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Tilings from non-Pisot unimodular matrices
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ABSTRACT. Using the unimodular Pisot substitution of the free monoid on d letters,

(0.0.1) with the positive measure on the A-invariant contracting plane P is well-known,
where A is the incidence matrix of the substitution. Moreover, under some conditions,

this paper, even in the case of non-Pisot matrix A, the generating method of graph-
directed self-similar sets and quasi-periodic tilings is proposed under the “blocking
condition”.

0. Introduction

The following fact is well-known: using the unimodular Pisot substitution
fractal boundary of the A-invariant contracting plane P, satisfyingwthe set
equation:

i
A7'X; = U(vj@ +X;) (non-overlapping) (0.0.1)
=1

where the transformation A4 is the incidence matrix of the substitution ¢ and

vectors v]<-'> € P, 1 < j < are some translations. Moreover, under the super

graph directed self-similar tiling of P (see Figure 1). The prototiles from the
substitution have been studied first by Rauzy in [20]. Since Rauzy (see Figure
1), several properties of prototiles have been studied by many authors. For
example, basic properties of {X;},_; , , have been studied in [16], [4], [10], [21]
and [2], the estimation of the Hausdorff dimention of dX; in [10], topological
properties of X; in [22], [1], the relation with the Markov partition generated
by {Xi},_1 2. 4 in [4], [18], the relation with the algebraic f-expansion in [15],
[14], Diophantine approximation in [13], quasi-periodic tiling in [14], [17], etc.
In fact, we know that to study the structure of {X;},_;, , is useful and
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important to research of fractal geometry, number theory, tiling theory, ergodic
theory and dynamical systems. However, the study of the case that the matrix
A is unimodular and non-Pisot is very few (see [11]). The purpose of this
paper is to give a sufficient condition of the existence of prototiles {X;},_; , x
which satisfies the set equation (0.0.1) and generates a quasi-periodic tiling of
the contracting eigenspace P, starting from the 4 x 4 non-Pisot unimodular
hyperbolic integer matrix A.

Fig. 1. Rauzy fractal tiling.

1. Definition and notations

1.1. non-Pisot matrix

In this paper, we consider that the integer matrix A satisfies the following
conditions.

ASSUMPTION 1.1.  Let us assume that
(1)  the eigenvalues ;, i =1,2,3,4 of the matrix A satisfy

|41 = A2 > 1 > |23] = |A4] (hyperbolic non-Pisot condition);

(2) det A = +1 (unimodular condition);
(3) the matrix A has the standard position property which is mentioned later.

For eigenvalues A;, i =1,2,3,4 of the matrix A, let {v,v;,v3,04} be the
corresponding basis of R* generated by eigenvectors, that is, we consider that
the 2-dimensional contracting eigenspace P. of the linear transformation A
is spanned by {vs,v4} and that the 2-dimesional expanding eigenspace P,
is spanned by {v;,v2}. And let z.(xv; + yvy + zv3 + wog) = zv3 + wog and
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7e(xv) + yv; + zv3 + wog) = xv; + yv; be the projections to P, and P, respec-
tively. Then, following relations P,oA = Ao P. and P,o A= Ao P, hold.
Using the representation by
X111 X12 X13 X4
X21 X2 X233 X4
[81,82783784] = [01,02,03,04] )
X31 X3 X33 X34
X41 Xa2  X43 X4

the projected vectors 7n.e; € P. and 7.e; € P, of the canonical basis {e;|i = 1,2,
3,4} are given by

t
e = X303 + X404 > [X31, X4,

o€ = X101 + Xy = [x1, X2
respectively.

We say that n.e; and m.e; are in standard position for i, j (i # j) if n.e; is
not parallel to m.e;,. And we say that the matrix A4 has the standard position
property if any pair of m.e;, i =1,2,3,4 are in standard position.

For easy undrstanding of several definitions and properties, we introduce
an example at the end of each section.

1 0 0 1
. , . . 0 01 1

EXAMPLE. Let us consider the following matrix A = 01 10 The
1 01 1

characteristic polynomial of A is given by ®4(x) = x* —=3x* + x>+ x+ 1 and it
is irreducible, moreover J;, 1 < i <4 of A satisfy 11 > 2y > 1 > |A3| = |A4|. The
basis {vy,vy,v3,v4} is chosen as vy :=uy, vy :=uy, v3 := MTM’ vy 1= 55 where
u; is the eigenvector of 4;, 1 < j <4. In this example, vectors m.e;, i =1,2,3,4

are represented by the following figure (see Figure 2):

T €4

Fig. 2. Vectors n.e; (i=1,2,3,4) in Example.

It is clear that the matrix A in Example satisfies Assumption 1.1 (1) (2) (3).
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1.2. Parallelograms and segments

From now on, we denote 7 instead of the projection n. and P instead of
the plane P, for simplicity.

For i,je€{1,2,3,4}, let inj be the symbolic parallelogram generated by
vectors ne; and me; where i A j (i # j) is chosen if the counterclockwise angle a
between me; and me; satisfies 0 < o < 7. We write the set of symbolic par-
allelograms as

V2 2{i/\j

It is clear that the cardinality of 75, is equal to 6(=4 C,) from the standard
position property.

For ie {1,2,3,4}, let i be the symbolic segment generated by me;, We
write the set of symbolic segments as

i,je{1,2,3,4},i # J,
the angle o between 7e; and me; is chosen by 0 <o <7 |’

Vi={ilie{1,2,3,4}}.

A pair (x,iAj)enZ*x V>, means geometrically the positive oriented
parallelogram i A j with the base-point x of P, that is,

(x,iAJ) :={x+ une; + vme; |0 < p,v < 1}

(see Figure 3).

X+TECi+TCCj

X+Te;

Fig. 3. (x,inj).

