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Abstract. We show that all extremal elliptic surfaces in characteristic 2 and 3 are

obtained from rational extremal elliptic surfaces as purely inseparable base extensions.

As a corollary, we can show that the automorphism group of every supersingular elliptic

K3 surface has an element of infinite order which acts trivially on the global sections of

the sheaf of di¤erential forms of degree 2. We also determine the structures of Mordell-

Weil groups for extremal rational elliptic surfaces in these characteristics.

1. Introduction

Throughout this paper, We work over an algebraically closed field in pos-

itive characteristic. We call an algebraic surface over an algebraically closed

field supersingular if its Picard number is equal to the second betti number, and

call an elliptic surface extremal if it is supersingular and it has a finite Mordell-

Weil group.

In the paper [8], we showed that every extremal elliptic surfaces are

obtained from rational extremal elliptic surfaces by desingularization and purely

inseparable base extension provided that the characteristic of the base field is

greater than or equal to 5. And we gave a question for the validity of the same

results in characteristic 2 and 3. But one cannot apply the same method as in

[8] for both characteristic 2 and 3 cases because we used the theory of Deligne

and Rapoport [4] in that paper.

On the other hand, A. Schweizer and Gekeler have studied a generic fiber

of an extremal elliptic surface as a curve over the rational function field whose

coductor is minimal from the Drinfel’d modular theoretic point of view ([5],

[6], [17], [18]). And recently, Schweizer proved the same but weaker results in

characteristic 2 and 3 using explicit calculations [19]. Namely, extremal elliptic

surfaces over an algebraically closed field in characteristic 2 and 3 which are

Frobenius minimal are rational surfaces. Here, a Frobenius minimal elliptic

surface is an elliptic surface whose J-function is separable.
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As a corollary, he got the unirationality of extremal elliptic surfaces in

characteristic 2 and 3.

In this paper, we show the following theorem using Schweizer’s results.

Theorem 1.1. All extremal elliptic surfaces in characteristic 2 and 3 arise

from extremal rational elliptic surfaces via purely inseparable base extensions and

its desingularization.

By combining this result and main theorem in [8], we can give a‰rmative

answer to Problem 2.7 in [8] which asks whether all extremal ellptic surfaces

arise from rational elliptic surfaces by Frobenius base extension or not.

Furthermore, we can classify all supersingular elliptic K3 surfaces with

finite sections in characteristic 2 and 3, and, as a corollary, we can show the

same results on the automorphism groups of supersingular K3 surfaces in these

characteristics as in [7] (Corollary 2.5).

For motivations to treat extremal elliptic surfaces, see [8], [9], [10] and [2].

Here is a plan of the paper. We state a main theorem and its corollaries

in section 2, and prove them in section 4 after recalling some results on the

rational case in Section 3.

The author would like to express his gratitude to Professor Andreas

Schweizer for stimulating discussions and pointing out some errors of first ver-

sion of this paper caused by the misprints in [9] and to Centre de Recherches

Mathématiques for their hospitality.

2. Results

Let k be an algebraically closed field in characteristic 2 or 3 and f :

X ! C be an elliptic surface with a section O where X (resp. C ) be a non-

singular projective algebraic surface (resp. curve) over k.

Definition 2.1. An elliptic surface f : X ! C is called extremal if its

Picard number rðXÞ is equal to the second betti number b2ðXÞ and its Mordell-
Weil group MW ðX=CÞ is finite.

Here we note that C is always isomorphic to P1 for an extremal elliptic

surface f : X ! C ([8] Prop. 4.2).

Apart from Theorem 1.1, we can say more about K3 surfaces.

Theorem 2.2. There are only five (resp. three) types of extremal elliptic

K3 surfaces in characteristic 2 (resp. 3) as in Table 1 (resp. 2).

Corollary 2.3. These three extremal elliptic K3 surfaces in characteristic

3 in Table 2 are all Kummer surfaces.
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Proposition 2.4. Every supersingular elliptic K3 surface with at least one

section in charcteristic 2 has a structure of elliptic fibration which has infinitely

many sections.

