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Abstract. Let m �01� be a square-free positive integer. We say that a positive

integer n is a congruent number over Q� ����m
p � if it is the area of a right triangle with

three sides in Q� ����m
p �. We put K � Q� ����m

p �. We prove that if m0 2, then n is a

congruent number over K if and only if En�K� has a positive rank, where En�K� denotes

the group of K-rational points on the elliptic curve En de®ned by y2 � x3 ÿ n2x.

Moreover, we classify right triangles with area n and three sides in K.

1. Introduction

A positive integer n is called a congruent number if it is the area of a right

triangle whose three sides have rational lengths. For each positive integer n,

let En be the elliptic curve over Q de®ned by y2 � x3 ÿ n2x, and En�k� the

group of k-rational points on En for a number ®eld k. By the following well-

known theorem, we have a condition such that n is a congruent number in terms

of En�Q�.
Theorem A (cf. [4, p. 46]). A positive integer n is a congruent number if

and only if En�Q� has a point of in®nite order.

Let y be the point at in®nity of En�Q� which is regarded as the identity

for the group structure on En. We note that, in the proof of Theorem A, we

use that the torsion subgroup of En�Q� consists of four elements y, �0; 0�, and

�Gn; 0� of order 1 or 2.

For any positive integer n, determining whether it is a congruent number

or not is a classical problem. In relation to Theorem A, some important results

are known. By the result of J. Coates and A. Wiles [2] for elliptic curves

E over Q with complex multiplication, if the rank of En�Q� is positive, then

L�En; 1� � 0, where L�En; s� is the Hasse-Weil L-function of En=Q. Assuming

the weak Birch and Swinnerton-Dyer conjecture [1], it is known that if L�En; 1�
� 0, then the rank of En�Q� is positive. F. R. Nemenzo [7] showed that for

n < 42553, the weak Birch and Swinnerton-Dyer conjecture holds for En, i.e.,
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the rank of En�Q� is positive if and only if L�En; 1� � 0. Moreover, J. B. Tunnell

[9] gave a necessary and su½cient condition for n such that L�En; 1� � 0. And

hence, assuming the weak Birch and Swinnerton-Dyer conjecture, it gives a

simple criterion to determine whether or not n is a congruent number.

When n is a non-congruent number, one can ask if n is the area of a right

triangle with three sides in a real quadratic ®eld. The ®rst aim of this paper

is to study an analogy to Theorem A in the case of real quadratic ®elds, so we

will consider congruent numbers over real quadratic ®elds. Let m �01� be a

square-free positive integer, and put K � Q� ����m
p �. We say that n is a congruent

number over K if it is the area of a right triangle with three sides consisting of

elements in K. For the sake of avoiding confusion, when n is the area of a

right triangle whose three sides have rational lengths, in this paper, we say that

n is a congruent number over Q.

Using the result of Kwon [6, Theorem 1 and Proposition 1] which classify

the torsion subgroup of E : y2 � x�x�M��x�N�, with M;N A Z, one can

determine the torsion subgroup of En�K� and prove the following theorem.

Theorem 1. Let n be a positive integer. Assume that m0 2. Then n is a

congruent number over K � Q� ����m
p � if and only if En�K� has a point of in®nite

order.

When m � 2, Theorem 1 does not hold. For example, when m � 2 and

n � 1, there is the right triangle with three sides � ���2p ;
���
2
p

; 2� and area 1.

However, by using Theorem B which will be reviewed in O 2, one can see that

the rank of E1�Q�
���
2
p �� is 0.

Combining Theorem 1 with Theorem B, we have the following corollary.

Corollary 1. Let n be a positive integer. Assume that m0 2. Then n is

a congruent number over K � Q� ����m
p � if and only if either n or nm is a congruent

number over Q.

We assume that n is a non-congruent number over Q. The second aim of

this paper is to classify right triangles with three sides in K and area n. By

using a correspondence between the set of points 2P A 2En�K�nfyg and the

set of three sides �X ;Y ;Z� A K 3 of right triangles with area n, and by studying

P� s�P�, where s is the generator of Gal�K=Q�, we can classify the right

triangles with area n and three sides in K as follows.

