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ABSTRACT. We define new proper homotopy invariants, the proper Lusternik-
Schnirelmann 7;-categories pzj-cat and pzy°-cat. Then, we prove that, if p7;-cat (resp.
p7iy°-cat) of a locally path-connected, Hausdorff, locally compact, and paracompact
space is equal to or less than n, then there is a proper map to a locally finite polyhedron
of dimension #n + 1 that induces an isomorphism of fundamental pro-groups p7; (resp.

pay).

1. Introduction

The L-S category was defined in 1934 in [12] by L. Lusternik and L.
Schnirelmann in the course of their studies on calculus of variations, because it
gives a lower bound of the number of critical points of a smooth real function
on a closed manifold. The L-S category cat X of a space X is the least
number of open subsets contractible in X needed to cover X minus one. It is
a homotopy invariant, and was early studied by Borsuk [2] and Fox [7]. Also,
there is an algebraic counterpart of the L-S category cat, defined by using
fundamental groups, due to Fox [7]. The L-S n;-category cat,, X of X is the
least number of open subsets 7;-contractible in X needed to cover X minus
one, where a subset of X is mj-contractible in X if every loop in the subset
is contractible to a point in X. It has been studied for example in [6], [§]
and [10].

Homotopy invariants, as cat and cat,,, do not suffice to study open mani-
folds, and proper homotopy invariants are needed to investigate the behaviour
of these spaces at infinity. Ayala, Dominguez, Marquez, and Quintero [1]
have defined a proper version of the L-S category. They have introduced two
proper invariants, p-cat and p-cat™, using subsets that are properly contractible
to the image of the half-line R, .

In this paper we introduce two new proper homotopy invariants, p7;-cat
and pr{°-cat, corresponding to cat,. Concretely, p7i-cat coincides with caty,
for compact spaces. In §2 we define two pro-groups, the fundamental pro-
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group p7; and the fundamental pro-group at infinity pz°. In §3 we define
proper L-S 7-categories corresponding to these two pro-groups, and prove in
§4 the proper version (Theorem 4.1) of a result due to Eilenberg-Ganea and
Gomez-Gonzalez ([6], [8], and [10]): if a locally path-connected, Hausdorff,
locally compact, and paracompact space has proper L-S 7 -category pmi-cat
(resp. at infinity pz{°-cat) < n, then there is a proper map into a locally finite
polyhedron (i.e. the underlying space of a locally finite simplicial complex) of
dimension n + 1 that induces an isomorphism of fundamental pro-groups (resp.
at infinity). Although one might expect to have a locally finite polyhedron
of dimension n as in the non-proper case, we will give an example of 4-
dimensional manifold whose proper nj-categories are 3 but there is no 3-
dimensional locally finite polyhedron verifying the expected property (Example
4.3).

2. Proper maps and pro-groups

Recall that a map between Hausdorff locally compact topological spaces
is proper if it is continuous and the inverse image of every compact set is a
compact set. We will denote by # the category of the Hausdorff locally
compact topological spaces and proper maps. Basic facts on proper maps can
be found in [3].

We will define the fundamental pro-groups of a space using inverse systems
of fundamental groups of subspaces. The base of our fundamental groups
will not be a point but any set. Now we will give the precise definitions and
facts. Known or straightforward facts will be given as lemmas, remarks, or
propositions without proof.

DermNiTION 2.1. Let X be a topological space and M its subset. We
define the fundamental group of X with base points in M by the family of
groups 71 (X, M) = {m (X, p)| pe M}. Note that we think 7;(X, J) = & for
the empty set (.

DEerINITION 2.2. We define ¥ by the category with objects of the form
(I,{G'"|ie}), where I is a set and G' is a group for each i e I; and mor-
phisms

[ AG iel}) = (J{H'|jeT})

that are pairs f = (p,{f'|iel}), where ¢ is a map from [ to J and
f1:G'— H?Y is a homomorphism of groups for each i. We will call ¢ the
index map and f’ the component maps of f, respectively. Composition is
defined component-wise,
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(pAf i) o (W {g’[je}) = (o {f"Wogl|jel})
In the sequel we will denote the families of groups simply as {G'|ieI}.

PROPOSITION 2.3. A continuous map of pairs f: (X,M) — (Y,N) induces
a morphism of families of groups 7 (f): (X, M) — 7 (Y,N) given by the
index map f|,,: M — N and the component maps m(f):m(X,p)—
m (Y, f(p)) for any p of M. Indeed, @, is a functor from the category of
topological pairs to 9.

DErFINITION 2.4. Let G={G'|iel} and H = {H’|je J} be two families
of groups. We say that H is a subfamily of G if J = I and H/ is a subgroup
of G/ for every j of J. If M is a family of subgroups of a group P then VM
will denote the subgroup of P generated by the union of the subgroups of
M. Let f:G— H be a morphism in 4 with f = (p,{f"|iel}). Also, let
A={A"|iel'} be a subfamily of G and B= {B/|jeJ'} a subfamily of H.
We define:

JA) = {V{f"(4")|p(i) = jiiel'} | jepl)},

B ={(N7' B ) iep (I},

Ker f = f'({0]|jeJ}) = {Ker fi|iel}, and

Im /= f(G) = {V{Im f"| (i) = j} | j € Im g},
where @ denotes the trivial group.

DEFINITION 2.5. We say that a non-empty family of groups {G’|ie I} is
trivial if G' is the trivial group for every i. Also, we say that a morphism of
families of groups is empty if its domain is the empty family of groups, and we
say that it is nu/l if its component maps are the null morphisms of groups.
Finally, it is trivial if it is null or empty.

LEMMA 2.6. A non-empty morphism f = (p,{f"|iel}) in % is an iso-
morphism iff ¢ and f' are bijective for every i.

DeriNITION 2.7. A map of pairs f: (X,M)— (Y,N) is a homotopy
equivalence relative to M if there is a map g: (Y,N) — (X, M) such that go f
and f o g are homotopic to the corresponding identity maps relative to M and
N, respectively.

ProPOSITION 2.8. Let X and Y be two topological spaces, and f and g two
homotopic maps from X to Y such that f is injective on a subset M of X.
Then, if 7i(f) and 71(g) denote the induced morphisms from 7, (X, M) to
T (Y, f(M)) and 7, (Y,g(M)) respectively, there is a morphism of families of
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groups h: (Y, f(M)) — 7 (Y,9(M)) such that 7 (g) = ho 7ty (f) and the com-
ponent maps of h are isomorphisms.

COROLLARY 2.9. The family of groups 7(X,M) is determined by the
homotopy type of X relative to M.

Now we introduce the inverse systems to define the pro-groups. First we
recall the definition of pro-categories (see [5]).

DerINITION 2.10.  Let @ be a category. An inverse system in € is a triple
formed by a directed set A, a family {X; |1 € 4} of objects of ¥, and a family
{Piu: Xy = X3 | A < u} of morphisms in % that satisfy the following conditions:
(1) p, =idy, for every A of A.

(i) If A<u<v then p;u 0 pu = pi.
The inverse system will be denoted by (A4, {X;},{pi.}). 4 is called the index
set and p;, the bonding maps.

DeriNiTION 2.11. Let X = (A4, {X;},{ps.}) and Y = (I',{Y,},{q,s}) be
two inverse systems in 4. A system map from X to Y is a pair formed by
amap 0:I — A and a family of morphisms in ¢ {f,: Xy, — Y,|[yel}
satisfying that for each y < of I' there is a 4 € A such that 0(y) < 4, 6(3) < 4,
and f; o po,); = g6 © f5 0 poyi- Let Z = (A,{Z,},{r.p}) be another inverse
system in 4. Given two system maps f = (0, f,) from X to Y and g = (¢, 94)
from Y to Z, their composition go f is (00 ¢,{g, o fpu) |2 € A}). The identity
map in X is (idy,{idy,}). We say that two system maps [ = (0,f,) and
= (9'7]"7’) from X to Y are equivalent if for each y € I' there is a A € 4 such
that 0(y) <A, 0'(y) <4, and f; 0 py)z = f; © py(y;- The above defined re-
lation between system maps is an equivalence relation. The pro-category of
%, whose objects are inverse systems in ¥ and whose morphisms are equiv-
alence classes of system maps, can be defined in the obvious way and denoted
by pro-%.

Also in [5] the category (%,pro-%) with objects (4, P, f), where A4 is an
object of &, P is an object of pro-¢, and f is a morphism in pro-¢ from P to
A (regarded as a constant inverse system) is defined.

DerINITION 2.12. When M = (N, {M,},{pmn}) is an inverse system of
modules we can consider the product [],~, M, with the module structure given
by the component-wise sum and product, and the shiff homomorphism s :
Hle M, — HZO:I M, defined by s(x1,x2,...) = (x1 — p12(x2), x2 — p23(x3),...).
The kernel of s is the inverse limit 1<iLn M of M and the cokernel
(IT,2y M,))/Im s is the first derived limit lim" M of M.

