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ABSTRACT. This paper deals with the problems of formulating and testing the
hypotheses of redundancy of some variables in correspondence analysis for a two-way
contingency table. The testing problems are examined under the assumption that the
contingency table is multinomial or independent multinomial. The asymptotic prop-
erties of the MLE’s and the test statistics under the null hypotheses are also examined.

1. Introduction

This paper is concerned with correspondence analysis (abbreviated as CA),
which has been extended as a method of scaling the categories of a two-way
contingency table with r rows, ¢ columns and n; observations in the (i, j)-th
cell. Suppose that the data are expressed in a table as in Figure 1. Then, we
call the categories Ay, A,,..., A, and the categories By, B,...,B. as the row
variables and the column variables, respectively. It is regarded that the i-th
row variable has c-dimensional profile (n;;/n;.,...,n;./n;), and the j-th column
variable has r-dimensional profile (ny;/n;,...,n;/n;), where n;. =3 n; and
n;=>1_n;. The object of CA is to scale the row variables and the column
variables, or more precisely, to give a simultaneous low dimensional plot of the
row variables and the column variables in the table. In this plot, it is intended
that variables that are close to each other in the plot will be the ones that are
closely related to each other according to the profiles. Hill [8] discussed a
history of its development. Recently, the asymptotic distributions of some
basic statistics related to CA were given by Eaton and Tyler [2]. Rao [17, 18]
developed a general theory of canonical variate methods including the usual
CA. Relating to Rao’s work, Nakayama et al. [12] examined stabilities of the
configurations obtained from the usual CA and the canonical variate method.

On the other hand, Rao [13, 14, 15] formulated the notation of redun-
dancy of a given set of variables and studied the testing problem in dis-
criminant analysis. Since then, the idea has been extended to various mul-
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Fig. 1. Data for a two-way contingency table.

tivariate situations. Further, Akaike’s information criterion has been derived
for such hypotheses or models of redundancy (see e.g., Fujikoshi [3, 4]).

The main object of the present paper is to examine the problems of
formulating and testing the hypotheses for redundancy of some variable in
CA. The paper is organized in the following way: In §2, we describe the
basic method of CA. In §3, by considering an additional column variable,
two types of redundancies are formulated along an aim of CA. One is the
redundancy of an additional column variable for scaling of the row variables.
The other is the redundancy of an additional column variable for scaling of
the column variables. These formulations are applied for three models of the
contingency table. In §4, the testing problems of redundancy of a column
variable for scaling of the row variables are studied for each model. These
problems are corresponding to the ones for redundancy of a variable in
discriminant analysis. In §5, the testing problems of redundancy of a column
variable for scaling of the column variables are studied for each model. 1In §6,
we give examples and numerical experiments that illustrate our results for each
case. In §7, the proofs of theorems are given.

2. Correspondence analysis

Let N be an r x ¢ data matrix related to a two-way table as in Figure 1,
F =n"'N, D, an r x r diagonal matrix with the i-th diagonal element n; /n, and
D. a ¢ x ¢ diagonal matrix with the j-th diagonal element n;/n. In CA of the
two-way contingency table (see e.g., Lebart ef al. [11], Greenacre [6], etc.), the
squared distance between the j-th column variable and the j'-th column
variable is measured by the chi-square distance defined as

2 “on (g mgY
BT =3 (-, (1)
;I’l,x n.; I’l.j/

Similarly, the chi-square distance between the i-th row variable and the i’-th
row variable is measured by
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P =3 (1Y, @

=) nj \n. njr.

Note that the distance d.(j, j') can be regarded as the Euclidean distance when
the j-th column variable has the coordinate in an r-dimensional Euclidean space
(E") given by the j-th column vector of D, '>FD_'. Similarly the distance
dy(i,i") can be regarded as the Euclidean distance when the i-th row variable
has the coordinate in a c-dimensional Euclidean space given by the i-th column
vector of D;'/2F'D;'. Now we consider to present the column variables in E”
as the point in EX (k <r), in such a way that the relative positions of the
column variables in E” are preserved as the extent possible in E*.

Let a ¢ x k matrix ¥ be the configuration matrix of the column variables
in the reduced space E*, i.e., the j-th row of Y denotes the coordinates for the
configuration of the j-th column variable in EX. Then, our problem is to find
Y to minimizing

|D;'F'D;'FD; ~ ¥Y'| 3)
with respect to Y. The solution is given as follows (see, Rao [17, 18]).
Consider the singular value decomposition (s.v.d.)
DVPFEDTV? = \[lovow) + /Lroiw] 4 -+ /L xvgw,

where 1 =\/7g=\/l| > - =2/[x >0, vo=D*1,, wy=D!*1,, K+1=
rank(D;2FD7'?) < min{r,c} and 1, is the r-dimensional vector of uni-
ties. Note that the vectors satisfy the restrictions v,vg = w,Wg = 0,5, where
Kronecker’s 6,5 is 1 if o =p, 0 if a # p. Then the choice

Y =00 = (WOD Pwy, o 0D Py
minimizes (3).
From the above s.v.d., it is seen that a “best” approximation matrix with
rank k (k < K) to D;'/?FD_! is expressed as

voy6+v1yi +"'+vky//¢ = on(/)+ [vl,...,vk]Y'.

This result gives a justification for presenting the j-th column variable as a
point in the reduced space E* with the coordinate given by the j-th column
vector of Y.

Similarly, the configuration matrix r x k matrix X of the row variables in
the reduced space E* is obtained by minimizing

|D;'FD'F'D; " — XX'|
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with respect to X. In terms of the s.v.d of D;V>F'D;'? we can write X as

X = (xl,...,xk) = (\/ZD;I/ZIH,...,\//kD;l/zvk).

Such a configuration is also justified as a ‘“‘best” approximation matrix with
rank k (k < K) to D;V2F'D;" which is expressed as

Wox(/)‘f'wlxi _A'_...+wkxll( = wox(/)—i— [wl,...,wk]X/.

Note that, since \//,v, may be denoted as Dr’l/ 2FD;1/ w,, the configuration
matrix X can be rewritten as

X =(x1,...,x) = (D-'FD;'w,,... . D-'FD;wy).

As both the configuration matrices X and Y are expressed in terms of w,, they
may be also simultaneously represented as points on the spaces spanned by
Wiyeooy Wi

In the following, we will use alternative expressions for ¥ and X in terms
of the eigenvalue-eigenvector problem of S in (4).

