Нікозніма Матн. J. **32** (2002), 125–143

Generalized solutions of nonlinear diffusion equations

Hideo DEGUCHI

(Received May 31, 2001) (Revised September 18, 2001)

ABSTRACT. We investigate generalized solutions of nonlinear diffusion equations in the sense of Colombeau and extend the results of Biagioni and Oberguggenberger [2] to more general equations. We prove the existence and uniqueness of a generalized solution which is shown to be consistent with the classical solution.

1. Introduction

Biagioni and Oberguggenberger [2] have studied generalized solutions of the Cauchy problem

$$\begin{cases} \tilde{u}_t + \tilde{u}\tilde{u}_x = \tilde{\mu}\tilde{u}_{xx}, & x \in \mathbf{R}, \ t > 0, \\ \tilde{u}|_{t=0} = \tilde{u}_0, & x \in \mathbf{R}, \end{cases}$$
(1.1)

where $\tilde{\mu}$ is a generalized constant belonging to the algebra $\mathscr{G}_{s,g}$ of generalized functions, which is a modified version of the algebra introduced by Colombeau [3, 4] to deal with the multiplication of distributions. This algebra contains the space of bounded distributions $\mathscr{D}'_{L^{\infty}}$ so that initial data with strong singularities can be considered in this setting. They formulated the classical Cauchy problem

$$\begin{cases} u_t + uu_x = 0, & x \in \mathbf{R}, \ t > 0, \\ u_{t=0} = u_0, & x \in \mathbf{R} \end{cases}$$
(1.2)

as

$$\begin{cases} \tilde{u}_t + \tilde{u}\tilde{u}_x \approx 0, & x \in \mathbf{R}, \ t > 0, \\ \tilde{u}|_{t=0} = \tilde{u}_0, & x \in \mathbf{R} \end{cases}$$
(1.3)

in the present setting, where " \approx " denotes the association relation on $\mathscr{G}_{s,g}$, and proved that the generalized solution of (1.3) is obtained as the generalized solution of (1.1) with $\tilde{\mu} \approx 0$. Furthermore, they proved the existence and uniqueness of a generalized solution of (1.1) and showed that, if the initial data

²⁰⁰⁰ Mathematics Subject Classification. 35D05, 35K55.

Key words and phrases. Cauchy problems, generalized solutions.

belong to $L^{\infty}(\mathbf{R})$ and $\tilde{\mu} \approx 0$, the generalized solution is associated with the weak entropy solution of (1.2).

In this paper we study generalized solutions of the Cauchy problem

$$\begin{cases} \tilde{u}_t + f(x, t, \tilde{u})\tilde{u}_x + g(x, t, \tilde{u})\tilde{u} = \tilde{\mu}\tilde{u}_{xx}, & x \in \mathbf{R}, \ t > 0, \\ \tilde{u}|_{t=0} = \tilde{u}_0, & x \in \mathbf{R}, \end{cases}$$
(1.4)

where $\tilde{\mu}$ is a generalized constant. As in [2] we formulate the classical Cauchy problem

$$\begin{cases} u_t + f(x, t, u)u_x + g(x, t, u)u = 0, & x \in \mathbf{R}, \ t > 0, \\ u_{t=0} = u_0, & x \in \mathbf{R} \end{cases}$$
(1.5)

as

$$\begin{cases} \tilde{\boldsymbol{u}}_t + f(\boldsymbol{x}, t, \tilde{\boldsymbol{u}})\tilde{\boldsymbol{u}}_x + g(\boldsymbol{x}, t, \tilde{\boldsymbol{u}})\tilde{\boldsymbol{u}} \approx 0, & \boldsymbol{x} \in \mathbf{R}, \ t > 0, \\ \tilde{\boldsymbol{u}}|_{t=0} = \tilde{\boldsymbol{u}}_0, & \boldsymbol{x} \in \mathbf{R} \end{cases}$$
(1.6)

in the present setting.

In this paper, we extend results in [2] to (1.4) with general functions f and g. We first recall the definition of the Colombeau algebra $\mathscr{G}_{s,g}$ in Section 2. In Sections 3 and 4, we prove results concerning existence and uniqueness of a generalized solution of (1.4) (Theorems 3.1 and 4.4). In Section 5, we study the distribution with which the generalized solution of (1.4) is associated, when the initial data belong to $L^{\infty}(\mathbf{R})$. It turns out that if a coefficient $\tilde{\mu}$ is associated with zero, the generalized solution of (1.4) is associated with the weak solution of (1.5) which satisfies the entropy condition (Theorem 5.3) and, if $\tilde{\mu}$ is a positive number, the generalized solution is associated with the unique classical solution (Theorem 5.5).

2. The algebra of generalized functions

We briefly recall the definition of a modified version of the Colombeau algebra of generalized functions [3, 4].

NOTATIONS 2.1. Let Ω be a nonempty open subset of \mathbf{R}^d . We set

- $\mathscr{E}_{s}[\Omega] = \{ R : (0, \infty) \times \Omega \to \mathbf{R} \text{ such that } R(\varepsilon, x) \text{ is of class } C^{\infty} \\ \text{ in } x \in \Omega \text{ for each } \varepsilon > 0 \};$
- $\mathscr{E}_{s}[\overline{\Omega}] = \{ R : (0, \infty) \times \overline{\Omega} \to \mathbf{R} \text{ such that } R|_{(0, \infty) \times \Omega} \in \mathscr{E}_{s}[\Omega] \\ \text{and that the map } x \in \Omega \mapsto R(\varepsilon, x) \in \mathbf{R} \text{ and all its} \\ \text{derivatives can be continuously extended to } \overline{\Omega}, \\ \text{for each } \varepsilon > 0 \};$

$$\mathscr{E}_{M,s,g}[\overline{\Omega}] = \{ R \in \mathscr{E}_s[\overline{\Omega}] \text{ such that for all } \alpha \in \mathbf{N}^d, \\ \text{there exist } N \in \mathbf{N}, c > 0 \text{ and } \eta > 0 \text{ such that} \\ \sup_{x \in \overline{\Omega}} |D_x^{\alpha} R(\varepsilon, x)| < c\varepsilon^{-N} \text{ for all } 0 < \varepsilon < \eta \}; \end{cases}$$

$$\mathcal{N}_{s,g}[\overline{\Omega}] = \{ R \in \mathscr{E}_s[\overline{\Omega}] \text{ such that for all } \alpha \in \mathbf{N}^d \text{ and } q \in \mathbf{N}$$

there exist $c > 0$ and $\eta > 0$ such that
$$\sup_{x \in \overline{\Omega}} |D_x^{\alpha} R(\varepsilon, x)| < c\varepsilon^q \text{ for all } 0 < \varepsilon < \eta \}.$$

The algebra of generalized functions $\mathscr{G}_{s,g}(\overline{\Omega})$ is defined by

$$\mathscr{G}_{s,g}(\overline{\Omega}) = \mathscr{E}_{M,s,g}[\overline{\Omega}]/\mathscr{N}_{s,g}[\overline{\Omega}].$$

We denote by $R_{\tilde{u}}(\varepsilon, x)$ a representative of a generalized function $\tilde{u} \in \mathcal{G}_{s,g}(\overline{\Omega})$. Then for any $\alpha \in \mathbb{N}^d$, we can define a generalized function $D_x^{\alpha} \tilde{u}$ to be the class of $\{D_x^{\alpha} R_{\tilde{u}}(\varepsilon, x)\}_{\varepsilon>0}$. Also, for any generalized function $\tilde{u} \in \mathcal{G}_{s,g}(\mathbb{R} \times [0, T])$, we can define $\tilde{u}|_{t=0}$ to be the class of $\{R_{\tilde{u}}(\varepsilon, x, 0)\}_{\varepsilon>0}$.

