Congruent numbers over real quadratic fields

Masatomo Tada
(Received November 6, 2000)
(Revised January 18, 2001)

Abstract

Let $m(\neq 1)$ be a square-free positive integer. We say that a positive integer n is a congruent number over $\mathbf{Q}(\sqrt{m})$ if it is the area of a right triangle with three sides in $\mathbf{Q}(\sqrt{m})$. We put $K=\mathbf{Q}(\sqrt{m})$. We prove that if $m \neq 2$, then n is a congruent number over K if and only if $E_{n}(K)$ has a positive rank, where $E_{n}(K)$ denotes the group of K-rational points on the elliptic curve E_{n} defined by $y^{2}=x^{3}-n^{2} x$. Moreover, we classify right triangles with area n and three sides in K.

1. Introduction

A positive integer n is called a congruent number if it is the area of a right triangle whose three sides have rational lengths. For each positive integer n, let E_{n} be the elliptic curve over \mathbf{Q} defined by $y^{2}=x^{3}-n^{2} x$, and $E_{n}(k)$ the group of k-rational points on E_{n} for a number field k. By the following wellknown theorem, we have a condition such that n is a congruent number in terms of $E_{n}(\mathbf{Q})$.

Theorem A (cf. [4, p. 46]). A positive integer n is a congruent number if and only if $E_{n}(\mathbf{Q})$ has a point of infinite order.

Let ∞ be the point at infinity of $E_{n}(\mathbf{Q})$ which is regarded as the identity for the group structure on E_{n}. We note that, in the proof of Theorem A, we use that the torsion subgroup of $E_{n}(\mathbf{Q})$ consists of four elements $\infty,(0,0)$, and $(\pm n, 0)$ of order 1 or 2 .

For any positive integer n, determining whether it is a congruent number or not is a classical problem. In relation to Theorem A, some important results are known. By the result of J. Coates and A. Wiles [2] for elliptic curves E over \mathbf{Q} with complex multiplication, if the rank of $E_{n}(\mathbf{Q})$ is positive, then $L\left(E_{n}, 1\right)=0$, where $L\left(E_{n}, s\right)$ is the Hasse-Weil L-function of E_{n} / \mathbf{Q}. Assuming the weak Birch and Swinnerton-Dyer conjecture [1], it is known that if $L\left(E_{n}, 1\right)$ $=0$, then the rank of $E_{n}(\mathbf{Q})$ is positive. F. R. Nemenzo [7] showed that for $n<42553$, the weak Birch and Swinnerton-Dyer conjecture holds for E_{n}, i.e.,
the rank of $E_{n}(\mathbf{Q})$ is positive if and only if $L\left(E_{n}, 1\right)=0$. Moreover, J. B. Tunnell [9] gave a necessary and sufficient condition for n such that $L\left(E_{n}, 1\right)=0$. And hence, assuming the weak Birch and Swinnerton-Dyer conjecture, it gives a simple criterion to determine whether or not n is a congruent number.

When n is a non-congruent number, one can ask if n is the area of a right triangle with three sides in a real quadratic field. The first aim of this paper is to study an analogy to Theorem A in the case of real quadratic fields, so we will consider congruent numbers over real quadratic fields. Let $m(\neq 1)$ be a square-free positive integer, and put $K=\mathbf{Q}(\sqrt{m})$. We say that n is a congruent number over K if it is the area of a right triangle with three sides consisting of elements in K. For the sake of avoiding confusion, when n is the area of a right triangle whose three sides have rational lengths, in this paper, we say that n is a congruent number over \mathbf{Q}.

Using the result of Kwon [6, Theorem 1 and Proposition 1] which classify the torsion subgroup of $E: y^{2}=x(x+M)(x+N)$, with $M, N \in \mathbf{Z}$, one can determine the torsion subgroup of $E_{n}(K)$ and prove the following theorem.

Theorem 1. Let n be a positive integer. Assume that $m \neq 2$. Then n is a congruent number over $K=\mathbf{Q}(\sqrt{m})$ if and only if $E_{n}(K)$ has a point of infinite order.

When $m=2$, Theorem 1 does not hold. For example, when $m=2$ and $n=1$, there is the right triangle with three sides $(\sqrt{2}, \sqrt{2}, 2)$ and area 1 . However, by using Theorem B which will be reviewed in §2, one can see that the rank of $E_{1}(\mathbf{Q}(\sqrt{2}))$ is 0 .

Combining Theorem 1 with Theorem B, we have the following corollary.
Corollary 1. Let n be a positive integer. Assume that $m \neq 2$. Then n is a congruent number over $K=\mathbf{Q}(\sqrt{m})$ if and only if either n or nm is a congruent number over \mathbf{Q}.