Let us define the set of all of the finite formal sum of the parallelogram
with the base-point 1€ nZ* x V5 as follows:

G, = Z m;}u|mi€Z,#{i|m,1 7'50} < +0o0
AernZ*xV,

We call an element of %, a patch. For patches y and J such that y=
D ienzixy, Mids 0 =2 g4y, Nk, we define the sum by
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y+0= Z m;A + Z mA = Z (mi—&-n,{)i.

renZ*xV, LenZ*xV, renZ*xV,

Then we know that %, is a free Z-module. On the notation A{(ﬁ =
{n;A|n; #0,n;, e N} and A((;) ={mA|n, #0,n, € —N} for the pach J=
D icztxy, Nk, We say that d is the subpatch of y if Aw > A{@, Aﬁ > Afs*),
and denote y > J. (see Figure 4).

We continue to define the symbolic segment and the set of all of the finite
formal sum of the segments analogously.

A pair (x,i) e nZ* x V| means geometrically the positive segment i with
the base-point x of P, that is,

(x,0) == {x+ une; |0 < u < 1}.

Lo

Fig. 4. Patch ¢ is the subpach of y.

Let us define the set of all of the finite formal sum of the segment with the
base-point /e nZ* x V; as follows:

G = Z myl|my e L, #{\|m; # 0} < o0
lenZ*x v,

Then, ¥, is the Z-module analogously.
In Example, the set of symbolic parallelograms V, is chosen as

Vo={2A1,1A3,1A4,2A3,472,3 A4}
(see Figure 2).

1.3. The maps E,(0) and E;(0) generated by an automorphism ¢ of the
free group F<{1,2,3,4>

In this section, we consider the covering of P by parallelograms with base-
points. The map E;(0) (0 <i <d) is defined in [7] and has led many results
in the Pisot case. From this fact, we introduce maps E>(0): %, — %, and
Ei(0) : 9, — %, for making the covering rule of P by parallelograms with base-
points in the non-Pisot case.
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Let F(1,2,3,4> be the free group on the alphabet {1,2,3,4} and let ¢ be
an automorphism of F{l,2,3,4).

For an automorphism o, we define the automorphism 6 as the mirror
image of ¢~! and we denote

0(i) := WY)WQ) e w,@l w,(fil . wgl_i)
_ Plgi)w(i)Slii)

where /; is the length of 0() ) =¢ (the empty word) and S = ¢ for any
ie{l,2,3,4}. We call Pk the k prefix and S the k-suffix of the element 0(i)
of the free group F{1,2,3,4) respectively (see [7]).
REMARK. 0 is the mirror image of ¢!, that is,
0(i) = WY) Wg) e wgiill)/vgii) is given by o7 '(i) = WY) Mj;,-lzl ...wgi) w@.

The natural homomorphism f : F{1,2,3,4> — Z* is defined by f(i?) = ae;
for aeZ and f(wiwa) = f(w1) + f(w1).

For an automorphism o, the corresponding linear representation (or in-
cidence matrix) of o is given by

Lo = [f(a(1)), £ (a(2)), f(2(3)), f(a(4))].
Then, the commutative relation
Lyof=fogo
holds.

From now on, we assume that the incidence matrix L, of ¢ coincides
with A.

ReEMARK. For any unimodular matrix A4, there exists an automorphism o
of the free group F<{1,2,3,4> such that L, = A by Theorem 7.3.4 in [12].

Let us define the map E»(f) on %, as follows:
E(0)(0,in ) == (0,0(i) A 0()))
= >0 UED+SED W Aw) (mod V)

1<k<l;
1<i<y;

(1.3.2)
Ey(0)(x,inj) = A x + E»(0)(0,in )

Ey0) Y miii= > mEs(0)]

AenZ*xV, LenZixV,
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REMARK. For two oriented parallelograms (x,pAq) and (p,rAs),
p7q7r7se{1i172i173i174i1}3 we say

(x,pAnq) = (p,rns)  (mod V2)

if two oriented parallelograms coincide each other including the orientation.
The formula (1.3.2) means that the elements of (0,8(i) A 6(j)) are rewritten by
+(x,kAl), knleV,. For example,

(0,in))=(0,in]) (mod 77)
0,i' Aj) = —(—ejinj)  (mod V?)
0,inj )= —(—e,inj)  (mod V)

)= (—ei—e,in)) (mod V>)
(see Figure 5).

By the way, for the positive oriented parallelogram (0,i A j), in most cases,
the patch E,(6)(0,iA j) includes the negative oriented parallelograms. To
clarify this fact, we introduce the concept of the matrix 4* as follows.

i 1
Te;—Te;

, i 'Aj =

R D s s
0, inj )=—(—ej, inj)(mod V>) (—ei—e;, i A j)(mod V)

Fig. 5.
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Let us denote A~'=[ay],_,;., and define the matrix A~ :=

*
[ai/\j,k/\l]i/\j,k/\/e Vs by

" ajk  aj
iy gnr = det [ e aﬂ]
:= “the number of the positive parallelogram iA j” — “the number

of the negative parallelogram jAi” in the patch E>(6)(0,k Al)

(see [11]). Then we know that 4* is not always A* > O and that 4* must be
positive if all elements of E,(6)(0,i A j) are positive.
Let us define the map E;(0) on ¥, analogously,

E1(0)(0,i) == (0,0()) = > (f(P),w)  (mod 1)

1<k<i

E(0)(x,i) ;== A 'nx + E(0)(0, 1)

El(e)( Z m;i) = Z m;El(Q)/l

LenZ*xV, LenZ*xV,

For two oriented segments (x,p) and (y,r), p,re {1 2% 3£ 4211 we
say

(x,p) = (p,r)  (mod 1)

analogously.
Let us define the boundary map 0: %, — %,

6(071/\]) = (0’ l) + (eivj) - (ej’i) - (07])
O(x,inj) =nx+0(0,in j).

Then, we know the following lemma.

Lemma 1.1 ([7]). The commutative diagram holds:

g, 29 o

g, B 4
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1 0 0 1
) 00 1 1
In Example, from the matrix A= let us choose the
01 10
1—-14
2,3 1 0 1 1
automorphism o : 3403 then the mirror image 0 of =" is determined by
4 — 142
1 — 42371 1 — 37124
1 21714 2 — 417!
g , 0:
352 32
4 — 32714711 4 — 14712713

Then, the map E»(0) is given by
Ey(0)(0,2A1) = (0,02) A0(1)) = (0,417 A37124)
= (0,473 )+ (f(371),4A2) +(f(37'2),4 1 4)
F (@, AT (@ + /371,17 A2)
+(f(4)+ 372,17 Ad4)  (mod 1)
= (—e3,374) + (—e3,472) + (e — €] —e3,1 A 3)
t(es—es—e,2n1) —(es—es+ex—ep, 1 A 4).