Corollary 2.5. Let X be a supersingular K3 surface which has an elliptic

fibration with a section. Then AutðXÞ contains an element s of infinite order

such that s preserves the elliptic fibration and acts trivially on H 0ðX ;W2
X Þ.

Furthermore, X contains infinitely many nonsingular rational curves.

We will prove them in section 4.

3. Rational extremal elliptic surfaces

For the reference, we exhibit the classifications by W. Lang of extremal

rational elliptic surfaces in characteristic 2 and 3 with some corrections from

[19] of misprints in [9]. We also calculate these Mordell-Weil groups and ex-

hibit them.

Remark 3.1. For an elliptic surface X=C with finite sections, there is

an isomorphism between Néron-Severi group divided by the trivial lattice and

Mordell-Weil group. Especially, we have a relation between these orders,

jdet NSðXÞj=jdet T j ¼ 1=jMW ðX=CÞj2:ð3:1Þ

Since Néron-Severi group of a rational surface is unimodular, we can cal-

culate the order of Mordell-Weil group by the type of singular fibers

jMW ðX=CÞj2 ¼ jdet T j:ð3:2Þ

Table 1. Extremal elliptic K3 surfaces in p ¼ 2

type deg J MWðX=CÞ equation of X

ðI�1 ; I16Þ 16 Z=4Z y2 þ t2xyþ t2y ¼ x3 þ x2
ðIV�; I4; I12Þ 16 Z=6Z y2 þ t2xyþ t2y ¼ x3

ðI18; I2; I2; I2Þ 24 Z=6Z y2 þ t2xyþ y ¼ x3

ðI10; I10; I2; I2Þ 24 Z=10Z y2 þ t2xyþ y ¼ x3 þ x2 þ t2
ðI6; I6; I6; I6Þ 24 Z=3ZlZ=6Z y2 þ t2xyþ y ¼ x3 þ 1þ t6

Table 2. Extremal elliptic K3 surfaces in p ¼ 3

type deg J MWðX=CÞ equation of X

ðI�3 ; I3; I12Þ 18 Z=4Z y2 ¼ x3 þ tðt3 þ 1Þx2 þ t2x
ðI�6 ; I6; I6Þ 18 ðZ=2ZÞl2 y2 ¼ x3 þ tðt3 þ 1Þx2 � t8x� t9ðt3 þ 1Þ
ðI�12; I3; I3Þ 18 Z=2Z y2 ¼ x3 þ tðt3 þ 1Þx2 þ t8x
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Using this Remark, the structures of Mordell-Weil groups for cases I, II,

V, VI, VII, VIII, IX, SI, SII in Table 3 and cases I, II, III, IV, V, VII, X, XI,

SII in Table 4 are determined straightforward because the group structures are

determined by these orders uniquely.

To determine the structure of Mordell-Weil groups for other cases, we

need some calculations. We treat the characteristic 2 cases first, that is, the

cases in Table 3. For types III (resp. IV) in Table 3, one can easily check that

a rational point ðx; yÞ ¼ ð0; 0Þ (resp. ðt; 0Þ) has order four. For type SIII in

Table 3, let P ¼ ðtþ 1; 1Þ and Q ¼ ðaðtþ aÞ; 1Þ be both rational points where

Table 3. Rational extremal elliptic surfaces in characteristic 2

Notation type deg J MWðX=CÞ equation of X

I ðI�4 Þ 0 Z=2Z y2 þ txy ¼ x3 þ tx2 þ at6, a0 0

II ðII�Þ 0 f0g y2 þ t3y ¼ x3 þ t5
III ðIII; I8Þ 8 Z=4Z y2 þ txyþ ty ¼ x3 þ x2
IV ðI�1 ; I4Þ 4 Z=4Z y2 þ txy ¼ x3 þ t2x
V ðIII�; I2Þ 2 Z=2Z y2 þ txy ¼ x3 þ t4
VI ðII�; I1Þ 1 f0g y2 þ txy ¼ x3 þ t5
VII ðIV; IV�Þ 0 Z=3Z y2 þ t2y ¼ x3