We assume that n is a non-congruent number over \mathbf{Q}. The second aim of this paper is to classify right triangles with three sides in K and area n. By using a correspondence between the set of points $2 P \in 2 E_{n}(K) \backslash\{\infty\}$ and the set of three sides $(X, Y, Z) \in K^{3}$ of right triangles with area n, and by studying $P+\sigma(P)$, where σ is the generator of $\operatorname{Gal}(K / \mathbf{Q})$, we can classify the right triangles with area n and three sides in K as follows.

Theorem 2. We assume that n is a non-congruent number over \mathbf{Q}. Then we have;
(1) Any right triangles with area n and three sides $X, Y, Z \in K=\mathbf{Q}(\sqrt{m})$ $(X \leq Y<Z)$ is necessarily one of the following types:
Type 1. $X \sqrt{m}, Y \sqrt{m}, Z \sqrt{m} \in \mathbf{Q}$,

Type 2. $X, Y, Z \sqrt{m} \in \mathbf{Q}$,
Type 3. $X, Y \in K \backslash \mathbf{Q}$ such that $\sigma(X)=Y, Z \in \mathbf{Q}$,
Type 4. $X, Y \in K \backslash \mathbf{Q}$ such that $\sigma(X)=-Y, Z \in \mathbf{Q}$,
where σ is the generator of $\operatorname{Gal}(K / \mathbf{Q})$.
(2) If $m \equiv 3,6,7(\bmod 8)$ or m has a prime factor $q \equiv 3(\bmod 4)$, then there is no right triangle of Type 2. Moreover, there is no right triangle of Type 3 or no right triangle of Type 4.
(3) If $m \equiv 3,5,6,10,11,13(\bmod 16)$ or m has a prime factor $q \equiv 3,5(\bmod 8)$, then there is no right triangle of Type 3 nor that of Type 4.

Remark. Suppose that $m=2$. If $n=c^{2}$ for some $c \in \mathbf{N}$, then there is a right triangle with $X=Y=c \sqrt{2}$ and area n, which is of Type 4. And if $n=2 c^{\prime 2}$ for some $c^{\prime} \in \mathbf{N}$, then there is a right triangle with $X=Y=2 c^{\prime}$ and area n, which is of Type 2 .

The third aim of this paper is to give a condition on types of right triangles with area n and three sides in $\mathbf{Q}(\sqrt{m})$ which is equivalent that n and $n m$ are congruent numbers over \mathbf{Q} as follows.

Theorem 3. A positive integer n is the area of a right triangle with three sides $X, Y, Z \in \mathbf{Q}(\sqrt{m})$ such that $X \leq Y<Z, Z \notin \mathbf{Q}$ and $Z \sqrt{m} \notin \mathbf{Q}$ if and only if n and $n m$ are congruent numbers over \mathbf{Q}.

2. Known results

For any real quadratic field K, we need to know the rank of $E_{n}(K)$ to prove Theorems 1, 2 and Corollary 1. And hence, we recall the following result.

Theorem B (cf. [8, p. 63]). Let E be an elliptic curve over a number field k which is given by

$$
E: y^{2}=x^{3}+a x^{2}+b x+c, \quad a, b, c \in k .
$$

And let D be an element of $k \backslash\left\{\alpha^{2} \mid \alpha \in k\right\}$. Then

$$
\operatorname{rank}(E(k(\sqrt{D})))=\operatorname{rank}(E(k))+\operatorname{rank}\left(E^{D}(k)\right)
$$

where E^{D} is the twist of E over $k(\sqrt{D})$ which is defined by

$$
E^{D}: y^{2}=x^{3}+a D x^{2}+b D^{2} x+c D^{3} .
$$

The following theorem allows us to recognize elements of $2 E_{n}(K)$.

Theorem C (cf. [3, p. 85]). Let k be a field of characteristic not equal to 2 nor 3, and E an elliptic curve over k. Suppose E is given by

$$
E: y^{2}=(x-\alpha)(x-\beta)(x-\gamma)
$$

with α, β, γ in k. Let $\left(x_{0}, y_{0}\right)$ be a k-rational point of $E \backslash\{\infty\}$. Then there exists a k-rational point $\left(x_{1}, y_{1}\right)$ of E with $2\left(x_{1}, y_{1}\right)=\left(x_{0}, y_{0}\right)$ if and only if $x_{0}-\alpha, x_{0}-\beta$, and $x_{0}-\gamma$ are squares in k.

3. Proof of Theorem 1

We first describe the torsion subgroup of $E_{n}(\mathbf{Q}(\sqrt{m}))$ in Proposition 1. In the proof of Proposition 1, we use a result of Kwon [6, Theorem 1 and Proposition 1].