DerNiTION 2.13. Let X be a topological space. An infinity neighbour-
hood of X is any subspace of X whose complement is compact. A system of
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infinity neighbourhoods of X is any non-empty family % of infinity neigh-
bourhoods of X such that ﬂ@/ = (& and for any two neighbourhoods U and
V' of % there is a neighbourhood W € % whose closure is contained in UN V.

Note that for any infinity neighbourhood V of X there is a U € % con-
tained in V' by the condition of a system of infinity neighbourhoods %. Also,
using the local compactness condition it is straightforward that every space of
2 has a system of infinity neighbourhoods.

DerINITION 2.14. Let X be a space of 2, M a subset of X, and % a
system of infinity neighbourhoods of X. We define the fundamental pro-group
at infinity of (X, M,%), denoted by pz{ (X, M,%), by the inverse system in ¥
with elements 7; (U, UNM) for U € % bonded by the maps induced by the
inclusions. Also, we define the fundamental pro-group of (X, M, %) as the pair
(M (X, M), pay (X, M, %)) of (9,pro-%), and we denote it by pa; (X, M,%).

ProPOSITION 2.15. The above constructions are functorial, where the do-
main of pr{® and pry is the category with objects (X, M, %) as above and a
morphism from (X, M, %) to (Y,N,?") is simply a proper map of pairs from
(X,M) to (Y,N).

Since different choices of systems of infinity neighbourhoods induce natu-
rally equivalent functors, when we need not distinguish between isomorphic
objects we will write pa{°(X, M) and p7(X,M). Also, we will denote by
p{°(f, M) the morphism induced by a proper map f: (X,M)— (Y,N), or
py(f) when M is clear by the context, and analogously for pz;. Now we
will prove an algebraic result needed in the proof of Theorem 4.1.

DEeFINITION 2.16. A system map f: X — Y is called a level-preserving map
if X and Y have the same index set A, f is of the form (id,,{f;: X, — Y,})
and satisfies f; o py, = qju 0 f, for any indices A < u, where p;, (resp. q;,) is
the bonding map from X, to X, (resp. from Y, to Y)).

LemMma 2.17. Let f: G — H be a level-preserving map in pro-94, where
G = (A,{G;},{py}) and H = (A,{H;},{q,.}). Suppose that the index maps
of the morphisms of families of groups f,: G, — H) are injective for any .
Then, f is an isomorphism iff for any A
(1) there is a pu> 4 such that Ker(f,) < Ker(p;,) and
(i) there is a v = A such that Im(q;,) < Im(f)).

Proor. It is clear that the conditions are necessary. Let us show that
they are sufficient. In [14] it is proved that a level-preserving system map is an
isomorphism iff for any A there is a v > 1 and a morphism g¢;, : H, — G, such
that g;, 0 f, = p)y, and f,09;, = ¢q;. Now, let 1€ 4. Then, there is an index
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u > A such that Ker(f,) < Ker(p;,) by (i) and an index v > u such that
Im(qu) < Im(f,) by (ii). Let us define g;, : H, — G,.

Let x be an element of a group H{ of H,. Since Im(q,,) = Im(f,) and
the index map of f,: G, — H, is injective, there is an unique group G!’; of G,
and there is a ye G/’; (not unique, in general) satisfying that g, (x) = fu(»).
We define ¢g,,(x) by p;.(»). Let us show that the result does not depend on
the choice of y. Let y and y’ be two elements of G/’; such that f,(y) =
fu(¥") = qu(x). Since f,(y~'y’) is null, we see that p;,(y~'y’) is null by (i),
and hence p;,(y) = p;u(»'). It is easy to show that this defines a morphism
of families of groups that satisfies ¢g;, 0 f, = p;, and f; o g, = ¢ O

DermNiTION 2.18. Let f,g9: X — Y be two proper maps. We will say
that /" and g are properly homotopic, f ~, g, if there is a homotopy from f to
g that is a proper map. On the other hand, we will write /' ~ g if f and g are
homotopic in the usual sense.

PropPoOSITION 2.19. Let X and Y be two non-compact spaces of 2, and

f and g two properly homotopic proper maps from X to Y such that f is

injective on a subset M of X that is not contained in any compact subset of X.

The maps p(f) : p (X, M) — pe (Y, /(M) and pf(g) : g (X, M) —

Py (Y,9(M)) are defined. Then for any system of infinity neighbourhoods v~

of Y there is a morphism h from pay (Y, f(M),?") to pay(Y,g(M), ") such

that:

(1) pay(g) =hopa(f) as morphisms of pro-groups.

(i) For any V e the corresponding map hy sends 7 (V,VNf(M)) to
nm(V,VNg(M)), and there is a W €V contained in V such that the
component map of hy from m(V, f(m)) to n;(V,g(m)) is an isomorphism
for any me M N f~H(W).

There is a similar result for pa; (in this case X and Y may be compact).

PrROOF OF PrOPOSITION 2.19. Let F be a proper homotopy from f to
g. We will define W and h. Then, the rest of the proof is straightforward.

Let % be a system of infinity neighbourhoods of X and V' an element of
4". We choose an infinity neighbourhood W of Y contained in V as follows:
Take a U € % such that F(U x [0,1]) = V. Since F((X — U) x [0,1]) is com-
pact there is a W of ¥” such that W< VN(Y — F((X — U) x [0,1])).

Now we define the component map of /iy at f(m). First, when f(m)e W,
we see that m € U and thus F(m,t) € V for every ¢t € [0,1]. So, we can define
hy(B) = o, B+ oy em(V,g(m)) for any loop B of m(V, f(m)) by using a
path o, (¢) = F(m,t) for every ¢t of [0,1]. When f(m)¢ W we can choose
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a point m’ of M Ng~'(V), because M is not contained in any compact subset
of X, and we define hy(ff) =0em(V,g(m')) for any loop S of = (V, f(m)).
]

3. The proper L-S n|-categories

Remember that the Lusternik-Schnirelmann 7x;-category of a space X is
the least number of open subsets 7;-contractible in X needed to cover X minus
one. The condition that a subset 4 of X is m-contractible in X can be
reformulated as stating that the map from 7,(A4,a) to n;(X,a) induced by
the inclusion is trivial for any point a of 4. Analogously, we will use the
fundamental pro-group p7; and the fundamental pro-group at infinity pza;° to
define two new proper homotopy invariants. Since the inclusion maps should
be proper, a subset is called p7;-categorical (resp. p7}°-categorical) if the in-
clusion of its closure in X induces a trivial morphism of pro-groups.

DEerINITION 3.1. A morphism in pro-¥ is null if it has a representative
consisting of null morphisms in ¥ (remember that a morphism in pro-% is an
equivalence class of system maps), and it is frivial if it is null or it has a
representative consisting of empty morphisms in 4. A morphism in (¥, pro-%)
is trivial if its two component maps are trivial.

Lemma 3.2. Let G= (A,{G;},{pi.}) and H = (A,{H,},{q.p}) be two
inverse systems and f : G — H a system map in pro-%4. Then, f is null iff for
any o there is a . = ¢(«) such that f, o p,, is null, where ¢ : A — A is the map
between the index sets. Also, [ is trivial iff it is null or there is a A such that G,
is empty.

Note that if X is a space of 2 and 4 is a subset of X, then 4 € # and the
inclusion map from A4 to X is proper iff 4 is closed in X.

DerINITION 3.3. Let X be a space of 2 and A4 a subset of X. For every
subset M of the closure A of A the inclusion map from 4 to X induces
morphisms:

iveu PRy (A, M, U;) — prf (X, M, W)
jM,‘j/( . pﬁ:l(/L Ma %) - pﬁl(Xa Ma%)

for every system of infinity neighbourhoods # of X, where %; ={U NA|
Ue}. We say that A is pay’-categorical (resp. pri-categorical) in X if
ive.r (vesp. jar ) is trivial for some % and for every M < A.
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This definition does not depend on the choice of %, by the remark below
Proposition 2.15.  Also, for pzj® we can restrict ourselves to base sets M that
are not contained in any compact subset of X, because otherwise iy, 4 would
be trivial. Finally, let us see that for pa® and pz; we need only one M, if it
is chosen appropriately, as explained in the following:

DEerFINITION 3.4. Let X be a space of 2 and M a subset of X. We say
that M covers the infinity of X if there is a system of infinity neighbourhoods
4 of X such that M intersects every path component of every infinity
neighbourhood of %. Also, M is full in X if it covers the infinity of X and
intersects every path component of X.

It is straightforward that

PrOPOSITION 3.5. Let X be a space of 2, A a subset of X and M a sub-
set of A. If M covers the infinity of A and the morphism iy : pry (A, M) —
pa (X, M) is trivial, then A is prj°-categorical in X. Also, if M is full in A and
the morphism jyr : pity (A, M) — prty (X, M) is trivial, then A is pri-categorical
in X.

LemMmA 3.6.  Let X be a space of . Then, any subset of a pz,-categorical
(resp. pr°-categorical) subset in X is also pmi-categorical (resp. pry-
categorical) in X.