Consider the eigenvalue-eigenvector problem of
S=D'F'D'F (4)

with eigenvalues (o> (1 > --- >{.1 >0 and eigenvectors uy,uy, ..., u._1, Le.,
Su, =lyu, (¢=0,...,c—1) with the restriction u,D.ug = 0,3, where (y =1
and uy =1.. Then the configuration matrix Y can be expressed as

Y:(ylanwyk):(\/?lul»'“’ k). (5)

Similarly, X is expressed as

X = (x1,...,x) = (D' Fuy,...,D; ' Fuy). (6)

3. Formulation of redundancy

It is important to examine an influence of a column variable for scaling of
the row or the column variables. In this section, we investigate the problem of
formulating whether a column variable is redundant for scaling of the row or
the column variables. Similarly, we can treat the problem of formulating
whether a row variable is redundant for scaling of the column or the row
variables. For simplicity, we consider an additional column variable which
has an r-dimensional profile m = (m;/m,...,m,/m)’, where m=3_ m;.
Without loss of generality, we assume that an additional column variable is the
(¢ + 1)-th column variable. We consider the problem of formulating whether
the (¢ + 1)-th column variable is redundant or not. First we prepare some
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notations. Let

- . I - n m
Nl srx (1), PN || )
n m _’: ¢ ‘ 0
D, = D, D D, = |2 ™m
r n+m z+n+m M c 0/ ‘ m )
n—+m

1 .
where f,, = o Dy, = diag(m;/m,...,m,/m). Then the (c+1)x (c+1)

matrix corresponding to (4) is denoted as S :13;117' /D;IF with eigenvalues
l=/y>l1> - >0,>0, eigenvectors 1wy, uy,...,u, and @y =1.. Let
k41 = rank(S) < min{r,c + 1}. The vectors corresponding to y, in (5) and
x, in (6) are denoted as

Vo =\luity, %, =D 'Fi,, a=1,...,k,

respectively. That is, the a-th coordinates for the j-th column variable and the
i-th row variable are denoted as

- [~ - 1 < -
Yio = /’luj“? Xig, = n. +m; {zl:n[/u/% + miu(chl)oc}y

Jj=

respectively.
Then, the chi-square distance between the i-th row variable and the i’-th
row variable corresponding to (2) is denoted as

c}f(i,i/):in+m< mpo My >2+n+m< m  my >2'

P n; n. +m; np.+my m n,. +m; np.+ my

It is natural to say that if d?(i,i') = xd?(i,i') (x> 0) for any i and ', the
(¢ 4+ 1)-th column variable is redundant for scaling of the row variables. In
fact, the condition d?(i,i') = xd?(i,i") for any i and i’ is equivalent to the
condition X;, = kx;, for any i and o = 1,..., k. Further, each of them implies
il = u;; and k = k. This means that the configuration of the row variables
based on the r x ¢ contingency table is essentially the same as the one based
on the r x (¢ + 1) contingency table. These results are proved, in terms of
population parameters, in §7.

On the other hand, the chi-square distance between a #-th column variable
and the (¢ + 1)-th column variable corresponding to (1) is denoted as

s " n+m (n; miz
dc(t,c+l)zz — .

3 ni. +m; \n; m
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If d2(t,c 4+ 1) = 0, i.e., the profile of the (¢ + 1)-th column variable is the same
as the one of a ¢-th column variable, we have d2(j, 1) = d>(j,c+ 1) for any j,
and hence we can see that the (¢ + 1)-th column variable does not give any
influence in scaling of the column variables. More precisely, we will see that if
there is some 7€ {1,...,c} such that d2(z,c+ 1) =0, the (c+ 1)-th column
variable is redundant for scaling of the column variables.

Based on the above consideration, we introduce a notion of redundancy of
the (¢ + 1)-th column variable in terms of population parameters. A general
model for two-way contingency table is described as the conditional Poisson
model; see Haberman [7]. In this paper, for an r x (¢ + 1) random matrix
N = [N|m], we treat the following three conditional Poisson models which are
also described as the variants of multinomial distributions.

Model (1):
Assume that (n+m) is given. The entries of N are jointly multi-
nomial with probabilities P and trial size parameter (n+m) >0,

where

Pu 0 P |

P = [Plq| =

P o Dre | dr
Model (2):
Assume that n; +m; (i=1,...,r) are given. The rows of N, ie.
n = (n, ... N, m,-)' have r independent multinomials with respective
probability vectors p;, = (p;,. .-, P.,q:)’ and trial size parameters
(n,-. + I’}’ll‘).
Model (3):
Assume that n; (j=1,...,¢) and m are given. The columns of X,
i.e. mj=(ny,...,n;)" and m have (c+ 1) independent multinomials
with respective probability vectors p; = (py;, ..., p,,j)/, ¢ and trial size

parameters n;, m.

For these models, the eigenvalue-eigenvector problem of CA in terms of
population parameters can be written as follows. Let @ be the matrix
obtained from § by substituting p; for ny, O the matrix obtained from S
by substituting p; for n; and g; for m;, respectively. ~Also, let 77(i,i’), 77 (i, ")
and 72(j,c+1) be the chi-square distance obtained from d>(i,i'), d>(i,i’)
and c;’f( j,c+1) by substituting p; for nj; and ¢; for m;, respectively. Let
d —1=min(r,c) and d — 1 = min(r,c+1). Assume that k = rank(®@) — 1 and
k =rank(®) — 1. Let © and @ have the eigenvalues and the eigenvectors
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expressed as

Ou, = lupty, My =05,  Oft,=loit,,  Aiiy =0,  (7)
\ivi'[h~1 = Ao 2/11; e > > M1 =--=4=0 and 1:/{0221 > e 2>
Ag> gy = =243=0. Here, 4, =diag(p,/p.), 4. = diag{(p; +¢:)/(p.+4.)},

D = Z]?;lp,y-, p. = Z;:IZ;:Ipij and ¢. =Y./, ¢. Note that we use the
same notations k and k as in case of sample observations. Then, for
a=1,...,k, the coordinates 7, and ¢; corresponding to y;, and x; are
obtained by substituting p; for n; in y;, and x;, respectively, ie.,

1 &
iy =V ;b[x//‘jay éion = szl/u/“
i =1

For o= 1,...,k, the coordinates 1, and & corresponding to y;, and X;, are
obtained by substituting p;; for n; and ¢; for m; in y;, and X, respectively, ie.,

ﬁjog = \/fmajm (8)
{Z pijﬂja + qiﬂ(chl)oc}' (9)

=1

As has been seen in case of sample observations, we have two types of
redundancies of a column variable. One is the case that a column variable is
redundant for scaling of the row variables, which is referred to as “Type (A)-
redundancy”. The other is the case that a column variable is redundant for
scaling of the column variables, which is referred to as “Type (B)-redundancy’.
Now we give a formal definition of these redundancies of the (¢ 4 1)-th column
variable in terms of population parameters, based on the distance, in the
followings.

DErFINITION A.  The (¢ + 1)-th column variable is redundant for scaling of
the row variables, if T2(i,i') = ¢12(i,i') for all i and i’ (i,i' = 1,...,r) and some

¢ (4>0).

DErFINITION B.  The (¢ + 1)-th column variable is redundant for scaling of
the column variables, if there is some te{l,... ¢} such that T>(t,c+1)=0.

Note that without loss of generality, 0 < ¢ < 1. So, the condition in
Definition A can be written as 72(i,i') = t2(i,i')/(x + 1) (x >0). The Defi-

nition A has the following equivalent statements. Proofs are all given in §7.

THEOREM A. For the statement that the (c+ 1)-th column variable is
redundant for scaling of the row variables, the following statements are
equivalent.
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1
2(i,i")  for i,i' =1,...,r (k> 0),

~20 e\
(AD) B(01)=—7

r

1

(A2) &= P

Eia fori=1,....rand ao=1,... k,
(A3) Tes1)u =0  for a=1,... k,

(A4)  fep1y =0  for a=1,...k,

(AS) gi=wxp. (k>0) fori=1,...,r

Further, each of the conditions (A1)—(AS) implies k =k and (uy,, ... 1) =
(lalm"'aﬂm)/ fOV o= 1,...,k.

Similarly, the Definition B has the following equivalent statements.

THEOREM B. For the statement that the (c+ 1)-th column variable is
redundant for scaling of the column variables, the following statements are
equivalent.

