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Abstract. In this paper we consider an extended growth curve model with two hier-

archical within-individuals design matrices, which is useful in analyzing mean profiles of

several groups with parallel polynomial growth curves. The covariance structure based

on a random e¤ects model is assumed. The maximum likelihood estimators (MLE’s)

are obtained under the random e¤ects covariance structure. The e‰ciency of the MLE

is discussed. A numerical example is also given.

1. Introduction

Suppose that a response variable x has been measured at p di¤erent occa-

sions on each of N individuals, and each individual belongs to one of k groups.

Let x
ðgÞ
j ¼ ½xðgÞ1j ; . . . ; x

ðgÞ
pj �

0 be a p-vector of measurements on the j-th individ-

ual in the g-th group, and assume that x
ðgÞ
j ’s are independently distributed as

NpðmðgÞ;SÞ, where S is an unknown p� p positive definite matrix, j ¼ 1; . . . ;Ng,

g ¼ 1; . . . ; k. Further, we assume that mean profiles of k groups are parallel

polynomial growth curves, i.e.,

mðgÞ ¼ xðgÞ1p þ B 0x2; g ¼ 1; . . . ; k;ð1:1Þ

where 1p is a p-vector of ones,

B ¼
�
1 0p
B2

�
¼

2
666664

1 	 	 	 	 	 	 1

t1 	 	 	 	 	 	 tp

..

. ..
.

t
q
1
1 	 	 	 	 	 	 tq
1

p

3
777775ð1:2Þ

is a q� p within-individuals design matrix of rank q ða pÞ. Yokoyama and

Fujikoshi [10] considered a parallel profile model with

mðgÞ ¼ xðgÞ1p þ m; g ¼ 1; . . . ; k:
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Therefore, the model (1.1) means that m has a linear structure. It may be

noted that the mean structure (1.1) includes two hierarchical within-individuals

design matrices. Without loss of generality, we may assume that xðkÞ ¼ 0. In

the following we shall do this. Let

X ¼ ½xð1Þ1 ; . . . ; x
ð1Þ
N1
; . . . . . . ; x

ðkÞ
1 ; . . . ; x

ðkÞ
Nk
� 0; N ¼ N1 þ 	 	 	 þNk:

Then the model of X can be written as

X@NN�pðA1x11
0
p þ 1Nx

0
2B;Sn INÞ;ð1:3Þ

where

A1 ¼

2
6666664

1N1
0

. .
.

0 1Nk
1

	 	 	 	
0

3
7777775

is an N � ðk 
 1Þ between-individuals design matrix of rank k 
 1 ðaN 

p
 1Þ, x1 ¼ ½xð1Þ; . . . ; xðk
1Þ� 0 and x2 are vectors of unknown parameters. The

model (1.3) may be called a parallel growth curve model. This is a nested

model based on the growth curve model with two di¤erent within-individuals

design matrices. For a generalized nested model based on the growth curve

model with several di¤erent within-individuals design matrices, see, e.g., von

Rosen [9]. The model (1.3) with B ¼ Ip is a special case of mixed MANOVA-

GMANOVA models considered by Chinchilli and Elswick [2], Kshirsagar and

Smith [4, p. 85], etc. The mean structure of (1.3) can be written as

EðX Þ ¼ ½A1 1N �
�
x11 0

x21 x 0
22

�
B;ð1:4Þ

where x1 ¼ x11 and x 0
2 ¼ ½x21 x 0

22�. We note that the model (1.3) is the ordinary

growth curve model (Pottho¤ and Roy [5]) with a linear restriction on mean

parameters.

Fujikoshi and Satoh [3] obtained the MLE’s in the growth curve model

with two di¤erent within-individuals design matrices when S has no structures,

i.e., is any unknown positive definite. When there is no theoretical or empirical

basis for assuming special covariance structures, we need to assume that S is

any unknown positive definite. However, for analysis of repeated measures or

growth curves, it has been imposed to consider certain parsimonious covariance

structures. As one of such structures, we are interested in a random e¤ects
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covariance structure (see, e.g., Rao [6]). In our model, the structure can be

expressed as

S ¼ d21p1
0
p þ s2Ip;ð1:5Þ

where d2
b 0 and s2 > 0. The covariance structure (1.5) can be introduced by

assuming the following random e¤ects model:

x
ðgÞ
j ¼ ðxðgÞ þ h

ðgÞ
j Þ1p þ B 0x2 þ e

ðgÞ
j ;ð1:6Þ

where h
ðgÞ
j ’s and e

ðgÞ
j ’s are independently distributed as Nð0; d2Þ and Npð0; s2IpÞ,

respectively. Therefore, the covariance matrix of x
ðgÞ
j is given by (1.5). This