Concerning nonlinear functions f of elements of the algebra $\mathscr{G}_{s,g}(\mathbf{R}^d)$, we define the following notion.

DEFINITION 2.2. We say that a function $f \in C^{\infty}(\mathbf{R}^d)$ is *slowly increasing* at *infinity* if for every $\alpha \in \mathbf{N}^d$ there exist c > 0 and $r \in \mathbf{N}$ such that, for all $x \in \mathbf{R}^d$,

$$|D^{\alpha}f(x)| \le c(1+|x|)^r.$$

We denote by $\mathcal{O}_M(\mathbf{R}^d)$ the space of slowly increasing functions at infinity.

If $f \in \mathcal{O}_M(\mathbf{R}^p)$ and $\tilde{u}_i \in \mathcal{G}_{s,g}(\mathbf{R}^d)$ for i = 1, ..., p, we can define a generalized function $f(\tilde{u}_1, ..., \tilde{u}_p) \in \mathcal{G}_{s,g}(\mathbf{R}^d)$ to be the class of $\{f(R_{\tilde{u}_1}, ..., R_{\tilde{u}_p})\}_{\varepsilon>0}$. For details see [1, 3, 4].

REMARK 2.3. The algebra $\mathscr{G}_{s,g}(\mathbf{R}^d)$ contains the space of bounded distributions $\mathscr{D}'_{L^{\infty}}(\mathbf{R}^d)$. Let f be an element of $\mathscr{D}'_{L^{\infty}}(\mathbf{R}^d)$. Since $R(\varepsilon, x) = f * \rho_{\varepsilon}(x)$ is a representative of f, we obtain $\mathscr{D}'_{L^{\infty}}(\mathbf{R}^d) \subset \mathscr{G}_{s,g}(\mathbf{R}^d)$, where ρ is a fixed element of $\mathscr{G}(\mathbf{R}^d)$ satisfying $\int \rho(x) dx = 1$, $\int x^{\alpha} \rho(x) dx = 0$, for all $\alpha \in \mathbf{N}^d$, $|\alpha| \ge 1$, and

$$\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \rho\left(\frac{x}{\varepsilon}\right).$$

DEFINITION 2.4. A generalized function $\tilde{u} \in \mathcal{G}_{s,g}(\overline{\Omega})$ is said to be *associated with a distribution* $w \in \mathcal{D}'(\Omega)$ if it has a representative $R_{\tilde{u}} \in \mathscr{E}_{M,s,g}[\overline{\Omega}]$ such that

$$R_{\tilde{u}}(\varepsilon, x) \to w$$
 in $\mathscr{D}'(\Omega)$ as $\varepsilon \to 0$.

We denote by $\tilde{u} \approx w$ if \tilde{u} is associated with w.

In other words, a generalized function $\tilde{u} \in \mathscr{G}_{s,g}(\overline{\Omega})$ is associated with a distribution w if \tilde{u} behaves like w on the level of information of distribution theory. Actually, if $f \in \mathscr{D}'_{L^{\infty}}$, the class of $\{f * \rho_{\varepsilon}\}_{\varepsilon>0}$ is associated with f.

DEFINITION 2.5. A generalized function $\tilde{\mu} \in \mathscr{G}_{s,g}(\bar{\Omega})$ is called a *generalized* constant if it has a representative which is constant for each $\varepsilon > 0$. We call $\tilde{\mu}$ a generalized positive number if it has a representative $R_{\tilde{\mu}}(\varepsilon)$ such that there exist $N \in \mathbb{N}$ and $\eta > 0$ such that $\varepsilon^N \leq R_{\tilde{\mu}}(\varepsilon) \leq \varepsilon^{-N}$ for $0 < \varepsilon < \eta$.

DEFINITION 2.6. We say that $\tilde{u} \in \mathcal{G}_{s,g}(\overline{\Omega})$ is of bounded type if it has a representative $R_{\tilde{u}} \in \mathscr{E}_{M,s,g}[\overline{\Omega}]$ such that there exist c > 0 and $\eta > 0$ such that

$$\sup_{x\in\overline{\Omega}}|R_{\tilde{u}}(\varepsilon,x)| < c \quad \text{for } 0 < \varepsilon < \eta.$$

We note that $u_0 \in L^{\infty}(\mathbf{R})$, viewed as an element of $\mathscr{G}_{s,g}(\mathbf{R})$, is of bounded type.

3. Existence theorem

THEOREM 3.1. Assume that $\tilde{\mu}$ is a generalized positive number and that $f, g \in C^{\infty}(\mathbb{R}^3)$ satisfy the following conditions: for every $\alpha \in \mathbb{N}^3$, there exist c > 0 and $r \in \mathbb{N}$ such that, for all $(x, t, u) \in \mathbb{R}^3$,

$$|D^{\alpha}f(x,t,u)| \le c(1+|u|)^r,$$

 $|D^{\alpha}g(x,t,u)| \le c(1+|u|)^r,$

and $g \ge 0$. Then for each T > 0 there exists a solution $\tilde{u} \in \mathscr{G}_{s,g}(\mathbf{R} \times [0,T])$ of (1.4).

In order to prove Theorem 3.1, we first prove Lemmas 3.3 and 3.4. Let us recall a next well-known result.

LEMMA 3.2 ([7], Section 28, Theorems 7 and 8). Let $0 < \alpha \le 1$ and $0 < \beta \le 1$, and let k and ℓ be two nonnegative integers such that $k + \alpha > \ell + \beta$. Furthermore, let an open subset D of \mathbf{R}^d be bounded and convex or bounded with a C^{∞} -boundary. Then the identity map

$$I: C^{k+lpha}(D) o C^{\ell+eta}(D)$$

is compact.

LEMMA 3.3. Let g be a function on $\mathbf{R} \times (0, T)$, where $0 < T \le \infty$, such that for any 0 < t < T,

$$\sup_{x \in \mathbf{R}} |g(x,t)| \le M t^{-\beta}$$

for some M > 0 depending on T and for some $0 \le \beta < 1$. Then

$$v(x,t) = -K \underset{x,t}{*} g = -\int_0^t \int_{-\infty}^{\infty} K(x-\xi,t-\eta)g(\xi,\eta)d\xi d\eta,$$
$$K(x,t) = \frac{1}{2\sqrt{\pi\mu t}} \exp\left(-\frac{x^2}{4\mu t}\right)$$

is a distributional solution of the problem

$$\begin{cases} v_t + g = \mu v_{xx}, & x \in \mathbf{R}, \ 0 < t < T, \\ v_{t=0}^{\dagger} = 0, & x \in \mathbf{R}, \end{cases}$$

where $\mu > 0$. Furthermore, v and v_x are Hölder continuous with respect to x and t, and for $0 < \alpha \le 1$, the sup norm $\|\cdot\|$ and Hölder norm $|\cdot|_{\alpha}$ on the domain $\mathbf{R} \times [t,s]$ satisfy

$$\begin{cases} \|v\| \leq \frac{s^{1-\beta}}{1-\beta}M, \\ \|v_x\| \leq \frac{\mu^{-1/2}}{\sqrt{\pi}}B(1-\beta, 1/2) \max\{t^{1/2-\beta}, s^{1/2-\beta}\}M, \end{cases}$$
(3.1)
$$v|_{\alpha} \leq K(\mu^{-\alpha/2}+1)M, \quad \text{with } \alpha < 1, \alpha \leq 1-\beta, \\ v_x|_{\alpha} \leq K(\mu^{-(1+\alpha)/2}+\mu^{-1/2})Mt^{-\beta}, \quad \text{with } \alpha < \frac{1}{2}, \end{cases}$$
(3.2)
$$v_x|_{\alpha} \leq K(\mu^{-(1+\alpha)/2}+\mu^{-1/2})M, \quad \text{with } \alpha < \frac{1}{2}, \alpha \leq \frac{1}{2}-\beta, \text{ if } \beta < \frac{1}{2} \end{cases}$$

for some positive constant K, where B is the beta function.