DerFINITION 3.7.  We define the proper Lusternik-Schnirelmann mi-category
(at infinity) of a space X of 2 by the least number of open subsets p7;-
categorical (resp. paj°-categorical) in X needed to cover X minus one, and we
will denote it by psj-cat X (resp. pa;°-cat X). If there is not such a finite
cover, we define that p7;-cat X = oo (resp. paj°-cat X = o). Also, when X is
compact, X itself is a p7{°-categorical subset but it would be better to define
pr°-cat X = —1 exceptionally.

RemARK 3.8. The pzj°-category of any non-compact space of Z is equal
to the pz{°-category of the closure of any of its infinity neighbourhoods.

PropoSITION 3.9. pmi-cat and pr°-cat are proper homotopy invariants.

Proor. We will prove that pz{°-cat is a proper homotopy invariant, the
proof for pmj-cat is analogous. Let X and Y be two spaces of the same
proper homotopy type. There are f: X — Y and ¢g: Y — X such that
fog~,idy and go f ~,idy. Note that X is compact iff so is ¥, and thus
we may assume that X and Y are non-compact.

If paiy-cat Y <, then Y can be covered by n+ 1 open subsets Ay,..., A4,
that are p7;°-categorical in Y. For every integer k between 0 and n there is
a commutative diagram:
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SN L &
X / Y g X
\y
idy

where A4; denotes the closure of A4;, i and j are inclusion maps, f; denotes
f |f,1( i) and the symbol ~, means that the corresponding part of the diagram
is commutative up to proper homotopy.

Taking the fundamental pro-groups at infinity we obtain:

P (£ (), M) Ll pan (A, £(M))

L pRE(Y, (M)~ paP (X, g(f (M)

pr (X, M)

where W, = pay° () for any map , M is a subset of f~!(4x) not contained
in any compact subset and % is the map defined in Proposition 2.19 for a
system of infinity neighbourhoods ¥~ of X. Since j, is null, j. o (fx), is also
null. Then, g, o f; o i, must be null and so is Ao .. Since hoi, is null, for
any U e v there is a V' < U such that hy o (i), o pyy is null by Lemma 3.2,
where pyy is the bonding map of p#{°(f~!(4x), M) determined by U N f~!(Ay)
and VN f~'(A;). Moreover, by Proposition 2.19 there is an infinity neigh-
bourhood W of ¥ contained in V' such that the component maps of /&y
corresponding to base points in M N W are isomorphisms. And since M N W
is not empty, (i), o puw is null, which means that i, is null. Thus, f~!(4)
is pr°-categorical in X and we have proved that [/-cat X <n. O

ProrosiTiON 3.10.  If (K, |K]|) is a finite-dimensional locally finite simplicial
complex, then pwi-cat|K| < dim K.

ProoF. Suppose that the dimension of K is n. We will construct an open
cover {A4,...,A,} of |K| by n+ 1 subsets that are p7;-categorical in |[K|. Let i
be an integer between 0 and n. First, let B; be the 0-dimensional subcomplex
formed by the barycenters of the i-simplexes of K. Next, let C; be the reg-
ular neighbourhood of B; in the second barycentric subdivision sd*(K) of K.
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Finally, let A; be the interior of the regular neighbourhood of C; in the third
barycentric subdivision sd*(K) of K. Since the closure of 4; is a disjoint union
of sets that are zj-contractible in |K|, 4; is p#m-categorical in |K|. Since
{Ay,..., Ay} is an open cover of |K|, the result holds. O

It is straightforward that cat, X < pmj-cat X' > prj°-cat X for any X of
#. An example for which p7;-cat is greater than p7z{°-cat is the wedge of the
circumference and the half-line Ry = [0,00). And p7;-cat is greater than caty,
for the plane. Let us recall a little about the proper categories defined by
Quintero and others in [1] and [4].

DeriNITION 3.11.  Let X be a non-compact space of . A closed subset
A of X is called properly inessential in X if the inclusion map i: 4 — X
factorizes up to proper homotopy through the half-line. That is, there are
proper maps f:4— R, and g:R; — X such that go f ~,i. Note that
properly inessential subsets are closed. A subset of X is called properly cate-
gorical in X 1if it is contained in a closed subset of X which is properly
inessential in X. Any proper map from the half-line to a space is called a
ray. A properly based space is a pair (X,o) where o is a ray in X.

DerNITION 3.12. Let X be a non-compact space of 2. The proper L-S
category p-cat X of X is the least number of open subsets properly cate-
gorical in X needed to cover X minus one. The proper L-S category at infinity
p-cat® X of X is the least number of open subsets properly categorical in X
whose union is an infinity neighbourhood of X minus one.

Note that the definitions in [1] and [4] are the number of elements of the
covers defined above, so they are equal to the categories defined above plus
one.

It is easy to prove that pmj-cat X < p-cat X and p7{°-cat X < p-cat™ X
for any non-compact space X of # (for the last inequality, see Remark 3.8).
A space for which the inequalities are not equalities is obtained by pasting to
the half-line a copy of the 2-sphere at each natural number.

4. Main theorem

Now we will prove the main theorem of this paper, a proper version of a
result due to Eilenberg-Ganea and Gomez-Gonzalez (see [6], [8], and [10]).

THEOREM 4.1. Let X be a Hausdorff, locally compact, paracompact and
locally pathwise-connected space and II one of the functors pa{ or pwty. If
IT-cat X <n then there is a locally finite simplicial complex (L,|L|) of
dimension < n+ 1 and a proper map f : X — |L| such that II(f) : (X, M) —
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II(|L|, f(M)) is an isomorphism for every non-empty subset M of X for which
f is injective on M. Also, there is a full subset of X on which f is injective.

Before giving the proof, we remark the following:

REMARK 4.2. Let X be a Hausdorff, locally compact, paracompact and
locally pathwise-connected space, (L,|L|) a locally finite simplicial complex of
dimension <n, f: X — |L| a proper map and M a subset of X such that
I(f): II(X,M) — II(|L|, f(M)) is an isomorphism for I7 = pa}° or pz;. If
M covers the infinity of X and I7 = pz{°, then p7a{°-cat X < n; and if M is full
in X and IT = p7;, then p7j-cat X < n.

Our main theorem is not the converse of this remark but it is the best
possible result due to Example 4.3.

PrOOF OF REMARK 4.2.  We will prove this remark for /7 = pz{°, the proof
for p7; is analogous. Since the result is trivial for compact spaces, we may
assume that X is not compact. Let us show that pa{°-cat X < p@{°-cat|L|.
Let {4;|0 <i < prj°-cat|L|} be an open cover of |L| by pz{’-categorical sets.
It suffices to prove that the sets f~!(4;) form an open cover of X by p#{-
categorical sets. Let g; : f~!(A4;) — X be the inclusion map and N; any subset
of f~!(4;) not contained in a compact subset. Since A4; is p#;°-categorical in
|L|, the morphism from p#¥(4;, f(N;)) to pa{(|L|,f(N:)) induced by the
inclusion map is null, and thus the composition pz{°(f, N;) o pa;°(g:, N;) is null.

We take any system %" of infinity neighbourhoods of |L| and put % =
{f~YU)|Ueu*}. Then, %« is a system of infinity neighbourhoods of X and
py°(f) is level-preserving. Since pay°(f, M) : pa (X, M) — pay(|L|, f(M))
is an isomorphism, it satisfies the condition (i) of Lemma 2.17 for % and #*.
So, for U € % there is a Uf € #* such that for any loop o in U, = f~1(U})
with base point in M, if f o« is null-homotopic in U then « is null-homotopic
in U;. Let us prove that pa{°(f,N;) also satisfies the condition (i) of Lemma
2.17 for % and %*. Since M covers the infinity of X, there is a system of
infinity neighbourhoods %' of X such that M intersects any path-component
of every element of %’. Moreover, there are Uy € %' and U{ € #* such that
Us = Uy = Uy, where Us = f~1(U}). Let B be a loop in Us with base point
in N; such that fop is null-homotopic in Uf. There is a path y in U,
from the base point of f to some point of M. Since fo (y~!-B-7) is null-
homotopic in U¥£, y~!- By is null-homotopic in U, which implies that f is
null-homotopic in U; and thus the condition (i) holds for pa°(f,N;).

Now, let us show that pz{°(g;, N;) is null. Let U; € %. Since pa°(f,N;)
satisfies the condition (i) of Lemma 2.17, there is a U} € #* such that U, =
SYUE) is contained in Uy and for any loop o in U, with base point in
N;, if f oo is null-homotopic in Uf then « is null-homotopic in Uj. Since
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pa° (f, Ni) o py°(gi, N;) is null, there is a U; € % contained in U, such that
f o B is null-homotopic in U} for any loop f in f~!1(4;) N U; with base point
in N;. Applying the result just proved in the above paragraph, f must be
null-homotopic in Uj, which implies that pz{°(g;, N;) is null and thus the set
/71(4,) is pr}°-categorical in X.

