distribution.

Even if these are not normal, f̂f� f is approximately distributed as normal

under the large sample. By the same method of Hyakutake [2] and (2.10), we

have

V ¼
Xn

i¼1
ðyi � f̂f Þðyi � f̂f Þ0

A
Xn

i¼1
fyi � f � Zðf̂f� fÞgfyi � f � Zðf̂f� fÞg0

A
Xn

i¼1
fðxi � xÞ þ x� Zðf̂f� fÞgfðxi � xÞ þ x� Zðf̂f� fÞg0

¼
Xn

i¼1
ðxi � xÞðxi � xÞ0 þ nfx� Zðf̂f� fÞgfx� Zðf̂f� fÞg0:

Since Z 0WZðf̂f� fÞ � Z 0WxA0 by (2.11), it is easy to see that

Z 0WVWZAZ 0W
Xn

i¼1

ðxi � xÞðxi � xÞ0
( )

WZ: ð2:12Þ

Because xi ði ¼ 1; . . . ; nÞ are independently and identically distributed as

the multinormal, the statistic (2.12) has the Wishart distribution with the

covariance matrix Z 0WZ and n� 1 df, that is WqðZ 0WZ; n� 1Þ, approx-

imately. Then the approximated distribution of WR ¼ WZ 0WVWZW is

WqfðZ 0WZÞ�1=n2; n� 1g. Hence the distribution of the robust covariance

matrix estimate ŴWR in (2.7) would be approximated by WqfðZ 0WZÞ�1=n2;

n� 1g. Since ðf̂f� fÞ=
ffiffiffi
n

p
has Nqð0; ðZ 0WZÞ�1=n2Þ approximately, the statistic

n� q

qn
ðf̂f� fÞ0ŴW�1

R ðf̂f� fÞ ð2:13Þ

has F -distribution with ðq; n� qÞ df approximately. Thus we have an approx-

imated 100ð1� aÞ% confidence region for f as

ðf̂f� fÞ0ŴW�1
R ðf̂f� fÞa qn

n� q
Fq;n�qðaÞ: ð2:14Þ

3. Simulation

Two approximated confidence regions (2.8) and (2.14) are given in the

previous section. In this section, we examine the accuracy of approximation

by simulation. Two nonlinear models

fpharmðt; biÞ ¼ bi1t expð�bi2tÞ ð3:1Þ
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and

flogitðt; biÞ ¼ f1þ bi1 expð�bi2tÞg
�1: ð3:2Þ

are used in the simulation, where bil ¼ fl þ bil ðl ¼ 1; 2Þ. The model (3.1) and

(3.2) are the special cases of a pharmacokinetic model and a logistic model,

respectively. We choose the parameters and the variance of eij , which are

generated from Nð0; s2Þ, for each model as in Table 1.

The observed points are t ¼ 1; 2; 3; 4; 5 ðp ¼ 5Þ for model (3.1) and

t ¼ 1; 2; 3; 4 ðp ¼ 4Þ for model (3.2). The sample sizes from the population

are n ¼ 15; 25; 30. The random e¤ects bi ¼ ðbi1; bi2Þ0 are generated from

N2ð0;ClÞ ðl ¼ 1; 2; 3; 4Þ. The covariance matrices of the random e¤ects are C1

and C2 for model (3.1) and C3 and C4 for model (3.2), where

C1 ¼
0:002 0:0007

0:0007 0:001

� �
; C2 ¼

0:004 0:0007

0:0007 0:002

� �

C3 ¼
0:0025 0:0005

0:0005 0:0025

� �
; C4 ¼

0:0049 0:0005

0:0005 0:0049

� �
:

If the values of the variances are larger than the values chosen in the above,

then the variation by the error is sometimes larger than that by the model.

For these values and a ¼ 0:05; 1;000 confidence regions are constructed in each

of (2.8) and (2.14). The proportion, that the confidence regions include true

values of f1 and f2, is calculated. The results are in Tables 2 and 3.

Table 1. Parameters and variance

Model f1 f2 s2

fpharm 1.0 0.5 0.01, 0.0001

flogit 2.0 1.5 0.001, 0.00001

Table 2. Accuracy of approximation in model fpharm

Conf.

s2

Region

0.01

(2.8) (2.14)

0.0001

(2.8) (2.14)

C1 n ¼ 15

n ¼ 25

n ¼ 30

0.932

0.944

0.948

0.940

0.950

0.954

0.944

0.951

0.925

0.950

0.956

0.932

C2 n ¼ 15

n ¼ 25

n ¼ 30

0.931

0.924

0.948

0.941

0.930

0.951

0.930

0.900

0.913

0.937

0.906

0.914
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From Tables 2 and 3, the approximation by (2.14) is somewhat better than

that by (2.8) in both models. So, we recommend to use (2.14). When s2 is

small and C is large, the approximation is not good. For interval estimation

of the component fl , Vonesh [5] used t approximation with n� q df, but it

would be better to use t approximation with n� 1 df.
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Table 3. Accuracy of approximation in model flogit

Conf.

s2

Region

0.001

(2.8) (2.14)

0.00001

(2.8) (2.14)

C3 n ¼ 15

n ¼ 25

n ¼ 30

0.947

0.944

0.948

0.951

0.947

0.951

0.944

0.937

0.931

0.947

0.942

0.936

C4 n ¼ 15

n ¼ 25

n ¼ 30

0.935

0.949

0.929

0.940

0.957

0.934

0.923

0.924

0.921

0.929

0.933

0.925
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