(Bl) #(t,c+1)=0  for some te{l,..., c},
(B2) N(ey1yy =M Jor a= 1,....k and some te{l,... c},
(B3) Wity = My Jor o= 1,....k and some te{l,...,c},

(B4) %:% for i=1,....r and some te{l,... c}.
. P

In the case of Model (3), since p, = q. = 1, the statement (B4) may be written as
(B4*) ¢q;=p, fori=1,....r and some te{l,... c}.

These definitions and some statements in the theorems can be generalized
for an r x ¢; additional random matrix M. For the entries of an r X (¢ + ¢;)
random matrix [N|M], we consider three models corresponding to the Model
(1), (2), (3). Let the probabilities corresponding to entries of [N|M] be
[P|Q]. Theorems A and B are generalized as Theorems A’ and B’, respec-
tively.

THEOREM A’. For the statement that the additional ¢ column variables are
redundant for scaling of the row variables, we have the following equivalent
statements.
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1
(A1) %rz(ivi/)szf(l}i') for iji' =1,....r,
=17

(A2") gqj=xKip. fori=1,...;rand j=1,... ¢,
where K;’s are some positive constants.

THEOREM B'.  For the statement that the additional ¢, column variables are
redundant for scaling of the column variables, we have the following equivalent
statements.

(Bl') #(t;,7) =0  for some t;e{l,...,c}; j=1,...,c1,
@) B_Pu i e =1 e
q.j p-r/»
In the case of Model (3), the statement (B2') may be written as

(B2™) qy=py, fori=1,....r5 j=1,...c.

4. Tests for Type (A)-redundancy of a column variable

Based on an r x (¢ + 1) matrix N used in the previous section, we consider
to test whether the (¢ + 1)-th column variable is redundant for scaling of the
row variables. Using the statement (A5) in Theorem A, we can express the
testing problem as

H - 4

. P B Dy ’ (10)
K, : at least one strict inequality in H,,.

The testing problem is considered for three models (1), (2), (3).

4.1 Model (1)

Suppose that the entries of N = [N|m] are jointly multinomial with
probabilities P and trial size parameter (n -+ m), where

Puu 0 P | d
P=[Plgl=1| : "~ ]
P o DPre | 4y

r C

S>> p+ > ai=1 (11)
1 i=1

=1 =
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The density function of N can be expressed as

fi(N,m|P,q) —91HH1)""Hq"”

i=1 j=

where 01 = (n+m)!/([1, [T, ny!I1=; m!). The maximum likelihood
estimators (MLE) of p; and ¢; are obtained by maximizing the log likelihood
function (LLF)

/(P, 10g91+22n,]10gpl] Zmlogq,

i=1 j=
under (11). The MLE’s under (11) are easily given by

l’ll'j m;

q; =

pij:n+m7 n+m’

Now we consider the MLE’s of p; and ¢; under H,. Let ¢i/p; —K
(x> 0) for any i. Then, the condition (11) is written as ) > p; = (kK + ™!
Under this condition, by maximizing the LLF

/(0>(P, r) =logt) + ZZ!’!U log p; + Zm, log p;. + mlogk,
i=1 j=1
the MLE’s of p;, x and ¢; = x p; under H, are obtained as

o) nn(ng. +m;)
qo=—0——"

R o mlmet )

ni(n+m)* n (n+m)? (12)

Next we consider the asymptotic properties of these MLE’s. In general,
the p; and the ¢; under H, can be written as

Py = P,j,'(g)’ qi = q:(9),

where ¢-dimensional parameter vector 0 belongs the parameter space . Let 0

be the MLE of 0, and let p; = p,:,(é) and ¢, = ¢:(0). To drive the asymptotic

distribution of p; and §; we need to assume the regularity conditions (see, e.g.,

Agresti [1]):

(i) 6y is not on the boundary of Q,

(ii) all p;(00) >0, gi(00) >0,

(i) p;(0) and ¢;(0) have continuous first-order partial derivatives in a
neighborhood of 6y, and

(iv) the Jacobian matrix (0(p;,q:)/00) has full rank ¢ at 6,

where 0 is the true value of 0. In the following problems, we assume (i) and

(i), but note that (iii) and (iv) are satisfied. We use the following vector and

matrix notations.
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N* = vec(N), P* = vec(P),
x1/2
P / (\/plla'“ VP oV Plese o \/prca\/q_lv"'v\/a),v
1/2 dlag(P*l/Z)

Let 4 be r(c+1) x {r(c+ 1) — 1} matrix such that the matrix [A|P*"/?] of
order r(c + 1) is orthogonal, i.e., it satisfies

AA + PP Y ga=1, APV, (13)
where I is the identity matrix. Also let
1
2= (21, s Zresy1) = Vi F AD]/2< N*—P*)
+m
or

1

N =P eD,’ Az, (14)

where & = (n+m)71/ 2. Then z has asymptotically multivariate normal with

E[z] =0 and Var[z] =1 as n+m — oo (see Rao [16, Chapter 6]). From (14),
fori=1,...,r,

i +é& for j =1 c i
I’l+ pzj glj ]_ IERRER ] n+m

= (i +81’ll’, (15)

where
r(e+1)— r(e+1)—

Z (i) Zks hi = \/qi Z A(i(c+1))kZk>

where a(;) stands for the ((if), k)-th element of 4 and the k-th column of A
consists of (a(”)k,.‘.,a(,l)k,aglz)k,...7a(,.<c+l))k)'. From (12) and (15), the
perturbation expansions of p;” and ¢;  are given by

(0 1
pf,») =p,~j+8{ le,p, !(xg;. —hi) + (k + 1)pyg. + gy

K{i. h Di
[ et Dy g+ Ok D | + 0,6, (19

0 = ar o e ) e D+ (0 )R (17

respectively, where (k+1)"' =3 by K/(k+1)=3qi, 9= gy, 9 =
Y>> gjand h. =3 h;. By the asymptotic normality of z; and the orthogonal
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conditions (13), the means and covariances of j)g)) and L}EO)

as

can be expressed

0 ~(0
E[p)) = p;+0E).,  EG”) = (18)

~(0) ~(0
COU[PE,‘ )71)5’])’] = gz{pzjé(lj)(l’]’) K+ 1p1]p1’]’pz 5” + ( l)pszl’j/}

+0(&%), (19)
A0 S0y _of K (1 3 2
conlg ") = ade+ (11 )awr} -0 @0
~ ~ K
Coulpy, 4] = 62{K—+1p,-,5ii/ - zp,»jq,»f} +0(), (21)

Var[py'] = Cov[py, py’] and Varlg"] = Covlg\”,q\"], where & is 1 if
i=i"and j= /', 0if i #i or j# j. We note that the error terms O(&3) in
(18)—(21) could be written as O(e*), as in the usual statistical situation. The
error terms given in the later sections also include the similar expression. Our
results may be summarized as follows.

THEOREM 4.1. Let ﬁf-;)) and quo) be the MLE'’s under the null hypothesis
H,. Then

(1) ﬁl(;)) and 6150) have the perturbation expansions given by (16) and (17),
respectively,
(i) Vn+ m(j)g)) - Pi/) and /n + m((}go) — q;) are asymptotically distributed as
2. -1 2 K 1 2
N(O,pij PP -‘r(lC—l)pl»j) and N(O,K—Hqi+(;—l>qi),
respectively,

(i) Ep", E@"). Covlpy.p\)). Covlg.qy)] and Covlp.q\)] are

expanded as (18)—(21),
where k =3 qi/ > sz‘j-

Our purpose is to construct test statistics for the null hypothesis of
(10). The log-likelihood ratio statistic 7, can be defined as

Ta = =2{/(P,q) — /O (P, &)}

—ZZ{n, e—l—m) + milog M} (22)

+my) m(n;. + m;)

Also the Wald statistic W, and the score statistic Q,; can be written as
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" (ni. 4 m;) (mn;. — nm;)?
al = ) 2
Wa ; nm(n + m)? (23)
" (mn;. — nm;)?
Qu = 3 L i) (24)

— nm(n;. +m;)
respectively.

