Disjoint stars and forbidden subgraphs

Shinya Fuilta ${ }^{1}$
(Received August 24, 2005)
(Revised February 6, 2006)

Abstract

Let r, k be integers with $r \geq 3, k \geq 2$. We prove that if G is a $K_{1, r}$-free graph of order at least $(k-1)(2 r-1)+1$ with $\delta(G) \geq 2$, then G contains k vertexdisjoint copies of $K_{1,2}$. This result is motivated by the problem of characterizing a forbidden subgraph H which satisfies the statement "every H-free graph of sufficiently large order with minimum degree at least t contains k vertex-disjoint copies of a star $K_{1, t}$. " In this paper, we also give the answer to this problem.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by $V(G), E(G)$ and $\delta(G)$ the vertex set, the edge set and the minimum degree of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_{G}(x)$, and we let $d_{G}(x):=\left|N_{G}(x)\right|$. For a graph G and a fixed graph H, we say that G is H-free if G does not contain H as an induced subgraph. A graph $K_{1,3}$ is called claw, and a $K_{1,3}$-free graph is called a claw-free graph.

Our notation is standard except possibly for the following. Let G be a graph. For a subset L of $V(G)$, the subgraph induced by L is denoted by $\langle L\rangle$. For a subset M of $V(G)$, we let $G-M=\langle V(G)-M\rangle$. For subsets L and M of $V(G)$ with $L \cap M=\varnothing$, we let $E(L, M)$ denote the set of edges of G joining a vertex in L and a vertex in M. A vertex x is often identified with the set $\{x\}$. Thus if $x \in V(G)$, then $G-x$ means $G-\{x\}$, and $E(x, M)$ means $E(\{x\}, M)$ for $M \subset V(G-x)$.

In this paper, we are concerned with the existence of vertex-disjoint copies of $K_{1, t}$ and forbidden subgraphs. As for the existence of vertex-disjoint copies of $K_{1, t}$ in general graphs, Ota made the following conjecture in [5].

[^0]Conjecture 1.1 ([5]). Let k, t be integers with $k \geq 2, t \geq 2$. Let G be a graph of order at least $(t+1) k+t^{2}-t$ with $\delta(G) \geq k+t-1$. Then G contains k vertex-disjoint copies of $K_{1, t}$.

As is shown in [5], in this conjecture, the condition on the minimum degree of G is sharp in the sense that for any fixed t and k, there exists a graph of arbitrarily large order which has minimum degree $k+t-2$ but does not contain k vertex-disjoint copies of $K_{1, t}$ and, if k is sufficiently large compared with t, then the condition on the order of G is also sharp in the sense that there exists a graph G with $|V(G)|=(t+1) k+t^{2}-t-1$ and $\delta(G) \geq k+t-1$ such that G does not contain k vertex-disjoint copies of $K_{1, t}$. Conjecture 1.1 is settled affirmatively for $t=2$ in [5]. Also, in [1], Egawa and Ota proved that Conjecture 1.1 is true for $t=3$. As for the case $t \geq 4$ of this conjecture, the author obtained the following partial result in [4]:

Theorem 1.1 ([4]). Let k, t be integers with $k \geq 2, t \geq 4$. Let G be a graph of order at least $(t+1) k+2 t^{2}-4 t+2$ with $\delta(G) \geq k+t-1$. Then G contains k vertex-disjoint copies of $K_{1, t}$.

In this paper, we focus on the relationship between the existence of vertexdisjoint copies of $K_{1, t}$ in graphs and forbidden subgraphs. From the structure of $K_{1, t}$, the degree condition " $\delta(G) \geq t$ " seems to be natural for a graph to contain $K_{1, t}$. So, now we consider the statement "every H-free graph of sufficiently large order with minimum degree at least t contains k vertex-disjoint copies of $K_{1, t}$." The problem is to determine H that makes the statement true.

Our result is the following:
Theorem 1.2. Let $k \geq 3, t \geq 2$, and let H be a connected graph with $|V(H)| \geq 3$. If there exists a positive integer n_{0} such that every H-free graph G with $|V(G)| \geq n_{0}$ and $\delta(G) \geq t$ contains k vertex-disjoint copies of $K_{1, t}$, then $H \in\left\{K_{1, r} \mid r \geq 2\right\}$.

