On Poincaré four-complexes with free fundamental groups

Friedrich Hegenbarth and Salvina Piccarreta
(Received June 8, 1999)
(Revised October 23, 2001)

Abstract

Let X be a closed connected and oriented PL manifold whose fundamental group π_{1} is a free group of rank p. Let Λ be the integral group ring of π_{1}. Then $H_{2}(X, \Lambda)$ is Λ-free (see [6]). We show that there is a bijective correspondence between homotopy equivalence classes of 4-dimensional Poincaré complexes Y with $Y^{(3)} \cong X^{(3)}$ and invertible hermitian matrices of type k over Λ, where k is the rank of $H_{2}(X, \Lambda)$.

1. Introduction.

By a Poincaré 4-complex we understand a 4-dimensional CW-complex Y with a fundamental class $[Y] \in H_{4}(Y, \mathbf{Z}) \cong \mathbf{Z}$ inducing isomorphisms

$$
\bigcap[Y]: H^{q}(Y, \Lambda) \rightarrow H_{4-q}(Y, \Lambda)
$$

where $\Lambda=\mathbf{Z}\left[\pi_{1}(Y)\right]$ is the integral group ring of the fundamental group. Since we will discuss only fundamental groups which are freely generated, e.g., by p generators, there will be no Whitehead torsion. Therefore they will be finite Poincare complexes in the sense of [8]. We can also assume that Y is obtained from the 3-skeleton $Y^{(3)}$ of Y by attaching only one 4-cell (see [8], p. 30), i.e., $Y=Y^{(3)} \cup_{\varphi} D^{4}$, where $\varphi: \mathbf{S}^{3} \rightarrow Y^{(3)}$ is the attaching map. The following result of T . Matumoto and A. Katanaga will be crucial for our discussion (see [6], Proposition 2).

Proposition 1.1. Let X be a closed PL four-manifold with $\pi_{1}={ }^{p} \mathbf{Z}$. Then $X^{(3)}$ is homotopy equivalent to $\bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \vee\left(\bigvee^{k} \mathbf{S}^{2}\right)$.

Let us suppose X to be a PL 4-manifold, hence $\pi_{2}(X)=H_{2}(X, \Lambda)$ is Λ free of rank k. Recall the Whitehead exact sequence ([9])

$$
0 \rightarrow \Gamma\left(\pi_{2}\right) \rightarrow \pi_{3}\left(X^{(3)}\right) \rightarrow H_{3}\left(X^{(3)}, \Lambda\right) \rightarrow 0
$$

where $\Gamma\left(\pi_{2}\right)$ is the (quadratic) Γ-functor applied to the abelian group $\pi_{2}\left(X^{(3)}\right)=$ $H_{2}(X, \Lambda)$. Note that $H_{3}\left(X^{(3)}, \Lambda\right)$ is Λ-free of rank p. There are canonical

2000 Mathematics Subject Classification. 57N65, 57R67, 57Q10.
Key words and phrases. Poincaré complexes, Free fundamental groups, Homotopy type, Hermitian forms.
maps $\Gamma\left(\pi_{2}\right) \rightarrow \pi_{2} \otimes_{\mathrm{Z}} \pi_{2}$ and $\pi_{2} \otimes_{\mathrm{Z}} \pi_{2} \rightarrow \Gamma\left(\pi_{2}\right)$ such that their composition is multiplication by 2 on $\Gamma\left(\pi_{2}\right)$. This implies in our case that

$$
\Gamma\left(\pi_{2}\right) \subset \pi_{2} \otimes_{\mathbf{Z}} \pi_{2}
$$

In fact, $\Gamma\left(\pi_{2}\right)$ can be considered as the subset of symmetric tensors in $\pi_{2} \otimes_{\mathrm{Z}} \pi_{2}$. Moreover, $\Gamma\left(\pi_{2}\right)$ is a Λ-submodule of $\pi_{2} \otimes_{\mathbf{Z}} \pi_{2}$, and the induced homomorphism