Proposition 1. Let n be either 1 or a square-free positive integer. Let $T\left(E_{n}, k\right)$ be the torsion subgroup of $E_{n}(k)$ over a number field k, and $E_{n}[2]$ the 2-torsion subgroup of E_{n}. If $n=1, m=2$, then

$$
\begin{aligned}
& T\left(E_{1}, \mathbf{Q}(\sqrt{2})\right) \\
& \quad=\{\infty,(0,0),(\pm 1,0),(1+\sqrt{2}, \pm(2+\sqrt{2})),(1-\sqrt{2}, \pm(2-\sqrt{2}))\}
\end{aligned}
$$

If $n=2, m=2$, then

$$
T\left(E_{2}, \mathbf{Q}(\sqrt{2})\right)
$$

$$
=\{\infty,(0,0),(\pm 2,0),(2+2 \sqrt{2}, \pm 4(1+\sqrt{2})),(2-2 \sqrt{2}, \pm 4(1-\sqrt{2}))\}
$$

Otherwise, $T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right)=E_{n}[2]=\{\infty,(0,0),(\pm n, 0)\}$.
Proof. First, note that the 2-torsion subgroup $E_{n}[2]$ consists of four elements $(0,0),(\pm n, 0)$, the point at infinity ∞, i.e.,

$$
T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right) \supset E_{n}[2] \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}
$$

Here, E_{n}^{m} is the twist of E_{n} over $\mathbf{Q}(\sqrt{m})$ and defined by $y^{2}=x^{3}-(n m)^{2} x$, hence E_{n}^{m} is $E_{n m}$. Therefore, $T\left(E_{n}^{m}, \mathbf{Q}\right)=T\left(E_{n m}, \mathbf{Q}\right) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$. And because $T\left(E_{n}, \mathbf{Q}\right) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$, by using the result of Kwon [6, Theorem 1 and Proposition 1], we have

$$
T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z} \quad \text { or } \quad \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}
$$

Suppose that $T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}$. Then there exists a point P of order 4 in $T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right)$. Therefore, $2 P$ must be $(0,0)$ or $(\pm n, 0)$. By Theorem C , if $2 P=(0,0)$ or $(-n, 0)$, then $-n$ must be a square in $\mathbf{Q}(\sqrt{m})$ which is a contradiction. If $2 P=(n, 0)$, by Theorem C, then n and $2 n$ must be squares in $\mathbf{Q}(\sqrt{m})$. Since n is a square-free integer, one can see that $n=1$,
$m=2$ or $n=m=2$. By solving equations obtained by the duplication formula on elliptic curves, we can describe $T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right)$ concretely. Otherwise, $T\left(E_{n}, \mathbf{Q}(\sqrt{m})\right) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$. We have completed the proof of Proposition 1 .

Proof of Theorem 1. Let k be a subfield of \mathbf{R}. For a positive integer n, let S be the set which consists of $(X, Y, Z) \in k^{3}$ satisfying that $0<X \leq Y<Z$, $X^{2}+Y^{2}=Z^{2}$ and $X Y=2 n$, and put

$$
T=\left\{(u, v) \in 2 E_{n}(k) \backslash\{\infty\} \mid v \geq 0\right\} .
$$

Then the $\operatorname{map} \varphi: S \rightarrow T$ is defined by

$$
\varphi((X, Y, Z))=\left(\left(\frac{Z}{2}\right)^{2}, \frac{Z\left(Y^{2}-X^{2}\right)}{8}\right) \quad((X, Y, Z) \in S)
$$

By Theorem C, one can define a map $\psi: T \rightarrow S$ by

$$
\psi((u, v))=(\sqrt{u+n}-\sqrt{u-n}, \sqrt{u+n}+\sqrt{u-n}, 2 \sqrt{u}) \quad((u, v) \in T)
$$

Then it is easy to see that ψ gives the inverse map φ^{-1} of φ.
We shall prove that $S \neq \varnothing$ if and only if $E_{n}(k) \backslash E_{n}[2] \neq \varnothing$. First, We assume that $S \neq \varnothing$. For $(X, Y, Z) \in S$, we put $Q=\varphi((X, Y, Z))$. Because Q is the point on T, there is a point $P \in E_{n}(k) \backslash E_{n}[2]$ such that $Q=2 P$. Therefore, we see that $E_{n}(k) \backslash E_{n}[2] \neq \varnothing$. Conversely, we assume that $E_{n}(k) \backslash E_{n}[2] \neq \varnothing$. We take $P \in E_{n}(k) \backslash E_{n}[2]$, and put $2 P=\left(x_{0}, y_{0}\right) . \quad$ By Theorem C, $x_{0}, x_{0} \pm n$ are squares in k. Therefore, by the map ψ, we obtain a right triangle with three sides in k.

Here we take a quadratic field $K=\mathbf{Q}(\sqrt{m})$ as k. Assume that $m \neq 2$. Then we have $T\left(E_{n}, K\right)=E_{n}[2]$ by Proposition 1. Therefore, $E_{n}(K)$ has a positive rank if and only if $E_{n}(K) \backslash E_{n}[2] \neq \varnothing$. We have completed the proof of Theorem 1.