VIII ðIV; I2; I6Þ 8 Z=6Z y2 þ txyþ ty ¼ x3

IX ðIV�; I1; I3Þ 4 Z=3Z y2 þ txyþ t2y ¼ x3

SI ðI9; I1; I1; I1Þ 12 Z=3Z y2 þ txyþ y ¼ x3

SII ðI5; I5; I1; I1Þ 12 Z=5Z y2 þ txyþ y ¼ x3 þ x2 þ t
SIII ðI3; I3; I3; I3Þ 12 ðZ=3ZÞl2 y2 þ txyþ y ¼ x3 þ ðt3 þ 1Þ

Table 4. Rational extremal elliptic surfaces in characteristic 3

Notation type deg J MWðX=CÞ equation of X

I ðII�Þ 0 f0g y2 ¼ x3 þ t4xþ t5
II ðII; I9Þ 9 Z=3Z y2 ¼ x3 þ t2x2 þ tðtþ 1Þxþ tðtþ 2Þ
III ðIV�; I3Þ 3 Z=3Z y2 ¼ x3 þ t2x2 þ t3xþ t4
IV ðII�; I1Þ 1 f0g y2 ¼ x3 þ t2x2 þ t5
V ðIII�; IIIÞ 0 Z=2Z y2 ¼ x3 þ t3x
VI ðI�0 ; I�0 Þ 0 ðZ=2ZÞl2 y2 ¼ x3 þ tx2 þ bt3; b0 0

VIbis ðI�0 ; I�0 Þ 0 ðZ=2ZÞl2 y2 ¼ x3 þ t2x
VII ðIII; I3; I6Þ 9 Z=6Z y2 ¼ x3 þ t2x2 þ tx
VIII ðI�1 ; I1; I4Þ 6 Z=4Z y2 ¼ x3 þ tðtþ 1Þx2 þ t2x
IX ðI�2 ; I2; I2Þ 6 ðZ=2ZÞl2 y2 ¼ x3 þ tðtþ 1Þx2 � t4x� t5ðtþ 1Þ
X ðI�4 ; I1; I1Þ 6 Z=2Z y2 ¼ x3 þ tðtþ 1Þx2 þ t4x
XI ðIII�; I1; I2Þ 3 Z=2Z y2 ¼ x3 þ t2x2 þ t3x
SI ðI8; I2; I1; I1Þ 12 Z=4Z y2 ¼ x3 þ ðt2 þ 1Þx2 þ x
SII ðI5; I5; I1; I1Þ 12 Z=5Z y2 ¼ x3 þ ðt2 þ 1Þx2 þ ðt� t2Þxþ t2
SIII ðI4; I4; I2; I2Þ 12 Z=4ZlZ=2Z y2 ¼ x3 þ ðt2 þ 1Þx2 þ t2x

Hiroyuki Ito182



a satisfies a2 þ aþ 1 ¼ 0. Then it is not so hard to compute 2P ¼ �P ¼
ðtþ 1; tðtþ 1ÞÞ and 2Q ¼ �Q ¼ ðaðtþ aÞ; atðtþ aÞÞ. (See [20] and [11] for the

method of explicit calculation.)

Next, we go into the characteristic 3 cases which is in Table 4. For types

VI, let bi ði ¼ 1; 2; 3Þ be three distinct roots of the equation x3 þ x2 þ b ¼ 0

over k. Then the points Pi ¼ ðbit; 0Þ ði ¼ 1; 2; 3Þ are all rational points and sat-
isfy the relation 2Pi ¼ O and P1 þ P2 ¼ P3, thus P1 and P2 generate the group

Z=2ZlZ=2Z. Similary, let QG (resp. R) be the rational points ðG
ffiffiffiffiffiffiffi
�1

p
t; 0Þ

(resp. ð0; 0Þ) for the type VIbis. Then these points satisfy Qþ þQ� ¼ R and

2QG ¼ 2R ¼ O, and get the structure. For the type VIII, it is easy to check

that the point ðt; t2Þ has order four, and for the type IX, the points ðGt2; 0Þ and
ð�tðtþ 1Þ; 0Þ have all order two and any two of them generate the Mordell-

Weil group as Z=2ZlZ=2Z.

Finally, to determine the group structure of Mordell-Weil groups for re-

maining cases SI and SIII in Table 4, we need more observations.