Analogously, we obtain

E(0)(0,1A3) = (—e3,2A3) + (3 — e3,4 A 2)

E2(0)(0,1 A4) = (—e3, 1 A3) + (—e3,2 A1) — (3 — e3,1 A 4)
E>(0)(0,2A3) = (0,4 2) + (—e; +e5,2A 1)

E2(0)(0,472) = (e] — €3 — €4, 4A2) + (—e2,2 A 1) + (e — €3 — e4,3 A 4)

+ (—8271/\3)
Ex(0)(0,3A4) =(0,2A1)+ (e —es,412)+ (1 —e2 — e4,2 A 3)

(see Figure 6).

The colors of the positive and negative oriented parallelograms are gray
and black respectively in this paper.

From the previous calculation for E>(0)(0,in ), injeVa, A* is given
by



298

ne,

Tes e,

0.2A1)

Tes e,

0,1A3)

e,

Maki FUurRukADO

E5(0)
—

(—e3,3Ad) +(—e3,4A2)+(ey—ej—e3, 1 A3)
+(eg—es—e,2A1)—(ey—es+e,—e, 1 A4)

Ex(0)
—

(e, 2 A3)+(e;—e3, 4 A2)

Ex(0) m'j‘
[ ——
e e

(=e3, LA3)+(=e3,2A1)—(ey—e3, 1 A 4)

ne,
ne,
E,(0)
[ —
e, s
N

4

0,4A2)+(—e;+e,2n1)

E,(0)
—
(e —ey—e , 4A2)+ (=€), 2 A1)
+(e;—ey—e, 3A4)+(—ey, 1 A3)
Ey(0)
—

ey e,

0,2A1)+(ey—e, d4A2)+(e;—ey—e4, 2 A 3)

Fig. 6. (0,in j) and E»(0)(0,in j), inje V> in Example.
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1 0 1 111
10 1 010
X -1 0 =1 0 0 0
A_010001
11 0111

| 10 00 1 0]

Moreover, the map Ei(0) is given by
E(0)(0,1) = (0,0(1)) = (0,37'24)
=03+ (/37"),2)+(f(37'2),4)  (mod 1)
= —(—e3,3) + (—e3,2) + (—e3 + €2,4).
Analogously, we obtain
E(0)(0,2) = (0,4) — (eg — ey, 1)
E(0)(0,3) = (0,2)
Ei(0)(0,4) = (0,1) — (e1 — e4,4) — (e1 —eq — €,2) + (e — eq — 2,3)

(see Figure 7).

2. The seed % of E,(0) and the covering substitution

The patch yzz,f:] my(Xi,0k) € 92, my # 0, that is, the formal finite
sum of oriented parallelograms, can be considered as the compact set y =
U,le(xkﬁk) = P. We should take care that

the boundary of the patch y # the boundary of the compact set y

(see Figure 8).
In this section, we consider the topological property of compact sets

Xinj = ”113310 A"ES(0)(0,i A j), inje V.

DerINITION 2.1. If we can find the patch WU = Zkﬁi] my(xx,0k) € G2,
my = +1 which satisfies the following conditions, we say that U is the seed of
E»(0) and that E»(0) is a covering substitution of P:

(@) U°>0, where U° means the interior of the compact set U=

ULy mic(xie,00):

(b) there exists N e N such that EY(0)U = U,
(c) d(o(E3(0)%),0) — o0 (n— ).
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e, fee;
e, e,
E\(0)
—
ey 7e3
e, e,
©, 1) —(—e3,3) + (- e3,2) +(—e3t+ ey, 4)
e, e,
e, e,
E(0)
—
ey e, e, e,
. 2) 0,4) —(es—e;, 1)
e, e,
e, e,
E(0)
—
ey e, ey -
,3) 0,2)
e, ey
e, e,
E(0)
'; /
ey ey e,
e,
0, 4) 0,1)—(e;+esp4)—(e,—es—e5,2)

+(ey—es—ey,3)

Fig. 7. (0,i) and E;(0)(0,i), i e V1 in Example.

REMARK.

(1) Even if there exists a seed # of E»(0) such that EN(0)% = U, we can
not say that E2N(0)% = E"""N(0)% for all n, because of the influence
that Ez(ﬁ)"N % has often negative parallelograms which bring about
cancellations.

(2) Our conjecture is that there exists a fixed point F, which is the infinite
sum of parallelograms, that is, 3F : F = Ez(H)F and F might be given by
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the patchy = (0,2 A 1) — (e, 1 A 4) the compact set

O L

the boundary of the patch y the boundary of the compact set y

Fig. 8.

lim, ., E}(0)%. But we leave it at the moment and we claim that we
can set up the fractal tiling in this paper.

LemMA 2.1. The limit set X, :=lim,_.o A"E5(0)(0,inj), inje V>
exists in the sense of the Hausdorff metric on P.

Proor. We put
d = max max {D(A0,inj),y)}
injev, ba
P<E2(0)(0,iA])

where D is the Hausdorff metric on P. On the notation EJ(0)(0,iA j) =

Zk 1(xk , k") and the fundamental property of the Hausdorff metric such
that D(A4,U Ay, BiUBy) < max{D(A4,, B)),D(A2,B>)} (see [5]), we see that

D(A™'E}(0)(0,i A j), EZT(0)(0,i A j))
L(n)

_ D<A—l Lk(j)(x]((n)761(¢n))’E2<9) <Z(x]({n)75](€n))>>
k=1

k=1
L ) e () ()
—D| () 41" s U xS NEFTH0,i A )

< | max {D( e 00"), E2(0) (x", 0" ) N ES1(0)(0,i n j)} <d

1<k<L(n

where yNJ = {(x,inj)|(x,inj)ey and (x,inj)€d}. By the operation of
A" we have
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D(A"EL(0)(0,i A j), A"V EF(0)(0,i A j)) < 2"d
where 4 = max{|43],|44]} < 1. Therefore, the limit set X;,; exists. O

COROLLARY 2.1. Let U = S, my(x,0x) be a seed of Ea(0), then the
limit set X as

X := lim A"E}(0)%

n—oo

exists and

where X3, = lim,_., A"E5(0)(0,0x).
The proof is obtained analogously with Lemma 2.1.
LemMA 2.2. The compact set X satisfies X° # .