PROOF. Since the inequalities of (3.1) are clear, we only prove (3.2). Since

$$\exp\left(-\frac{(x-\xi)^2}{4\mu(t-\eta)}\right) - \exp\left(-\frac{(y-\xi)^2}{4\mu(t-\eta)}\right)$$
$$= \int_{|y-\xi|^{\alpha}}^{|x-\xi|^{\alpha}} \left(-\frac{2}{\alpha}\frac{\zeta^{2/\alpha-1}}{4\mu(t-\eta)}\right) \exp\left(-\frac{\zeta^{2/\alpha}}{4\mu(t-\eta)}\right) d\zeta,$$

using the change of variable and $||x - \xi|^{\alpha} - |y - \xi|^{\alpha}| \le |x - y|^{\alpha}$, $0 < \alpha \le 1$, we obtain that

$$\begin{aligned} |v(x,t) - v(y,t)| &\leq |x - y|^{\alpha} B(1 - \beta, 1 - \alpha/2) \\ &\cdot \frac{2^{3-\alpha}}{\sqrt{\pi\alpha}} \int_0^\infty \zeta^{2-\alpha} e^{-\zeta^2} d\zeta \cdot \mu^{-\alpha/2} M t^{1-\alpha/2-\beta} \end{aligned}$$

from the hypothesis on g. Similarly, for $0 < t \le t_1 < t_2 \le s$,

$$\begin{aligned} |v(x,t_2) - v(x,t_1)| \\ &\leq \left| \int_0^{t_1} \int_{-\infty}^{\infty} \int_{(t_1-\eta)^{\alpha}}^{(t_2-\eta)^{\alpha}} \frac{\partial}{\partial \tau} \left[\frac{1}{2\sqrt{\pi\mu\tau^{1/\alpha}}} \exp\left(-\frac{(x-\xi)^2}{4\mu\tau^{1/\alpha}}\right) \right] d\tau \cdot g(\xi,\eta) d\xi d\eta \right| \\ &+ \left| \int_{t_1}^{t_2} \int_{-\infty}^{\infty} \frac{1}{2\sqrt{\pi\mu(t_2-\eta)}} \exp\left(-\frac{(x-\xi)^2}{4\mu(t_2-\eta)}\right) g(\xi,\eta) d\xi d\eta \right| \\ &\leq (t_2-t_1)^{\alpha} B(1-\beta,1-\alpha) \frac{1}{\sqrt{\pi\alpha}} \int_{-\infty}^{\infty} (1/2+\zeta^2) e^{-\zeta^2} d\zeta \cdot M t_1^{1-\alpha-\beta} \\ &+ \frac{1}{1-\beta} (t_2-t_1)^{1-\beta} M. \end{aligned}$$

If we take α such that $\alpha \leq 1 - \beta$, then $1 - \alpha/2 - \beta > 1 - \alpha - \beta \geq 0$. Therefore the first inequality of (3.2) holds. Similarly

$$\begin{aligned} |v_{x}(x,t) - v_{x}(y,t)| &\leq |x - y|^{\alpha} B(1 - \beta, 1/2 - \alpha/2) \frac{2^{2-\alpha}}{\sqrt{\pi\alpha}} \\ &\quad \cdot \int_{0}^{\infty} (\zeta^{1-\alpha} + 2\zeta^{3-\alpha}) e^{-\zeta^{2}} d\zeta \cdot \mu^{-(1+\alpha)/2} t^{1/2-\alpha/2-\beta} M \\ &\quad + |x - y|^{\alpha} B(1 - \beta, 1/2 - \alpha/2) \frac{2^{1-\alpha}}{\sqrt{\pi\alpha}} \\ &\quad \cdot \sup_{\zeta \in \mathbf{R}} (|\zeta|^{2-\alpha} e^{-\zeta^{2}}) \cdot \mu^{-(1+\alpha)/2} t^{1/2-\alpha/2-\beta} M, \end{aligned}$$

and, for $0 < t \le t_1 < t_2 \le s$, $|v_x(x, t_2) - v_x(x, t_1)|$

$$\leq (t_{2} - t_{1})^{\alpha} B(1 - \beta, 1/2 - \alpha) \cdot \frac{1}{\sqrt{\pi\alpha}} \int_{-\infty}^{\infty} (3|\zeta|/2 + |\zeta|^{3}) e^{-\zeta^{2}} d\zeta \cdot \mu^{-1/2} t_{1}^{1/2 - \alpha - \beta} M$$

+ $\frac{1}{\sqrt{\pi}} \mu^{-1/2} \int_{t_{1}}^{t_{2}} (t_{2} - \eta)^{-1/2} \eta^{-\beta} d\eta \cdot M$ (3.3)

$$\leq (t_2 - t_1)^{\alpha} B(1 - \beta, 1/2 - \alpha) \cdot \frac{1}{\sqrt{\pi\alpha}} \int_{-\infty}^{\infty} (3|\zeta|/2 + |\zeta|^3) e^{-\zeta^2} d\zeta \cdot \mu^{-1/2} t_1^{1/2 - \alpha - \beta} M + (t_2 - t_1)^{1/2} \frac{2}{\sqrt{\pi}} \mu^{-1/2} t^{-\beta} M.$$

If $\beta < 1/2$, (3.3) can also be estimated as follows:

$$\begin{split} \frac{1}{\sqrt{\pi}} \mu^{-1/2} \int_{t_1}^{t_2} (t_2 - \eta)^{-1/2} \eta^{-\beta} d\eta \cdot M \\ &\leq \frac{M}{\sqrt{\pi} \mu^{1/2}} \left\{ \int_{t_1}^{(t_1 + t_2)/2} \left(\frac{t_2 - t_1}{2}\right)^{-1/2} \eta^{-\beta} d\eta \right. \\ &\qquad + \int_{(t_1 + t_2)/2}^{t_2} (t_2 - \eta)^{-1/2} \left(\frac{t_1 + t_2}{2}\right)^{-\beta} d\eta \right\} \\ &= \frac{M}{\sqrt{\pi} \mu^{1/2}} \left\{ \left(\frac{t_2 - t_1}{2}\right)^{-1/2} \frac{1}{1 - \beta} \left[\left(\frac{t_1 + t_2}{2}\right)^{1 - \beta} - t_1^{1 - \beta} \right] \right. \\ &\qquad + 2 \left(\frac{t_2 - t_1}{2}\right)^{1/2} \left(\frac{t_1 + t_2}{2}\right)^{-\beta} \right\} \\ &\leq \frac{M}{\sqrt{\pi} \mu^{1/2}} \left(\frac{1}{1 - \beta} + 2\right) \left(\frac{t_2 - t_1}{2}\right)^{1/2 - \beta}. \end{split}$$

Thus the assertion follows.