Lemma 3.2. (1) The elliptic surface of type SI in Table 4 is obtained from

VIII by base change of degree 2 induced from ramified double covering between

base curves P1’s, whose ramification points are just the points of the base curve

P1 for the surface of type VIII over which the singular fibers are of type I�1 and

I4.

(2) The elliptic surface of type SIII in Table 4 is obtained from VIII by

base change of degree 2 induced from ramified double covering between P1’s,

whose ramification points are just the points of the base P1 for the surface of type

VIII over which the singular fibers are of type I1 and I
�
1 .

(3) Moreover, the elliptic surface of type SIII is obtained from IX also by

base extension of degree 2 induced from ramified covering of base curves whose

ramification points are just the points over which the singular fibers are of type I2
and I�2.

This lemma is so elementary that we omit the proof. Now, using the fol-

lowing lemma which is a folklore we have the structure of Mordell-Weil groups

of these remaining two types.

Lemma 3.3. Let f : X ! C be an elliptic surface and p : C 0 ! C be a

finite morphism. Then the Mordell-Weil group of X=C injects into the Mordell-

Weil group of X 
C C
0=C 0.

We know the order of the group for the type SI (resp. SIII) by Remark

3.1 and the group has to include the group isomorphic to Z=4Z (resp. both

Z=4Z and Z=2ZlZ=2Z) by these lemmas, we get the results.

Remark 3.4. From the above tables, one can see easily that there are
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some sequences of extremal elliptic surfaces by Frobenius base changes. For

characteristic 2 case, there are two sequences:

III!F IV!F V!F VI

VIII!F IX;

and for characteristic 3 case, there are also two sequences:

II!F III!F IV

VII!F XI;

where F is the Frobenius base extension and desingularization. Moreover,

cases I, II, VII in characteristic 2 and I, V, VI, VIbis in characteristic 3 are

Frobenius closed, that is, the minimal models of Frobenius base extensions of

these surfaces are isomorphic to these surfaces themselves.

Here is a precise statement of the theorem by Schweizer which we will use

later.

Theorem 3.5 ([19]). Let f : X ! P1 be an extremal elliptic surface and

assume that it is Frobenius minimal.

(1) Suppose it has a constant J-function, then it is of type I, II or VII in

Table 3 for characteristic 2 and of type I, V, VI or VIbis in Table 4 for charac-

teristic 3.

(2) Suppose its J-function is not constant, then (i) it is of type IX or VI for

non-semistable case and SI, SII or SIII for semistable case in Table 3 for char-

acteristic 2, and (ii) it is of type IV, VIII, IX, X or XI for non-semistable case

and SI, SII or SIII for semistable case in Table 4 for characteristic 3.

Note that these Frobenius minimal extremal elliptic surfaces are all rational

surfaces.

4. Proofs of theorems and corollaries

Proof of Theorem 1.1. Let f : X ! P1 be an extremal elliptic surface.

If the J-function of its generic fiber Xh is separable then X is one of the list in

Tables 3 and 4 by Schweizer’s theorem (Theorem 3.5) and we get the result.

Now suppose that J-function of X is inseparable and it decomposes into

the purely inseparable part Jinsep and the separable part Jsep. Consider J-

function of X as the j-invariant of the generic fiber Xh which is an elliptic curve
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over the rational function field kðtÞ ¼ kðP1Þ. Since Xh is not Frobenius min-

imal, j-invariant of Xh is a p-th power in kðtÞ and Xh can be obtained from

another elliptic curve E over kðtÞ by composite of Frobenius isogenies. We

may suppose that this elliptic curve E over kðtÞ is Frobenius minimal, that is,
its j-function is not a p-th power in kðtÞ.

Let g : Y ! P1 be the minimal nonsingular model of E over P1, then it is

a rational surface and this is in Tabels 3 and 4 by Theorem 3.5.

Thus we have the following diagram:

X Y

f

???y g

???y
P1 ���!Jinsep

P1 ���!Jsep
P1

furthermore, we have a rational map from X to Y given by the composite of

Frebenius isogenies between generic fibers which commutes with this diagram.