Hence, p7{°-cat X < paj{°-cat|L| < dim L < n by Proposition 3.10. O

PrOOF OF THEOREM 4.1. We may assume that X is not compact. In fact,
if X is compact, pr}°-cat X = —1 and the map to the one point space induces
an isomorphism of pro-groups p7{°, and we see easily that p7;-cat X = cat, X
and thus the theorem for the non-proper case can be applied. First, we will
prove the theorem for the g-compact spaces in steps one and two, and then for
paracompact spaces in step three. In the g-compact case; in step one, we will
define (L,|L|) and f, and in step two we will prove that f induces an iso-
morphism of pro-groups.

Now, let us suppose that X is g-compact and I7-cat X < n.

Step oNE: Definition of (L,|L|) and f.

Let % = {U,|m e N} be a countable system of infinity neighbourhoods
of X such that U,y = U, for any m and U; = X. In fact, such a system
exists when X is g-compact.

We define the sets:

G=X-0U,
G,=U,;_1— U, (Vm > 2)

Note that G,, does not intersect G, if m and m’ are not consecutive. Since
IT-cat X < n, there is an open cover {4;|0 <i <n} of X by subsets that are
M-categorical in X. Let {¥°|meN} and {¥"|0 <i<n} be partitions of
unity of X subordinate to the covers {G,, |m € N} and {4,]|0 <i < n}, that is,
the supports of ‘PmG and ¥ are contained in G,, and 4, respectively, for any i
and m. The sets G, N A; form an open cover of X and the products ¥,* - ¥
form a partition of unity subordinate to it.

At first we will reconstruct the cover and the partition of unity so that
every map of the partition is positive in every point of its corresponding set of
the cover, as in [10].

For any non-empty subsets I" of N and S of {0,...,n} we put:

Gr={xeX|¥°(x)>0,%(x)> ¥ (x) (ypel Nq¢I)} and

As ={xe X[ ¥ (x) >0, %" (x) > ¥/ (x) (VieS,Vj¢S)}
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Note that I' is of the form {k} or {k,k+ 1}; otherwise Gy = . We
define Df = GrNAs for any I and S. The sets D5 form a locally finite open
cover ¥ of X. For any point x of X and any I and S as above we define:

¢ (x) = max{min{ 7 (x) [m e I'} — max{¥,’(x) |m ¢ I'},0}
(pg“(x) = max{min{ S”iA(x) lieS}— max{‘PiA(x) |i¢ S} 0}

o) = 00 0f) D) = <P
r S r I ZA,T (pj"(x)
where the sum of the last formula is taken over all the sets DT of the cover
. The maps @3 form a partition of unity subordinate to & that satisfies the
property: @3 is positive in any point of D7 and null outside Dy.

Next we need the sets of the cover to be path-connected. For any D9 € &
and any point x € D we define V7(x) by the path component of Dj that
contains x; we define V73 (x) =& when x¢ Df. Let v ={V7(x)|Dye2,
x € D7}, where we distinguish V#(x) and V5 (x) when (I',S) # (I'",S’) even if
VE(x) = V5 (x) as a subset of X. Since X is locally path-connected, ¥~ is an
open cover of X.

Let V be a path component of D7. Since V is open in X, @ defined by

By (x) = {cbl‘i(x) if xeV
0 otherwise

is continuous. These functions form a partition of unity subordinate to 7 .

Moreover, we need a cover that has a locally finite nerve. For any index
I there is a finite subfamily ¥ of ¥~ that covers the closure of Gp, because
this set is compact. Let # be the union of the families ¥ for all I". It is
clear that #” is an open cover of X and that any element of #" only intersects
a finite number of other elements of ¥, and thus its nerve is locally finite.
Next, we will define a subcover ¥’ of %" such that any V e ¥ contains a
point that does not belong to other elements of ¥~’. We will use this property
to construct a full subset of X on which f is injective.

Let us define ¥~/. Since ¥ is countable, we can give an order to their ele-
ments and write # = {V; |k e N}. We define ¥’ as a subfamily {Vy, |i e N}
of ¥ recursively. Let Vi, be the first element of % that contains a point
that does not belong to Vj for any k > k;. This Vj, must exist, because
only a finite number of elements of % intersect each set Gr. It is clear that
{Vi |k =k} is a cover of X. Next, suppose that we have defined V%, for any
J <, that the family {V} [1 < j<i}U{Vi|k > k;} is a cover of X and that
for any j < the subset V, contains a point that does not belong to any other

element of this cover. We define V.., by the first element of this cover such
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that ki1 > k; and V},,, contains a point that does not belong to any element
of {Vi, |1 <j<i}U{Vi|k>ky1}. This set must exist, again because only a
finite number of elements of % intersect each set Gr. Thus we have defined
v,

The partition of unity subordinate to ¥ is as follows. For any x of X
and V e v’ we define:

/ ¢V(x)
P =5 o)
where the sum is taken over each element W of ¥ that contains x.

Let (N,,|N,-|) be the nerve of ¥"'. We define a map f : X — |N,| as
follows. For any point x of X let {Vi,...,Vs} be the elements of 7" that
contain x. Then, [V1],...,[Vk] are the vertices of a simplex of N, , where
we use square brackets to distinguish vertices from path components. We
define f (x) by the point of this simplex given by the barycentric coordinates
@y, (x)[Vi] +--- + @y, (x)[Vi]. This map is well-defined because 7' is locally
finite, and continuous by the definition of topology on |N,|.

The dimension of (N, ,|N,|) may be greater than n+ 1. Indeed, in the
following paragraphs we will show that 2n 4 1 is an upper bound. But we
need to define a simplicial complex (L, |L|) of dimension <n+ 1 and a proper
map from |N,-| to |L|. Since "' is a subcover of 77, let us study the di-
mension of the nerve (N, |[Ny-|) of 7, that is, estimate the maximum number
of elements of 7~ that have non-empty intersection.

First, note that if As intersects As: then S = S’ or S’ = S, for if there are i
of S — S’ and j of §' — S, then for any x € AgN Ay the inequalities ¥ (x) >
S”]-A(x) and S”]-A (x) > 'z”,-A (x) must hold, which is impossible. ~Analogously it
can be proved that if Gr intersects G then I' = I’ or I'' = I'. By induction,
if the intersection ANS] ﬂ-nﬂANSk is not empty, then there is a permutation
{iy...,ix} of {1,...,k} such that S;, =--- = S;,. Note that in the case of the
sets of the form Gr, the intersection of three distinct sets is always empty.

Now, let ¥#(x) and V2 (x) be two elements of ¥~ with non-empty in-
tersection. Since DFN D3, = DN D3, NDY NDS, by the definition of the
elements of &, the intersection V2(x)N VS (x)NVE (x) N VS (x) is not empty.
Applying induction it can be seen that for any point x of X the intersection of
the elements of 7~ that contain x is a set of the form:

(i) V3@)N---nV7(x) or

(i) V2)N---NVZ@)NVSEN---NVI(x)

where S} < --- &S, and I' < I'".  Since the sets S; are contained in {0,...,n}
for any i we see that p <n+ 1. Also, the above result implies that every
simplex of N, is a face of a simplex corresponding to the form (i) or (ii).
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Thus, any simplex of N, is a face of a simplex whose dimension is at most
2n+1, and hence dim Ny <2n+1 and dim N,» <2n+ 1.

To define (L,|L|) we will define the space |L| at first and afterwards
triangulate it. We will define |L| as a quotient space of |N,-| by an equiv-
alence relation using a map / from |N,~| to a topological space |C| that we
construct as follows:

Consider the family of the sets of the form {k} or {k,k+ 1} with k
any natural number. We define the abstract simplicial complex Cp by the
1-dimensional complex with vertices the elements of this family and with 1-
simplices <I",I"'y where I = I''. Also, we define the abstract simplicial com-
plex Cs with the non-empty subsets of {0,...,n} as vertices and with the sets
{S1,...,S;i} such that S} = --- = §; as simplices. This complex is isomorphic
to the barycentric subdivision of the canonical n-simplex, and thus can be
embedded in R”. Indeed, if <ay,...,a,) is the canonical n-simplex, the map
that sends a vertex S = {ji,...,jk} of Cs to the barycenter of <{gj,...,a; ) in
R” is an isomorphism. On the other hand, Cr can be linearly embedded in
R" by mapping the vertex I = {k} to 2k — 1 and the vertex I" = {k,k + 1}
to 2k for any k. We define the topological space |C| by the union of the
cylinders & x p of R™! such that ee Cs and p e Cr.

We define a piecewise linear map h: [N,~| — |C| by h([VE(x)]) = (S,T") €
|C| = R"™™! for any vertex [V(x)]. In fact, the images of the vertices of any
simplex o = (V2 (x),. .., VI‘S,‘( (x)> of N, by h are vertices of a cylinder of |C|,
because ANS] n--- ﬂ/fgk # & and Grl n---N ka # (, and thus we can extend
h linearly to any point of o.