Proor. We put C; the ‘fractal’ curve generated by FE;(0) from the
segment (0,7), r; the Hausdorff metric D between C; and (0,7), and E; the r;-
neighbors of the segment of (0,7), that is,

C; = lim A"E"(0)(0,1),

ri := D(C;, (0, 1)),
E; = {Z|d(Z, (0’ l)) < ri}v

and moreover we put r:= max;<;<4{r;}. Then, it is clear that C; = E;. Let
C:=lim,_, A"E'(0)0%, then from the fact that A is continuous, we know

A™"C = lim A" "E!""(0)E"(0)ou for any m. (2.0.3)

n— 00

On the notation

R(m)
E{ﬂ(g)a% _ Z (xl(cm)’ l-]({m))7
k=1

we can write the relation (2.0.3) by

R(m)
A"C < U ’}LHO]O An—m<Eln—m(0)(x§{m)’l.l({m))).
k=1

Therefore, we have
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A"C < U (x,((m) + Ei('”>)
(< i) e Em(0)ou ‘
and
d(A™"C,0)>d U "+ Ew),0 | = d(E(©0)0w,0) 1.
k

(i) e Ep(oyou
From the assumption of Definition 2.1 (c), if we take m satistying
d(EP (0)0,0) = 2,
then
d(A™"C,0) >r.

Therefore, there exists N such that » > N implies
d(AEN(0)0U,0) > %

This means that the compact set A "A"E}(0)% satisties A" A"E}(0)U >

B(0,5) for all n > N, where B(0,5) is a ball of the center 0 and the radius 5.

Therefore, we have A™"X = B(0,5) and X > A™B(0,5). O
In Example, let us choose the patch U on the plane P by
U= (e —ey—2e3+es,2A1)+ (e) —er — 2e3+ €4, 1 A3)
—(e1 —ex—e3, 1 nd)+ (2e; — ey —2e3,2A3) + (2¢) — ey — 23,40 2)
+ (2e; — ez —2e3,3A4) + (e —2e; —e3,2 A 1).

Then, we can see that the patch U satisfies the seed condition of E»(0) in
Definition 2.1 (a), (b) as N =1, (c) (see Figure 9).

3. Blocking
3.1. Blocking patch

To treat the map E,(¢) which generates not only positive orientated
parallelograms but also negative ones from the positive parallelogram, we use
the new idea “blocking” in this section.

DerINiTION 3.1.  Let B be the family of the finite number of patches
yp:
B:={y,[1 <p<K,y, €%}
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o) u
X
>
(B2 (O)U) Ez (O)U

s
o

0 (E3 (0)U)

¢

T

\\\
s

Fig. 9. 0(E}(0)%) and E}(0)%, n=0,1,2,3 in Example.

0 (B3 (

If B satisfies the following conditions, we call B a family of blocking patches
associated with ¢ and we say o satisfies the blocking condition.

(1) For each p, there exist a translation vectors xgcp ) enZ* and the patch
Yy €B such that
k

Mg

Ez(ﬁ)yp = (x;{p) + j/V;((p)) c I)7

k=1
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that is, the patch Ez(ﬁ)yp can be decomposed by the translation of patches

{VV(p)}lskgL[,; VVkm € B;

(2) Let M= [pgli < g<x De a K x K non-negative integer matrix given by

L,
nA/lpq = #{k ‘ Vka) = y/ﬂ EZ(H)Vq = Z(xl((ln + ka(‘/))}~
k=1

We assume that M is primitive, i.e., AM : MM > O and that the maximal

eigenvalue of M coincides with | 11| - |A2| where |Ai| and |A3| are the absolute

values of the eingevalues of A satisfying |A1| = 22| > 1> |A3] = |A4]. We

call M the incidence matrix of E»(0) in the sense of blocking;

(3) There exists a seed WU of E»(6) given by Definition 2.1 such that

(@) u is decomposed in the sense of blocking, ie., i, i, ... i€
{1,2,...,K}:yp, €B, U= Sl (i + i) To distinguish U =
Zfi i (X, 0) which is constructed by the parallelogram, we denote
U =Y (X, +73);

(b) there exist y,e B, N'eN and z e nZ* such that

Eévl(ﬁ)yp -z +U (in the sense of blocking).

REMARK. About the condition (2), if the seed % is constructed by 6
pieces parallelograms (x;.;,i A j), iAj€ V> and moreover all the elements of
E>(0)(0,i A j), i A j€ V5 are positive, then the matrix M coincides with 4* and
the maximal eigenvalue of M is equal to |4;]- |

In Example, let us introduce the family of blocking patches B = {y;}, ;¢
associated with o by

= (0,2A1)
vy = (0,1A3)
y3:=—(0,1 Ad) + (—e2,2 A1)
= (0,2A3) '
ys = (0,4 A2)
76 :=(0,3A4)

Then, the covering substitution E,(0) for y,, 1 <i <6 is represented by the
following in the sense of blocking:

E>(0)y) := (—es +p6) + (—e3 +7s) + (es —e1 —e3 + ;)
+(es —e3+ex—e; + ;)
E5(0)y; == (—es +74) + (2 — €3+ 75)
E)(0)y; :==(e1 —e3 —es+ ) + (€1 — ez — e4 + 7s) (3.1.4)
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Ex(0)yy =75+ (—e1 + es + 7))
Ey(Q)ys == (e1 —ex —es+y5) + (—e2+ 7))

+ (e1 —ex —es + 76) + (—ex2 +72)
E3(0)ys := 71+ (e1 —ea +75) + (€1 — €2 — es + 74)

(see Figure 10).
Therefore, the incidence matrix M of E,(0) in the sense of blocking is given

by

71
V2
M= 73
V4
Vs

V6

—_——= O = = O
S = = O O O
—__ O O O O
S = O O O
— e O O = =
S = = O O =

and we know the maximal eigenvalue Jy, of M coincides with Jy, = || - |72 =
3.18....
Let us consider the family of patches U instead of U by

7o (e1 —ex—2e3+eqs+ 7)), (e1 —er —2e3 +es+7,), (€1 —ex —e3 +73),
(2e1 — ey — 2e3 +74), (261 — €2 — 2e3 + 75), (2e1 — ez — 2e3 + y;) '

Then, we can see that B satisfies Definition 3.1 (1), (2), (3) (a)(b) as N’ =1
(see Figure 11).