Under the assumptions that $\mu > 0$ and f, g satisfy the conditions given in Theorem 3.1, we consider the classical Cauchy problem

$$\begin{cases} u_t + f(x, t, u)u_x + g(x, t, u)u = \mu u_{xx}, & x \in \mathbf{R}, 0 < t < T, \end{cases}$$
(3.4)

$$\int u|_{t=0} = u_0, \qquad \qquad x \in \mathbf{R} \tag{3.5}$$

in $C(\mathbf{R} \times [0, T))$ if $u_0 \in C_b(\mathbf{R})$, where C_b denotes the space of all bounded continuous functions. For the initial data $u_0 \in L^{\infty}(\mathbf{R})$, we need to weaken the initial condition (3.5) as follows: For the dual space $C'_0(\mathbf{R})$ of the space of all continuous functions with compact support,

$$u|_{t=0} = u_0$$
 in $C'_0(\mathbf{R})$, (3.6)

which means that for any continuous function φ on **R** with compact support,

$$\lim_{t \to +0} \int_{-\infty}^{\infty} u(x,t)\varphi(x)dx = \int_{-\infty}^{\infty} u_0(x)\varphi(x)dx.$$

Then, we can easily see that for the solution u in the following lemma

$$\lim_{t\to 0,\,x\to x_0}u(x,t)=u_0(x_0)$$

holds at every continuous point x_0 of $u_0(x)$.

LEMMA 3.4. Let $u_0 \in L^{\infty}(\mathbf{R})$. Then for each T > 0 there exists a bounded classical solution of (3.4) satisfying (3.6). Furthermore, it is unique.

PROOF. In order to prove the existence of a solution, it suffices to consider the integral equation

$$u = K \underset{x}{*} u_0 - K \underset{x,t}{*} \{ f(x,t,u)u_x + g(x,t,u)u \},\$$

where

$$K_{x} u_{0} = \int_{-\infty}^{\infty} K(x-\xi,t)u_{0}(\xi)d\xi.$$

Let M be a positive number such that

$$\sup\{|f(x,t,u)t^{-1/2}p + g(x,t,u)u| | x \in \mathbf{R}, |u| + |p| \le (1 + (\pi\mu)^{-1/2}) \|u_0\|_{L^{\infty}(\mathbf{R})} + 1\} \le Mt^{-1/2}$$
(3.7)

for any $t \in (0, T]$ and let $s \le T$ be a positive number such that

$$2\left(1 + \frac{B(1/2, 1/2)}{2\sqrt{\pi\mu}}\right)s^{1/2}M \le 1.$$
(3.8)

Furthermore, let **B** be the Banach space of all continuous functions u on $(-n,n) \times (0,s]$ which are continuously differentiable with respect to x on the same domain with the finite norm $||u||_{\mathbf{B}}$ defined by

$$\|u\|_{\mathbf{B}} = \sup_{\substack{-n < x < n \\ 0 < t \le s}} |u(x, t)| + \sup_{\substack{-n < x < n \\ 0 < t \le s}} t^{1/2} |u_x(x, t)|.$$

Let E be the closed, bounded and convex set in **B** defined by

$$E = \{ u \in \mathbf{B} \mid ||u||_{\mathbf{B}} \le (1 + (\pi \mu)^{-1/2}) ||u_0||_{L^{\infty}(\mathbf{R})} + 1 \}.$$

We define a map A from E into **B** by

$$Au = K \underset{x}{*} u_0 - K \underset{x,t}{*} F[u]_n,$$

where

$$F[u]_n = \begin{cases} f(x,t,u)u_x + g(x,t,u)u, & \text{for } (x,t) \in (-n,n) \times (0,s], \\ 0, & \text{otherwise.} \end{cases}$$

Then by Lemma 3.3 we have

$$\begin{split} \|Au\|_{\mathbf{B}} &\leq \|u_0\|_{L^{\infty}(\mathbf{R})} + 2s^{1/2}M + \frac{1}{\sqrt{\pi\mu}} \|u_0\|_{L^{\infty}(\mathbf{R})} + \frac{B(1/2, 1/2)}{\sqrt{\pi\mu}} s^{1/2}M \\ &\leq (1 + (\pi\mu)^{-1/2}) \|u_0\|_{L^{\infty}(\mathbf{R})} + 1, \end{split}$$

which shows that A is a map of E into E. Since for $u, v \in E$, there exists c > 0 such that

$$||Au - Av||_{\mathbf{B}} \le c(s^{1/2} + s)||u - v||_{\mathbf{B}}$$

A is continuous. Furthermore, from Lemma 3.2 and Lemma 3.3 it follows that the set $\{-Au + K *_x u_0 | u \in E\}$ is compact in **B**, and hence that the map A is compact. By Schauder's Fixed Point Theorem, there exists a fixed point u_n in E with $u_n = Au_n$, and obviously u_n is a distributional solution of (3.4) in $(-n, n) \times (0, s]$.

The function $v_n = K *_{x,t} F[u_n]_n$ is defined for all $x \in \mathbf{R}$, $0 \le t \le s$. Since all the estimates are independent of n in the discussion above, it follows from Lemma 3.3 that the sequence $\{v_n\}_{n=1}^{\infty}$ is bounded in the Hölder norm with exponent 1/2 on $\mathbf{R} \times [0, s]$. Therefore according to Lemma 3.2, there exists a uniformly convergent subsequence which converges to a Hölder continuous function v with exponent $0 < \alpha < 1/2$. Since also by Lemma 3.3, $\{\partial v_n / \partial x\}_{n=1}^{\infty}$ is bounded in a Hölder norm with exponent $0 < \alpha' < 1/2$ on $\mathbf{R} \times [t, s]$, for every 0 < t < s, it follows that v is differentiable in x and $\partial v / \partial x$ is a Hölder continuous with exponent $0 < \alpha'' < \alpha'$ in $\mathbf{R} \times (0, s]$. Now we have

$$\left(\frac{\partial}{\partial t} - \mu \frac{\partial^2}{\partial x^2}\right)(-v_n) \to \left(\frac{\partial}{\partial t} - \mu \frac{\partial^2}{\partial x^2}\right)\left(-v + K \underset{x}{*} u_0\right) \quad \text{as } n \to \infty$$

in the distributional sense on $\mathbf{R} \times (0, s]$, since $K *_x u_0$ is a solution of the heat equation. Furthermore, we have

$$\left(\frac{\partial}{\partial t} - \mu \frac{\partial^2}{\partial x^2}\right)(-v_n) = -F\left[-v_n + K \underset{x}{*} u_0\right]_n$$

$$\rightarrow -f\left(x, t, -v + K \underset{x}{*} u_0\right) \frac{\partial}{\partial x}\left(-v + K \underset{x}{*} u_0\right)$$

$$-g\left(x, t, -v + K \underset{x}{*} u_0\right)\left(-v + K \underset{x}{*} u_0\right) \quad \text{as } n \to \infty$$

in the distributional sense. Hence, $u = -v + K *_x u_0$ is a distributional solution of (3.4) in $\mathbf{R} \times (0, s]$, which can be written as

$$u = K * u_0 - K * \{f(x, t, u)u_x + g(x, t, u)u\},$$
(3.9)

by the above considerations. Furthermore, from the hypotheses on f and g and (3.9) it follows that u is a classical solution of (3.4) and satisfies (3.6). Taking u(x,s) as the initial data and applying the above argument, we have a solution in $\mathbf{R} \times [s, s + s_1]$, where s_1 is determined by (3.7) and (3.8) from

 $||u(\cdot,s)||_{L^{\infty}(\mathbf{R})}$. By the Maximum Principle, we have $||u(\cdot,s+s_1)||_{L^{\infty}(\mathbf{R})} \le ||u(\cdot,s)||_{L^{\infty}(\mathbf{R})}$. Therefore, by repeating the above method k times we have a solution in $\mathbf{R} \times [s, s(k+1)]$. Consequently, we have a solution for each T > 0.