Theorem 2. We assume that n is a non-congruent number over Q. Then

we have;

(1) Any right triangles with area n and three sides X ;Y ;Z A K � Q� ����m
p �

�X aY < Z� is necessarily one of the following types:

Type 1. X
����
m
p

;Y
����
m
p

;Z
����
m
p

A Q,
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Type 2. X ;Y ;Z
����
m
p

A Q,

Type 3. X ;Y A KnQ such that s�X � � Y, Z A Q,

Type 4. X ;Y A KnQ such that s�X � � ÿY, Z A Q,

where s is the generator of Gal�K=Q�.
(2) If m1 3; 6; 7 �mod 8� or m has a prime factor q1 3 �mod 4�, then there is

no right triangle of Type 2. Moreover, there is no right triangle of Type 3

or no right triangle of Type 4.

(3) If m1 3; 5; 6; 10; 11; 13 �mod 16� or m has a prime factor q1 3; 5 �mod 8�,
then there is no right triangle of Type 3 nor that of Type 4.

Remark. Suppose that m � 2. If n � c2 for some c A N, then there is

a right triangle with X � Y � c
���
2
p

and area n, which is of Type 4. And if

n � 2c 02 for some c 0 A N, then there is a right triangle with X � Y � 2c 0 and

area n, which is of Type 2.

The third aim of this paper is to give a condition on types of right

triangles with area n and three sides in Q� ����m
p � which is equivalent that n

and nm are congruent numbers over Q as follows.

Theorem 3. A positive integer n is the area of a right triangle with three

sides X ;Y ;Z A Q� ����m
p � such that X aY < Z, Z B Q and Z

����
m
p

B Q if and only

if n and nm are congruent numbers over Q.

2. Known results

For any real quadratic ®eld K, we need to know the rank of En�K� to

prove Theorems 1, 2 and Corollary 1. And hence, we recall the following

result.

Theorem B (cf. [8, p. 63]). Let E be an elliptic curve over a number ®eld k

which is given by

E : y2 � x3 � ax2 � bx� c; a; b; c A k:

And let D be an element of knfa2 j a A kg. Then

rank�E�k�
����
D
p
��� � rank�E�k�� � rank�E D�k��;

where E D is the twist of E over k� ����D
p � which is de®ned by

E D : y2 � x3 � aDx2 � bD2x� cD3:

The following theorem allows us to recognize elements of 2En�K�.
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Theorem C (cf. [3, p. 85]). Let k be a ®eld of characteristic not equal to 2

nor 3, and E an elliptic curve over k. Suppose E is given by

E : y2 � �xÿ a��xÿ b��xÿ g�
with a; b; g in k. Let �x0; y0� be a k-rational point of Enfyg. Then there

exists a k-rational point �x1; y1� of E with 2�x1; y1� � �x0; y0� if and only if

x0 ÿ a, x0 ÿ b, and x0 ÿ g are squares in k.

3. Proof of Theorem 1

We ®rst describe the torsion subgroup of En�Q�
����
m
p �� in Proposition 1.

In the proof of Proposition 1, we use a result of Kwon [6, Theorem 1 and

Proposition 1].

Proposition 1. Let n be either 1 or a square-free positive integer. Let

T�En; k� be the torsion subgroup of En�k� over a number ®eld k, and En�2� the

2-torsion subgroup of En. If n � 1, m � 2, then

T�E1;Q�
���
2
p
��

� fy; �0; 0�; �G1; 0�; �1�
���
2
p

;G�2�
���
2
p
��; �1ÿ

���
2
p

;G�2ÿ
���
2
p
��g:

If n � 2, m � 2, then

T�E2;Q�
���
2
p
��

� fy; �0; 0�; �G2; 0�; �2� 2
���
2
p

;G4�1�
���
2
p
��; �2ÿ 2

���
2
p

;G4�1ÿ
���
2
p
��g:

Otherwise, T�En;Q�
����
m
p �� � En�2� � fy; �0; 0�; �Gn; 0�g:

Proof. First, note that the 2-torsion subgroup En�2� consists of four

elements �0; 0�, �Gn; 0�, the point at in®nity y, i.e.,

T�En;Q�
����
m
p ��IEn�2�GZ=2ZlZ=2Z:

Here, E m
n is the twist of En over Q� ����m

p � and de®ned by y2 � x3 ÿ �nm�2x,

hence E m
n is Enm. Therefore, T�E m

n ;Q� � T�Enm;Q�GZ=2ZlZ=2Z. And

because T�En;Q�GZ=2ZlZ=2Z, by using the result of Kwon [6, Theorem 1

and Proposition 1], we have

T�En;Q�
����
m
p ��GZ=2ZlZ=2Z or Z=2ZlZ=4Z:

Suppose that T�En;Q�
����
m
p ��GZ=2ZlZ=4Z. Then there exists a point

P of order 4 in T�En;Q�
����
m
p ��. Therefore, 2P must be �0; 0� or �Gn; 0�. By

Theorem C, if 2P � �0; 0� or �ÿn; 0�, then ÿn must be a square in Q� ����m
p �

which is a contradiction. If 2P � �n; 0�, by Theorem C, then n and 2n must

be squares in Q� ����m
p �. Since n is a square-free integer, one can see that n � 1,
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m � 2 or n � m � 2. By solving equations obtained by the duplication for-

mula on elliptic curves, we can describe T�En;Q�
����
m
p �� concretely. Otherwise,

T�En;Q�
����
m
p ��GZ=2ZlZ=2Z. We have completed the proof of Proposi-

tion 1. r

Proof of Theorem 1. Let k be a sub®eld of R. For a positive integer n,

let S be the set which consists of �X ;Y ;Z� A k3 satisfying that 0 < X aY < Z,

X 2 � Y 2 � Z2 and XY � 2n, and put

T � f�u; v� A 2En�k�nfyg j vb 0g:
Then the map j : S ! T is de®ned by

j��X ;Y ;Z�� � Z

2

� �2

;
Z�Y 2 ÿ X 2�

8

 !
��X ;Y ;Z� A S�:

By Theorem C, one can de®ne a map c : T ! S by

c��u; v�� � � �����������u� n
p ÿ �����������

uÿ n
p

;
�����������
u� n
p � �����������

uÿ n
p

; 2
���
u
p � ��u; v� A T�:

Then it is easy to see that c gives the inverse map jÿ1 of j.

We shall prove that S 0q if and only if En�k�nEn�2�0q. First,

We assume that S 0q. For �X ;Y ;Z� A S, we put Q � j��X ;Y ;Z��.
Because Q is the point on T, there is a point P A En�k�nEn�2� such that

Q � 2P. Therefore, we see that En�k�nEn�2�0q. Conversely, we assume

that En�k�nEn�2�0q. We take P A En�k�nEn�2�, and put 2P � �x0; y0�. By

Theorem C, x0; x0 G n are squares in k. Therefore, by the map c, we obtain a

right triangle with three sides in k.

Here we take a quadratic ®eld K � Q� ����m
p � as k. Assume that m0 2.

Then we have T�En;K� � En�2� by Proposition 1. Therefore, En�K� has a

positive rank if and only if En�K�nEn�2�0q. We have completed the proof

of Theorem 1. r

Proof of Corollary 1. By Theorem B, rank�En�K�� > 0 if and only

if rank�En�Q�� > 0 or rank�E m
n �Q�� > 0. Here, E m

n is the twist of En over K

and de®ned by y2 � x3 ÿ �nm�2x. Hence E m
n is Enm, which implies that

rank�E m
n �Q�� > 0 if and only if nm is a congruent number. This completes

the proof of Corollary 1. r

4. Proof of Theorem 2

First, we describe a formula for the additive law on En. For two points

P1;P2 A En�R� such that P1 � P2 0y, we put P1 � �x1; y1�, P2 � �x2; y2� and

P1 � P2 � �x3; y3�, where x1; x2; x3; y1; y2; y3 A R. If P1 0P2, then

x3 � l2 ÿ x1 ÿ x2; y3 � l�x1 ÿ x3� ÿ y1;
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where l � y2 ÿ y1

x2 ÿ x1
. If P1 � P2, then we have

x3 � x2
1 � n2

2y1

� �2

;

which is called the duplication formula.