3.2. Graph of the blocking

From the formula E»(0)y, = Z,(Lil(x,({p) +7,m), we put two finite sets 7"
k
called vertices and & called edges, and two functions i : & — ¥ and t: & — ¥~
as follows;

V= {ylayZa"'ayK}:{1,2,...,K}

5;:{<£)1gpgK,V,jP)e{Lz,...,K},lgkgL,,}

(P ._ Py _
z<k>.—p, t(k)._Vk .

Then, we obtain the directed graph G := {7",&,i,t} and the set of its ad-
missible sequence as
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E,(0)
—
‘ eq4—e1—e3)+y2
7 (mest76) +(=es+ps) +(eg—e;—e3+72)
+(es—e3tey—e; +73)
Ey(0)
‘ ‘
72 (—e3+74) +(ey—e3+7s)
n(er—e3—e)ftys
Ex0)
’ ﬂ(el—es—e‘t)k)’s
73 (e1—e3—ey+76) + (e;—e3—ey +75)
) %m
[haie
V4 ys+t(—eite +7,)

\\F 29 %ﬁ

(ey—ey—ey+7s5) +(—ey+ 1)
s +(ej—ey—ey+75) +(—ey+72)

Ey(0) - E J
% —

Y6 yit(e—es+ys)+(ey—ey—eq+7,)

Fig. 10. y; and E»(0)y;, i=1,2,...,6 in Example.
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u u
Fig. 11. % and % in Example.

_f (P Ph "')‘(P_z;)eéal(l’/}>:i<?jsﬂ)}
2 {<kjl ki - ) I\ K, "\ K, Ki...

And from the formula E;(0)y, = £i1(x§(p)+3’y<m), let us give the label
A

function %,

¢ & — 7t
w w

() —

then, we have the labeled graph Gg¢ and its admissible labeled sequence of
Gy. We put the set of the admissible labeled sequence of G¢ whose initial
vertex is p as

Pi Pj Pj Pp [ Pi
Q=2 &L Yoo € Ji =
! {( (kj> (kj) )‘(kj ki > 2 (kn) p}
and for simplicity, we write

Q, ={(xj,,x),,...)| Gy-admissible and i(x; ) = p}.

From

L,
Z(xl(cp) + ka(P)) = Z (le + yl(x,l))7

Ex(0)y, =
k=1 Y :i(x/'] )=p
E3(0)y, = Z (47" x;, + E>(0)74(x;,))
Xy :i(le >:l7
= > (ATm DY ()
Yy :i(le )Zp Xjp :i(sz ):t(le )

= Z (A_lle + x5, + yt(sz))a

(%, 5 %, ):i(x, )=p
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we have the following formula in the sense of blocking

Ey(0)y, = > (A0 Vg + A"+ 4 X, + ) (3:25)
(le 1 Xjygeees xjn):i(xil )=p
where (x;,x),,...,x;,) is the finite length path of the Gg-admissible sequence.

In Example, we obtain the following labeled graph from (3.1.4) (see Figure
12):

<15>

<16>= —este;—e; <1lb>= —eyt+ez—e <12>= —ey+e3—ey
<13>= 0 <24>= —eyte3;—e <250>= e3—ey

<36 >= ey —ey <35 >= ey —ey <45>= —e;t+e+ey
<4l >= —e;+e;+e <HH>= 0 <5l>= 0

<h6>= 0 <H2>= 0 <61l >= ey

<65 >= ey <64>= 0

Fig. 12. Labeled graph G in Example.

4. Main Theorem

LemmA 4.1. We assume that E,(0) has the family of blocking patches B
associated with o given by Definition 3.1 and we put

X, = lim A"E}(0)y,, 7, € B.

n— o0

Then, the following set equation holds:

A71A9 = (x,((p) + XVI(,;)).
Je— k

—_
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Proor. From E3(0)y, = ,fi](x,(f) +7,0), we get
k
LI7
E(0), =3 (A7 + B 000,
k=1

Operate A"~! and n — oo, then we have the following set equation:
L,
AilXp =U (xlip) + XVA“”)
k=1 ‘

where the existence of limit sets X, can be discussed analogously in the proof of
Lemma 2.1. ]

By analogous discussion and (3.2.5), we obtain the corollary.

COROLLARY 4.1. For any neN, the following set equation holds:

A% = U AT+ AT P g, X))
(%) 3 Xy 5eens Xy )
i(x/] >:17
where (xj,,x),,...,x;,) is the finite length path of the Gg-admissible sequence.

Lemma 4.2. X7 # & for all p.