Since f and g belong to $C^{\infty}(\mathbb{R}^3)$, the uniqueness is obtained by a similar way to the proof for Theorem 7 of Oleĭnik [6].

PROOF OF THEOREM 3.1. In order to prove the existence of a generalized solution of (1.4), it suffices to prove that for any initial data $u_0^{\varepsilon} \in \mathscr{E}_{M,s,g}[\mathbf{R}]$ and any coefficient μ^{ε} satisfying $\varepsilon^N \leq \mu^{\varepsilon} \leq \varepsilon^{-N}$ for suitable N, (3.4) and (3.5) have a solution $u^{\varepsilon} \in \mathscr{E}_{M,s,g}[\mathbf{R} \times [0, T]]$ for each T > 0.

From Lemma 3.4 there exists a classical solution u^{ε} of (3.4) and (3.5) with the initial data u_0^{ε} in $\mathbf{R} \times [0, T]$, because u_0^{ε} is continuous. Then, by the Maximum Principle we have $||u^{\varepsilon}||_{L^{\infty}(\mathbf{R}\times[0,T])} \leq ||u_0^{\varepsilon}||_{L^{\infty}(\mathbf{R})}$. Furthermore from the boundedness of $\partial_x u_0^{\varepsilon}$ and Lemma 3.4 we obtain the boundedness of $\partial_x u^{\varepsilon}$. In fact, from the proof of Lemma 3.4, $K *_{x,t} \{f(x,t,u)u_x + g(x,t,u)u\}$ is Hölder continuous with exponent α for any $0 < \alpha < 1/2$. Since $K *_x u_0^{\varepsilon}$ is bounded, Lipschitz continuous in x and 1/2-Hölder continuous in t globally, it is α -Hölder continuous for any α ($0 < \alpha < 1/2$). Therefore it follows that the solution u^{ε} of (3.4) and (3.5) is Hölder continuous with exponent $0 < \alpha < 1/2$. From the Hölder continuity of u^{ε} we obtain the boundedness of $\partial_x u^{\varepsilon}$, namely, there exist $N \in \mathbf{N}, c > 0$ and $\eta > 0$ such that

$$\sup_{(x,t)\in\mathbf{R}\times[0,T]}\left|\partial_{x}u^{\varepsilon}\right|\leq c\varepsilon^{-N}$$

for each $0 < \varepsilon < \eta$. Similarly we can prove that all derivatives of u^{ε} are dominated by $c\varepsilon^{-N}$ with suitable *c* and *N*. Finally by taking $R_{\tilde{u}}(\varepsilon, x, t) = u^{\varepsilon}(x, t)$ as a representative of \tilde{u} , the assertion is obtained.

4. Uniqueness theorem

Here, we will prove the uniqueness of a generalized solution of (1.4). We first prove Lemma 4.1 and Proposition 4.2.

LEMMA 4.1. For a smooth function f on \mathbf{R} , put

$$G_n(f;u,v) = \begin{cases} (u-v)^{-n} \left(f(u) - \sum_{k=0}^{n-1} \frac{1}{k!} f^{(k)}(v) (u-v)^k \right), & \text{if } u \neq v, \\ \frac{1}{n!} f^{(n)}(u), & \text{if } u = v. \end{cases}$$

for each $n \in \mathbf{N}$. Then

Generalized solutions of nonlinear diffusion equations

$$\frac{\partial}{\partial u}G_n(f;u,v) = -nG_{n+1}(f;u,v) + G_n(f';u,v), \qquad (4.1)$$

$$\frac{\partial}{\partial v}G_n(f;u,v) = nG_{n+1}(f;u,v). \tag{4.2}$$

Furthermore, if $f \in \mathcal{O}_M(\mathbf{R})$, then we obtain that for any $n \in \mathbf{N}$ there exist c > 0and $r \in \mathbf{N}$ such that

$$|G_n(f; u, v)| \le c(1 + |u| + |v|)^r.$$
(4.3)

PROOF. Differentiating G_n with respect to u, for $n \ge 2$ we have

$$\frac{\partial}{\partial u}G_n(f;u,v) = \begin{cases} (u-v)^{-1}(-nG_n(f;u,v) + G_{n-1}(f';u,v)), & \text{if } u \neq v, \\ \frac{1}{(n+1)!}f^{(n+1)}(u), & \text{if } u = v. \end{cases}$$

For each $n \in \mathbf{N}$ we have

$$G_n(f; u, v) = (u - v)G_{n+1}(f; u, v) + \frac{1}{n!}f^{(n)}(v),$$

so that for each $n \in \mathbb{N}$

$$\frac{\partial}{\partial u}G_n(f;u,v) = -nG_{n+1}(f;u,v) + G_n(f';u,v).$$

Furthermore, since

$$\frac{\partial}{\partial v} \left(\sum_{k=0}^{n-1} \frac{1}{k!} f^{(k)}(v) (u-v)^k \right) = \frac{1}{(n-1)!} f^{(n)}(v) (u-v)^{n-1},$$

we have

$$\frac{\partial}{\partial v}G_n(f;u,v)=nG_{n+1}(f;u,v).$$

Also, since

$$G_n(f;u,v) = \frac{1}{n!}f^{(n)}(\theta u + (1-\theta)v)$$

holds for some $0 \le \theta \le 1$, if $f \in \mathcal{O}_M(\mathbf{R})$, then for any $n \in \mathbf{N}$ there exist c > 0and $r \in \mathbf{N}$ such that

$$|G_n(f; u, v)| \le c(1 + |u| + |v|)^r.$$

Thus the assertion follows.

PROPOSITION 4.2. Assume that f is a function as in Theorem 3.1. Let u and v be elements of $\mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$. Put

$$a(f;\varepsilon,x,t) = G_1(f(x,t,\cdot);u(\varepsilon,x,t),v(\varepsilon,x,t))$$

for each $(x,t) \in \mathbf{R} \times [0,T]$. Then we obtain that $a \in \mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$.

PROOF. Since all derivatives of u and v with respect to x and t belong to $\mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$, it suffices to prove that all derivatives of a with respect to u and v belong to $\mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$. Since u and v are elements of $\mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$, (4.3) implies that for any $n \in \mathbf{N}$ there exist $N \in \mathbf{N}$, c > 0 and $\eta > 0$ such that

$$\sup_{(x,t)\in\mathbf{R}\times[0,T]}|G_n(f(x,t,\cdot);u(\varepsilon,x,t),v(\varepsilon,x,t))| \le c\varepsilon^{-N}$$
(4.4)

for all $0 < \varepsilon < \eta$. Consequently, from (4.1), (4.2) and (4.4) we obtain that all derivatives of *a* with respect to *u* and *v* belong to $\mathscr{E}_{M,s,g}[\mathbf{R} \times [0,T]]$. Thus the assertion follows.