Now we prove (1) in Theorem 2. Assume that n is a congruent number

over K � Q� ����m
p �, and let X ;Y ;Z �0 < X aY < Z� be the three sides of a

right triangle with area n and three sides in K. Then, as is seen in the proof

of Theorem 1, there is a point P A En�K�nEn�2� such that c�2P� � �X ;Y ;Z�.
Further, by the geometric interpretation of the group law on En�R�, we may

assume that P� �x; y� satis®es that xb�1� ���
2
p �n by replacing P with P��0; 0�,

P� �n; 0� or P� �ÿn; 0� if necessary. We put 2P � �u; v�, and let j � j be the

usual absolute value which is induced from the embedding i : K ,! R such that

i� ����m
p � is positive. Then, by the duplication formula on elliptic curves, we have

u � x2 � n2

2y

� �2

;

and hence, �����������
u� n
p � x2 � 2nxÿ n2

2jyj ;

�����������
uÿ n
p � x2 ÿ 2nxÿ n2

2jyj ;

���
u
p � x2 � n2

2jyj :

Therefore, using the map c in Section 3, we have

X � 2nx

jyj ; Y � x2 ÿ n2

jyj ; Z � x2 � n2

jyj :

Let s be the generator of Gal�K=Q�, and put s�P� � �s�x�; s�y��. Because

P� s�P� is an element in En�Q� and n is a non-congruent number over Q, we

have

P� s�P� A T�En;Q� � fy; �0; 0�; �Gn; 0�g:
Therefore, one of the following cases necessarily happens:

Case 1. P� s�P� �y. In this case, by the geometric interpretation

of the group law on En�R�, s�x� � x and s�y� � ÿy. So, x

and y
����
m
p

are rational. Therefore, X
����
m
p

, Y
����
m
p

and Z
����
m
p

are

rational, and so we obtain a right triangle of Type 1.

Masatomo Tada336



Case 2. P� s�P� � �0; 0�. In this case, by the geometric interpretation

of the group law on En�R�, we have s�x�=x � s�y�=y, which we

denote by a. Then we have

s�y�2 � a2y2 � a2x3 ÿ a2n2x:

And since s�P� is a point on En, we have

s�y�2 � s�x�3 ÿ n2s�x� � a3x3 ÿ n2ax:

Because we easily see that a0 0; 1 and x0 0, by these equations,

we have

ax2 � ÿn2:

Substituting this for Y and Z, we have Y � x�x� s�x��=jyj
and Z

����
m
p � x�xÿ s�x�� ����m

p
=jyj. Since x=y � s�x=y� and xb

�1� ���
2
p �n > 0, x=jyj is rational. Therefore, X � 2nx=jyj, Y and

Z
����
m
p

are rational, and so we obtain a right triangle with two

rational sides including a right angle, which is of Type 2.

Case 3. P� s�P� � �n; 0�. In this case, by the geometric interpretation

of the group law on En�R�, we have s�xÿ n�=�xÿ n� � s�y�=y,

which we denote by b. And we put z � xÿ n. Then we have

s�y�2 � b2z3 � 3b2z2n� 2b2zn2:

And since s�P� is a point on En, we have

s�y�2 � b3z3 � 3b2z2n� 2bzn2:

Because we easily see that b 0 0; 1 and z0 0, by these equations,

we have

bz2 � 2n2:

Substituting this equation and x � z� n for three sides X ;Y

and Z, we have X � z�s�z� � 2n�=jyj, Y � z�z� 2n�=jyj and

Z � z�z� 2n� s�z��=jyj. Since z=y � s�z=y� and z > 0, z=jyj is

rational. Therefore, Z is rational and s�X � � Y , and so we

obtain a right triangle with one rational side and two conjugate

sides, which is of Type 3.