Here we consider asymptotic properties of these statistics. Using (15), the
perturbation expansions of T,, W, and Q, are derived. The first order
terms of these statistics are equal and expressed as, for T,

r 2 2
L I
i=1 i

where x, g;., g.. and h; are the ones used in (16) and (17). Then, the first order
term of T, can be represented as z'B,;z. We can see that Bfl = B, and
tr(B,) = (r—1). Further, we can check that

E[Ta]=(r—1)+ 0().

Our results may be summarized as follows.

THEOREM 4.2. Let T,, Wy and Qg be the log-likelihood ratio, the Wald
and the score statistics for the null hypothesis H,, respectively. Then
(i) Tu, Wa and Qu are represented as (22), (23) and (24), respectively,
(ii) The perturbation expansions of T, Wy and Qg1 are all equal in the first
order term, and they are given as the right-hand of (25),
(iti)  The null distributions of Ty, Wa and Qq are asymptotically distributed as
a y*-distribution y?* .

4.2 Model (2)

Suppose that the rows of N, ie, m = (my,...,ne,m;) for i=1,...,r
have r independent multinomials with respective probability vectors p; =
(Pits-- - Pie,qi) and trial size parameters n; + m;, where

C
> pjtai=1 fori=1,...r (26)
=1

Then, the MLE’s of p; and ¢; under (26) are

n,-j m;

q;

ﬁl“ = s = .
Yo +my ni. +m;
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The joint density function of m; (i=1,...,r) and its LLF are written as

fHlng, ... om | py,....p,) _021_[ Hpn’qum’

i=1 j=

/(P log02+ZZn,,long+Zm log ¢;,
i=1 j=
respectively, where 0y = [T;_; (. +m;)!/(TTi2; [Ti=) ni! TTizy mid).

To derive the LR criterion for the null hypothesis H,, we obtain the
MLE’s of p; and ¢; under H,. Let ¢;/p; = (x> 0) for any i. Then, from
(26), p, = (k+1)"" and ¢; = k/(x+1). By maximizing the LLF under the
COIldlthIlS Py =(k+1)" " for i=1,...,r, the MLE’s of the parameters
under H, are obtained as

S(0) Ty . _Mm S0 _ M (27)

Py =y W W Ty

Now we consider the asymptotic properties of ﬁf-;)) and qf.‘)’. Assume the
regularity conditions which are similar to them in the previous section. Let,
fori=1,...,r,

2= (\/pilw--v\/pim\/a)lv D;{Z diag(p 1/2)

Similarly, let A be (¢ + 1) x ¢ matrix such that the matrix [47| pil/ 2] of order
(¢ +1) is orthogonal, i.e., it satisfies

ADAD 4 pl2pl2 g0 g0 4012 g, (28)

For i=1,...,r, consider
i =p. +eDV?40 70 29
= Pt el AT (29)
where z()) = (zgi), 2 and & = (n. +m;) "% Then 2 (i=1,...,r) have
asymptotically r independent multivariate normals with E[z ] =0 and
Var[zD] =1 as n. +m; — oo for i=1,...,r. Since (n.+m;) are given
for any i, (n+m) is also given. Therefore, &= (n—f—m)_]/2 and p; =

(ni. +m;)/(n+m) are given constants, where > p,=1, 0<p;, <1 for any i.
Further, for i=1,...,r, since ¢ is denoted as 8/\//7i, from (29)
My
n+m

= piPy + &9 for j=1,...,¢, = pqi + eh;, (30)

n+m

where

_ ~ 0 0
/’sz] E : Ak Zk ) hi = \/pidi E :a(c+l)kzk :
k=1
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Here a](k) stands for the (j,k)-th element of A7, Using (27) and (30), the
perturbation expansions of pf]) and ¢; ) are given by

£ (0
P,(/) = py +8p {pigi — pi(gi — pig-)}
s O (&* 31
te p2p? (9i — pig")(pijgi' — pigij) + O,(&7), (31)
950) =qi+eh, (32)

respectively, where g;. = 3¢y, 9. = >_/ ¢; and h. = >-"h;. By the asymptotic
normality of 2 and the orthogonal conditions (28), the means and covariances
of ﬁg)) and C?S ) can be expressed as

E[p)) = p;+ 0,  ElG”) = q (33)
p(p5 e p,) 1-— N
Coulp. 8y = {2 5, gy L o), (3
Cov[g”,q\] = {ai(1 — a1}, (35)
~(0) ~(0
Cov[p,a\)] = e{~py(1 — p.)} + O(&?), (36)

Var[ﬁf-;))} = Cov[ﬁf-jp),ﬁf-jm] and Var[(}go)] = COU[(?SO), (}l(-o)]. It is seen that (35) and

(36) are not depended on i’. Our results may be summarized as follows.

THEOREM 4.3. Let ﬁf-jO) and (}50) be the MLE'’s under the null hypothesis
H,. Then
SN (0 (0
(i) py and ¢\
respectively,
(ii) /n+ m(ﬁg)) — py) and /n+ m(é?o) — q;) are asymptotically distributed as
N(o P;’j(Pi» — Dyt pipi— pipi]'pi~))
0 on PEE 0 o) © 40 © 40
(111) E[pz] L E[éz L COU[]A)U- aﬁl‘/j']a COU[@:’ 7@[’ } and Cov[ﬁij 7@1" } are
expanded as (33)—(36),
where p; = (n;. +m;)/(n+ m).

have the perturbation expansions given by (31) and (32),

and N(0,q:;(1 — q;)), respectively,

For the null hypothesis of (10), the log-likelihood ratio, the Wald and the
score statistics (T2, W and Q) are defined as the same form with them in
Model (1), i.e., (22), (23) and (24). Using (30), the perturbation expansions of
T., Wp and Qg are obtained. The first order terms of these statistics are
equal and expressed as, for T,

T = KJFl {Zg[ - 2} P(g)v (37)
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where g;. is the one used in (31). Similarly, the first order term of 7,, can be
represented as z'B,z, where B, is satisfied 332 =B, and tr(Bp) = (r—1).
Further, we can check that

E[Tnl = (r—1)+ 0().
Our results may be summarized as follows.

THEOREM 4.4. Let Ty, Wyp and Qg be the log-likelihood ratio, the Wald
and the score statistics for the null hypothesis H,, respectively. Then
(1) Tun, Wa and Qun are represented as (22), (23) and (24), respectively,
(ii) The perturbation expansions of T, Wy and Qg are all equal in the first
order term, and they are given as the right-hand of (37),
(i)  The null distributions of T,n, Wi and Q. are asymptotically distributed as

2
Xi-1-

4.3 Model (3)

Suppose that the columns of N, i.e., n = (nyj,. .. ,nrj)/ for j=1,...,c and
m= (m,...,m,)’, have (c+1) independent multinomials with respective
probability vectors p; = (pyj,...,p,)’, ¢ = (q1,...,4,)" and trial size parameters

n;, m, where

Xr:pyzl for j=1,...,¢, Xr:qizl- (38)
=1 =l

Note that the notations m; and p; are different from the ones used in the
previous section, respectively. Then, the MLE’s of p; and ¢; under (38) are

b= g, ="
i n] ) 1 m :
The joint density function of n; (j=1,...,¢), m and its LLF are written as

roc r
f;i(”la cee 7”('7m|p17' . 7Pr7q) = 03HH‘D,};U qu1i7
i=1

i=1 j=1

r Cc r
((P,q) =logbs + Z an log p; + Zmi log g,
i=1 j=1 =1

respectively, where 03 = [[/_; n;lm!/([1i_; [T;=; ny! [1i=) mil).