LEMMA 4.3 ([2], Lemma 2.2). Let u be a nonnegative, continuous function on $[0, \infty)$ and assume that

$$u(t) \le a_1 + a_2 \int_0^t \frac{u(s)}{\sqrt{t-s}} ds \quad \text{for } t \ge 0$$

with some constants $a_1, a_2 \ge 0$. Then

$$u(t) \le a_1(1 + 2a_2\sqrt{t}) \exp(\pi a_2^2 t)$$
 for any $t \ge 0$.

THEOREM 4.4. Assume that a representative $R_{\tilde{\mu}}(\varepsilon)$ of a generalized positive number $\tilde{\mu}$ satisfies

$$R_{\tilde{\mu}}(\varepsilon)\log\frac{1}{\varepsilon} \ge 1 \tag{4.5}$$

for any $0 < \varepsilon < \eta$ with $\eta > 0$. Then for each T > 0 the solution $\tilde{u} \in \mathcal{G}_{s,g}(\mathbf{R} \times [0,T])$ of bounded type of (1.4) is unique.

PROOF. Let $\tilde{u}_1, \tilde{u}_2 \in \mathcal{G}_{s,g}(\mathbf{R} \times [0, T])$ be two solutions of (1.4) with representatives $R_{\tilde{u}_1}, R_{\tilde{u}_2}$ of bounded type, respectively. Then there exist $H \in \mathcal{N}_{s,g}[\mathbf{R} \times [0, T]]$ and $h \in \mathcal{N}_{s,g}[\mathbf{R}]$ such that

$$\begin{cases} (R_{\tilde{u}_1} - R_{\tilde{u}_2})_t = R_{\tilde{\mu}}(R_{\tilde{u}_1} - R_{\tilde{u}_2})_{xx} - (f(x, t, R_{\tilde{u}_1})(R_{\tilde{u}_1})_x - f(x, t, R_{\tilde{u}_2})(R_{\tilde{u}_2})_x) \\ - (g(x, t, R_{\tilde{u}_1})R_{\tilde{u}_1} - g(x, t, R_{\tilde{u}_2})R_{\tilde{u}_2}) + H, \\ R_{\tilde{u}_1} - R_{\tilde{u}_2}|_{t=0} = h. \end{cases}$$

By changing representatives suitably, we may assume that $h \equiv 0$. Let F be a function which satisfies

$$F_u(x, t, R_{\tilde{u}_i}) = f(x, t, R_{\tilde{u}_i})$$

for i = 1, 2 and set $R_{\bar{u}} = R_{\bar{u}_1} - R_{\bar{u}_2}$. Then we have

$$\begin{cases} (R_{\tilde{u}})_t = R_{\tilde{\mu}}(R_{\tilde{u}})_{xx} - [F(x, t, R_{\tilde{u}_1}) - F(x, t, R_{\tilde{u}_2})]_x + F_x(x, t, R_{\tilde{u}_1}) - F_x(x, t, R_{\tilde{u}_2}) \\ & -g(x, t, R_{\tilde{u}_1})R_{\tilde{u}} - [g(x, t, R_{\tilde{u}_1}) - g(x, t, R_{\tilde{u}_2})]R_{\tilde{u}_2} + H, \\ R_{\tilde{u}}|_{t=0} = 0. \end{cases}$$

From Proposition 4.2 it follows that

$$\begin{cases} (R_{\tilde{u}})_t = R_{\tilde{\mu}}(R_{\tilde{u}})_{xx} - [a(F;\varepsilon,x,t)R_{\tilde{u}}]_x + a(F_x;\varepsilon,x,t)R_{\tilde{u}}\\ -g(x,t,R_{\tilde{u}_1})R_{\tilde{u}} - a(g;\varepsilon,x,t)R_{\tilde{u}}R_{\tilde{u}_2} + H,\\ R_{\tilde{u}}|_{t=0} = 0. \end{cases}$$

Since $R_{\tilde{u}}$ satisfies

$$\begin{aligned} R_{\tilde{u}} &= \int_0^t \int_{-\infty}^\infty K(x-\xi,t-\eta) \cdot (-[a(F;\varepsilon,\xi,\eta)R_{\tilde{u}}]_x + a(F_x;\varepsilon,\xi,\eta)R_{\tilde{u}} \\ &- g(\xi,\eta,R_{\tilde{u}_1})R_{\tilde{u}} - a(g;\varepsilon,\xi,\eta)R_{\tilde{u}}R_{\tilde{u}_2} + H)d\xi d\eta, \end{aligned}$$

we have

$$\begin{aligned} |R_{\bar{u}}(\varepsilon, x, t)| &\leq T \sup_{(x,t) \in \mathbf{R} \times [0,T]} |H(\varepsilon, x, t)| \\ &+ \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F;\varepsilon, x, t)| \int_0^t \frac{1}{\sqrt{\pi R_{\bar{\mu}}(\varepsilon)(t-\eta)}} \sup_{\xi \in \mathbf{R}} |R_{\bar{u}}(\varepsilon, \xi, \eta)| d\eta \\ &+ \left(\sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F_x;\varepsilon, x, t)| + \sup_{(x,t) \in \mathbf{R} \times [0,T]} |g(x,t,R_{\bar{u}_1})| \right. \\ &+ \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(g;\varepsilon, x, t)R_{\bar{u}_2}| \right) \int_0^t \sup_{\xi \in \mathbf{R}} |R_{\bar{u}}(\varepsilon, \xi, \eta)| d\eta. \end{aligned}$$

Furthermore, from $\sqrt{t}/\sqrt{t-\eta} \ge 1$ for any $0 < \eta < t$, it follows that

$$\begin{split} |R_{\bar{u}}(\varepsilon, x, t)| &\leq T \sup_{(x,t) \in \mathbf{R} \times [0,T]} |H(\varepsilon, x, t)| \\ &+ \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F;\varepsilon, x, t)| \int_{0}^{t} \frac{1}{\sqrt{\pi R_{\bar{\mu}}(\varepsilon)(t-\eta)}} \sup_{\xi \in \mathbf{R}} |R_{\bar{u}}(\varepsilon, \xi, \eta)| d\eta \\ &+ \left(\sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F_{x};\varepsilon, x, t)| + \sup_{(x,t) \in \mathbf{R} \times [0,T]} |g(x, t, R_{\bar{u}_{1}})| \right. \\ &+ \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(g;\varepsilon, x, t)R_{\bar{u}_{2}}| \right) \int_{0}^{t} \frac{\sqrt{t}}{\sqrt{t-\eta}} \sup_{\xi \in \mathbf{R}} |R_{\bar{u}}(\varepsilon, \xi, \eta)| d\eta \\ &\leq T \sup_{(x,t) \in \mathbf{R} \times [0,T]} |H(\varepsilon, x, t)| \\ &+ \frac{1}{\sqrt{\pi}} \left(\frac{1}{\sqrt{R_{\bar{\mu}}(\varepsilon)}} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F;\varepsilon, x, t)| + \sqrt{\pi T} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |g(x, t, R_{\bar{u}_{1}})| \right. \\ &+ \sqrt{\pi T} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(g;\varepsilon, x, t)R_{\bar{u}_{2}}| \right) \\ &+ \sqrt{\pi} \frac{1}{\sqrt{t-\eta}} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(g;\varepsilon, x, t)R_{\bar{u}_{2}}| \right) \\ &+ \int_{0}^{t} \frac{1}{\sqrt{t-\eta}} \sup_{\xi \in \mathbf{R}} |R_{\bar{u}}(\varepsilon, \xi, \eta)| d\eta. \end{split}$$