ProoF. From Definition 3.1(3)(b) and Lemma 2.2, there exist y, € B,
N'eN and z € P such that

Eévl(ﬁ)yp -z+U (in the sense of the blocking)
and Corollary 4.1, we have

A—N/Xp — U (A—(N’_l)le +A—(N’—2)xj2+...—|-xjN, +Xt(x,n))
(xflvszvm-,xiNr):
i(x,’l):p

(z+(x, +X,)=z+X>oz+X°#Z  (by Lemma 2.2).
1

U
TTCN

From Corollary 4.1 and the primitivity of M, we have X, # & for all p.
O

PrOPOSITION 4.1. The set equations
LF
A_lX}7 = U (x](\,‘D) + XVA(,)))
k=1 ;

A—i‘l

2
|

( )(A—(n—l)xj] +A—(n—2)xj2 + ot x;, +Xt(xf,,))
Xjy 2 Xj 505 Xjp )
i(x,] >:]7
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are non-overlapping. In particular,

C~

X=(x +X;) (non-overlapping)

O)U = lim,_., A"E} OV, U = Y1 (x;, +7;)-

—_

where X =lim,_,,, A"EY
ProorF. From the first equation, we get for the volumes {|X;||i=
1,2,...,K},
(47" X1],|4A7"' X, .. |47 Xk]) < (1Xal, | Xl | Xk )M,
(A7 X0 A7 Xl (AT X)) = 2] - 2l (X)X, XD

And from Lemma 4.2, we know X? # (J for all p. In particular, |X,| > 0 for
all p. Therefore by Lemma of [19] or [4], we know that (|Xi[,|Xz],...,|Xk]|)
must be the eigenvector of M and that the inequality must be the equality. In
particular, we know that the set equation is non-overlapping. Analogously,
we obtain that the second set equation is non-overlapping. The final non-
overlappingness is from Definition 3.1 (3)(b). O

ProposITION 4.2. X and X, satisfy
X=X and Xy = X,.
Proor. From Proposition 4.1, we have for any n

X = U (Ax + A%+ + A"x;, + A" Xy, )

(non-overlapping) (4.0.6)

where (x;,x;,,...,x;,) is Gg-admissible. Therefore, for any x € X and 6 > 0,
let B.(0) be the ball with the center x and the radius 0 on P, then by the
above set equation, there exists m and z = Axj, + A%xj, +--- + A™x;, such that
By (0) » A" Xy(x,) — z and A’”X,‘zxjn) # (. This means that X = X°. We see

that X, = X? analogously. O
The analogous discussion can be found in [10].

LEMMA 4.3. Let us define the set t,

neN,
i(x;) ediy,in,...,0

T = A*(Nn—l)le -+ Ai(Nniz)sz + -+ xan —+ X[(xm ( l]) { b ’ K}7 5
(le y X e xj.w)

is Gg-admissible

then t is a quasi-periodic tiling of P.
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ProoF. From Definition 2.1 (b) EY(0)% = %, we see that A NX o X
(> X°30). By the fact that 4~ is expanding on P, we know

o
Ja™x =P
n=0

Therefore, from the non-overlappingness of (4.0.6), the set 7,

neN,

i(x;) €{i1,i2,--.,IK [,
T= Ai(Nnil)xl'l +A7(Nn72)x/‘2 +ee +x_/'m; +Xf(x/n) ( ]1) { b K} 5

(le 3 Xjyy e o ’xiNn)

is Gy-admissible

is a tiling of P.. The quasi-periodicity of the tiling 7 can be seen from the
presentation formula of tiles

A—(Nn—l)le + A—(Nn—2)xj2 ot Xy, X[(Xj")
by Gg-admissible sequence by analogous discussion can be found in [9]. [

We call 7 the graph-directed self-similar tiling and for simplicity we write
GDSS tiling.

Summing up the propositions and lemmas, we obtain the following main
theorem.

MAIN THEOREM. Let o be an automorphism satisfying Assumption 1.1 (1)
non-Pisot, (2) unimodular, (3) standard position, moreover there exists a family of
blocking patches B associated with o and the seed U can be blocked U = WU =
S (g, + Vi) Put

X, := lim A"E}(0)y,

n—oo

X = ’}Lngo A"Eg(@)yik
L
X = U (xik JrA/ik)v
k=1
then the sets, X, {X,}, {(x; + X))}, satisfy
0) X°>20
(1) X = U,le(xik + Xi,) (non-overlapping);
2) X°=X;
L,
3) A47'x, =) (xim + X, ) (non-overlapping);
k=1 k
(4) put |X,| := volume of X,, then (|X\|,|Xa|,...,|Xk|) is an eigenvector of M,
that is,
/IM(|X1|5 |X2|7 ) |XK|) = (|X1|7 |X2‘a sy |XK|)M

where Jy = |A1] - |2

1
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(5) let us define the sets t,

neN,
i(x;,) e{ir,iz,...,I
L A_(N”_l)le +A—(Nn—2)sz+...+x/_/:{ +Xt(xj) (]l) {17 2 K}’ )
JNn n (Xj] 5 sz, ey xan)

is Gy-admissible

then 7 is a quasi-periodic GDSS tiling of P generated by {XP}ISI,SK, where
N is chosen as EY(0)% - U.

COROLLARY 4.2. Let o be an automorphism satisfying Assumption 1.1
(1) non-Pisot, (2) unimodular, (3) standard property, moreover, (4) we can find the
special seed U =), iy, (Xinj i A J) € 9> and all the elements of E>(0)(Xinj,i A j)
are positive, (5) there exist (xin;,inj) €U, NeN and zenZ* such that

Eév(ﬁ)(xi,\ﬁi/\j) —z+U.

Then, the sets X :=lim,_, A"E}(0)U, X;.; :=lim,_,, A"E}(0)(0,i A j) satisfies
0) X°>0;

(1) X_: Ui/\je Vz(xi/\j + Xinj)s
(2) X°=X, Xj; = Xinji Lo i <in
(3) from the following notation E>(0)(0,in j)=> 21" (x,,8,"),
L(irj) .
AX = ) (VY +x 51) (non-overlapping);
k=1 ’

(4) the vector from the elements |Xi.;|, i A j €V, is the maximal eigenvector of
A

(5) we obtain the quasi-periodic GDSS tiling © of P of the prototiles
{)(}Aj}i/\je 2%

Proor. Let us define the family of blocking patches B associated with g,

B:{(x,-Aj,iAj)Wl: > (xw-,i/\j)},
injeVs

then, it is easy to see that B satisfies (1) and (3) in Definition 3.1. For (2):
from the assumption [l], the element a};,,, of the matrix A" is given by
the number of (x,kAl) in E(0)(0,iAj) and A* is the 6 x 6 non-negative
integer matrix. Thereofore the Perron-Frobenius eigenvalue of A* is given
by (|4s],|24])"" = |41]|42]. Therefore B satisfies the all of the condition in
Definition 3.1. U

In Example, we know X,=X;, p=1,2,...,6. We show X,, x,+7,,
p=12....,6 as Figure 13 and the tiling v as Figure 15.
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X, i xi, + X,
Xiy T Vi xj, + X,
Xiy T Vi Xy + X,

Xiy T 7y x;, t X,
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xi5 + yi5 x,-s +)(i5
Xig + Vi X T X

Fig. 13.