Case 4. P�s�P���ÿn; 0�. In this case, we put w� x� n. Then one can

show, as in the case of Type 3, that w=jyj and Z are rational and

that X � w�ÿs�w� � 2n�=jyj, Y � w�wÿ 2n�=jyj, which implies

that s�X� � ÿY . Hence, we obtain a right triangle with one

rational side Z and two sides X, Y such that s�X� � ÿY , which

is of Type 4.
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Second, we prove (3) in Theorem 2. Suppose that there is a right triangle

of Type 3 (resp. Type 4), and let aÿ b
����
m
p

(resp. ÿa� b
����
m
p �, a� b

����
m
p

be two

sides including a right angle and c the hypotenuse, where a; b; c are positive

rational numbers. Then �x; y; z� � �a; b; c� is a non-zero solution of the fol-

lowing equation

2x2 � 2my2 � z2:

By the Hasse principle, the above equation has a solution in Q if and only if it

has a solution in Qp for every prime p, where Qp is the ®eld of p-adic numbers.

Using Hilbert symbols, one can see that it has a solution in Q2 if and only if

m1 1; 2; 7; 9; 14; 15 �mod 16�, and that, when p � q for prime factor q0 2 of

m, the above equation has a solution in Qq if and only if 2 is a quadratic

residue mod q, i.e., q1 1; 7 �mod 8�.
Third, we prove (2) in Theorem 2. Using Hilbert symbols as in the case

of (3), one can prove that if m1 3; 6; 7 �mod 8� or m has a prime factor q1 3

�mod 4�, then there is no right triangle of Type 2. And since a set fP� s�P�g
becomes a subgroup of En�2�, the number of di¨erent types of right triangles

with area n must not be 3. Therefore, one can see that if there is no right

triangle of Type 2, then there is not the right triangle of Type 3 or not the right

triangle of Type 4. This completes the proof of Theorem 2. r

5. Proof of Theorem 3

First, suppose that n and nm are congruent numbers over Q. By de®-

nition, there are rational numbers a; b; c such that a2 � b2 � c2, ab � 2n, and

a < b < c. Similarly, there are rational numbers d; e; f such that d 2 � e2 � f 2,

de � 2nm and d < e < f . Hence, n is also the area of a right triangle

d����
m
p ;

e����
m
p ;

f����
m
p

� �
:

We recall the maps j : S ! T and c : T ! S in O 3, and put P � �u; v� �
j��a; b; c�� � j��d= ����

m
p

; e=
����
m
p

; f =
����
m
p ��. Then

u � f 2�e2 ÿ d 2�2 �m3c2�b2 ÿ a2�2 ÿ � f 2 �mc2�� f 2 ÿmc2�2
4m� f 2 ÿmc2�2

ÿ c f �b2 ÿ a2��e2 ÿ d 2� ����m
p

2� f 2 ÿmc2�2 :

We may assume that P � �u; v� satis®es that vb 0 by replacing P with ÿP if

necessary. Because �u; v� A T , we have c��u; v�� A S, which denotes a system of

Masatomo Tada338



three sides of a right triangle with area n. Let �X ;Y ;Z� be the system of three

sides of the right triangle with area n obtained above. By Theorem C and the

additive law to the points on the elliptic curve, one can see that X ;Y ;Z A
Q� ����m
p �, Z B Q and Z

����
m
p

B Q.

Conversely, suppose to the contrary that either n or nm is non-congruent

number over Q. Assuming that n is a non-congruent number over Q and nm

is a congruent number over Q, by Theorem 2 (1), n is not the area of a right

triangle with three sides X ;Y ;Z A Q� ����m
p � such that X aY < Z, Z B Q and

Z
����
m
p

B Q. Second, we assume that nm is a non-congruent number over Q and

n is a congruent number over K � Q� ����m
p �, and let �a; b; c� A K 3 be a system of

three sides of right triangles with area n. By multiplying the three sides by
����
m
p

,

we have a right triangle with area nm and three sides �a ����
m
p

; b
����
m
p

; c
����
m
p � A K 3.