Proof of Corollary 1. By Theorem B, $\operatorname{rank}\left(E_{n}(K)\right)>0$ if and only if $\operatorname{rank}\left(E_{n}(\mathbf{Q})\right)>0$ or $\operatorname{rank}\left(E_{n}^{m}(\mathbf{Q})\right)>0$. Here, E_{n}^{m} is the twist of E_{n} over K and defined by $y^{2}=x^{3}-(n m)^{2} x$. Hence E_{n}^{m} is $E_{n m}$, which implies that $\operatorname{rank}\left(E_{n}^{m}(\mathbf{Q})\right)>0$ if and only if $n m$ is a congruent number. This completes the proof of Corollary 1.

4. Proof of Theorem 2

First, we describe a formula for the additive law on E_{n}. For two points $P_{1}, P_{2} \in E_{n}(\mathbf{R})$ such that $P_{1}+P_{2} \neq \infty$, we put $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$, where $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in \mathbf{R}$. If $P_{1} \neq P_{2}$, then

$$
x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
$$

where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. If $P_{1}=P_{2}$, then we have

$$
x_{3}=\left(\frac{x_{1}^{2}+n^{2}}{2 y_{1}}\right)^{2}
$$

which is called the duplication formula.
Now we prove (1) in Theorem 2. Assume that n is a congruent number over $K=\mathbf{Q}(\sqrt{m})$, and let $X, Y, Z(0<X \leq Y<Z)$ be the three sides of a right triangle with area n and three sides in K. Then, as is seen in the proof of Theorem 1, there is a point $P \in E_{n}(K) \backslash E_{n}[2]$ such that $\psi(2 P)=(X, Y, Z)$. Further, by the geometric interpretation of the group law on $E_{n}(\mathbf{R})$, we may assume that $P=(x, y)$ satisfies that $x \geq(1+\sqrt{2}) n$ by replacing P with $P+(0,0)$, $P+(n, 0)$ or $P+(-n, 0)$ if necessary. We put $2 P=(u, v)$, and let $|\cdot|$ be the usual absolute value which is induced from the embedding $l: K \hookrightarrow \mathbf{R}$ such that $l(\sqrt{m})$ is positive. Then, by the duplication formula on elliptic curves, we have

$$
u=\left(\frac{x^{2}+n^{2}}{2 y}\right)^{2}
$$

and hence,

$$
\begin{aligned}
\sqrt{u+n} & =\frac{x^{2}+2 n x-n^{2}}{2|y|} \\
\sqrt{u-n} & =\frac{x^{2}-2 n x-n^{2}}{2|y|} \\
\sqrt{u} & =\frac{x^{2}+n^{2}}{2|y|}
\end{aligned}
$$

Therefore, using the map ψ in Section 3, we have

$$
X=\frac{2 n x}{|y|}, \quad Y=\frac{x^{2}-n^{2}}{|y|}, \quad Z=\frac{x^{2}+n^{2}}{|y|}
$$

Let σ be the generator of $\operatorname{Gal}(K / \mathbf{Q})$, and put $\sigma(P)=(\sigma(x), \sigma(y))$. Because $P+\sigma(P)$ is an element in $E_{n}(\mathbf{Q})$ and n is a non-congruent number over \mathbf{Q}, we have

$$
P+\sigma(P) \in T\left(E_{n}, \mathbf{Q}\right)=\{\infty,(0,0),(\pm n, 0)\}
$$

Therefore, one of the following cases necessarily happens:
Case 1. $P+\sigma(P)=\infty$. In this case, by the geometric interpretation of the group law on $E_{n}(\mathbf{R}), \sigma(x)=x$ and $\sigma(y)=-y$. So, x and $y \sqrt{m}$ are rational. Therefore, $X \sqrt{m}, Y \sqrt{m}$ and $Z \sqrt{m}$ are rational, and so we obtain a right triangle of Type 1.

Case 2. $P+\sigma(P)=(0,0)$. In this case, by the geometric interpretation of the group law on $E_{n}(\mathbf{R})$, we have $\sigma(x) / x=\sigma(y) / y$, which we denote by α. Then we have

$$
\sigma(y)^{2}=\alpha^{2} y^{2}=\alpha^{2} x^{3}-\alpha^{2} n^{2} x .
$$

And since $\sigma(P)$ is a point on E_{n}, we have

$$
\sigma(y)^{2}=\sigma(x)^{3}-n^{2} \sigma(x)=\alpha^{3} x^{3}-n^{2} \alpha x .
$$