=

Fig. 14. X = (J, (x; + X;,) where % = ), (x;, +7;), L =6 in Example.

ke

Fig. 15. Quasi-periodic GDSS tiling 7 in Main Theorem (5).
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5. Examples

The simple example which satisfies the assumption in Corollary 4.2 can be
found as follows:

ExamPpLE 5.1. This is the example discussed in [3). Let us consider the
following matrix A:

1 0 0 —1
1 00 O
A= 010 O
001 0
1.5
Then the characteristic polynomial of A is 13

Dy(x) =x* —x3+ 1.

The set of symbolic parallelograms is chosen by
Vy:={2A1,1A3,4A1,3A2,2A4,4 A3}

We will choose the automorphism ¢ and the mirror image 0 of ¢~ is detemined
by

1 —12 1 — 47!
23 2 14
TV 3 4 0 : 3.9
411! 43

Then, the covering substitution E,(0) keeps the positive orientation (see Figure
16).
In this example, the seed U is chosen by
U = (—e1 —ey—e4,2 N 1) + (—e1 —e3—ey,1 /\3) + (—e1 —e3—e4,4n 1)
+ (—e2 — e3,3/\2) + (—ez — e4,2/\4) + (—83 — e4,4/\3)
(see Figure 17).

Then, U satisfies E2(0)U ~ WU and d(0E,(0)"%,0) — oo (see Figure 18).
We obtain the quasi-periodic GDSS tiling © (see Figure 20).
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e,

e,

e,

e,

0,1A3)

e,

0,4A1)

0,41A3)

Fig. 16.

ey e,
E»(0) e,
—

ne,
(e, 4A 1)
ne, e,
Ez((’) e,
—
2
(e, 27 4)
ne,
E,(0) e,
—
ne,
(e 47 3)
e, e,
Ey(0) e,
—
e,
0,2A1)+(e;,214)
E(0) e,
[
e,
0,1A3)+(e,413)
ey e,
Ey(0) me,
[ —
ne,
0,3A2)

(0,inj) and E»(6)(0,iA j), inje V> in Example 5.1.
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Fig. 17. The seed % in Example 5.1.

u Ey (O)U E2(0)U

E3(0)U E3(0)U

ES(O)U ET (00U ES(O)U

Fig. 18. E}(0)%, n=0,1,..., 8 in Example 5.1.

Fig. 19. {x;,; + Xi,;|in j€ V>} in Example 5.1.
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< .
oD I Y
Iy AR Tt
S
IO B s

Aa

Fig. 20. Quasi-periodic GDSS tiling 7 in Example 5.1.

The cardinality of the family of blocking patches B associated with ¢ is
usually different from the cardinality of the parallelograms constructing the
seed # of E,(0). We propose such an example as Example 5.2.

EXAMPLE 5.2. Let us consider the following matrix A:

1 2 01
1 0 00
A= .
01 00
0 01 0
013
Then the characteristic polynomial of A is 5 ; -
Dy(x) =x*—x3 - 2x2 — 1. 2 . 2
4

The set of symbolic parallelograms is chosen by
Vo :={1A2,3A1,4A1,2A3,2A4,3A4}.

Let us choose the automorphism o (invertible substitution) and the mirror image
0 of 7' is determined by

1 —12 1—4
2113 2 — 147!
o: , 0: R
3—-4 32474
4—1 4—-3

In this example, the covering substitution E(0) sometimes produce the
negative orientated parallelograms from the positive one (see Figure 21).
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e, e,
A e [
ne, e
Ex0) '
e, Te;
0,1 A2) 0,4n1)
e, e,
e, e,
e, E (9) e,
2
e, e,
0,3A1) 0,24)
e, e,
e, e,
ne, £,0) e,
—
e, )
0,44 1) 0,3A4)
e, e
V e, TSy
e,
) Ey(0)
—
e, =)
0, 1A2)+(ey—endnl)
0,213) +(es—2e, 4 A1)+ (e,—es, 2 A 4)
e, e,
e, ysn
ne, e,
E(0)
—
e, ey
0,244
0,1A3)+(e;—e,3A4)
re, e,
e, e,
e
’ E0)
>
e, ey
0,2A3)+(e;—e4,314)
0,3A4) +(e,—2e4,3 1 4)
Fig. 21. (0,inj) and E»(0)(0,in j), inje V2 in Example 5.2.
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If AU is chosen as
U= (0,1A2)+ (0,3A1)+ (e2 —es,471)+(0,213)
+ (e1 —eq,2n4) + (e2 — es,3 0 4),
then we see that
(1) E3O0)U - U,
(2) d(OEF(0)%,0) — o0 (n— o0)

(see Figure 22).
Let us define the family of blocking patches B associated with o by

0= —(0,3A1)+ (e; —es,374)
vy :=—(0,2A4) + (e2 — e3,3A4)
73 := (0,1 A2)
vs:=(0,3A1)
ys:= (0,4 A1)
76 := (0,2 A3)
y7:= (0,27 4)
v5 := (0,37 4)

(see Figure 23). Then, we see that the incidence matrix M of E>(6) can be
given by

71
72
73
M= V4
Vs
Y6
V7

s L i

—_0 = O O O = O
—_ o = O = O O O
S O O = O O O O
SO —m O O O o o O
—_ 0 O O O O O O
N © = O O O O O

S = O b O = O O
S O O O o o o

and we know it’s maximal eigenvalue iy, of M coincides with || - |22| where Ay,
Ja are eigenvalues of A where || > |A2| > 1> |As| = |A4|l. (c.ff The char-
acteristic polynomial of M is given by (x®—2x5+x*—5x3 —x?—2x—1)-
(x+ 1)(x—1) and the first polynomial coincides with the characteristic poly-
nomial of A*). Let us consider the family of patches U instead of the seed U
by

U := {73, 74, €2 — €4+ 75, V6, €1 — €4+ y7,€2 — s + Yg }.