We see from Theorem 1.2 that a star $K_{1, r}$ is important as a forbidden subgraph for a graph with minimum degree at least t to have k vertex-disjoint copies of $K_{1, t}$. Along this line, we propose the following conjecture:

Conjecture 1.2. Let r, k, t be integers with $r \geq 3, k \geq 2$ and $t \geq 2$. If G is a $K_{1, r}$-free graph of order at least $(k-1)\{t(r-1)+1\}+1$ with $\delta(G) \geq t$, then G contains k vertex-disjoint copies of $K_{1, t}$.

If the conjecture is true, the bound on $|V(G)|$ is best possible. To see this, let $B_{i}=K_{t}$ for each $1 \leq i \leq r-1$, and consider $G=\bigcup_{i=1}^{k-1} A_{i}$ where $A_{i}=$ $K_{1}+\bigcup_{j=1}^{r-1} B_{j}$ for each $1 \leq i \leq k-1$. Then G is a $K_{1, r}$-free graph of order
$(k-1)\{t(r-1)+1\}$ with $\delta(G) \geq t$. It is easy to check that G does not contain k vertex-disjoint copies of $K_{1, t}$.

The author proved that Conjecture 1.2 is true for $r=t=3$ in [3].
Theorem 1.3 ([3]). Let G be a claw-free graph of order at least $7 k-6$ with $\delta(G) \geq 3$. Then G contains k vertex-disjoint claws.

Also, as for this conjecture, the following theorem is proved in [2]:
Theorem 1.4 ([2]). Let r, t be integers with $r \geq 3, t \geq 2$. Let G be a $K_{1, r}$-free graph of order at least $(t+1)(k-1)\{t(r-1)+1\}+1$ with $\delta(G) \geq t$. Then G contains k vertex-disjoint copies of $K_{1, t}$.

In this paper, we prove that Conjecture 1.2 is true for $t=2$.
Theorem 1.5. Let r, k be integers with $r \geq 3, k \geq 2$. If G is a $K_{1, r}-$ free graph of order at least $(k-1)(2 r-1)+1$ with $\delta(G) \geq 2$, then G contains k vertex-disjoint copies of $K_{1,2}$.

2. Proof of Theorem $\mathbf{1 . 2}$

Let k, t, n_{0} be fixed integers as in the assumption of Theorem 1.2. By contradiction, we may assume that H is not isomorphic to a star (i.e., $H \notin$ $\left\{K_{1, r} \mid r \geq 2\right\}$). For an integer i with $1 \leq i$, let X_{i} be a complete balanced bipartite graph of order $2(t-1)$ with partite sets Y_{i}, Z_{i} with $\left|Y_{i}\right|=\left|Z_{i}\right|=t-1$. We define G_{1}, G_{2} as follows:
(1) G_{1} is a graph with vertex set $V\left(G_{1}\right)$ and edge set $E\left(G_{1}\right)$ as follows:

$$
\begin{aligned}
& V\left(G_{1}\right)=\{y, z\} \cup\left(\bigcup_{j=1}^{m} V\left(X_{j}\right)\right) \\
& E\left(G_{1}\right)=\left(\bigcup_{j=1}^{m} E\left(X_{j}\right)\right) \cup\left\{y p \mid p \in \bigcup_{j=1}^{m} Y_{j}\right\} \cup\left\{z q \mid q \in \bigcup_{j=1}^{m} Z_{j}\right\}
\end{aligned}
$$

where m is an integer with $2 m(t-1)+2 \geq n_{0}$.
(2) $G_{2}=K_{1}+n K_{t}$ where n is an integer with $n t+1 \geq n_{0}$.

It is easy to see that $\delta\left(G_{i}\right) \geq t$ and G_{i} does not contain k vertex-disjoint copies of $K_{1, t}$ for $i=1,2$. Hence by the assumption of Theorem 1.2, it follows that both G_{1} and G_{2} contain H as an induced subgraph. Since G_{1} contains H as a(n induced) subgraph, H does not contain K_{3}. On the other hand, since G_{2} contains H as an induced subgraph, this together with $H \notin\left\{K_{1, r} \mid r \geq 2\right\}$ implies that H contains K_{3} because $|V(H)| \geq 3$. This is a contradiction. This completes the proof of Theorem 1.2.