To derive the LR criterion for the null hypothesis H,, we consider the
MLE’s of p; and ¢; under H,. Let g;/p; =k (x> 0) for any i. Then, from
(38), x =c~'. By maximizing the LLF
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/O (P) =1logb; + ZZnijlogpij + Zmilogpl-_ —mlogc
T 7

under the conditions > p; =1 for j=1,...,¢, the MLE’s of the parameters
under H, are obtained. However, we cannot explicitly obtain the MLE’s,

since they are the solutions of nonlinear equations
nj \ . .
+——A,—0 fori=1,...,r, j=1,...,¢,
Pij P
where /; is Lagrange multiplier and Z Jj=n+m. We denote them as pfo)
and ¢; ). For the null hypothesis of (10) the log likelihood ratio statistic 73

can be written as

Tz =2 <Z Z njj log —

Also the Wald statistic W, 3 and the score statistic Q,3 can be written as

Wi = —(n+m) +ZZ’p” +Z (40)

i=1 j=

! m; [ m; 1 ¢ nj;
Qa3 :Z A(o) (E_Ezij)? (41)

i=1 4; j=1

” TR Zm, log ) (39)

11/

respectively.

The asymptotic properties for the MLE of parameters under the null
hypothesis H, could be obtained by deriving linear approximations of the
above non-linear equations. However these results have not obtained in simple
forms, and so they are not given here.

5. Tests for Type (B)-redundancy of a column variable

In this section we consider the testing problem of deciding whether the
(¢ + 1)-th column variable is redundant for scaling of the column variable, for
three models in §3. Using the statement (B4) in Theorem B, we may consider
the following testing problem.

H;,:@:& (i=1,...,r for some € {1,...,c}, (42)
q. D
K}, : not Hj.

For Model (3), the null hypothesis can be expressed as
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Hy:qi=p;, (i=1,...,r) for some te{l,...,c}.

Let HZ()'i) :qi/q. = py/p; for any i. Then, the null hypothesis H), can be also
expressed as follows.
Hy: “Hgl) or ... or Hb“)”.

For the above testing problem, we propose a simultaneous test proce-
dure. First, for each j, we construct a test statistic for Hlsj). Let 7U) be a
test statistic for ngj>. Secondly, we consider a test statistic 7 =
min{7(" ... T} This approach is similar to Dunnett’s method in multiple
comparison, which is a method to compare each new treatment with a control
(see e.g., Hsu [9]). In order to get a critical point of 7, we need to develop
an approximation method. For this, we will see that the statistics
TU) (j=1,...,¢) have asymptotically chi-square distributions, respectively.
It is expected that their asymptotic distribution will be a multivariate chi-square
distribution (see e.g., Johnson and Kotz [10, Chapter 40]). To see this, for
example, it needs to obtain an asymptotic expression for the joint characteristic
function of (TW,... T()). This problem and the asymptotic distribution of
T, are left as future works. However, in this section we will give asymptotic
correlations of 7() and TU") for any j and j’, which shall be fundamental for
the approximation method.

5.1 Model (1)

We proceed using the notation given in §4.1. For fixed ¢z, the MLE’s of
P, and ¢; under HIE” are obtained as

P n.(nis +m;) Lo m(ni + m;) .
(n+m)(n,+m) (n+m)(n,+m)
The asymptotic properties of these MLE’s can be given using (15). The
perturbation expansions of ﬁf-;)), ﬁl(-? ) and 515") are given by
IA’,(‘;D = Dy &g (Jj#1),

~(0
sz) =pite

it — pih. + p(gi + hi
p't+q'{qu Pih- + p.(gi + hi)}

(il — qig.)(g.c + 1) — (p.h. — q.9.0)(gun + Di)
(p,+aq)

+ & + Op(s3),

~(0) 1
S =(qi +E&——— N — id.: +q. i+hi
q; q tq {pi q4ig1 + 4.(gir )}

(p.h—q.9.0(gi+hi) — (pih. — qig.)(g. + h.)

+ &2 >
(p:+q)

+ Op(33)7
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respectively, where g¢; and h; are the ones given in (15) and

e=(n+ m)fl/z. For j,j' # t, the means and the covariances of j)g)), ﬁfto) nd

qg()) can be expressed as
(0 A (0 (0
Elpy ) =py  Elpy1=put O,  E[Q) =g+ 06,

~(0) (0
Covlpy b)) = & py(Oiyiry = Porr)s

~(0) ~(0 ~(0) ~(0
Covlpy) pS)) = (= pypi) + O(),  Covlpy),q] = &(~pyar) + O(&),

0) & Di
Cov[py), p] = &~ {p, (0w — pi) + ai(1 = p)} + O@),

P t4q
~(0) ~(0 Di
Covlp, 4] = &~ {q. i — pi)) — ar(1 + ¢} + O(&),
P:ta
N (0 qi
Covlg\”, 4] = & ——{q.(0w — i) + pu(1 — @)} + O(?),
Pita

respectively.
For the null hypothesis H under the fixed ¢, the log-likelihood ratio
statistic 7, ,§1> can be written as

bl = 2Z{n,,log i1 + m) + m;log w} (43)

n.(nis + m;) m(ni; + m;)

Also the Wald statistic W,Si) and the score statistic Q,(,? can be written as

r . . ) _ ) 2
W[Ei) _ Z (i + my) (nym n;ml) 7 (44)
i=1 nim;(n.; +m)
) ~ (nm — n.tmi)2
oy => (45)

— nm(n + mj)

respectively. The perturbation expansions of Tlgi), ng? and le) are given
using (15). The first order terms of these statistics are equal, and they are
expressed as, for TIS?,

70 _ Z (uhi = aigw)” _ (ph —a9.)” © (46)
" & pgipata) pa(pitq) T

Then the first order term of TIS? can be represented as z'By1z.  We can see that
B}, = By, and tr(By) = (r—1). Further, we can check that

E[TY] = (r— 1)+ 0(?).
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The covariance between T éi) and TZSII,) can be obtained as

(0) () (P, +0uwq.)(py+0uwq.)
Cov|TV, T | =2(r — 1 0(e).
Ov{ P } N P 17 S B

5.2 Model (2)

We proceed using the notation given in §4.2. For fixed 7z, the MLE’s of
p;; and ¢; under HI(f) are obtained as

o n.,(ni, + Wl,‘) (0) m(nit + mi)

Py = (ni. +m;)(n, +m)’ 7% = (i +my)(ny +m)’