Now, we identify two points x, y of |N,| and write x ~ y if they belong
to the same simplex of N, and h(x) =h(y). But ~ is not an equivalence
relation, and thus we take the equivalence relation ~ induced by =~. This
equivalence relation defines a quotient topological space |L|. We define g by
the canonical projection from |N,-| to |L| and f =go f. Then, there is a
unique continuous map % such that the following diagram is commutative:

X LN ] e R

N

L]

We will triangulate |C| appropriately and then use /4 to triangulate |L|.
For any simplex o€ N, the restriction of & to g(o) is injective. Also /(o)
is known to be a convex hull inside a cylinder. We will define a triangulation
C of |C| that satisfies the following property: for any cylinder <{Si,...,S,)> X
I, T, the convex hull of any subset of {Si,...,S,} x {I',I"'} is the un-
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derlying space of a subcomplex of C. Thus, each /(o) will be the underlying
subspace of a subcomplex of C.

We triangulate each cylinder of |C| by an induction on dimension. Any
cylinder of dimension 1 is a 1-simplex, and thus it is already triangulated.
Now suppose that all the cylinders of dimension < m have been triangulated
and the triangulations agree in the intersection of every pair of cylinders.
Let e x {I,I""y be an (m+ 1)-dimensional cylinder of |C|. For each m-
dimensional cylinder p x {I", I’y of de x {I',I""y we form two cone complexes
with vertices (S, 1) and (S, I"’) respectively, where S is the vertex of ¢ that does
not belong to p. We obtain 2m + 2 cone complexes contained in & x {I",I"">.
The intersection of two simplices of different complexes is the convex hull of
a finite set of points of R"*! (see [16], 2.6). If we form all the possible
intersections of pairs of simplices of the cone complexes, we obtain a family of
convex hulls. We can triangulate all these convex hulls, without introducing
new vertices, to form a triangulation of ¢ x <I',I""» that contains the cone
complexes above defined and the simplices & x {I'} and &x {I"’} as sub-
complexes (see [16], 2.8 (5) and 2.9). The union of the simplicial complexes of
each m + 1-dimensional cylinder form a simplicial complex. By induction this
defines a triangulation of |C| that satisfies the desired property.

Now we define L. Let ¢ be a simplex of N, and o a simplex of C
such that o = h(s). The restriction of / to g(a), A 4(0) * 9(0) — h(a), is bijective
and continuous. Since g(o) is compact and |C| is Hausdorff, it is a homeo-
morph1srn We define %y by the inverse image of o by h| . Wedenote the inverse
map of h| oy — o by h" We will show that the famlly of maps {h” o — o |
aeC, oeN, o< ho )} define a A-complex structure on |L|, that is:

(i) The restriction of h" to o is injective for any _map h" of the family, and
for each point p € |L| there is a unique map h (= hg for some o and o)
of the family such that fzp(&) contains p.

(ii) For any map izg and any face f of o the restriction of iz;’ to f belongs to
the family.

(iii) |L| has the weak topology with respect to the family of subsets {a,|o € C,
o€ Nyr,o < h(o)}.

Here & is the interior of the simplex «. Note that a map of this family may

correspond to several pairs of simplices («,0): for example, iz” izf if 7is a

face of . The condition (i) states that the map hJ such that p € h“'( ) must be

unique, not the simplex o. In fact, we will see that two maps h” and hﬁ are

equal iff A7 (&) = hi(B). The second barycentric subdivision of a 4-complex is

a simplicial complex (see [11] for details), by which we will define L. We will

check the conditions (i), (ii) and (iii) above.

Since each map iz;’ is injective, its restriction is also injective, thus the first
statement of (i) holds. The condition (ii) is also trivial, because the restriction of
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he to B is fzg . Before concluding the proof of (i) we will show that the sets g(o)
form a locally finite closed cover of |L| in order to prove the condition (iii).

To prove that g(o) is closed in |L| for any simplex o € N,, it suffices to
show that g~'(g(c)) is compact, because g is a quotient map and |N,-| is
Hausdorfl. To do this we will decompose g~ !(g(c)) as a finite union of com-
pact sets. For any subset B of |N,| let £(B) be the set of the points of |N,-|
related to the points of B by the relation ~ used to define |L|. Since &
commutes with the union operator, &(B) = | ) £(BN7), where 7 ranges over
the simplices of N, . By the definition of ~, the equivalence relation gen-
erated by =, g7 !'(9(B)) = Ukz() EX(B), where &F denotes the composition of &
with itself k& times. Let us show that if B = ¢ this union is finite and the sets
X () are compact, which implies that g~'(g(o)) is compact. Let K be a com-
pact subset of |N,|. If 7 is a simplex of N,, (K N7) is compact, because it
is the intersection of 4~'(A(K Nt)) and the union of the simplices that contain
7. And since K only intersects a finite number of simplices of N, &(K) is
compact. Thus, applying induction, ¢ (o) is compact for any k. Now let us
check that there is an / such that ¢¥(¢) = ¢/(0) for any k >/, and then the
above union is finite.

Note that ¢(B) > B and hence &¥(B) > &'(B) for k>1. Since ¢ com-
mutes with the union operator, ¢¥(g) is the union of the sets &(&(--- E(&(aN1y)
N7)N---)N1x) where 7y,...,7, are simplices of N, If &(---&(eNt)N---
N1x) # & then each point of this set is equivalent by ~ to points of o
and points of 7; for any i by the definition of &, and thus /A(z;) Nh(o) # &
for any i. There is only a finite number / of simplices 7€ N, such that
h(t)Nh(o) # &, because h(r) and h(o) must be contained in two cylinders
of |C| with non-empty intersection, and then the elements of 7' corre-
sponding to the vertices of 7 must be contained in some compact subset of
X. Now let us prove that &(&(---&(BNt)N---Nt;))N1y) = &(BN1;) for any
Bc |Nys|landi>1. Indeed, &(---E(BNt)N---N1;) = i~ (h(BN 1)), because
the points of &(---&(BN1t)N---Nt;) are equivalent to points of BNz;. Thus

WY h(E(--EBNT)N---Ng)N1y)) €k (h(h ' (W(BN 1)) N1p))
c h Y (h(BN1)))

and by taking the intersection with the union of the simplices that contain 7y,
the result holds. Let k> and let 7q,...,7;, be simplices of N, such that
E(---&(eNm)N---N1) # F. Since k > I, there are i and j such that 7; = 1,
with j > i, and thus we see that E(E(---E(E(---E(eN)N--)N7)N--)N1y) is
contained in (&(--- &(eNty) N--+) N 7;) by taking

BZf(f(é(O’ﬂT])n)ﬂf,_l)
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It follows that &(---&(eNty)N---N1g) is contained in
(- EE(-ENT)N---NT) Ny ) N Nrg).

Hence, £¥(0) = ¢¥7%(g). Ifk — j+i> [, repeat the argument. Then, we see
that ¢*(¢) = &'(0). Thus, we have proved that g(o) is closed in |L|.

Next we will prove that the cover {g(g)|o € N,~} is locally finite. Any
point of |L| is contained in the preimage of the simplicial star of a vertex of C
by . Remember that the simplicial star St(p, C) of a point p of |C| is an
open subset defined by the finite union of the interiors of the simplices of C
that contain p. Let o be a simplex that contains p. If ¢ is a simplex of N,
such that g(o)NAh (%) # & then h(c)N& # &, which implies that « = h(q),
because /(o) is the underlying space of a subcomplex of C. But if /(o) and
h(t) contain o then h(o) Nh(r) # &, and thus there is only a finite number of
simplices o such that g(o) intersects 7' (2). Hence, only a finite number of
sets of the cover {g(o)|o € N, } intersect the preimage of the star, and thus the
cover is locally finite.

Now, we can prove the condition (iii), that a set F is closed in |L| iff
FNa, is closed in o, for any o,. The necessity is obvious. For the suffi-
ciency, suppose that FNa, is closed in o, for any o,. Then FNa, is also
closed in ¢g(o), because o, is closed in g(g). And since the sets g(o) form a
locally finite closed cover of |L|, F is closed.

Finally, let us prove the second part of (i). First, let us show that such a
map exists. Let p be a point of |L|. There is a simplex ¢ of N, such that
p € g(a), because {g(g)|o € Ny} is a cover of |L|. On the other hand, there
is a simplex « of C such that h(p)e& Since h(p)eh(c)N&, we see that
o < h(c) and hence p € h?(&).

If « is a simplex of C and & a simplex of N, such that @ N/(g) # & then
there is a face p of o such that & = A(p). In fact, if & intersects /(o) then
o < h(c). If @ ¢ h(G) then  intersects h(da), thus there is a proper face p’ of
o such that & intersects A(p’), and hence « <= h(p’). If & & h(p') we apply the
same argument to p’, and after some repetitions of the argument we obtain the
desired face p.

Now, let us check the uniqueness of izg . We prove that if two images
(52) and izlg(ﬁ) have non-empty intersection then he = }Az; If h9(&) intersects
(B), then taking the images by h, & must intersect f§, and thus o = . We
may assume that & < h(a), for if & ¢ h(g) then there is a face ¢’ of ¢ such
that & = 4(6"), and since g(a’) = g(a), we see that o, = o,, which implies that
he = h?', and thus we can redefine ¢ by ¢’. Similarly, we may assume that
& < h(2).