$$
\Gamma\left(\pi_{2}\right) \otimes_{\Lambda} \mathbf{Z} \rightarrow \pi_{2} \otimes_{\Lambda} \pi_{2}
$$

is injective. (Here as elsewhere in this paper, we have, if necessary, to shift from right- to left- Λ-module structures using the canonical anti-automorphism of 1 .) The purpose of this paper is to study 4-complexes Y obtained from $X^{(3)}$ by attaching one 4 -cell with attaching map $\psi: \mathbf{S}^{3} \rightarrow X^{(3)}$, i.e., $Y=X^{(3)} \cup_{\psi} D^{4}$. More precisely, we want to study conditions on ψ to obtain a Poincaré 4complex Y. Our basic result is a correspondence between homotopy equivalence classes of PD-duality spaces Y and invertible hermitian matrices over Λ of type k (see Theorem 3.3 below).

2. Homological properties of Y.

Let X be an oriented closed PL-manifold of dimension 4. We may assume that $X^{(3)}$ is homotopy equivalent to $\bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \vee\left(\bigvee^{k} \mathbf{S}^{2}\right)$. Let

$$
\varphi: \mathbf{S}^{3} \rightarrow \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \vee\left(\bigvee^{k} \mathbf{S}^{2}\right)
$$

be the attaching map of the 4 -cell and let φ_{0} be the composition

$$
\mathbf{S}^{3} \xrightarrow{\varphi} \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \vee\left(\bigvee^{k} \mathbf{S}^{2}\right) \xrightarrow{c} \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right)
$$

with the collapsing map $c: \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \vee\left(\bigvee^{k} \mathbf{S}^{2}\right) \rightarrow \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right)$.
Lemma 2.1. The space $Q=\bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right) \cup_{\varphi_{0}} D^{4}$ is a Poincare complex of dimension 4. The canonical map $f: X \rightarrow Q$ is of degree 1.

Proof. The collapsing map c induces a map $f: X \rightarrow Q$ such that the following diagram commutes

In particular, $f_{*}: H_{4}(X, \mathbf{Z}) \stackrel{\cong}{\rightrightarrows} H_{4}(Q, \mathbf{Z})$. Let $[Q]=f_{*}[X]$, then

commutes. For $q=0$ we observe that $H^{0}(Q, \Lambda)=H^{0}(X, \Lambda)=0$ since $H_{4}(X, \Lambda)=0$. Hence Poincaré duality is trivial in this case. Moreover for $q=1,3$ it follows that $f_{*}: H_{4-q}(X, \Lambda) \stackrel{\cong}{\rightrightarrows} H_{4-q}(Q, \Lambda)$ and $H^{q}(Q, \Lambda) \xrightarrow{\cong}$ $H^{q}(X, \Lambda)$, hence Poincare duality follows from the previous diagram. It follows from the diagram
$0 \longrightarrow H^{3}(Q, \Lambda) \longrightarrow H^{3}\left(Q^{(3)}, \Lambda\right) \longrightarrow H^{4}\left(Q, Q^{(3)}, \Lambda\right) \longrightarrow H^{4}(Q, \Lambda) \longrightarrow 0$

that $f^{*}: H^{4}(Q, \Lambda) \xlongequal{\cong} H^{4}(X, \Lambda)$ hence $\bigcap[Q]: H^{4}(Q, \Lambda) \xlongequal{\cong} H_{0}(Q, \Lambda)$. Finally for $q=2$, we see easily that $H^{2}(Q, \Lambda)=H_{2}(Q, \Lambda)=0$.

As explained in the introduction we shall study the space $Y=X^{(3)} \cup_{\psi} D^{4}$ and $[\psi]=[\varphi]+\theta$, with $\theta \in \Gamma\left(\pi_{2}\right)$. Note that $Q^{(3)}=\bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right)$, hence we have

$$
\pi_{3}\left(Q^{(3)}\right) \underset{\cong}{\cong} H_{3}\left(Q^{(3)}, \Lambda\right)
$$

It follows from the diagram

that the composition ψ_{0}

$$
\mathbf{S}^{3} \xrightarrow{\psi} X^{(3)} \xrightarrow{c} \bigvee^{p}\left(\mathbf{S}^{1} \vee \mathbf{S}^{3}\right)
$$

is homotopic to φ_{0}, so this defines a map

$$
Y \xrightarrow{g} Q
$$

Note that $g_{*}: H_{4}(Y, \mathbf{Z}) \xlongequal{\cong} H_{4}(Q, \mathbf{Z})$ (as above) and let $[Y] \in H_{4}(Y, \mathbf{Z})$ be such that $g_{*}([Y])=[Q]$.