For a positive integer nm, we de®ne the map j 0 in the same way as for j.

Then one can put 2P 0 � j 0��a ����
m
p

; b
����
m
p

; c
����
m
p �� for a point P 0 A Enm�K�. For

the generator s of Gal�K=Q�, because P 0 � s�P 0� is an element in Enm�Q� and

nm is a non-congruent number over Q, we have

P 0 � s�P 0� A T�Enm;Q� � fy; �0; 0�; �Gnm; 0�g:
Therefore, by the same way as in the proof of Theorem 2 (1), one can see that

one of the following cases necessarily happens:

Case 1. a; b; c A Q.

Case 2. a
����
m
p

; b
����
m
p

; c A Q.

Case 3. a; b A KnQ such that s�a� � ÿb, c
����
m
p

A Q.

Case 4. a; b A KnQ such that s�a� � b, c
����
m
p

A Q.

Hence, n is not the area of a right triangle with hypotenuse Z � c such that

Z B Q and Z
����
m
p

B Q. Third, we assume that n and nm are non-congruent

numbers over Q. When m0 2, by Corollary 1, n is not a congruent number

over K. When m � 2 and n is a congruent number over K, the right triangle

with area n has three sides such that X � Y . Hence, one can see that n is not

the area of a right triangle with hypotenuse Z such that Z B Q and Z
����
m
p

B Q.

We have completed the proof of Theorem 3. r

6. Examples

In this section, we give some examples of right triangles. For a positive

integer n and a square-free positive integer m, let X ;Y ;Z A K � Q� ����m
p �

�X aY < Z� be three sides of right triangles with area n, and, using the map j

in O 3, put Q � j��X ;Y ;Z�� A 2En�K�nfyg.
Example 1. n � 2, m � 17; We have the following right triangle of Type

1, that of Type 2, that of Type 3 and that of Type 4 in Theorem 2 (1) and the

corresponding points of 2En�K�nfyg.
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Type 1. 34 ��2� 17� is a congruent number over Q, and there is a right

triangle with three rational sides (15/2, 136/15, 353/30) and area 34.

By dividing the three sides by
�����
17
p

, we obtain the following right

triangle;

�X ;Y ;Z� � 15
�����
17
p

34
;
8
�����
17
p

15
;
353

�����
17
p

510

 !
;

and we have the corresponding point

Q � 2118353

1040400
;G

8245727
�����
17
p

62424000

 !
A 2E2�Q�

�����
17
p
��nfyg:

Type 2. We have the following right triangle such that two sides including a

right angle are rational;

�X ;Y ;Z� � �1; 4;
�����
17
p
�;

and the corresponding point

Q � 17

4
;G

15
�����
17
p

8

 !
A 2E2�Q�

�����
17
p
��nfyg:

Type 3. First, we put X � xÿ y
�����
17
p

, Y � x� y
�����
17
p

, and Z � z, where x; y; z

A Qnf0g. Then �x; y� satis®es that x2 ÿ 17y2 � 4. For example,

�13=2; 3=2� is a solution of this equation. Representing x and y in

terms of t A Q by using the above solution, we obtain

x � 13ÿ 102t� 221t2

2�ÿ1� 17t2� ; y � ÿ3� 26tÿ 51t2

2�ÿ1� 17t2� :

Substituting them for 2x2�34y2, by using MATHEMATICA, we ®nd

out that if t � 1, then 2x2 � 34y2 is a square in Q. Hence, we obtain

the following right triangle;

�X ;Y ;Z� � 33ÿ 7
�����
17
p

8
;
33� 7

�����
17
p

8
;
31

4

 !
;

and we have the corresponding point

Q � 961

64
;G

7161
�����
17
p

512

 !
A 2E2�Q�

�����
17
p
��nfyg:
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Type 4. The following example is obtained as in the case of Type 3. We have

the following right triangle;