Applying Lemma 4.3, we have

$$\sup_{(x,t)\in\mathbf{R}\times[0,T]}|R_{\tilde{u}}(\varepsilon,x,t)|\leq a_1(1+2a_2\sqrt{T})\exp(\pi a_2^2T),$$

where

$$\begin{split} a_1 &= T \sup_{(x,t) \in \mathbf{R} \times [0,T]} |H(\varepsilon, x, t)|, \\ a_2 &= \frac{1}{\sqrt{\pi}} \left(\frac{1}{\sqrt{R_{\tilde{\mu}}(\varepsilon)}} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F;\varepsilon, x, t)| \\ &+ \sqrt{\pi T} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(F_x;\varepsilon, x, t)| + \sqrt{\pi T} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |g(x,t,R_{\tilde{u}_1})| \\ &+ \sqrt{\pi T} \sup_{(x,t) \in \mathbf{R} \times [0,T]} |a(g;\varepsilon, x, t)R_{\tilde{u}_2}| \right). \end{split}$$

By Lemma 4.1, Proposition 4.2 and the hypothesis that \tilde{u}_i is of bounded type for i = 1, 2, it follows that a is uniformly bounded for sufficiently small $\varepsilon > 0$. Therefore, there exists C > 0 such that for sufficiently small $\varepsilon > 0$

$$a_2^2 \leq \frac{C}{\pi} \left(\frac{1}{R_{\tilde{\mu}}(\varepsilon)} + \frac{1}{\sqrt{R_{\tilde{\mu}}(\varepsilon)}} + 1 \right).$$

Consequently, we obtain that for sufficiently small $\varepsilon > 0$,

$$\begin{split} \exp(\pi a_2^2 T) &\leq \exp\left(CT\left(\frac{1}{R_{\bar{\mu}}(\varepsilon)} + \frac{1}{\sqrt{R_{\bar{\mu}}(\varepsilon)}} + 1\right)\right) \\ &\leq \exp\left(CT\left(\log\frac{1}{\varepsilon} + \sqrt{\log\frac{1}{\varepsilon}} + 1\right)\right) \\ &\leq \exp\left(CT\left(2\log\frac{1}{\varepsilon} + 1\right)\right) = \left(\frac{1}{\varepsilon}\right)^{2CT} e^{CT}, \end{split}$$

which means that for all $q \in \mathbf{N}$, there exist c > 0 and $\eta > 0$ such that

$$\sup_{(x,t)\in\mathbf{R}\times[0,T]}|R_{\tilde{u}}(\varepsilon,x,t)|\leq c\varepsilon^{q}$$

for each $0 < \varepsilon < \eta$. Similarly we can prove the same type of estimate for any derivative of $R_{\tilde{u}}$ with respect to x and t. Hence $R_{\tilde{u}}(\varepsilon, x, t) \in \mathcal{N}_{s,g}[\mathbf{R} \times [0, T]]$, that is, $\tilde{u}_1 - \tilde{u}_2 = 0$ in $\mathcal{G}_{s,g}(\mathbf{R} \times [0, T])$. Thus the assertion follows.

5. Relationship to classical solutions

In [5], Lax introduced the following pseudo-norm, defined for locally integrable functions f on **R**, but possibly infinite:

$$|f|_* = \sup_{y \in \mathbf{R}} \left| \int_0^y f(x) dx \right|.$$

We will investigate the relationship between generalized solutions and classical solutions by using this pseudo-norm. We first prove Lemma 5.1 and Proposition 5.2.

LEMMA 5.1. Let $\mu > 0$, $u_0 \in L^{\infty}(\mathbf{R})$ and u be the solution constructed in Lemma 3.4 of the problem

$$\begin{cases} u_t + (F(x, t, u))_x = \mu u_{xx}, \\ u_{t=0} = u_0 & \text{in } C'_0(\mathbf{R}), \end{cases}$$

where *F* is an element of $C^{\infty}(\mathbf{R}^3)$ such that for any $\alpha \in \mathbf{N}^3$ there exist c > 0 and $r \in \mathbf{N}$ such that for all $(x, t, u) \in \mathbf{R}^3$

$$|D^{\alpha}F(x,t,u)| \le c(1+|u|)^{r},$$
(5.1)

and for all $(x, t, u) \in \mathbf{R}^3$

$$u \cdot F_x(x, t, u) \ge 0. \tag{5.2}$$

Then $\int_0^x u(\xi,t)d\xi$ converges to $\int_0^x u_0(\xi)d\xi$ as t tends to 0.

PROOF. It suffices to prove the case where x > 0. Let $\varphi_{\varepsilon}(\xi)$ be a positive continuous function on **R** such that for each $0 < \varepsilon < x$

$$\varphi_{\varepsilon}(\xi) = \begin{cases} 1 & \text{for } rac{\varepsilon}{2} \leq \xi \leq x - rac{\varepsilon}{2}, \\ 0 & \text{for } \xi \leq 0, \ x \leq \xi, \end{cases}$$

and $\varphi_{\varepsilon} \leq 1$. Let $L = \sup_{(x,t) \in \mathbf{R} \times [0,T]} |u(x,t)|$. For fixed x > 0 we have

$$\left|\int_0^x u(\xi,t)d\xi - \int_0^x u(\xi,t)\varphi_{\varepsilon}(\xi)d\xi\right| = \left|\int_0^x u(\xi,t)(1-\varphi_{\varepsilon}(\xi))d\xi\right| \le L\varepsilon.$$

Similarly,

$$\left|\int_0^x u_0(\xi)d\xi - \int_0^x u_0(\xi)\varphi_{\varepsilon}(\xi)d\xi\right| \le L\varepsilon.$$

Furthermore from the hypothesis, for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any $0 < t < \delta$,

$$\left|\int_0^x u(\xi,t)\varphi_{\varepsilon}(\xi)d\xi - \int_0^x u_0(\xi)\varphi_{\varepsilon}(\xi)d\xi\right| \leq \varepsilon.$$

Consequently, we obtain that

$$\int_0^x u(\xi,t)d\xi - \int_0^x u_0(\xi)d\xi \bigg| \le \varepsilon(1+2L).$$

Thus the assertion follows.