3. Proof of Theorem $\mathbf{1 . 5}$

Let G be a $K_{1, r}$-free graph of order at least $(k-1)(2 r-1)+1$ with $\delta(G) \geq 2$. Take s vertex-disjoint subgraphs $C_{1}, C_{2}, \ldots, C_{s}$ such that C_{i} contains $K_{1,2}$ as a spanning subgraph for each i with $1 \leq i \leq s$. Let $C=$ $\left\langle V\left(C_{1}\right) \cup \cdots \cup V\left(C_{s}\right)\right\rangle$ and $H=G-C$. We may assume that $C_{1}, C_{2}, \ldots, C_{s}$ are chosen so that
(1) s is maximum, and
(2) subject to the condition (1), $|E(H)|$ is maximum, and
(3) subject to the condition (2), $\sum_{i=1}^{s}\left|E\left(C_{i}\right)\right|$ is maximum.

We may assume that $s \leq k-1$. It follows from the maximality of s that H consists of $m+n$ components $P_{1}, P_{2}, \ldots, P_{m}, Q_{1}, Q_{2}, \ldots, Q_{n}$ where $P_{i} \cong K_{2}$ for $1 \leq i \leq m$ and $Q_{j} \cong K_{1}$ for $1 \leq j \leq n$. (Thus $V(H)=V\left(P_{1}\right) \cup \cdots \cup V\left(P_{m}\right)$ $\cup V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{n}\right)$ where $m \geq 0, n \geq 0$.) Note that the condition (2) is equivalent to the statement that " m is maximum." Then

$$
\begin{aligned}
|V(H)| & \geq(k-1)(2 r-1)+1-3 s \\
& \geq(k-1)(2 r-1)+1-3(k-1)=2(k-1)(r-2)+1 .
\end{aligned}
$$

For each i with $1 \leq i \leq m$, take $p_{i} \in V\left(P_{i}\right)$ and fix it. Also, let $V\left(Q_{j}\right)=\left\{q_{j}\right\}$ for each j with $1 \leq j \leq n$. Let $H^{\prime}=\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n}\right\}$. Then $\left|H^{\prime}\right|=$ $m+n \geq\left\lceil\frac{|V(H)|}{2}\right\rceil \geq(k-1)(r-2)+1$. For each i with $1 \leq i \leq s$, let a_{i} be a vertex in $V\left(C_{i}\right)$ such that $\left|E\left(a_{i}, V\left(C_{i}-a_{i}\right)\right)\right|=2$, and fix it.

We first prove the following claim.
Claim 3.1. Let i be an integer with $1 \leq i \leq s$. Let x, y be distinct vertices in C_{i}, and let H_{1}, H_{2} be distinct components of H with $\left|V\left(H_{1}\right)\right| \geq\left|V\left(H_{2}\right)\right|$. Suppose that $E\left(x, V\left(H_{1}\right)\right) \neq \varnothing$ and $E\left(y, V\left(H_{2}\right)\right) \neq \varnothing$. Then $x=a_{i}, H_{1} \in$ $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ and $H_{2} \in\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$. Furthermore, $C_{i} \cong K_{1,2}$ and $E\left(V\left(C_{i}-y\right), V\left(H_{2}\right)\right)=\varnothing$.

Proof. If $H_{1}, H_{2} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$, then we can find two vertex-disjoint copies of $K_{1,2}$ in $\left\langle V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup V\left(C_{i}\right)\right\rangle$, which contradicts the maximality of s. Thus $H_{2} \in\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ holds. Suppose that $H_{1} \in Q_{1}, Q_{2}, \ldots, Q_{n}$. Then by the symmetry of the roles of H_{1} and H_{2}, we may assume that $y \neq a_{i}$. Then by replacing C_{i} by $\left\langle V\left(C_{i}-y\right) \cup V\left(H_{1}\right)\right\rangle$, we get a contradiction to the maximality of m. Thus we have $H_{1} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$. Next suppose that $x \neq a_{i}$. Then we can find two vertex-disjoint copies of $K_{1,2}$ in $\left\langle V\left(H_{1}\right) \cup\right.$ $\left.V\left(H_{2}\right) \cup V\left(C_{i}\right)\right\rangle$, which contradicts the maximality of s. Thus $x=a_{i}$, and it is easy to see that this forces $C_{i} \cong K_{1,2}$. Now, if $E\left(V\left(C_{i}\right)-\{x, y\}, V\left(H_{2}\right)\right) \neq \varnothing$, then $\left\langle V\left(H_{1}\right) \cup\{x\}\right\rangle \supset K_{1,2}$ and $\left\langle V\left(H_{2}\right) \cup V\left(C_{i}-x\right)\right\rangle \supset K_{1,2}$, a contradiction. Also, if $E\left(a_{i}, V\left(H_{2}\right)\right) \neq \varnothing$, then by replacing C_{i} by $\left\langle\left\{a_{i}, y\right\} \cup V\left(H_{2}\right)\right\rangle$, we get
a contradiction to the maximality of $\sum_{i=1}^{s}\left|E\left(C_{i}\right)\right|$. Thus $E\left(a_{i}, V\left(H_{2}\right)\right)=\varnothing$. Hence $E\left(V\left(C_{i}-y\right), V\left(H_{2}\right)\right)=\varnothing$.