Because we easily see that $\alpha \neq 0,1$ and $x \neq 0$, by these equations, we have

$$
\alpha x^{2}=-n^{2} .
$$

Substituting this for Y and Z, we have $Y=x(x+\sigma(x)) /|y|$ and $Z \sqrt{m}=x(x-\sigma(x)) \sqrt{m} /|y|$. Since $x / y=\sigma(x / y)$ and $x \geq$ $(1+\sqrt{2}) n>0, x /|y|$ is rational. Therefore, $X=2 n x /|y|, Y$ and $Z \sqrt{m}$ are rational, and so we obtain a right triangle with two rational sides including a right angle, which is of Type 2.
Case 3. $P+\sigma(P)=(n, 0)$. In this case, by the geometric interpretation of the group law on $E_{n}(\mathbf{R})$, we have $\sigma(x-n) /(x-n)=\sigma(y) / y$, which we denote by β. And we put $z=x-n$. Then we have

$$
\sigma(y)^{2}=\beta^{2} z^{3}+3 \beta^{2} z^{2} n+2 \beta^{2} z n^{2} .
$$

And since $\sigma(P)$ is a point on E_{n}, we have

$$
\sigma(y)^{2}=\beta^{3} z^{3}+3 \beta^{2} z^{2} n+2 \beta z n^{2} .
$$

Because we easily see that $\beta \neq 0,1$ and $z \neq 0$, by these equations, we have

$$
\beta z^{2}=2 n^{2} .
$$

Substituting this equation and $x=z+n$ for three sides X, Y and Z, we have $X=z(\sigma(z)+2 n) /|y|, \quad Y=z(z+2 n) /|y|$ and $Z=z(z+2 n+\sigma(z)) /|y|$. Since $z / y=\sigma(z / y)$ and $z>0, z /|y|$ is rational. Therefore, Z is rational and $\sigma(X)=Y$, and so we obtain a right triangle with one rational side and two conjugate sides, which is of Type 3.
Case 4. $P+\sigma(P)=(-n, 0)$. In this case, we put $w=x+n$. Then one can show, as in the case of Type 3, that $w /|y|$ and Z are rational and that $X=w(-\sigma(w)+2 n) /|y|, \quad Y=w(w-2 n) /|y|$, which implies that $\sigma(X)=-Y$. Hence, we obtain a right triangle with one rational side Z and two sides X, Y such that $\sigma(X)=-Y$, which is of Type 4.

Second, we prove (3) in Theorem 2. Suppose that there is a right triangle of Type 3 (resp. Type 4), and let $a-b \sqrt{m}$ (resp. $-a+b \sqrt{m}$), $a+b \sqrt{m}$ be two sides including a right angle and c the hypotenuse, where a, b, c are positive rational numbers. Then $(x, y, z)=(a, b, c)$ is a non-zero solution of the following equation

$$
2 x^{2}+2 m y^{2}=z^{2}
$$

By the Hasse principle, the above equation has a solution in \mathbf{Q} if and only if it has a solution in \mathbf{Q}_{p} for every prime p, where \mathbf{Q}_{p} is the field of p-adic numbers. Using Hilbert symbols, one can see that it has a solution in \mathbf{Q}_{2} if and only if $m \equiv 1,2,7,9,14,15(\bmod 16)$, and that, when $p=q$ for prime factor $q \neq 2$ of m, the above equation has a solution in \mathbf{Q}_{q} if and only if 2 is a quadratic residue $\bmod q$, i.e., $q \equiv 1,7(\bmod 8)$.

Third, we prove (2) in Theorem 2. Using Hilbert symbols as in the case of (3), one can prove that if $m \equiv 3,6,7(\bmod 8)$ or m has a prime factor $q \equiv 3$ $(\bmod 4)$, then there is no right triangle of Type 2. And since a set $\{P+\sigma(P)\}$ becomes a subgroup of $E_{n}[2]$, the number of different types of right triangles with area n must not be 3 . Therefore, one can see that if there is no right triangle of Type 2, then there is not the right triangle of Type 3 or not the right triangle of Type 4. This completes the proof of Theorem 2.

5. Proof of Theorem 3

First, suppose that n and $n m$ are congruent numbers over \mathbf{Q}. By definition, there are rational numbers a, b, c such that $a^{2}+b^{2}=c^{2}, a b=2 n$, and $a<b<c$. Similarly, there are rational numbers d, e, f such that $d^{2}+e^{2}=f^{2}$, $d e=2 n m$ and $d<e<f$. Hence, n is also the area of a right triangle

$$
\left(\frac{d}{\sqrt{m}}, \frac{e}{\sqrt{m}}, \frac{f}{\sqrt{m}}\right)
$$

We recall the maps $\varphi: S \rightarrow T$ and $\psi: T \rightarrow S$ in $\S 3$, and put $P=(u, v)=$ $\varphi((a, b, c))+\varphi((d / \sqrt{m}, e / \sqrt{m}, f / \sqrt{m}))$. Then

$$
\begin{aligned}
u= & \frac{f^{2}\left(e^{2}-d^{2}\right)^{2}+m^{3} c^{2}\left(b^{2}-a^{2}\right)^{2}-\left(f^{2}+m c^{2}\right)\left(f^{2}-m c^{2}\right)^{2}}{4 m\left(f^{2}-m c^{2}\right)^{2}} \\
& -\frac{c f\left(b^{2}-a^{2}\right)\left(e^{2}-d^{2}\right) \sqrt{m}}{2\left(f^{2}-m c^{2}\right)^{2}}
\end{aligned}
$$