Then, we can prove that h9(&) = hZ(%). It suffices to show that h?(&)

7 o . .a . .
is contained in Ah}(a); the other inclusion follows in the same way. Since

hg
hy
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he (%) NhZ(&%) # &, there are two equivalent points x, € ¢ and x, € 7 such that
h(x,) = h(x;) e x. Now we prove that for any y, € ¢ such that A(y,) € a there
is a y, € T equivalent to y,. In fact, since x, ~ x;, there are points zy,...,z,
such that x, ~zj ~---~z, ~Xx;. Thus, there are simplices ¢i,...,&, | such
that z; eoNey, zipg € Neiyy for any i, and z, €e,N7. Since & intersects
h(e;Nepp) for any i, & = h(e;Neiyy). Analogously, & is contained in h(aNey)
and /(g,—1 Nt). Thus, there are points w; € aNej, Wy €&y Nt and wiy; €
& Neiyp for any i such that h(wy) = h(wi) = h(wy,) = h(y,). Thus, y, ~ w;
-~ w, and if we define y, = w,, the result holds.

Since g(o) is closed in |L|, the closure of A?(&) in |L| is equal to its closure
in g(6). And since A 4(» 18 an homeomorphism, this closure is equal to the
inverse image by this map of the closure of & in A(o), that is «. Thus, the
closure of h%(&) in |L| is o,. Analogously, the closure of AZ(&) in |L| is o,.
Thus, o, = o, which implies that izg = ich, by the definition of these maps.

Hence we have defined a simplicial complex L. Also, L is locally finite,
because {g(o)|o e N,+} is a locally finite cover of |L| and each g(o) only
contains a finite number of simplices of L. We define f =go f. It is con-
tinuous. We will prove that g and f are proper and thus f is proper. The
map from g~'(g(o)) to g(o) that coincides with g on any point of g~'(g(0)) is
proper, because g~'(g(c)) is compact. Since {g(c)|o e N} is a locally finite
closed cover of |L|, g is proper, by Proposition 3 of 1.72 of [3]. Similarly, since
the cover of |N,-| formed by its closed stars is locally finite and the inverse
image by f of any closed star is compact (because it is closed and contained in
some X — U)), f is proper. Thus, f is proper. Also, &' (h()) is compact for
any simplex ¢ of N,, because it is contained in a finite union of sets of the
form g(z), where 7 is a simplex of N,+. And since {#(g)|o € N,} is a locally
finite closed cover of A(|L|), the map from |L| to A(|L|) that coincides with
h in every point is proper. Hence, / is proper, because A(|L|) = h(|N,|) is
closed in |C].

Now, let us show that there is a subset M of X that is full and such that f
is injective on M. For every V e ¥/ we take a point xp of V that does not
belong to any other element of ¥”'. We define M = {xy |V e7”’}. Since M
has points in any element of ¥, it is full in X. On the other hand, since
f(xy)=[V] and g is injective on the vertices of N,, f is injective on M.

This concludes step one. In step two we will need the following

ASSERTION:  The inverse image g~'(St(p, L)) of the simplicial star of any
vertex p of L in L is path-connected.

Note that the image by % of a simplex of L is not a simplex of C but that
of its second barycentric subdivision. Hereafter we will use the notation ¢, for
a simplex of L, where ¢ is a simplex of N, and « is a simplex of the second
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barycentric subdivision of C contained in /(¢) such that /(«,) = o, although we
used the notation o, for a simplex « of C in the step one above. Let St(p, L)
be the simplicial star of a vertex L. It is a union of sets of the form o, — f5,
such that p is a vertex of «, and f, is the simplex spanned by the vertices of o,
different from p. To prove that g~!(St(p, L)) is path-connected, it suffices to
prove that g~'(«, — 8,) is path-connected, because these inverse images have
non-empty intersection, namely, g~'(p).

First, we see that g~ !'(o, — B,) = g~ ' (g(h~'(« — B) Na)) for any simplices
%, and f, as above. In fact, if xeg (2, —f,) then g(x) €, —f,. Thus
g(x) € g(o) and also h(x) € « — f5, by taking the images by . This implies that
there is a y € o such that ¢g(y) = g(x) and h(y) e 2 — . On the other hand, if
xeh '(a—B)No then g(x) e g(o) and h(x) e x — . Thus, g(x) € oy — f,.

Next, let us prove that g~'(g(B)) is path-connected for any path-connected
subset B of |[N,+|. Let x and y be two points of |N,/| such that x= y.
Then, h(x) = h(y) and there is a simplex 7 that contains x and y. The points
x and y belong to tNA~'(h(x)), which is convex in 7 because it is equal to
(h|r)7l(h(x)) and /|, is linear. Thus x and y can be joined by a linear path
formed by points ~ x. This implies that the equivalence class of any point
of [N, | by ~ is path-connected. Thus, since g~'(g(B)) is the union of the
equivalence classes of the points of B, it is path-connected.

Finally, let «, § and ¢ be as above. Since o — f is convex and /|, is linear,
h~'(a— f)Na is convex in o, and thus path-connected. Then, g~! (o, — f3,) is
path-connected and hence the inverse image by g of the simplicial star of any
vertex of L is path-connected.

Step TwO: Proof of the isomorphism condition.

Now let us check that I7(f) is an isomorphism. We will describe only the
proof for the case II = pn}°; the case /I = pm; can be deduced from it.

First we fix the systems of infinity neighbourhoods of X and |L|. For X
we choose %, which was used to define G,, and Cr. The embedding of |Cr|
in Ry defines an order on |Cr|. For any m > 1 we define U/ = | JSt(I", Cr)
where I" ranges over the vertices of Cr such that I' > {m}. These sets define
a system of infinity neighbourhoods %" of |Cr| that satisty U[,, < UL for
any m. Let hy (resp. hr) be the composition of the projection of |C| onto |Cr|
and /i (resp. h). Since k- is proper the sets UL = hy!(UT') define a system of
infinity neighbourhoods % of |L|. Also, &, is continuous and thus UL, <
hp'(UF,) < UL for any m.

Let us show that f is level-preserving. Since U, NG; = & for any
i<m, U,NGpr = g for any I' < {m}. Then U, < UFZ{M}G]“, which implies
that f(U,) = UE. Thus by Lemma 2.17 it suffices to check that pz{(f):
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pa? (X, M, %) — (|L|, f(M),%") for any subspace M of X on which f is
injective satisfies:

(i) for any m there is an m’ > m such that Ker 7;(f,,/) = Ker 71 (pum),
(ii) for any m there is an m’ > m such that Im 7; (g ) < Im 7, (f0n),
where pu : Uy — U, and gy : UL — UL are the inclusion maps and
Jm=f Un*

In the proof of (i) and (ii) we will use repeatedly the following fact.
Let (K,|K]|) be a simplicial complex, o a path in |K| and # a family of
simplicial stars of vertices of K that covers the image of «. Then there are
St(p1,K),...,St(pr,K) € # and paths oy,...,a in |K| such that o= oy ...o0
and o; is contained in St(p;, K) for any i < k. In fact, the inverse images by
o of the elements of 4 form an open cover of [0,1], and it suffices to take
subintervals of length less than the Lebesgue number.

We begin with the condition (ii) and prove that Im 7; (¢, m+2) < Im 71 (f5).
Let o be a loop in UL, , with base point in f(M). We will construct a loop
a¥ in U, such that f oa® is homotopic to o in UL. By the above fact, there
are vertices pi,..., pr of L and paths o, ... of in |L| such that ol = of ... af
and ol is contained in St(p;, L) for any i. Since St(p;, L) intersects St(pi1, L),
g~ ' (St(pi, L)) intersects g~ (St(pi+1, L)) for any i. Let us choose a point y; in
this intersection. Since g~ '(St(p;, L)) is path-connected for any i by the as-
sertion written in the last part of step one, there is a path o in g~!(St(p;, L))
that connects y;—; and y;. Let «¥ =al¥...a). Using the above fact again,
we can take simplicial stars St([W;], N,),...,St([W)], N,) that cover «" such
that St([W,], N,) intersects St([W.1], N,~) for any j. Then, [W;] and [W.]
belong to the same simplex of N, and thus W; intersects W,.;. So, we can
define a path o* =o"... 4" in X as before such that ¥ is contained in 1¥;.
Now, since the intersection of simplicial stars is path-connected and the sim-
plicial stars themselves are contractible, f o a¥ is homotopic to " in |N,| and
goa is homotopic to « in |L|.

Note that iy : Ny — Cr is simplicial and thus Ap(St[V],N,)) is con-
tained in St(h([V]),Cr) for any vertex [V] of N,+. Let us show that
hr(St(p, L)) < St(hy(p), Cr) for any vertex p of L. Let ¢ be a simplex of L
that contains p. Then there is a simplex o of N, such that A(é) < h(&).
Then A (p) € hr(o) and hy(8) < hy(6). Since hy is simplicial, /(o) is a sim-
plex of Cp and hp(6) is its interior, which implies that /(&) = St(hr(p), Cr).
Thus hr(St(p, L)) = St(kr(p), Cr).