implies that

X@NN�pðA1x11
0
p þ 1Nx

0
2B; ðd21p1

0
p þ s2IpÞn INÞ:ð1:7Þ

In this paper we consider the problems of estimating the unknown parameters

x1, x2, d
2 and s2 when S has the structure (1.5). In O 2 we obtain a canonical

form of (1.7). In O 3 we obtain the MLE’s in the model (1.7), using a canonical

form. In O 4 it is shown how much gains can be obtained for the maximum

likelihood estimation of x1 by assuming a random e¤ects covariance structure.

In O 5 we give a numerical example of the results of O 4.

2. Transformation of the model

In order to transform (1.7) to a model which is easier to analyze, we use a

canonical reduction. Let H ¼ ½H1 N
1=21N H3� be an orthogonal matrix of

order N such that

½A1 1N � ¼ ½H1 N
1=21N �
�
L11 0

l 021 N 1=2

�

¼ Hð2ÞL;

where H1 : N � ðk 
 1Þ, and L11 : ðk 
 1Þ � ðk 
 1Þ is a lower triangular matrix.

Similarly, let Q ¼ ½ p
1=21p Q 0
2 Q 0

3�
0 be an orthogonal matrix of order p such

that �
1 0p
B2

�
¼

"
p1=2 0 0

g21 G22

#"
p
1=21 0p
Q2

#

¼ GQð2Þ;

where Q2 : ðq
 1Þ � p, and G22 : ðq
 1Þ � ðq
 1Þ is a lower triangular matrix.

Then the mean structure of (1.7) can be written as

A1x11
0
p þ 1Nx

0
2B ¼ p
1=2H1y11

0
p þN
1=21Ny

0
2Qð2Þ;ð2:1Þ
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where

y1 ¼ p1=2L11x1; y 0
2 ¼ N 1=2x 0

2G þ l 021½x1 0�G:

Here we note that ðx1; x2Þ is an invertible function of ðy1; y2Þ. In fact, x1 and

x2 can be expressed in terms of y1 and y2 as

x1 ¼ p
1=2L
1
11 y1; x 0

2 ¼ N
1=2y 0
2G


1 
N
1=2l 021½ p
1=2L
1
11 y1 0�:ð2:2Þ

Using the above transformation, we can write a canonical form of (1.7) as

Y ¼ H 0XQ 0 ¼

2
64 y11 Y12 Y13

y21 y 0
22 y 0

23

y31 Y32 Y33

3
75@NN�pðEðYÞ;C n INÞ;ð2:3Þ

where means EðYÞ and covariance matrix C are given by

EðYÞ ¼

2
4 y11 0 0

y21 y 0
22 0 0

0 0 0

3
5; �

y11 0

y21 y 0
22

�
¼ L

�
x11 0

x21 x 0
22

�
G;ð2:4Þ

y1 ¼ y11; y 0
2 ¼ ½y21 y 0

22�

and

C ¼ QSQ 0 ¼ pd2 þ s2 0 0

0 s2Ip
1

" #
:ð2:5Þ

3. The MLE’s

In this section we obtain the MLE’s of x1, x2, d
2 and s2 in the model (1.7),

using (2.3). Let

U ¼ ½y11 Y12 Y13� 0½y11 Y12 Y13� ¼

2
64 u11 u 0

12 u 0
13

u21 U22 U23

u31 U32 U33

3
75;

V ¼ ½y21 y 0
22 y 0

23�
0½y21 y 0

22 y 0
23� ¼

2
64 v11 v 012 v 013

v21 V22 V23

v31 V32 V33

3
75;

W ¼ ½y31 Y32 Y33� 0½y31 Y32 Y33� ¼

2
64w11 w 0

12 w 0
13

w21 W22 W23

w31 W32 W33

3
75
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and

T ¼ U þW ¼

2
64 t11 t 012 t 013

t21 T22 T23

t31 T32 T33

3
75:

It is easy to see that the MLE’s of y1 and y2 are given by

ŷy1 ¼ y11; ŷy 0
2 ¼ y 0

2ð12Þ;

where y 0
2ð12Þ ¼ ½y21 y 0

22�. Hence the MLE’s of x1 and x2 are given by

x̂x1 ¼ p
1=2L
1
11 y11; x̂x 0

2 ¼ N
1=2y 0
2ð12ÞG


1 
N
1=2l 021½ p
1=2L
1
11 y11 0�:ð3:1Þ

Using a technique similar to the one in estimating variance components in a

one-way random e¤ects model by maximum likelihood (see, e.g., Searle, Casella

and McCulloch [7, p. 148]), we can obtain the MLE’s of d2 and s2. Let

Lðy1; y2; s
2; d2Þ be the likelihood function of Y. Then we have

gðs2; d2Þ ¼ 
2 log Lðŷy1; ŷy2; s
2; d2Þ

¼ Np logð2pÞ þN logðpd2 þ s2Þ þ w11

pd2 þ s2

þNðp
 1Þ log s2 þ 1

s2
ðtr Tð23Þð23Þ þ tr V33Þ;

where

Tð23Þð23Þ ¼
T22 T23

T32 T33

� �
:

The minimum of gðs2; d2Þ with respect to d2
b 0 and s2 > 0 is achieved at

d̂d2 ¼ max
1

p

1

N
w11 


1

Nðp
 1Þ ðtr Tð23Þð23Þ þ tr V33Þ
� �

; 0

� �
;

ŝs2 ¼ min

�
1

Nðp
 1Þ ðtr Tð23Þð23Þ þ tr V33Þ;

1

N þNðp
 1Þ ðw11 þ tr Tð23Þð23Þ þ tr V33Þ
�

ð3:2Þ

(see, e.g., Arnold [1, p. 251]). Therefore, the MLE’s of d2 and s2 are given by

(3.2).

Now we express the MLE’s given in (3.1) and (3.2) in terms of the original

observations. Let Sw and St be the matrices of the sums of squares and prod-

ucts due to the within variation and total variation, i.e.,
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Sw ¼ X 0H3H
0
3X ¼

Xk
g¼1

XNg
j¼1

ðxðgÞj 
 xðgÞÞðxðgÞj 
 xðgÞÞ0;

St ¼ X 0ðH1H
0
1 þH3H

0
3ÞX ¼

Xk
g¼1

XNg
j¼1

ðxðgÞj 
 xÞðxðgÞj 
 xÞ0;

where xðgÞ and x are the sample mean vectors of observations of the g-th group

and all the groups, respectively. Further, let

~AA1 ¼ IN 
 1

N
1N1

0
N

� �
A1; ~BB2 ¼ B2 Ip 


1

p
1p1

0
p

� �
:ð3:3Þ

Then, from the definitions of L and G it is easily seen that

H1 ¼ ~AA1L

1
11 ; l 021 ¼

1ffiffiffiffiffi
N

p 1 0NA1; Q2 ¼ G
1
22

~BB2; g21 ¼
1ffiffiffi
p

p B21p:

Using these results, we have the following theorem.

Theorem 3.1. The MLE’s of x1, x2, d
2 and s2 in the extended growth curve

model (1.7) are given as follows:

x̂x1 ¼
1

p
ð ~AA 0

1
~AA1Þ
1 ~AA 0

1X1p;

x̂x21 ¼
1

p
x 0fIp 
 ~BB 0

2ð ~BB2
~BB 0

2Þ

1
B2g 


1

N
1 0NA1ð ~AA 0

1
~AA1Þ
1 ~AA 0

1X

� �
1p;

x̂x 0
22 ¼ x 0 ~BB 0

2ð ~BB2
~BB 0

2Þ

1;

d̂d2 ¼ max
1

p

1

N
s21 


1

Nðp
 1Þ s
2
2

� �
; 0

� �
;

ŝs2 ¼ min
1

Nðp
 1Þ s
2
2 ;

1

Np
ðs21 þ s22Þ

� �
;

where ~AA1 and ~BB2 are given by (3.3), and s21 and s
2
2 are defined by

s21 ¼ 1

p
1 0pSw1p

and

s22 ¼ tr St 

1

p
1 0pSt1p þNx 0 Ip 


1

p
1p1

0
p 
 ~BB 0

2ð ~BB2
~BB 0

2Þ

1 ~BB2

� �
x;

respectively.

We note that the MLE’s d̂d2 and ŝs2 are not unbiased. The usual unbiased

estimators of d2 and s2 may be defined by
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~dd2 ¼ 1

p

1

N 
 k w11 

1

Nðp
 1Þ 
 ðq
 1Þ ðtr Tð23Þð23Þ þ tr V33Þ
� �

;

~ss2 ¼ 1

Nðp
 1Þ 
 ðq
 1Þ ðtr Tð23Þð23Þ þ tr V33Þ;
ð3:4Þ

respectively. There is the possibility that the use of ~dd2 can lead to a negative

estimate of d2, while d̂d2 is non-negative. As a modification of the MLE’s, we

propose the estimators obtained from the MLE’s by replacing N and Nðp
 1Þ
by N 
 k and Nðp
 1Þ 
 ðq
 1Þ, respectively, in (3.2). The modified MLE’s,

which are based on the joint distribution of w11 and ðtr Tð23Þð23Þ þ tr V33Þ only,

may be called restricted maximum likelihood estimators (REMLE’s). These

estimators can be expressed in terms of the original observations, again using

the notations in Theorem 3.1.