We may assume that $P=(u, v)$ satisfies that $v \geq 0$ by replacing P with $-P$ if necessary. Because $(u, v) \in T$, we have $\psi((u, v)) \in S$, which denotes a system of
three sides of a right triangle with area n. Let (X, Y, Z) be the system of three sides of the right triangle with area n obtained above. By Theorem C and the additive law to the points on the elliptic curve, one can see that $X, Y, Z \in$ $\mathbf{Q}(\sqrt{m}), Z \notin \mathbf{Q}$ and $Z \sqrt{m} \notin \mathbf{Q}$.

Conversely, suppose to the contrary that either n or $n m$ is non-congruent number over \mathbf{Q}. Assuming that n is a non-congruent number over \mathbf{Q} and $n m$ is a congruent number over \mathbf{Q}, by Theorem $2(1), n$ is not the area of a right triangle with three sides $X, Y, Z \in \mathbf{Q}(\sqrt{m})$ such that $X \leq Y<Z, Z \notin \mathbf{Q}$ and $Z \sqrt{m} \notin \mathbf{Q}$. Second, we assume that $n m$ is a non-congruent number over \mathbf{Q} and n is a congruent number over $K=\mathbf{Q}(\sqrt{m})$, and let $(a, b, c) \in K^{3}$ be a system of three sides of right triangles with area n. By multiplying the three sides by \sqrt{m}, we have a right triangle with area $n m$ and three sides $(a \sqrt{m}, b \sqrt{m}, c \sqrt{m}) \in K^{3}$. For a positive integer $n m$, we define the map φ^{\prime} in the same way as for φ. Then one can put $2 P^{\prime}=\varphi^{\prime}((a \sqrt{m}, b \sqrt{m}, c \sqrt{m}))$ for a point $P^{\prime} \in E_{n m}(K)$. For the generator σ of $\operatorname{Gal}(K / \mathbf{Q})$, because $P^{\prime}+\sigma\left(P^{\prime}\right)$ is an element in $E_{n m}(\mathbf{Q})$ and $n m$ is a non-congruent number over \mathbf{Q}, we have

$$
P^{\prime}+\sigma\left(P^{\prime}\right) \in T\left(E_{n m}, \mathbf{Q}\right)=\{\infty,(0,0),(\pm n m, 0)\} .
$$

Therefore, by the same way as in the proof of Theorem 2 (1), one can see that one of the following cases necessarily happens:

Case 1. $a, b, c \in \mathbf{Q}$.
Case 2. $a \sqrt{m}, b \sqrt{m}, c \in \mathbf{Q}$.
Case 3. $a, b \in K \backslash \mathbf{Q}$ such that $\sigma(a)=-b, c \sqrt{m} \in \mathbf{Q}$.
Case 4. $a, b \in K \backslash \mathbf{Q}$ such that $\sigma(a)=b, c \sqrt{m} \in \mathbf{Q}$.
Hence, n is not the area of a right triangle with hypotenuse $Z=c$ such that $Z \notin \mathbf{Q}$ and $Z \sqrt{m} \notin \mathbf{Q}$. Third, we assume that n and $n m$ are non-congruent numbers over \mathbf{Q}. When $m \neq 2$, by Corollary $1, n$ is not a congruent number over K. When $m=2$ and n is a congruent number over K, the right triangle with area n has three sides such that $X=Y$. Hence, one can see that n is not the area of a right triangle with hypotenuse Z such that $Z \notin \mathbf{Q}$ and $Z \sqrt{m} \notin \mathbf{Q}$. We have completed the proof of Theorem 3.

6. Examples

In this section, we give some examples of right triangles. For a positive integer n and a square-free positive integer m, let $X, Y, Z \in K=\mathbf{Q}(\sqrt{m})$ $(X \leq Y<Z)$ be three sides of right triangles with area n, and, using the map φ in $\S 3$, put $Q=\varphi((X, Y, Z)) \in 2 E_{n}(K) \backslash\{\infty\}$.

Example 1. $n=2, m=17$; We have the following right triangle of Type 1, that of Type 2, that of Type 3 and that of Type 4 in Theorem 2 (1) and the corresponding points of $2 E_{n}(K) \backslash\{\infty\}$.