PROPOSITION 5.2. Assume that F satisfies (5.1) and (5.2). Let $\mu > 0$, $u_{0,i} \in L^{\infty}(\mathbf{R})$ and u_i be the solution constructed in Lemma 3.4 of the problem

$$\begin{cases} u_t + (F(x, t, u))_x = \mu u_{xx}, \\ u_{t=0} = u_{0,i} & \text{in } C_0'(\mathbf{R}) \end{cases}$$

for i = 1, 2 and assume that $|u_{0,1} - u_{0,2}|_*$ is finite. Then for each T > 0,

$$\sup_{0 \le t \le T} |u_1(\cdot, t) - u_2(\cdot, t)|_* \le 2|u_{0,1} - u_{0,2}|_*.$$

PROOF. Let

140

$$U_i(x,t) = \int_0^x u_i(\xi,t) d\xi + h_i(t),$$

where for i = 1, 2,

$$h'_i(t) = \mu(u_i)_x(0,t) - F(0,t,u_i(0,t)), \qquad h_i(0) = 0.$$

Then U_i satisfies

$$\begin{cases} (U_i)_t + F(x, t, (U_i)_x) = \mu(U_i)_{xx}, \\ U_i|_{t=0} = \int_0^x u_{0,i}(\xi) d\xi. \end{cases}$$

Thus letting $W = U_1 - U_2$, we have

$$\begin{cases} W_t + F_u(x, t, u_3) W_x = \mu W_{xx}, \\ W_{t=0} = \int_0^x [u_{0,1}(\xi) - u_{0,2}(\xi)] d\xi, \end{cases}$$

where u_3 denotes a value between u_1 and u_2 . It follows from Lemma 5.1 that the function W is continuous up to t = 0. Hence by the Maximum Principle we obtain the inequality

$$\sup_{(x,t)\in\mathbf{R}\times[0,T]}|W(x,t)|\leq \sup_{x\in\mathbf{R}}|W(x,0)|.$$

Since

$$|u_1(\cdot, t) - u_2(\cdot, t)|_* \le \sup_{x \in \mathbf{R}} |W(x, t)| + |W(0, t)|,$$

the assertion follows.

THEOREM 5.3. Assume that F satisfies (5.1), (5.2) and that for all u and $(x, t) \in \mathbf{R} \times [0, T]$ $F_{uu} \ge 0$, and that there exist positive numbers τ and λ such that $F_{uu} \ge \lambda > 0$ for bounded u and $0 \le t \le \tau$. Let $u_0 \in L^{\infty}(\mathbf{R})$ and u be the weak entropy solution of the problem

$$\begin{cases} u_t + (F(x, t, u))_x = 0, \\ u_{t=0} = u_0. \end{cases}$$
(5.3)

Furthermore, let $\tilde{\mu}$ be as in Theorem 4.4 and $\tilde{\mu} \approx 0$. Finally, let $\tilde{v} \in \mathscr{G}_{s,g}(\mathbf{R} \times [0,T])$ be the solution of the problem

$$\begin{cases} \tilde{v}_t + (F(x,t,\tilde{v}))_x = \tilde{\mu}\tilde{v}_{xx}, \\ \tilde{v}|_{t=0} = \tilde{u}_0, \end{cases}$$
(5.4)

where $\tilde{u}_0 = u_0$ in $\mathscr{G}_{s,g}(\mathbf{R})$. Then we have $\tilde{v} \approx u$.

LEMMA 5.4 ([2], Lemma 3.4). Let $u_0 \in L^{\infty}(\mathbf{R})$ and ρ be as in Remark 2.3. Then it follows that $|u_0 - u_0 * \rho_{\varepsilon}|_*$ converges to 0 as ε tends to 0.

PROOF OF THEOREM 5.3. Let $R_{\tilde{v}}$ be a representative of \tilde{v} satisfying

$$\begin{cases} (R_{\tilde{v}})_t + (F(x, t, R_{\tilde{v}}))_x = R_{\tilde{\mu}}(R_{\tilde{v}})_{xx},\\ R_{\tilde{v}}|_{t=0} = R_{\tilde{u}_0} = u_0 * \rho_{\varepsilon}. \end{cases}$$

Applying Proposition 5.2 with $\mu = R_{\tilde{\mu}}(\varepsilon)$, where $R_{\tilde{\mu}}$ is a representative of $\tilde{\mu}$, $u_{0,1} = u_0$, $u_{0,2} = u_0 * \rho_{\varepsilon}$, $u_1 = u^{\varepsilon}$, $u_2 = R_{\tilde{\nu}}$ for fixed ε , we obtain that

$$\sup_{0 \le t \le T} |u^{\varepsilon}(\cdot, t) - R_{\bar{v}}(\varepsilon, \cdot, t)|_* \le 2|u_0 - u_0 * \rho_{\varepsilon}|_*.$$

By Lemma 5.4 and the fact that u^{ε} converges to the weak entropy solution u in $\mathscr{D}'(\mathbf{R} \times (0, T))$ ([6], Theorem 8), the assertion follows.

THEOREM 5.5. Let f and g be functions satisfying the conditions given in Theorem 3.1. Let μ be a fixed positive real number and u be the solution constructed in Lemma 3.4 of the problem

$$\begin{cases} u_t + f(x, t, u)u_x + g(x, t, u)u = \mu u_{xx}, \\ u_{t=0} = u_0 \quad \text{in } C_0'(\mathbf{R}). \end{cases}$$
(5.5)

Furthermore, let $\tilde{v} \in \mathcal{G}_{s,g}(\mathbf{R} \times [0,T])$ be the solution of the problem

$$\begin{cases} \tilde{v}_t + f(x, t, \tilde{v})\tilde{v}_x + g(x, t, \tilde{v})\tilde{v} = \mu \tilde{v}_{xx}, \\ \tilde{v}|_{t=0} = \tilde{u}_0, \end{cases}$$

where $\tilde{u}_0 = u_0$ in $\mathscr{G}_{s,g}(\mathbf{R})$, then we have $\tilde{v} \approx u$.

PROOF. From the hypotheses on f and g, it follows that $R_{\bar{v}}$ is uniformly bounded in $C^{2+\alpha,1+\alpha}(K)$ for some $\alpha > 0$ and every compact subset K of $\mathbf{R} \times (0,T)$. Therefore, we can pass to the limit $\varepsilon \to 0$ along a subsequence and obtain a function u(x,t) in the same space, which is a classical solution of (5.5) in $\mathbf{R} \times (0,T)$. From the uniqueness of a solution of (5.5) we obtain that $R_{\bar{v}}$ converges to u, that is, \tilde{v} is associated with u.

REMARK 5.6. Let $F(x, t, u) = u^2/2$. Then $F_u(x, t, u) = u$, $F_{uu}(x, t, u) = 1$ and $F_x(x, t, u) = 0$. Hence, it is seen that our results include the ones in Biagioni and Oberguggenberger [2].

REMARK 5.7. It is well-known (Oleřnik [6]) that problem (5.3) has the unique weak entropy solution under some condition on F. In Theorem 5.3 we need, in addition to the condition on F as in Oleřnik [6], only the requirement that F is smooth and polynomially bounded, together with all derivatives, to

obtain the result that the generalized solution of (5.4) is associated with the weak entropy solution of (5.3).

Acknowledgement

The author would like to thank Professor Izumi Kubo of Hiroshima University for his guidance concerning this paper.

References

- H. A. Biagioni, A nonlinear theory of generalized functions, Lecture Notes in Mathematics, Vol. 1421, Springer-Verlag, Berlin, 1990.
- H. A. Biagioni and M. Oberguggenberger, Generalized solutions to Burgers' equation, J. Differential Equations 97 (1992), 263–287.
- [3] J. F. Colombeau, Elementary introduction to new generalized functions, North-Holland Math. Studies, Vol. 113, North-Holland, Amsterdam, 1985.
- [4] J. F. Colombeau, New generalized functions and multiplication of distributions, North-Holland Math. Studies, Vol. 84, North-Holland, Amsterdam, 1984.
- [5] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954), 159–193.
- [6] O. A. Oleřnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. Ser. 2, Vol. 26, pp. 95–172, Amer. Math. Soc., Providence, RI, 1963.
- [7] J. Wloka, Funktionalanalysis und Anwendungen, De Gruyter, Berlin, 1971.

Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima 739-8526, Japan hdegu@hiroshima-u.ac.jp