Lemma 2.2. Cap product with $[Y]$ induces isomorphisms $H^{q}(Y, \Lambda) \rightarrow$ $H_{4-q}(Y, \Lambda)$ for all $q \neq 2$.

Proof. The proof goes as in Lemma 2.1.
On the other hand if $Y=X^{(3)} \cup_{\psi} D^{4}$ is a Poincaré duality space for $\psi: \mathbf{S}^{3} \rightarrow X^{(3)}$, then we can construct Q as above and $g_{*}: \pi_{3}\left(X^{(3)}\right)=\pi_{3}\left(Y^{(3)}\right) \rightarrow$ $\pi_{3}\left(Q^{(3)}\right)$ is identified with f_{*}. So it follows from diagram $\left(^{*}\right)$ that $[\psi]-[\varphi] \in$ $\Gamma\left(\pi_{2}\right)$. Hence this is also a necessary condition.

Remark 2.1. From the universal coefficient spectral sequence we get

$$
H^{2}(Z, \Lambda) \cong \operatorname{Hom}_{\Lambda}\left(H_{2}(Z, \Lambda), \Lambda\right)
$$

for all spaces Z under consideration.

3. Poincaré duality in the middle dimension.

As before let $\varphi: S^{3} \rightarrow X^{(3)}$ be the attaching map of a 4-cell of the 4manifold X. Given an element $\theta \in \Gamma\left(\pi_{2}\right)$ we must study the effect of θ on the homomorphism

$$
H^{2}(Y, \Lambda) \rightarrow H_{2}(Y, \Lambda)
$$

for $Y=X^{(3)} \cup_{\psi} D^{4}$ with $[\psi]=[\varphi]+\theta$. To simplify notation we will write π_{2}, H_{2}, and H^{2} for $\pi_{2}(X), H_{2}(X, \Lambda)$, and $H^{2}(X, \Lambda)$, respectively. In particular, we have $\pi_{2}=H_{2}$. Note that $H^{2}(Y, \Lambda) \cong H^{2}(X, \Lambda)$ and $H_{2}(Y, \Lambda) \cong H_{2}(X, \Lambda)$ in a canonical way, so we have particularly

$$
\bigcap[Y]: H^{2} \xrightarrow{\cong} H_{2}
$$

Hence we have to study the isomorphism

$$
\bigcap[Y]-\bigcap[X]: H^{2} \xrightarrow{\cong} H_{2} .
$$

Let $\theta=\sum_{i} u_{i} \otimes v_{i} \in \pi_{2} \otimes_{\mathbf{Z}} \pi_{2}$ be a symmetric tensor, i.e., $\theta \in \Gamma\left(\pi_{2}\right)$. The effect of θ on H^{2} is given as the image of θ under the canonical homomorphisms

$$
\pi_{2} \otimes_{\mathbf{Z}} \pi_{2} \rightarrow \pi_{2} \otimes_{\Lambda} \pi_{2} \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{\Lambda}\left(H_{2}^{*}, H_{2}\right) \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{\Lambda}\left(H^{2}, H_{2}\right)
$$

where $H_{2}^{*}=\operatorname{Hom}_{\Lambda}\left(H_{2}, \Lambda\right)$. Because π_{2} is Λ-free these are isomorphisms (except the first map). Recall also that $H^{2} \xlongequal{\cong} H_{2}^{*}$. For convenience we identify $\operatorname{Hom}_{\Lambda}\left(H^{2}, H_{2}\right)$ with $\operatorname{Hom}_{\Lambda}\left(H_{2}, H_{2}\right)$ via the PD-isomorphism