We define a family \mathscr{F} of vertex subsets as follows:

$$
\mathscr{F}:=\left\{\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \mid x_{i} \in V\left(C_{i}\right) \text { for each } i \text { with } 1 \leq i \leq s\right\}
$$

Claim 3.2. There exists $F \in \mathscr{F}$ such that $\bigcup_{x \in F} N_{G}(x) \supset H^{\prime}$.
Proof. Choose $F \in \mathscr{F}$ so that $\left|\left(\bigcup_{x \in F} N_{G}(x)\right) \cap H^{\prime}\right|$ is maximum, and subject to the condition, $\left|F \cap\left\{a_{1}, \ldots, a_{s}\right\}\right|$ is maximum. Put $F=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$. We may assume that there exists $v \in H^{\prime}$ such that $v \notin\left(\bigcup_{x \in F} N_{G}(x)\right) \cap H^{\prime}$. Since $\delta(G) \geq 2, E(v, V(C)) \neq \varnothing$. Hence there exists C_{i} such that $x_{i} v \notin E(G)$ and $E\left(v, V\left(C_{i}-x_{i}\right)\right) \neq \varnothing$. Let y_{i} be a vertex in C_{i} such that $y_{i} v \in E(G)$. If $E\left(x_{i}, H^{\prime}\right)=\varnothing$, then by replacing F by $\left(F-x_{i}\right) \cup\left\{y_{i}\right\}$, we get a contradiction to the maximality of $\left|\left(\bigcup_{x \in F} N_{G}(x)\right) \cap H^{\prime}\right|$. Hence there exists $u \in H^{\prime}-v$ such that $x_{i} u \in E(G)$. Then by Claim 3.1, $C_{i} \cong K_{1,2}, a_{i} \in\left\{x_{i}, y_{i}\right\}$ and we may assume that $\{u, v\}=\left\{p_{1}, q_{1}\right\}$. Suppose that $y_{i}=a_{i}$. Then it is easy to see that $E\left(x_{i}, H^{\prime}-u\right)=\varnothing$. Then by replacing F by $\left(F-x_{i}\right) \cup\left\{y_{i}\right\}$, we get a contradiction to the maximality of $\left|F \cap\left\{a_{1}, \ldots, a_{s}\right\}\right|$. Thus $x_{i}=a_{i}$. Then by Claim 3.1, $u=p_{1}, v=q_{1}$ and $E\left(V\left(C_{i}-y_{i}\right), q_{1}\right)=\varnothing$. Since $\delta(G) \geq 2$, there exists C_{j} with $j \neq i$ such that $E\left(q_{1}, V\left(C_{j}\right)\right) \neq \varnothing$. Let y_{j} be a vertex in C_{j} such that $q_{1} y_{j} \in E(G)$. Since $v \notin\left(\bigcup_{x \in F} N_{G}(x)\right) \cap H^{\prime}, y_{j} \notin F$. By the choice of F, we have $E\left(x_{j}, H^{\prime}-q_{1}\right) \neq \varnothing$. Then by Claim 3.1, $x_{j}=a_{j}$. If there exists $v^{\prime} \in H^{\prime}-\left\{p_{1}, q_{1}\right\}$ such that $a_{j} v^{\prime} \in E(G)$, then by Claim 3.1, we may assume $v^{\prime} \in V\left(P_{2}\right)$, and then by replacing C_{i}, C_{j} by $\left\langle V\left(P_{1}\right) \cup\left\{a_{i}\right\}\right\rangle,\left\langle V\left(P_{2}\right) \cup\left\{a_{j}\right\}\right\rangle$, $\left\langle\left\{y_{i}, q_{1}, y_{j}\right\}\right\rangle$, we get a contradiction to the maximality of s. Thus we have $E\left(x_{j}, H^{\prime}\right)=\left\{p_{1} x_{j}\right\}$ by Claim 3.1. Then by replacing F by $\left(F-\left\{x_{j}\right\}\right) \cup\left\{y_{j}\right\}$, we get a contradiction to the maximality of $\left|\left(\bigcup_{x \in F} N_{G}(x)\right) \cap H^{\prime}\right|$.