�X ;Y ;Z� � ÿ1� �����
17
p

2
;
1� �����

17
p

2
; 3

 !
;

and we have the corresponding point

Q � 9

4
;G

3
�����
17
p

8

 !
A 2E2�Q�

�����
17
p
��nfyg:

We put K � Q� �����17
p �. In the same way as in K. Kume's paper [5, 4-3],

using the above examples, one can see that the rank of E34�Q� is not less than 2

as follows. We de®ne a homomorphism j : E2�K�!E2�Q� by j�P� �P�s�P�,
P A E2�K� and s is the generator of Gal�K=Q�. Because 2 is a non-congruent

number over Q, we have E2�Q� � E2�2�. By the existence of four types of right

triangles with area 2, j is surjective, i.e.,

E2�K�=Ker�j�GZ=2ZlZ=2Z:

Here note that Ker�j�I 2E2�K�. Let P1;P2 A E2�K� be a point such that

2P1 � �17=4; 15
�����
17
p

=8�, 2P2 � �961=64; 7161
�����
17
p

=512�. Then, by the proof of

Theorem 2 (1), j�P1� � �0; 0�, j�P2� � �2; 0�. Hence, we have P1;P2 B 2E2�K�
and P1 � P2 B 2E2�K�. If we assume that the rank of E2�K� is 1, then P1 � P2

A 2E2�K�, which is a contradiction. Hence, by Theorem B, the rank of E34�Q�
is greater than 1.

It is known that the rank of E34�Q� is 2 (for example, see [10]).

Example 2. n � 3, m � 7; We have the following right triangle of Type

1 and that of Type 4 in Theorem 2 (1), and the corresponding points of

2En�K�nfyg. By Theorem 2 (2), there is no right triangle of Type 2 nor that

of Type 3.

Type 1. 21 ��3� 7� is a congruent number over Q, and there is a right

triangle with area 21 and three rational sides (7/2, 12, 25/2). By

dividing the three sides by
���
7
p

, we obtain the following right triangle;

�X ;Y ;Z� �
���
7
p

2
;
12

���
7
p

7
;
25

���
7
p

14

 !
;

and we have the corresponding point

Q � 4375

784
;G

13175
���
7
p

3136

 !
A 2E3�Q�

���
7
p
��nfyg:
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Type 4. The following example is obtained as in the case of Type 3 in

Example 1;

�X ;Y ;Z� � �ÿ1�
���
7
p

; 1�
���
7
p

; 4�;
and we have the corresponding point

Q � �4;G2
���
7
p
� A 2E3�Q�

���
7
p
��nfyg:

Example 3. n � 2, m � 3; We have the following right triangle of Type

1 in Theorem 2 (1) and the corresponding point of 2En�K�nfyg. By

Theorem 2 (2) and (3), there is no right triangle of Type 2, that of Type 3 and

that of Type 4.

Type 1. 6 ��2� 3� is a congruent number over Q, and there is a right

triangle with area 6 and three rational sides �3; 4; 5�. By dividing

the three sides by
���
3
p

, we obtain the following three sides of a right

triangle;

�X ;Y ;Z� �
���
3
p

;
4
���
3
p

3
;
5
���
3
p

3

 !
;

and we have the corresponding point

Q � 25

12
;G

35
���
3
p

72

 !
A 2E2�Q�

���
3
p
��nfyg:

Example 4. n � 6, m � 5; 6 is a congruent number over Q, and there is

a right triangle with area 6 and three rational sides �3; 4; 5�. Further,

30 ��6� 5� is a congruent number over Q, and there is a right triangle with

area 30 and three rational sides �5; 12; 13�. By dividing the three sides by
���
5
p

,

we obtain the right triangle;

���
5
p

;
12

���
5
p

5
;
13

���
5
p

5

 !
:

By the calculation in the proof of Theorem 3, we obtain the right triangle with

area 6;

�X ;Y ;Z� � 33�13ÿ 5
���
5
p �

44
;
4�13� 5

���
5
p �

11
;
7�85ÿ 13

���
5
p �

44

 !
:
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