Let us prove that fooa¥ is homotopic to o’ in UE. Since foa¥ is
homotopic to «” in St([W,],N,+)U---USt([W)], N,) and g o o is homotopic
to oX in St(py, L)U---USt(px, L), it suffices to check that g(St([W}], N,~)) and
St(p;, L) are contained in UL for any j and i. Since St(p;, L) intersects UL

m+2>

St(hr(pi), Cr) intersects UL 4»- If we denote by d the Euclidean distance
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in |Cr| =R, then d(x,y) <1 for any two points x, y € |Cr| with St(x, Cr)N
St(y,Cr) # &. So, d(hr(p),I') <1 for some vertex I'> {m+2}. Then
hr(pi) = {m+1,m+2} and thus St(hr(p:;),Cr) = UL,,. Hence, St(p;, L) <
UL, <UL On the other hand, since " intersects St([W;], N,), there is
an i’ such that St([W}], N,) intersects g~!(St(pi+,L)). Then St(hr([W}]), Cr)
intersects St(hr(pir), Cr) and thus hr([W;]) = {m+1}, because hr(pi) >
{m+1,m+2}. Then St(hr([W)]),Cr) = UL, and hence g(St([W;],N,)) =
Uy <= Uy

Finally, since hp([W)]) > {m+1}, we have W, < ()
thus «* is contained in U,,.

Now, let us prove the condition (i). There is an m” > m such that any
loop in A; N U,,» with base point in M is null-homotopic in U, for any i. We
will prove that Ker 7 (f;n12) < Ker &t (pm.mr12). Let o be a loop in Uprin
with base point in M verifying that the closed path «* = f o a¥ is contractible
to a point in UZ,,,. We need to check that o is contractible to a point
in U,.

Since o’ is null-homotopic in UL, , there is a map , from the unit
2-disk D* to UL,., such that y,|,p. = af. It suffices to define a map yy :
D? — U, such that y|,,. = «*. Since the simplicial stars of the vertices of
L form an open cover of |L|, their inverse images by iy, form an open cover
of D? that is compact. We take a triangulation Q of D? such that the di-
ameter of each simplex of Q is less than the Lebesgue number of this cover.
Then, the image by y/; of any simplex of Q is contained in the simplicial star of
a vertex of L. We define , on dQ by a*. Let r be a 1-simplex and ¢ a 2-
simplex of Q not contained in Q. We define E; by the closed simplicial star
of the barycenter of 7 in the second barycentric subdivision of Q. We define
E, by a 2-disk in the interior of ¢ that does not intersect E, for any 1-simplex p
of 0 —30. We will define Yy on D> — () E; — | ) E, so that the paths ¥y,
and Y|,z are null-homotopic in U, where 7 and ¢ range over all the 1- and
2-simplices of Q not contained in ¢Q.

Let u be a vertex of Q not lying in dQ. Since g is onto, g~' (¥, (1)) is not
empty and we can define a point ¥ (u) € g~' (¥, (u)). Let ¢ be the simplex of
N, that contains ¥y () in its interior. Then, the intersection of the elements
of ¥"" which correspond to the vertices of ¢ is not empty, and we define ¥y (u)
by a point of this intersection. Note that f(i,(u)) lies in the interior of a
simplex of N, that contains &. Moreover, if v is a vertex of Q and 7" is a 1-
simplex of the second barycentric subdivision of Q containing v and contained
in the 1-skeleton of Q but not in 0Q, we define Yy (x) = Y (v) for any x € 7”.
Also, we define vy (u') = f(y(u')) for any vertex u' € Q.

We define hg (resp. hg) by the composition of the projection of |C| onto
|Cs| and /& (resp. h). Note that kg is a simplicial map that sends a vertex

G,‘ (e Um and

i>m+1

L
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[V2'(x)] of Ny to the vertex (S'> of Cs. Let p be a vertex of L. We define
1, by the unique simplex of Cg that contains izs(p) in its interior. Let us
prove that for any path «’ in g~ !(St(p, L)) and any vertex {S’> of 1, We can
cover o' by simplicial stars St([W], N,~) such that hg([W]) =<{S’'>. Fix a
point «'(¢) of o'. Then, o'(z) belongs to the interior of some simplex J
of N,+. Since ¢ intersects g '(St(p,L)), hs(d) intersects hs(St(p,L)). But
hs(St(p, L)) is contained in St(hg(p),Cs), by an argument similar to that of
hr. So, there is a simplex ¢ of Cs containing hg(p) such that hg(6) N & # &F.
Then ¢ is a face of hg(d) and since 7, is a face of ¢, 7, is also a face of
hs(0). Hence there is a vertex [W] of ¢ such that As([W]) = <(S’) for any
vertex (S’ of 7,. Finally, since [W] is a vertex of d, o/(7) € St({W],N,).

Let 7 be a 1-simplex of Q not contained in Q. We will define ¥/, on
0E,. Let o and ¢’ be the 2-simplices of Q that contain . Let p (resp. p’) be
a vertex of L such that St(p, L) (resp. St(p’, L)) contains ; (a) (resp. ¥, (a")).
Also, let u and v be the vertices of 7. Since Y y(u) and Yy (v) belong to
g ' (St(p, L)) that is path-connected, there is a path 8 in g~'(St(p,L)) from
Wy (u) to Yy(v). Similarly, there is a path ' in g~ !(St(p’, L)) from W (u)
to Yy(v). Let § be the loop f-(B')"" with base point (1) = f(0). Since
St(p,L)NSt(p’,L) # &, p and p’ span a l-simplex p of L. Since h(p) is a
simplex of sd”> C, there is a simplex ¢ of C such that A(j) =& By the
definition of barycentric subdivision, A(p) or h(p') belongs to & There is a
simplex u of N, such that &  h()). Thus hs(p) or hs(p’') belongs to
hs(f1). After exchanging p’ with p if necessary, we may assume that Ag(p)
belongs to hgs(i). Then, 1, = hs(w) by the definition of 7, and », < hs(u).
So, n, M, =, and hence 7,N7, is shown to be non-empty.

Let {S’) be a vertex of 5,MNn,. We can cover the path 8 by simplicial
stars St([W],N,~) such that hg([W])=<S’), because f is contained in
g ' (St(p,L))Ug ' (St(p’,L)). Thus there are simplicial stars St([W], N, ),
..., St([Wi], Ny) that cover § and such that hg([W]) = (S’ for any i, and
also there are paths f; in St([W;], N,~) for any i such that =, ... .. Since
St([Wi], N,) intersects St([Wiy1], Ny), W; intersects Wi and then we can
define a path 7, in W; such that j,(1) = 7,,,(0). Since yy(u) = £(0) belongs
to St([W1],Ny+), f(Wy(u) e St((W1],N,~) and then yy(u) € Wi. Similarly,
Vy(v) € W; for some / < k. There are a path y, in W, from vy (u) to $,(0)
and a path y, in W; from j(1) to Yy(v). Let 5 =757y Fmi(3) Frar -
?k(yo)_l. We can define , on JFE; by the loop 7.

Thus, we have defined y, on J0E; for any 1-simplex 7 of Q —0Q. Ifrisa
1-simplex of 0Q we define E; = ¢J. Let o be a 2-simplex of Q and 7;, 7, and
73 its 1-faces. Since ¢ — (E,UE; UE, UE,,) is homeomorphic to a cylinder
over S', and v, is already defined on one of the components of its boundary
0(o — (E;, UE,, UE,,)), we can extend yy to this cylinder in the obvious way.
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Let us prove that yy(0F;) = U,» and Yy (0E,) = U, for any l-simplex t
and 2-simplex ¢ of Q not contained in dQ. Let [W],...,[Wk] be the vertices
of N, and p and p’ the vertices of L used to define ¥/, on JFE,. For any
i, g(St([Wi],N,)) intersects St(p,L) or St(p’,L), and these simplicial stars
intersect Unf,, 42, then W;c U,», by the same argument as in (ii). Thus
Vy(0E;) = Uy». On the other hand, for a 2-simplex ¢ we see that Y (0E,) =
Yy (0E,, UJE, UJE,;U0dQ) = Uy, where 7|, 72 and 73 are the l-faces of o.
As a consequence, we have defined a map Yy : D2 — | J E; — | J E, — U, that
coincides with «* on 0D

Let 7 be a 1-simplex of Q not contained in dQ. Let [I¥}] be the vertices of
N, and {S’) the vertex of Cs used to define }y, on JF,. Then Uj W; c As,
because hg([W;]) = (S') for any j. So, Yy (0E;) = A; for any / € S" and thus
Yxlop, is null-homotopic in U,,.