By Claim 3.2, we choose $F \in \mathscr{F}$ such that $\bigcup_{x \in F} N_{G}(x) \supset H^{\prime}$ and fix it. Since $\left|H^{\prime}\right| \geq(k-1)(r-2)+1$, there exists $x_{i} \in F$ such that $\left|E\left(x_{i}, H^{\prime}\right)\right| \geq$ $r-1$ because $|F|=s \leq k-1$. Let $N_{G}\left(x_{i}\right) \cap H^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ where $l \geq$ $r-1$. Since G is $K_{1, r}$-free, it follows that $l=r-1$ because H^{\prime} is independent. Also, we see from Claim 3.1 that $x_{i} \neq a_{i}$. Hence $C_{i} \cong K_{1,2}$ and we may assume that $v_{1} a_{i} \in E(G)$ because G is $K_{1, r}$-free. If $r \geq 4$, then by replacing C_{i} by $\left\langle V\left(C_{i}-x_{i}\right) \cup\left\{v_{1}\right\}\right\rangle,\left\langle\left\{v_{2}, v_{3}, x_{i}\right\}\right\rangle$, we get a contradiction to the maximality of s. Thus we have $r=3$ and $l=2$.

Claim 3.3. Let i be an integer with $1 \leq i \leq s$, and let w_{1}, w_{2} be distinct vertices in H^{\prime}. Suppose that $E\left(w_{1}, V\left(C_{i}\right)\right) \neq \varnothing$ and $E\left(w_{2}, V\left(C_{i}\right)\right) \neq \varnothing$. Then there exists C_{j} with $j \neq i$ such that $E\left(\left\{w_{1}, w_{2}\right\}, V\left(C_{j}\right)\right) \neq \varnothing$ and $E\left(V\left(C_{j}\right), H^{\prime}\right)=$ $E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right)$. Further, $E\left(V\left(C_{i}\right), H^{\prime}\right)=E\left(V\left(C_{i}\right),\left\{w_{1}, w_{2}\right\}\right)$ holds.

Proof. Since now G is claw-free, $E\left(V\left(C_{i}\right),\left\{w_{1}, w_{2}\right\}\right)$ has two independent edges. Let $V\left(C_{i}\right)=\left\{a_{i}, b_{i}, c_{i}\right\}$. Then in view of Claim 3.1, we may assume that $C_{i} \cong K_{1,2}, w_{1} \in\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}, w_{2} \in\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ and $E\left(V\left(C_{i}\right)\right.$, $\left.\left\{w_{1}, w_{2}\right\}\right)=\left\{a_{i} w_{1}, b_{i} w_{1}, b_{i} w_{2}\right\}$. Then by the maximality of s, it is easy to see that $E\left(V\left(C_{i}\right), H^{\prime}\right)=E\left(V\left(C_{i}\right),\left\{w_{1}, w_{2}\right\}\right)$. Also, since $\delta(G) \geq 2$, there exists C_{j} with $j \neq i$ such that $E\left(w_{2}, V\left(C_{j}\right)\right) \neq \varnothing$. If $C_{j} \cong K_{1,2}$, then since G is clawfree, we have $E\left(w_{2}, V\left(C_{j}-a_{j}\right)\right) \neq \varnothing$. Also, if $C_{j} \cong K_{3}$, then by symmetry, we may assume that $E\left(w_{2}, V\left(C_{j}-a_{j}\right)\right) \neq \varnothing$. Thus, in any case, we may assume that there exists $b_{j} \in V\left(C_{j}-a_{j}\right)$ such that $b_{j} w_{2} \in E(G)$. Suppose that there exists $w^{\prime} \in H^{\prime}-\left\{w_{1}, w_{2}\right\}$ such that $E\left(w^{\prime}, V\left(C_{j}\right)\right) \neq \varnothing$. Then by Claim 3.1, $w^{\prime} a_{j} \in E(G)$. Then $\left\langle\left\{w^{\prime}\right\} \cup V\left(C_{j}-b_{j}\right)\right\rangle \supset K_{1,2},\left\langle\left\{b_{j}, w_{2}, b_{i}\right\}\right\rangle \supset K_{1,2},\left\langle\left\{w_{1}\right\} \cup\right.$ $\left.V\left(C_{i}-b_{i}\right)\right\rangle \supset K_{1,2}, \quad$ a contradiction. This implies that $E\left(V\left(C_{j}\right), H^{\prime}\right)=$ $E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right)$. Thus the claim holds.