4. E‰ciency of x̂x1

Next we consider the e‰ciency of the MLE for x1 in the case when the

covariance structure (1.5) is assumed. When no special assumptions about S

are made, the MLE of x1 is given by

~xx1 ¼ ð1 0pS
1
w 1pÞ
1ð ~AA 0

1
~AA1Þ
1 ~AA 0

1XS

1
w 1p:ð4:1Þ

The estimators x̂x1 and ~xx1 have the following properties.

Theorem 4.1. In the extended growth curve model (1.7) it holds that both

the estimators x̂x1 and ~xx1 are unbiased, and

Varðx̂x1Þ ¼
1

p
ðpd2 þ s2Þð ~AA 0

1
~AA1Þ
1;

Varð~xx1Þ ¼
1

p
ðpd2 þ s2Þ 1 þ p
 1

N 
 k 
 p

� �
ð ~AA 0

1
~AA1Þ
1:

Proof. From (2.2), (3.1) and ~AA 0
1
~AA1 ¼ L 0

11L11, we obtain the result on x̂x1.

It can be shown that for any positive definite covariance matrix S,

Eð~xx1Þ ¼ x1 and Varð~xx1Þ ¼ ð1 0pS
11pÞ
1 1 þ p
 1

N 
 k 
 p

� �
ð ~AA 0

1
~AA1Þ
1:

Under the assumption that S ¼ d21p1
0
p þ s2Ip, it holds that

ð1 0pS
11pÞ
1 ¼ 1

p
ðpd2 þ s2Þ;

which proves the desired result on ~xx1.
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From Theorem 4.1, we obtain

Varð~xx1Þ 
 Varðx̂x1Þ ¼ ðpd2 þ s2Þ p
 1

pðN 
 k 
 pÞ ð
~AA 0
1
~AA1Þ
1 > 0;ð4:2Þ

which implies that x̂x1 is more e‰cient than ~xx1 in the model (1.7). This shows

that we can get a more e‰cient estimator for x1 by assuming a random e¤ects

covariance structure. Especially, when p is large relative to N, we can obtain

greater gains.

5. Numerical example

In this section we give a numerical example to illustrate the e‰ciency of x̂x1

by assuming a random e¤ects covariance structure. We apply the results of

O 4 to the data (see, e.g., Srivastava and Carter [8, p. 227]) of the price indices

of hand soaps packaged in four ways, estimated by twelve consumers. For six

of the consumers, the packages have been labeled with a well-known brand

name. For the remaining six consumers, no label is used. Then, from the data

we obtain

xð1Þ ¼ ½:31667; :45833; :47500; :64167� 0;

xð2Þ ¼ ½:60000; :66667; :85000; :96667� 0;

x ¼ ½:45833; :56250; :66250; :80417� 0;

Sw ¼

:21833 :15167 :20500 :08333

:25542 :16375 :21375

:30375 :17875

:29542

2
6664

3
7775;

St ¼

:45917 :32875 :52375 :35958

:38563 :39813 :41688

:72563 :54438

:61229

2
6664

3
7775:

For the observation matrix X : 12 � 4, we assume the model (1.7) with

EðX Þ ¼ 16

0

� �
x111

0
4 þ 112½x21; x22�

1 1 1 1

t1 t2 t3 t4

� �
ð5:1Þ

¼ 16 16

0 16

� �
x11 0

x21 x22

� �
1 1 1 1

t1 t2 t3 t4

� �

and

VarðvecðX ÞÞ ¼ ðd2141
0
4 þ s2I4Þn I12:ð5:2Þ
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Now we estimate how much gains can be obtained for the maximum

likelihood estimation of x11 by assuming the covariance structure (5.2). Since

p ¼ 4, N ¼ 12, k ¼ 2, ~AA 0
1
~AA1 ¼ 3, d̂d2 ¼ :01353 and ŝs2 ¼ :00976, it follows from

Theorem 4.1 and (4.2) that

V̂Varð~xx11Þ 
 V̂Varðx̂x11Þ ¼
1

24
ð4 d̂d2 þ ŝs2Þ ¼ :00266:
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