Let us check that for any 2-simplex o of Q there is an A, that contains
Yy (OE;), and thus Y x|, is null-homotopic in U,. There is a simplicial star
St(p, L) such that y, (o) = St(p,L). Let 71, 72 and 73 be the 1-faces of . If
7 & 00, let [Wji] be the vertices of N,~ and <S] > the vertex of Cs used
to define y on JE,. If 7; =dQ, since the path foy| is contained in
g '(St(p,L)), then for any vertex {S/> of n, there are simplicial stars
St([W{], Ny, ..., St([W]], Ny) that cover f oyl and such that hs([W]]) =
(S7y. Let {S1),...,{S;> be the vertices of 7,. Then, Ui,j W/ cAdsU---U
As,.  Since 77, is the image of a simplex of N, by /s, therg is a pern}utation
{Si,,...,S;,} of {S1,...,S/} such that S;, c--- < S;. So, A5, U---Udg, < 4,
for any r in S;. Thus, Yy (0E,;) < 4, for any re S;,.

Step THREE: The paracompact case.

We have proved the result for a g-compact space X. Now we will study
the case when X is paracompact. Since X is a Hausdorff, locally compact,
and paracompact space, it can be decomposed as a disjoint union of g-compact
subspaces (see [3], I, p. 70, Theorem 5). Let us denote them by X, with « € .o7.
Each X, is g-compact, locally compact, locally pathwise-connected, and Haus-
dorff.  Also, since X, is open and closed in X, an open cover {A; |0 < k < n}
of X by IT-categorical sets induces an open cover {A; N X, |0 <k < n} of X,
by IT-categorical sets. Thus, I7-cat X, < n, and applying the previous steps we
obtain complexes (L,,|L,|) and maps f, : X, — |Ly| for every a. We define
the complex (L,|L|) by the disjoint union of the complexes (L, |Ly|), and the
map f : X — |L| by the union of the f;.

For any a let * be the system of infinity neighbourhoods of X, and 7}’
the covering of X, by connected sets used to define (L,,|L,|). We define the
cover 7' = (), 7, of X and using 7"’ we define N, C, 7, g, h and h as in
the o-compact case. The (L,|L|) and f defined in this way coincide with the
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simplicial complex and map obtained in the last paragraph. Now we define a
system of infinity neighbourhoods % of X given by the sets U = Ua U, where
U, €%* and all but a finite number of indices m, are equal to 1. Using this
system of infinity neighbourhoods % and cover ¥’ we can prove the iso-
morphism condition for f in a similar way to the g-compact case. It suffices
to replace U,, with Ux U, and then in the condition (ii) Uy, with Ux Uz,
where k, =my,+2 if m, #1 and 1 otherwise, and in the condition (i) we
replace U,» and Uiy by | J, U and [, U}, respectively, where s, = r, + 2
if ry#1 and 1 otherwise.

This concludes the proof of the theorem. O

ExampLE 4.3. There is a 4-dimensional manifold X with pzj-cat X =
piiy’-cat X =3 such that there is no proper map f : X — |L| for any locally
finite simplicial complex (L, |L|) of dimension 3 that induces an isomorphism of
fundamental pro-groups.

Let A be an aspherical homology 3-sphere, which can be constructed by
Jorgensen-Thurston’s hyperbolic Dehn surgery theory, see [15]. We define X
by the product of A and the half-line. We choose the system of infinity
neighbourhoods of X formed by U, = A x (m,c0) for any integer m > 0.
The space X is Hausdorff, locally compact, paracompact and locally path-
connected.

The L-S = -category of A4 is 3, because its fundamental group is not
free (see [10]). Let {4;]0 <i <3} be an open cover of 4 by m;-contractible
subsets. Since 4 is normal, it is easy to get an open cover {B; |0 <i < 3} of 4
such that the closure B; = 4; and hence B; is m;-contractible in A4 for any i.
The sets X; = B; x [0,00) form an open cover of X that is pm-categorical
in X. Indeed, since the inclusion map from X; to X is the product of the
inclusion map from B; to A and the identity map of the half-line, X; is
7p-contractible in X. Analogously, for each m > 0 the inclusion map from
X;NU, = B; x (m,©) to U, is the product of the inclusion map from B; to 4
and the identity map of [m, c0), and then X; is pz{°-categorical in X. Thus
pr°-cat X < pmj-cat X < 3.

If there were a 3-dimensional simplicial complex (L,|L|), a map f: X —
|L| and a subset M of X verifying the conditions of Theorem 4.1 for pz}°, there
will be a morphism # of pro-groups such that the following diagram commutes:

P ( —— pA (X, M)

\/

pay (IL], f(M
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We may assume that M is countable. Now we will define a proper map
from the underlying space of a subcomplex of L to X. Let 4’ be the category
of groups and tow-%' the category of towers of groups, that is, the category of
inverse systems of groups for which the index set is N. We can define an
equivalence relation in the set of proper maps from an infinity neighbourhood
to another in the following way: two maps defined in infinity neighbourhoods
are equivalent if they coincide in a smaller infinity neighbourhood. We call
the equivalence classes germs. Two germs are homotopic at infinity if two
representatives are properly homotopic in an infinity neighbourhood. These
definitions can be extended to properly based spaces. In this case the germs
must preserve the base ray and the homotopies must be homotopies relative to
the base ray. In [4] it is proved (Proposition 3.5) the following:

LemMA 4.4. Let (P,a) be a properly based connected locally compact one-
ended polyhedron and (Q, §) a properly based space that is properly aspherical at
infinity, that is, the pro-groups pro-m,(Q,f) are trivial in tow-%4' for any n > 2.
Then, the fundamental pro-group functor induces a natural bijection

[P, Q% = Hom(pro-m (P, a), pro-m(Q, §))

Ry

o0

where “Hom’ stands for the morphism set in tow-4' and [P, Q|
proper homotopy classes of germs relative to the base ray.

is the set of

Let Ly be the subcomplex of L formed by the simplices that intersect f(X)
and their faces. Since A is path-connected, our infinity neighbourhoods of X
are also path-connected, and thus X is one-ended. This implies that |Lg| is
one-ended, because f : X — |Ly| is proper. Also, |Ly| is path-connected, be-
cause f(X) is path-connected. If M = {x,|n > 0} then there is a ray y in X
such that y(n) = x, for any n. The image of this ray by f is a ray y, in |Lo|.
Since U,, = A x [m, o) for any m, (U, (p,q)) = m.(A4, p) ® n,(Jm, 0), q) for
any (p,q) € U, and n > 1. Thus, X is properly aspherical at infinity. Hence,
(|Lol,70) and (X,y) satisfy the hypothesis of the Lemma 4.4. Since the iso-
morphisms of pz}® fundamental pro-groups of the above diagram induce a
corresponding diagram of isomorphisms of pro-m; fundamental pro-groups,
applying this lemma we obtain a germ g making the following diagram of
germs commutative up to homotopy at infinity relative to the base rays:

(va) — (X7y)

N A

)
(Lol o)
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where the + arrows denote germs. There is a corresponding diagram for the
end homology. This homology is defined for locally finite CW-complexes as
follows. If C,,(Y) and C,°(Y) denote the chain complexes of the cellular finite
chains and cellular infinite chains with coefficients in Z over a locally finite

CW-complex Y, there is an exact sequence:
0—Cu(Y)—=Cr(Y)— C(Y)/Cp(Y)—0
that induces a long exact sequence in homology:
= HyY = HYY — Hy,(C2(Y)/C.(Y)) —

The homology H; Y = H,,(C?(Y)/C.(Y)) is called the end homology and
is an invariant of homotopy at infinity type. The homology H,’ Y is called
the infinite homology and is a proper homotopy invariant, see [9] or [13] for
details. As we wrote above, there is a corresponding diagram for the end

homology:

H3 U1 H3 Ul

N A

Hy|Lo|

Note that U; is a locally finite polyhedron and thus H{U, is well-defined.
Since dim|Lg| <3, H¥{|Lo| = Hs(CF(|Lo|)/C:(|Lo|)) =0 and thus H{U, = 0.
On the other hand, there is an exact sequence:

0 — lim' HyU; — H{U; — lim H3U; — 0

where the limits are taken on the index i € N (see [9]). Since U, is of the same
homotopy type as 4, H,U; =0 for any i, and the first derived limit is 0.
Thus, H{U; is isomorphic to lim H3;U;. But, since H3U; = H3A = Z, and the
bonding maps are the identity, this limit is Z, which is a contradiction.

As a byproduct we obtain that pz{°-cat X =3 and thus pmj-cat X = 3,
because if it is <2 then there are a simplicial complex (L, |L|) of dimension
d <3 and a map f satisfying the conditions of Theorem 4.1, and using the 3-
dimensional complex L x [0,1]" we reach a contradiction as above.

Moreover, we may consider a contractible space CAU X instead of X,
where CA is the topological cone of A4, and prove that p7{°-cat CAUX =
pii-cat CAU X = 3. Furthermore, we can take a compact contractlble (to-
pological) manifold Y with Y = 4 instead of CA to get an open contractible
4-manifold with pz{°-cat = pat;-cat = 3.
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