We choose $F^{\prime} \subset F$ with $\bigcup_{x \in F^{\prime}} N_{G}(x) \supset H^{\prime}$ so that $\left|F^{\prime}\right|$ is minimum. Let $F_{i}:=\left\{x \in F^{\prime}| | E\left(x, V\left(H^{\prime}\right)\right) \mid=i\right\}$ for $i=1,2$. Since G is claw-free, this together with the minimality of $\left|F^{\prime}\right|$ implies that $F^{\prime}=F_{1} \cup F_{2}$.

Claim 3.4. If $F_{2} \neq \varnothing$, then there exists a one-to-one mapping $f: F_{2} \rightarrow$ $F-F^{\prime}$.

Proof. Let $x \in F_{2}$, and let $N_{G}(x) \cap H^{\prime}=\left\{w_{1}, w_{2}\right\}$. We may assume that $x \in V\left(C_{i}\right)$. Then by Claim 3.3, there exists C_{j} with $j \neq i$ such that $E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right) \neq \varnothing$ and $E\left(V\left(C_{j}\right), H^{\prime}\right)=E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right)$, and also $E\left(V\left(C_{i}\right), H^{\prime}\right)=E\left(V\left(C_{i}\right),\left\{w_{1}, w_{2}\right\}\right)$ holds. Then by the minimality of $\left|F^{\prime}\right|$, $V\left(C_{j}\right) \cap F^{\prime}=\varnothing$, i.e., $V\left(C_{j}\right) \cap\left(F-F^{\prime}\right) \neq \varnothing$. This together with

$$
E\left(V\left(C_{i}\right), H^{\prime}\right)=E\left(V\left(C_{i}\right),\left\{w_{1}, w_{2}\right\}\right), \quad E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right) \neq \varnothing
$$

and $E\left(V\left(C_{j}\right), H^{\prime}\right)=E\left(V\left(C_{j}\right),\left\{w_{1}, w_{2}\right\}\right)$ implies that there exists a one-to-one mapping $f: F_{2} \rightarrow F-F^{\prime}$.

By Claim 3.4, $\quad\left|F^{\prime}\right|+\left|F_{2}\right| \leq|F|$. Consequently, $\quad\left|H^{\prime}\right| \leq\left|F_{1}\right|+2\left|F_{2}\right|=$ $\left|F^{\prime}\right|+\left|F_{2}\right| \leq|F|=s \leq k-1$, and hence $|V(H)|=\left\lceil\frac{|V(H)|}{2}\right\rceil+\left\lfloor\frac{|V(H)|}{2}\right] \leq 2\left|H^{\prime}\right| \leq$ $2(k-1)$.

On the other hand, since $|V(H)| \geq 2(k-1)(r-2)+1=2(k-1)+1$, this is a contradiction. This completes the proof of Theorem 1.5.

References

[1] Y. Egawa and K. Ota, Vertex-disjoint claws in graphs, Discrete Mathematics 197 (1999), 225-246.
[2] S. Fujita, Forbidden pairs for vertex-disjoint claws, Far East Journal of Applied Mathematics 18 (2005), 209-213.
[3] S. Fujita, Vertex-disjoint copies of $K_{1}+\left(K_{1} \cup K_{2}\right)$ in claw-free graphs, submitted.
[4] S. Fujita, Vertex-disjoint $K_{1, t}$'s in graphs, Ars Combinatoria 64 (2002), 211-223.
[5] K. Ota, Vertex-disjoint stars in graphs, Discussiones Mathematicae Graph Theory 21 (2001), 179-185.

Shinya Fujita
Department of Mathematics
Gunma National College of Technology
Maebashi, Toriba-machi 580, 371-8530, Japan
e-mail: shinyaa@mti.biglobe.ne.jp

[^0]: ${ }^{1}$ This work was partially supported by the 21 st Century COE Program; Integrative Mathematical Sciences: Progress in Mathematics Motivated by Social and Natural Sciences. Also, this work was partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B), 18740059.

 2000 Mathematics Subject Classification. 05C70, 05C75.
 Keywords and phrases. claw-free, star, vertex-disjoint, forbidden subgraphs.