The asymptotic properties of these MLE’s can be given using (30). The

perturbation expansions of [7,(;)), f)f,o) and 5150) are given by

X 1 .
By =pyte g (U0,
2O = g PiPile 9= Pih) + pAdpipi) (9t hi)
o PP+ 4) X pipi
g — ph. i) (e + hi) = pipilg. + h.
L2 PAag =P, ){(Zp,pn)ggz+ 1) zppt(gz+ 40,6,
pi(p.+a) (2 pipa)
00 = g 4 2P G+ 1) — pipu(a.9. = PR
’ PP+ 4.) 2 PiPi
4 2 2890 = phpipilge+ 1) = O pipid(gi + i)} 0,(),

pip.+a) (X pipa)’

respectively, where g; and /; are the ones given in (30), p;, = (n. +m;)/(n + m)
and ¢ = (n+ m)fl/z. For j, j' # t, the means and covariances ofﬁg('/‘o>= f)ﬁ?) and

q§°> can be expressed as

EpO =py  EDBY)=pu+ 0,  EGQY)=a+ 0,

0 . 1
COU[P?)’PE«_,)-'] = 325:‘1";1’;‘;‘(51'1" - pi’j’)7

1

Coolp?, 5] = 26 (— ”f”) L o),

Coo[p, 4] = 0 (_ Pijqi) Lo,
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(0) q.DuDi P.Pu(l = py — qi) 3
Cov[pgo),p,(?)} = 82{ d + O + 0(e”),
ron (Po+a) 2 pipi pi(p., + )

N K q4-DitDi D. t%(l Dit — qi) 3
Cov p(o)’q<?) :62{— —|—(5l/ —|—0 &),
[P 4y (pit+a)>Xpre  pipitq) (&)

(0) - q.Pulin q.9:(1 = piy — qi) 3
Covg\”, 4\ = 62{ : + i +0(e”),
| ] (Pe+4q) 2 pipi pi(p.+q) )

respectively.

For the null hypothesis H,ﬁ’) under the fixed ¢, the log-likelihood ratio, the
Wald and the score statistics (T,E?, W,ﬁ? and Q,(fz)) can be written as the same
form with them in Model (1), ie., (43), (44) and (45). The perturbation
expansions of T,E?, W,E? and Q,(fz) are given using (30). The first order terms of
these statistics are equal, and they are expressed as, for 7, }E;),

_ N~ pviage = ph) = (Sippi) @95 = p.h)Y -, 47
Tis z_l: P (P + 4) (i piva)’ rore

Similarly, the first order term of Tb; can be represented as z'Bj,z, where By, is
satisfied B}, = By, and tr(Bj) = (r — 1). Further, we can check that

E[T})] = (r—1) + 0(&).
The covariance between TIE? and TIE;I) can be obtained as
(P +0wq)(py +uwq.)

(1) (1))
C 7]1 :2 —1
oolTs, T} =200 = ) = S o T a)

+ O(¢).

53 Model (3)

We proceed using the notation given in §4.3. For fixed ¢, the MLE’s of
p;; and ¢; under H,ft) are obtained as

5O — 40 — Nig + ;i
4 n,+m’

Now, we consider the asymptotic properties of p p,/ , 13,(,0)( q,( >). Assume

the regularity conditions which are similar to them in §4.1. Let, for
j=1,...,¢c

2 . 1/2
/ :(\/plj>'--7\/p}jj)/7 Dllpl/zzdlag(p]/ )7
2= (Vai,.... @), DY? = diag(q'?).

Similarly, let 4 and A“*Y be r x (r—1) matrices such that the matrices
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(4 |p1/2] and [4“tD|¢'/2] of order r are orthogonal. That is, it satisfies

A(./)A(j) pl/zp/l/z/ I, A(j)/A(j) =1, AW 'le/2 =0, s

A((,’+1)A((?+l) Jr{11/2q1/z =1, A(c+1>/A(c+1) -7 A(e+1)/q1/2 0.

7

For j=1,...,¢, consider

1 . 1 .

n_,,-”j —p, _HJ.D;)]/zlél(J)zU)7 —m = q+ec+1D;/2A( ) gletl) (49)
where z() = (zf”,...,zﬁ”)’, et = (z §‘“>,...,z§"“))’ and & = n;I/Z and
ger1 =m 2. Then zU) (j= 1,...7c+1) have asymptotically (c+ 1) inde-
pendent multivariate normals with E[z)] =0 and Var[z)] =1 as nj,m — o
for j=1,...,c. Since n; and m are given for any j, (n+m) is also given.
Therefore, ¢ = (n+m)~ 1/2, p;=n;/(n+m) and p.., =m/(n+m) are given
constants, where ZHII pi=1,0<p; <1 for any j. Further, since ¢ =¢/,/p;
for j=1,...,c+ 1, from (49),

. mi
n+m p}pl]+8911 forjzla"'aca m p(‘+lqz+8hu (50)
where
1) 1
gl/ \//)/pl/ Zalk Zk ’ \/pC-HQI Za C+ C+

Here a,(k) stands for the (7, k?-th element of 4. Using (50), the perturbation
expansions of pU , pft)(— f,,.°>) are given by

~(0) 1 B . 5(0) _ ! ) .
Djj _pij'i'gﬁgu (J#1), Dir —Piz‘f'gm(gn'i‘hz)a

respectively. By the asymptotic normality of z ) and the orthogonal con-
ditions (48), for j,j' # ¢, the means and covariances of plj and p,, can be
expressed as
(0 (0 ~(0) £(0
Elpy’1=py  Elpy)=pin Cotlpy pii)1 =0,
1
L (0) £(0
Cov[plg» ),pi(,j?] = 82(5]-]-/;p,~j(5i,-/ = Pirj)s
J
1
Cov[py, pi)) = & ———— py(Oir = pun),
[ it t P1+ﬂc+1 2 t

respectively.
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For the null hypothesis H, lgt) under the fixed #, the log-likelihood ratio, the
Wald and the score statistics (7] b(é), Wb(;) and ngg)) can be written as the same
form with them in Model (1), ie., (43), (44) and (45). The perturbation
expansions of T, b(;), ng) and Ql(,;) are given using (50). The first order terms of

these statistics are equal, and they are expressed as, using the notation Tb(;)’

r it — hl' 2
T}E;) — (pc+lgt Py ) + Op(é‘). (51)
— PiPest (Pr+ Pest) it

Similarly, the first order term of ng) can be represented as z'Bj3z, where By is
satisfied B}; = By; and tr(By3) = (r — 1). Further, we can check that

E[TY] = (r= 1)+ 0(s).

The covariance between Tlf? and T b(;,) can be obtained as

(pt +5tl’pc+l)(pt’ +5tt'pc‘+1) + 0(8)

Cov[TY, T}y = 2(r— 1
[ b3 bs] ( ) (p,+pc+1)(/7z'+/’c+1)

6. Examples and numerical experiments

In this section we give examples and numerical experiments that illustrate
our results in §4.

6.1 Example

We consider using Table 9.7 in Greenacre [6]. The data is the number of
doctorates classified by 12 fields from 1960 to 1976 in the USA. As the last
column representing the year of 1976 is estimated frequencies, we removed this
column from data table. Also, for convenience sake, replace row variables
with column variables, ie., make an 8 x 12 contingency table that eight rows
are variables denoting year taken a doctorate and twelve columns are fields of
study. The 2-dimensional configuration by CA is illustrated in Figure 2. We
may interpret that the 1-axis means the science field in the positive position and
the literature field in the negative position, or the old year in the positive and
the new year in the negative. Also, it is explained that the number of
doctorates in the literature fields is few in the 1960’s, but it is increasing in the
1970’s.  Further, it is seen that the number of doctorates in the engineering
and mathematics fields are at its peak in 1971 and 1972, respectively. In this
way, we can visually interpret the relations between years taken a doctorate,
between fields of study and between year taken a doctorate and field of study.

Here, we consider the testing problem for Type (A)-redundancy of a
column variable. By (A3) in Theorem A, if the coordinates of configuration of
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Fig. 2. Optimal 2-dimensional configuration, by correspondence analysis, of the data of Table 9.7
in Greenacre [6].