Type 1. $34(=2 \times 17)$ is a congruent number over \mathbf{Q}, and there is a right triangle with three rational sides $(15 / 2,136 / 15,353 / 30)$ and area 34. By dividing the three sides by $\sqrt{17}$, we obtain the following right triangle;

$$
(X, Y, Z)=\left(\frac{15 \sqrt{17}}{34}, \frac{8 \sqrt{17}}{15}, \frac{353 \sqrt{17}}{510}\right)
$$

and we have the corresponding point

$$
Q=\left(\frac{2118353}{1040400}, \pm \frac{8245727 \sqrt{17}}{62424000}\right) \in 2 E_{2}(\mathbf{Q}(\sqrt{17})) \backslash\{\infty\}
$$

Type 2. We have the following right triangle such that two sides including a right angle are rational;

$$
(X, Y, Z)=(1,4, \sqrt{17})
$$

and the corresponding point

$$
Q=\left(\frac{17}{4}, \pm \frac{15 \sqrt{17}}{8}\right) \in 2 E_{2}(\mathbf{Q}(\sqrt{17})) \backslash\{\infty\}
$$

Type 3. First, we put $X=x-y \sqrt{17}, Y=x+y \sqrt{17}$, and $Z=z$, where x, y, z $\in \mathbf{Q} \backslash\{0\}$. Then (x, y) satisfies that $x^{2}-17 y^{2}=4$. For example, $(13 / 2,3 / 2)$ is a solution of this equation. Representing x and y in terms of $t \in \mathbf{Q}$ by using the above solution, we obtain

$$
x=\frac{13-102 t+221 t^{2}}{2\left(-1+17 t^{2}\right)}, \quad y=\frac{-3+26 t-51 t^{2}}{2\left(-1+17 t^{2}\right)}
$$

Substituting them for $2 x^{2}+34 y^{2}$, by using MATHEMATICA, we find out that if $t=1$, then $2 x^{2}+34 y^{2}$ is a square in \mathbf{Q}. Hence, we obtain the following right triangle;

$$
(X, Y, Z)=\left(\frac{33-7 \sqrt{17}}{8}, \frac{33+7 \sqrt{17}}{8}, \frac{31}{4}\right)
$$

and we have the corresponding point

$$
Q=\left(\frac{961}{64}, \pm \frac{7161 \sqrt{17}}{512}\right) \in 2 E_{2}(\mathbf{Q}(\sqrt{17})) \backslash\{\infty\}
$$

Type 4. The following example is obtained as in the case of Type 3. We have the following right triangle;

$$
(X, Y, Z)=\left(\frac{-1+\sqrt{17}}{2}, \frac{1+\sqrt{17}}{2}, 3\right)
$$

and we have the corresponding point

$$
Q=\left(\frac{9}{4}, \pm \frac{3 \sqrt{17}}{8}\right) \in 2 E_{2}(\mathbf{Q}(\sqrt{17})) \backslash\{\infty\}
$$

We put $K=\mathbf{Q}(\sqrt{17})$. In the same way as in K. Kume's paper [5, 4-3], using the above examples, one can see that the rank of $E_{34}(\mathbf{Q})$ is not less than 2 as follows. We define a homomorphism $\varphi: E_{2}(K) \rightarrow E_{2}(\mathbf{Q})$ by $\varphi(P)=P+\sigma(P)$, $P \in E_{2}(K)$ and σ is the generator of $\operatorname{Gal}(K / \mathbf{Q})$. Because 2 is a non-congruent number over \mathbf{Q}, we have $E_{2}(\mathbf{Q})=E_{2}[2] . \quad$ By the existence of four types of right triangles with area $2, \varphi$ is surjective, i.e.,

$$
E_{2}(K) / \operatorname{Ker}(\varphi) \cong \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}
$$

Here note that $\operatorname{Ker}(\varphi) \supset 2 E_{2}(K)$. Let $P_{1}, P_{2} \in E_{2}(K)$ be a point such that $2 P_{1}=(17 / 4,15 \sqrt{17} / 8), 2 P_{2}=(961 / 64,7161 \sqrt{17} / 512)$. Then, by the proof of Theorem $2(1), \varphi\left(P_{1}\right)=(0,0), \varphi\left(P_{2}\right)=(2,0)$. Hence, we have $P_{1}, P_{2} \notin 2 E_{2}(K)$ and $P_{1}+P_{2} \notin 2 E_{2}(K)$. If we assume that the rank of $E_{2}(K)$ is 1 , then $P_{1}+P_{2}$ $\in 2 E_{2}(K)$, which is a contradiction. Hence, by Theorem B, the rank of $E_{34}(\mathbf{Q})$ is greater than 1.

It is known that the rank of $E_{34}(\mathbf{Q})$ is 2 (for example, see [10]).
Example 2. $n=3, m=7$; We have the following right triangle of Type 1 and that of Type 4 in Theorem 2 (1), and the corresponding points of $2 E_{n}(K) \backslash\{\infty\}$. By Theorem $2(2)$, there is no right triangle of Type 2 nor that of Type 3.