Now taking the fiber product of Jinsep : P
1 ! P1 and g : Y ! P1, we get

the elliptic surface Y 
P1 P
1 birational to X whose generic fiber coincides with

the generic fiber of X by the above consideration.

Then from the theory of (Kodaira-Néron) minimal model (the existence

and uniqueness, cf. [3] for example), the minimal desingularization of Y 
P1 P
1

coincides with X. r

Proof of Theorem 2.2. By Theorem 1.1 and Remark 3.4 the only pos-

sibilities for extremal elliptic surfaces with pgðX Þb 1 are those surfaces which

are obtained from surfaces of type III, VIII, SI, SII or SIII in characteristic 2

and surfaces of type II, VII, VIII, IX, X, SI, SII or SIII in characteristic 3 by

Frobenius base extensions.

For K3 surfaces which have pg ¼ 1 the only possibilities are exhibited in

Tables 1 and 2, and these surfaces actually exist by Frobenius base extension.

For the structures of Mordell-Weil groups of them, one need more precise con-

siderations. Since the determinant of Néron-Severi groups of supersingular K3

surfaces with respect to the intersection pairing is equal to �p2s0 with 1a s0 a

10, where s0 is Artin invariant, thus jdet NSðXÞj has to be divisible by p2.

Combining this fact and Lemma 3.3, one can easily determine the struc-

ture of Mordell-Weil groups for non-semistable cases in characteristic 2 and

3. For example, jdet T j is 26 for the surface of type ðI�1 ; I16Þ in characteristic
2 which is obtained by the rational surface whose Mordell-Weil group is iso-

morphic to Z=4Z, so the order of Mordell-Weil group is divided by 4, and 26

must be divisible by 22s042 from (3.1), thus we obtain s0 ¼ 1 and the Mordell-

Weil group is isomorphic to Z=4Z. The structures of Mordell-Weil groups for

other surfaces which have non-semi-stable fibers in both characteristics are sim-
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ilarly determined. For the remaining cases, that is, the cases for semi-stable el-

liptic surfaces in characteristic 2 in Table 1, one can check that the point ðx; yÞ ¼
ðt; 1Þ has order six for the surface of type ðI18; I2; I2; I2Þ, and that the point
1
t2
; t
4þtþ1
t3

� �
(resp. 1

t2
; t
6þt3þ1
t3

� �
) is 2-torsion for the surface of type ðI10; I10; I2; I2Þ

(resp. ðI6; I6; I6; I6Þ). r

Proof of Corollary 2.3. From Table 2, we can conclude that all super-

singular K3 surfaces in the list have Artin invariant 1 using (3.1) (See [1] more

about Artin invariant). And by the result by Ogus ([12]), these surfaces are all

Kummer surfaces. r

Proof of Proposition 2.4. First of all, note that all surfaces in Table 1

has its Artin invariant 1. Thus all these surfaces are isomorphic to each other

(cf. [14]). So it su‰ces to show the proposition for the case ðI�1 ; I16Þ. This

will be done by giving another structure of elliptic fibration on X using the

following lemma.

Lemma 4.1. Let D be an e¤ective divisor on a K3 surface X which has the

same type as a singular fiber of an elliptic surface. Then there is a unique pencil

f : X ! P1 of arithmetic genus 1 of which D is a singular fiber. Moreover, any

irreducible curve C on X with ðC �DÞ ¼ 1 defines a section of f .

This lemma follows immediately from Theorem 1 in [13] § 3.

Now we take an e¤ective divisor as in this lemma for the case ðI�1 ; I16Þ as
follows.

Let us take D in the lemma to be I�3 which was indicated as bold lines in

Figure 1 which is a configuration of the zero section and the singular fibers of

type I�1 and I16.

Since I �3 does not occur as a singular fiber of a quasi-elliptic fibration,

this pencil is elliptic. If an elliptic K3 surface has a singular fiber of type I�3

Fig. 1
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then its Mordell-Weil group is infinite group by Table 2 which does not have

a surface having the singular fiber of type I�3 . Thus we are done. r

Corollary 2.5 is followed by Proposition 2.4 in characteristic 2 and Ueno’s

result in [21] in characteristic 3 because these are all Kummer surfaces (Corollary

2.3) (cf. [7]).
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