Table 1. The values of three statistics and their p-value in
Models (1) and (2) for testing problem of whether Biology is
or not redundant for scaling of the row item: year.

LR Wald Score
Value of statistic 4.577 4.529 4.602
p-value 0.711 0.717 0.708

a column variable in a low dimension are zero for any reduced dimension, it is
redundant for scaling of the row variables. By Figure 2, it is seen that the
coordinates of the 6-th column, ie., Biology is near zero. Therefore, we are
interested in examining whether Biology is redundant for scaling of years taken
a doctorate. As the test statistics in Models (1) and (2) are denoted as the
same form, the values of them are simultaneously obtained and assessed by the
asymptotically y2. These values are tabulated in Table 1. Since all p-values
are about 0.71, the null hypothesis of (10) may be accepted. That is, we
cannot say that Biology is not redundant for scaling of year taken a doctorate.



Redundancy in correspondence analysis 25

Table 2. The values of three statistics and their p-value in
Models (1) and (2) for testing problem of whether Economics
is or not redundant for scaling of the row item: year.

LR Wald Score
Value of statistic 24.96 24.62 25.21
p-value 0.001 0.001 0.001

Table 3. The values of mean and percentiles of several n in Model (1) for test statistic of whether a
column variable is or not redundant for scaling of the row variables.

72 LR Wald Score
n 50 100 500 50 100 500 50 100 500
Mean 2 2.11 2.23 2.17 2.70 2.72 222 2.06 2.17 2.16

95% 5.99 6.26 6.63 6.76 9.57 8.81 6.98 5.90 6.14 6.73
99% 9.21 8.61 10.22 9.30 14.36 19.92 10.14 8.31 9.60 9.08

Similarly, we consider if 10-th column, ie., Economics is redundant for
scaling of years taken a doctorate. The values of test statistics are tabulated in
Table 2. Since all p-values are about 0.001, the null hypothesis of (10) may be
rejected. That is, we have a conclusion that Economics is not redundant for
scaling of year taken a doctorate.

6.2 Numerical experiments

In Model (1), we consider a numerical experiment on a 3 x 4 contingency
table with the following artificial probability matrix satisfying the null hy-
pothesis of (10) for a multinomial distribution

0.0833 0.0556 0.1111 0.0833
P = 0.0278 0.0833 0.0556 0.0556
0.1666 0.1111 0.0556 0.1111

Let n be the sample size. Our interests are to examine asymptotic perfor-
mances of various formulas under Model (1) in §4 through the numerical
experiment for different values of n. In Table 3, the simulated values of mean
and percentiles are tabulated for several values of n. The values in the LR,
Wald and Score columns are obtained from 1000 iterations with multinomial
parameter matrix P. The values in the x> column are mean and percentiles of
the exact y3. We observe that mean and percentiles of the LR and the score
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Table 4. The values of mean and percentiles of several n in Model (2) for test statistic of whether a
column variable is or not redundant for scaling of the row variables.

Ve LR Wald Score
n 50 100 500 50 100 500 50 100 500
Mean 2 1.81 2.09 2.02 2.30 2.37 2.06 1.76 2.05 2.01

95% 5.99 5.02 6.01 6.00 6.97 7.45 6.02 4.80 5.95 5.95
99% 9.21 7.51 9.41 8.38 13.85 12.17 9.17 7.00 8.75 8.24

statistics are considerably accurate for any n. However, for small n, such
accuracy cannot be observed for them of Wald statistic.

In Model (2), we consider a numerical experiment on a 3 x 4 contingency
table, which has the following artificial probability vectors satisfying the null
hypothesis of (42) for three independent multinomial distributions

0.250 0.125 0.375
0.167 0.375 0.250
=330 P27 o250 |0 P37 o025
0.250 0.250 0.250

Let n; (i =1,2,3) be each sample size and n the total sample size. In Table 4,
the simulated values of mean and percentiles are tabulated for several values of
n. It is noted that these values are independent of the selection of n;. The
degree of freedom in this case is 2. We observe that mean and percentiles of
the LR and the score statistics are considerably accurate for n = 100, 500.
However, for n = 50, such accuracy cannot be observed. Similarly, for small
n, such accuracy cannot be observed for them of the Wald statistic.

7. Proofs of theorems

This section gives proofs of theorems stated in §3. We use the following
matrix notations.

P=(D)irxe P () irxer)
D. p.+tq.

4, = dia (—) , 4. = dia <—),
=\ ‘ =\
p. A ‘ 0

j,,diag<p"'_~_qi)7 4, = p.t4 ,

p.t+q
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wherez Py =py for j=1,....c and p;..1) = ¢;. Note that eaNCh element in P
and P is divided by the sums of all the elements. Let ® and @ be the matrices
in the equation (7), respectively. In CA, the eigenvalue-eigenvector problem of
O can be also expressed as that of 4-'PA-'P’. Further, the non-zero
eigenvalue 4, of @ is the same as that of 4_'PA_'P’. Let v, be an eigenvector
of A7'PA7'P" with .4, =6,5. Then the eigenvector ¥, has the following
relations for o = 1,...,&.

\/Zﬁ% = jr_li)ﬁw (52)
1/4,%, = 0. (53)

7.1 Proof of Theorem A

ProoF oF THEOREM A. From (8) it is obvious that (A3) < (A4). The
matrix @ may be written as

D. AZIP/E;IP q. Aglpljr—lq
o — p.+q p.+q
o P i ip ’ q. 11 ’
p..+q<q r p..+q‘q r 4

where ¢ = (¢i/q.,...,q,/q.)'. In the following we prove in order of (A4) <
(AS), (A2) < (A4) and (Al) < (AS). Then, all equivalent relations are shown.
First we prove (A4) = (AS5). Considering the (¢ +1)-th components of

Ou, = A,p,, we have

D. I 1 p~
P g A Py, =0, 54

where i, = (#i,, fii.41),)- Further, by (52) and (A4),

[z .
AgVo =

These imply that for ¢'v, =0, ie

47" Py, (55)

p.+4q.

14,5, =0, (56)

where 4, = diag(q;/q.). On the other hand, from the definition of ¥,, we have

1'4,5,=0 (x=1,...,d). Therefore,

1/(4,47" — 14,3, =0 for a=1,...,d.

This expression can be written as

g'4.9,=0 foro=1,...,d,
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where g = (4.4, — 1 )1,. This implies that g = 0 or x1, (x is a constant). If
g = kl, we get () = er .g = i, which gives a contradiction. Therefore, g = 0,
and hence (4, — 4,)1, =0, ie., (AS).

Next we prove (AS)= (Ad4). By (AS5), @ is written as

1
K+ 1

A4'P'AP | kL,
P, B
where p. = 4.1.. Then

A;IP/A;IP:&M + Klfﬂ(6+l)1‘| 5 [ Ay ]

1
! 17 1 = la
DMy + K:u(c—o—l)oz

K+ 1

(57)

la(ﬁ—l)o: .

Also, from the restriction 1, 4 (,uy 0, 1/ Aty + Ky, =0, Le., Py, +
Kfl(ey1), = 0. Therefore, by (57), ficy1), =0 for o where 4, # 0, and hence
(AS) = (A4).