Type 1. $21(=3 \times 7)$ is a congruent number over \mathbf{Q}, and there is a right triangle with area 21 and three rational sides (7/2, 12, 25/2). By dividing the three sides by $\sqrt{7}$, we obtain the following right triangle;

$$
(X, Y, Z)=\left(\frac{\sqrt{7}}{2}, \frac{12 \sqrt{7}}{7}, \frac{25 \sqrt{7}}{14}\right)
$$

and we have the corresponding point

$$
Q=\left(\frac{4375}{784}, \pm \frac{13175 \sqrt{7}}{3136}\right) \in 2 E_{3}(\mathbf{Q}(\sqrt{7})) \backslash\{\infty\}
$$

Type 4. The following example is obtained as in the case of Type 3 in Example 1;

$$
(X, Y, Z)=(-1+\sqrt{7}, 1+\sqrt{7}, 4)
$$

and we have the corresponding point

$$
Q=(4, \pm 2 \sqrt{7}) \in 2 E_{3}(\mathbf{Q}(\sqrt{7})) \backslash\{\infty\}
$$

Example 3. $n=2, m=3$; We have the following right triangle of Type 1 in Theorem 2 (1) and the corresponding point of $2 E_{n}(K) \backslash\{\infty\}$. By Theorem 2 (2) and (3), there is no right triangle of Type 2, that of Type 3 and that of Type 4.

Type 1. $6(=2 \times 3)$ is a congruent number over \mathbf{Q}, and there is a right triangle with area 6 and three rational sides $(3,4,5)$. By dividing the three sides by $\sqrt{3}$, we obtain the following three sides of a right triangle;

$$
(X, Y, Z)=\left(\sqrt{3}, \frac{4 \sqrt{3}}{3}, \frac{5 \sqrt{3}}{3}\right)
$$

and we have the corresponding point

$$
Q=\left(\frac{25}{12}, \pm \frac{35 \sqrt{3}}{72}\right) \in 2 E_{2}(\mathbf{Q}(\sqrt{3})) \backslash\{\infty\}
$$

Example 4. $n=6, m=5 ; 6$ is a congruent number over \mathbf{Q}, and there is a right triangle with area 6 and three rational sides $(3,4,5)$. Further, $30(=6 \times 5)$ is a congruent number over \mathbf{Q}, and there is a right triangle with area 30 and three rational sides $(5,12,13)$. By dividing the three sides by $\sqrt{5}$, we obtain the right triangle;

$$
\left(\sqrt{5}, \frac{12 \sqrt{5}}{5}, \frac{13 \sqrt{5}}{5}\right)
$$

By the calculation in the proof of Theorem 3, we obtain the right triangle with area 6;

$$
(X, Y, Z)=\left(\frac{33(13-5 \sqrt{5})}{44}, \frac{4(13+5 \sqrt{5})}{11}, \frac{7(85-13 \sqrt{5})}{44}\right)
$$

Acknowledgements

I am grateful to Professor T. Ichikawa for his valuable suggestions and comments on this research. Actually he suggested me his idea on the classifi-
cation of right triangles by observing $P+\sigma(P)$ and $P^{\prime}+\sigma\left(P^{\prime}\right)$ in the proof of Theorems 2 and 3 respectively. I also thanks to Professor N. Terai and Mr. H. Sekiguchi for their advice. Furthermore, I would like to thank the referee for his many useful comments.

References

[1] B. J. Birch and H. P. F. Swinnerton-Dyer. Notes on elliptic curves I and II. J. Reine Angew. Math. 212 (1963), 7-25; 218 (1965), 79-108.
[2] J. Coates and A. Wiles. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223-251.
[3] A. W. Knapp. Elliptic curves. Princeton University Press, Princeton (1992).
[4] N. Koblitz. Introduction to elliptic curves and modular forms. Springer-Verlag, New York (1984).
[5] K. Kume. The congruent number problem and the Hasse-Weil L-function of an elliptic curve. (In Japanese) Master Thesis, Saga University (1997), unpublished.
[6] S. Kwon. Torsion subgroups of elliptic curves over quadratic extensions. J. Number Theory 62 (1997), no. 1, 144-162.
[7] F. R. Nemenzo. All congruent numbers less than 40000. Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 1, 29-31.
[8] P. Serf. The rank of elliptic curves over real quadratic number fields of class number 1. PhD Thesis, Universität des Saarlandes, Saarbrücken (1995).
[9] J. B. Tunnell. A classical Diophantine problem and modular forms of weight $3 / 2$. Invent. math. 72 (1983), no. 2, 323-334.
[10] H. Wada and M. Taira. Computations of rank of elliptic curve $y^{2}=x^{3}-n^{2} x$. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 5, 154-157.

Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga, 840-8502 Japan
E-mail: tada@ms.saga-u.ac.jp