Then, we can see that B satisfies Definition 3.1 (1), (2), (3) (a)(b) as N' =4.
We show the figures of the quasi-periodic GDSS tiling © (see Figure 25).
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0
e
e

-——.f‘

0 (ES (0)U) B3 (0)U

I g e U Tt
T e e
BB Ny e A M MR

| |
jERIRES
T
N ammimARREIREIEE ]

the local figure of E§ (0) U

Fig. 22. 0(E3"(0)%) and E3"(0)%, n=0,1,2 in Example 5.2.
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A

71 V2 V3

S
’t

2

V7 Vs

Fig. 23. Elements of the family of blocking patches B associated with ¢ in Example 5.2.

Fig. 24. X = (2, (x; + X,) where % = |}, (x; +7;), L =6 in Example 5.2.

As an example of unimodular non-Pisot and the characteristic polynomial
with non-irreducible, we propose the following.

ExampLE 5.3 ([11]). Let us consider the following matrix A:

1 1 -1 1
1 1 0 -1
A_010—1
1 0 -1 0



324 Maki FUurRukaDO

A Y A 2 T Ay Ay 22
i SR A
AT NI R YA A SR R D i
v i di v A T Y M 3 O B T oy Y A
55 2

5

AN
2 My Yo A A
A S av Lt ﬁﬁ‘!&
m’mﬁggs;?__..aﬁt

Fig. 25. Quasi-periodic GDSS tiling 7 in Example 5.2.

Then the characteristic polynomial of A is m

Dy(x) = (x* —x—1)% 3 Fi

The set of symbolic parallelograms is chosen by
Vy:={1A2,3A1,4A1,2A3,2A4,4 A3}

Let us choose the automorphism o (invertible substitution) and the mirror
image 0 of ¢~ is determined by

1 — 142 1—24
2 — 321 2—13

o: —171-1> 0: —19-1y4-1"
3 =471 3—-377'17'4
4 2131 4 — 371471271

In this example, the covering substitution E,(0) sometimes produce the
negative orientated prallelograms from the positive one (see Figure 26).
If A is chosen as

U :=—(e; —e3+es, | A2)+ (e1 +e2—e3+2es,31)
+(e1+ex—e3+eq, 4n1)+ (2e) —es+e4,203)
+(e1 —e3,2A4)+ (2e1 +ex —e3 +e4,4A3)+ (e2 —e3+es, 41 1),

then U satisfies the seed condition:
(1) E(O)U - U,

(2) d(CEZ(0)U,0) — 0 (n— o)
(see Figure 27).
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e,
e,

€y

e,
e,
e,
"Tz

0,4A1)

e,
e,
e,
=

0,2 A3)
€3
ne,
e,
0,2 A4)
e,
G
e,
e,
0,4A3)

e,

Ey(0) e
—

—(0,1A2)+(e;,2A3)+(e,4 1 1)
+(e;+ey4n3)

ey
e,

)

»

(e, 2A3)+(ey—e3,4 A3)—(—e;—e3, 1 A2)
+(—ete,—e, dAl)+(—e—e3—ey, 27 4)
e,

me,
e,

20

X

(—e, 2A3)+(ey—e3,4 A 3)

(—ej—e3—ey , dnl)+(—es—ey, 4 A 3)

e,

S
Y
$
iw

me;
e,
e,
=
Ey0)
s
—ep3AD)+(—e3—ey 40 1)
—(—ey—e3—ep2 A )+ (e —e3— ey, 4 A 3)
+(e,—ey—e3—ey, 2 A3)
7es
e,
ne,
2
Ey(0)
—

(—e;—2e3,3A1)—(—e—2e3—¢,,413)
+(=2e3—e, 4A3)+(—e—2e3—¢,,4 A 1)
+(—ey—2e3— e, 2 A3)—(—e;—e,—2e3— ey, | A2)
+(—e—e,—2e5—2e,,2 A 4)

Fig. 26. (0,iA j) and E»(0)(0,in j), inje V> in Example 5.3.
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o) u
9 (B (0)U) Ex ()U

. o

(B3 (0)U) E2 (0)U

=

e

7

B

923 (O)u) B 0)u

Fig. 27. O0(Ej(0)%) and E}(0)%, n=0,1,2,3 in Example 5.3.

Let us define the family of blocking patches B associated with o by

p1:=—(0,1A2) + (2,4 A1) + (—es,2 A 4)
7, :=(0,3A1)

73 :=(0,2A3) 4 (e2,4 A 3)

74 :=(0,4A1)
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e U
e, e,
ne, e,
e, e
71 V2
ey ey
e ey
e, e,
e, e,
73 V4

Fig. 28. Elements of the family of blocking patches B associated with ¢ in Example 5.3.

(see Figure 28). Then, we see that the incidence matrix M of E»(0) is given
by

y |01 10

N 1 1
A= V2 0 0
y» |1 1 1 1
2 LO 0O 1 0

and we know it’s maximal eigenvalue iy, of M coincides with || - | 12| where Ay,
Jp are eigenvalues of A where |Aj| = |1a| > 1> |A3] = (c.f. The characteristic
polynomial of M is given by (x2 = 3x+ 1)(x+ 1)2 and the first polynomial
coincides with the characteristic polynomial of A*). Let us consider the family
of patches U instead of the seed U by

A4

U:={ey—e3+es+7,e1 + e —e3+2es + 7,

2e; —e3+eq+ 73,60 — ez +eq+ ), ).

Then, we can see that B satisfies Definition 3.1 (1), (2), (3) (a)(b) as
N =1

Finally, we know the quasi-periodic GDSS tiling © can be found as t-lattice
in the crystal geometory (see [8]).
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Fig. 29. X = U,f:l(xik + X;,) where % = U,f:l(x,-k +X;), L=4 in Example 5.3.
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Fig. 30. Quasi-periodic GDSS tiling 7 in Example 5.3.
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