Note: By the above result, the first ¢ component vector in (57) can be

determined as

j_lA;lP’A,TIPﬁM = Lﬁlx. This equation means that a;, is
an eigenvector for an eigenvalue (x+ 1), of the matrix AT'P' AP, e,
A, = p,. Further, since (AS) means that an additional column vector is
denoted as a linear combination of the other column vectors, it holds that the
rank of jc‘lf”jr"i’ is equal to the one of A;'P’Ar‘]P. These properties hold
under each of the conditions (A1)-(A5) which are shown to be equivalent each
other, later.

We prove (A4) = (A2). By (A4), the coordinate &;, in (9) is expressed as

Z Pl

=T o

Further, since (A4) < (A5) and &, = u,, for any i and o (1, #0),

= 1 1
Ein *(KTZPU,UW Tt lé

Therefore, (A4) = (A2).
Next we prove (A2) = (A4). The condition (A2) can be expressed in the
terms of the vectors a, and u,, as follows.

S 1
AP, = A Pu,. 58
r Pty =74, Pn, (58)

Further, the equation (7) is expressed as
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AP A Py, = op,y, (59)
AP A7 Py, = Iy iy (60)
Then, from (60),
A P A P, = Doy, (61)
and by (58) and (59),
APA Py =, (62)
K+1

The relations (61) and (62) imply that a;, is proportional to u,. Also, noting
1'4.u, =0 and 1’44, =0, we obtain

p. I~ q.
Vdiin, +—L— iy, = 0.
po+gq e g e

14,4, =

As @, is proportional to um, 1'4.u;,=0. Therefore, Hernya =0 and
(A2) = (A4).

We prove (AS5) = (Al). By (AS), the chi-square distance 72(i,i’') between
the i-th and the i’-th row variables based on the profile matrix P is expressed as

2y N~k Dp. Pjj P\’
BEN=3 {m+wm‘m+wm}

j D,
Lt Dp. { Kpi. KDy }2
Kp.. (k+1Dp.  (k+1)p,.
_ 1 “z(ﬁ_ﬁﬁ
K+ 1 T Pj\Pi. D
1 .
:K+ lff(l,l,)

As this relation holds for any i and i/, we get (AS) = (Al).

Finally we prove (Al) = (AS5). Let ¢; be the r x 1 vector which the i-th
element is 1, the i’-th element —1 and the others 0. Then the chi-square
distances between the i-th row variable and the i’-th row variable are expressed
as

2(i,i') = e Teyr,  #2(i,i") = e, Fep,
'P'4A-'. The (i,i')-th elements of
I and T are written as
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D. < PijDij - p.+4q. < . Pijpig+tIi61i/>
j

yu, = ) y"/ -
o pipy. ; D “(pe @) P+ qir) - P q.

respectively. These elements can be related as

5 _P.t4q b P 2 pi/‘pi’j_,’_qi%"
Yoppe Pt aire e\ py 4

(p. +4)pipi. _ (p. + 4)49iqi
(pi +4)(pi.+4)"™  q.(pi + i) (pir. + qi7)

As the matrices I' and I’ are symmetric,

Trz(i’ ") = i = 20 + Vi 'Erz(i> i) = Ji = 250 + Firir-

Therefore,

2.y _ P14 PV 2pi.pi Y Py
T (6,1 = i + >
p. \(pi+aq) Pt a)pi+ai)  (po+qw)

2
+p‘.+q~( g 4 )
g \pi+di pit+ar

I 5

Since #2(i,i') = L (i,i"),
LV ) A VR 0) /9 R 2 3 P
k+1 p(pi+aq) Ppit+a)pe+ar)  p(py+qr)’
and
& ___& (64)

pitdqi potqi

From (64), ¢;/p; = qi'/p;y., and hence g; ={p, ({>0) for any i. By sub-
stituting these relations for (63), x ={. Therefore, (Al) = (A5). O

7.2 Proof of Theorem B

ProOF OF THEOREM B. The equivalence (B2) < (B3) is obvious from
(8). The chi-square distance 72(¢,c+ 1) between the r-th and the (c+ 1)-th
column variables based on the profile matrix P is expressed as

r 2
241 =Y L4 (&_@).
—~ P+ 4qi\p, ¢

By the definition of the chi-square distance, we obtain (B4) < (B1).



Redundancy in correspondence analysis 31

Next we prove (B4) = (B3). For some 7€ {l,...,c}, the (¢, )-th element
of O is expressed as
E i’itﬁij
i=1 i)ijit ’

0; = (65)
where p; is the (i, j)-th element of P. For te{l,....c}, p,=p, Also,
ﬁi(c‘+1) = (i and [3,((,+1> =(q.. By (B4), fOI' ] = 17 e ,C—f— 1,

~ pi Pii ~qi Dij Di(c+1) P;
0, =S Liuli N4l Z D — 0y (66)
I Pabi 4D TP D

Let 2, and g, = (dy,,.. s ety )| be the eigenvalue and eigenvector of @,
respectively. From the relation @, = 1, the r-th and the (c+ 1)-th ele-
ments are expressed as

c+1 c+1
Z glj:u]a - auutom Z 0(0—0—1)_/’/11‘1 = /Ahrxﬂ(wl)m (67)
j=1

respectively. Therefore, from (66), we have ,, = i), for Jy #0.
Next we prove (B3) = (B4). By (B3) and (67),

c+1 c+1

D Ogit, =D Otci1)ifiyy-
= =1

Using (65), the above equation is written as

i=1 j=1 D p-(c’+l) Di.

From (52), for o (a=1,...,d), we have

r =~ 9. . -

Pix _ Pitetn) V=0 or  #,PA e 1) =0, (68)
Pt Pe+1)

where e;,1y is the (c+1) x 1 vector which the #-th element is 1 and the

(¢ + 1)-th element is —1, the others 0. To get (B4), it is sufficient to show

72 (t,c+1)=0. The last expression in (68) can be written as

v, 4,9 =0 for a=1,...,d,

where g = 47! P4 e,

i(c+1)- This implies that g = 0 or x1, (i is a constant). If
g =xl,, we get 0 =1'4,g = x, which gives a contradiction. Therefore, g =0,
and hence e; 4, 'Pg=722(t,c+1)=0. O
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7.3 Proofs of Theorem A’ and B’

PrOOF OF THEOREM A’. The implication (A2') = (A1’) is easily derived as
a generalization of the proof of Theorem A. Therefore we prove (Al’) =
(A2"). For any i and i, the chi-square distance 72(i,i’) between the i-th and
the i’-th row variables is expressed as

p. a

iy Pt Pivi 2pipindi L Plyve
(pi +q:)* (P +ai) (P +ar)  (py + qin)?

2
+i‘:p..+qu< g 4y >’

= q.j P +4qi pp+qi

where y;, is the one given in the proof of Theorem A. Since 72(i,i') =

r

1 .
K—_Hfrz(l, i'),
U (pta)pi _ (p.tq)pipe _ (p.+q)ri
K+l p(pi+aq) P.(pi+a)pr+di) p.(ps+qr)
and

4 diy
P+ 4 po+qi]

where x =37 x;. Let g; = (p.+q:); for any i. Then g = (p; +¢:)(,

o 1
where { = Zj‘l & e, g :l—fc p;.. By substituting the result for P

(p. +q.)p? 1
p.(pi+aq)” 1

=1—-{. Therefore ¢; =xp,. That is,

g
1-¢

respect to j. Therefore, we have g; =x;p,. [

Also, since ¢; can be expressed as Di., i 1is proportional to p; with

ProOOF OF THEOREM B’. 1In all cases, since the proofs are easily derived as
a generalization of the proof of Theorem B, they are omitted. []
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