$$
\bigcap[X]: H^{2}(X, \Lambda) \rightarrow H_{2}(X, \Lambda)
$$

The following lemma can be easily checked:
Lemma 3.1. Under the above composition map the element $\theta=\sum_{i} u_{i} \otimes$ $v_{i} \in \Gamma\left(\pi_{2}\right)$ gives the following homomorphism

$$
H_{2}(X, \Lambda) \rightarrow H_{2}(X, \Lambda)
$$

sending x to $\sum_{i} u_{i} \lambda_{X}\left(v_{i}, x\right)$. Here $\lambda_{X}: H_{2}(X, \Lambda) \times H_{2}(X, \Lambda) \rightarrow \Lambda$ is the intersection form over the group ring.

Proof. The only difficulty is to write down the correct Λ-module structures. If H_{2} is considered as a Λ-right module, then H_{2}^{*} is in a natural way a Λ-left module. For $\xi \in H_{2}^{*}$ and $\lambda \in \Lambda$ we have $(\lambda \xi)(x)=\lambda \xi(x)$. Then H_{2}^{*} is a right module as follows: $\xi \cdot \lambda(x)=\bar{\lambda} \xi(x)$, where ${ }^{-}: \Lambda \rightarrow \Lambda$ is the canonical anti-involution. Now $\operatorname{Hom}_{\Lambda}\left(H_{2}^{*}, H_{2}\right)$ are the Λ-right module homomorphisms. Let us for simplicity consider $u \otimes_{\Lambda} v \in \pi_{2} \otimes_{\Lambda} \pi_{2}$. This defines in $\operatorname{Hom}_{\Lambda}\left(H_{2}^{*}, H_{2}\right)$ the element given by $\xi \rightarrow u \overline{\xi(v)}$. In $\operatorname{Hom}_{\Lambda}\left(H^{2}, H_{2}\right)$ the expression $\xi(v)$ becomes $\xi \cap v$. Going from $\operatorname{Hom}_{\Lambda}\left(H^{2}, H_{2}\right)$ to $\operatorname{Hom}_{\Lambda}\left(H_{2}, H_{2}\right)$ via $\mathrm{PD}_{X}: H^{2}(X, \Lambda) \rightarrow H_{2}(X, \Lambda)$ we have to start with $x \in H_{2}$, i.e.,

$$
x \rightarrow u \overline{\left(\mathrm{PD}_{X}^{-1}(x) \cap v\right)}=u \overline{\lambda_{X}(x, v)}=u \lambda_{X}(v, x)
$$

Recall for this that $\lambda_{X}(x, y)=\left(\operatorname{PD}_{X}^{-1}(x) \cup \mathrm{PD}_{X}^{-1}(y)\right) \cap[X] \in H_{0}\left(X, \Lambda \otimes_{\mathbf{Z}} \Lambda\right) \cong$ $\Lambda \otimes_{\Lambda} \Lambda \cong \Lambda$.

Corollary 3.2. If we compose $\bigcap[Y]: H^{2} \rightarrow H_{2}$ with the Poincare duality inverse $\mathrm{PD}_{X}^{-1}: H_{2} \rightarrow H^{2}$ we obtain

$$
(\bigcap[Y]) \circ \mathrm{PD}_{X}^{-1}(x)=x+\sum_{i} u_{i} \lambda_{X}\left(v_{i}, x\right)
$$

Let us now choose a Λ-basis a_{1}, \ldots, a_{k} of H_{2}. Then

$$
\left\{a_{i} g \otimes a_{j} g^{\prime} \mid i, j=1, \ldots, k, g, g^{\prime} \in \pi_{1}\right\}
$$

is a \mathbf{Z}-basis of $\pi_{2} \otimes_{\mathbf{Z}} \pi_{2}=H_{2} \otimes_{\mathbf{Z}} H_{2}$. Let $\theta=\sum_{i, j, g, g^{\prime}} a_{i} g \otimes a_{j} g^{\prime} n_{j i}\left(g, g^{\prime}\right)$ be a symmetric element, i.e., $\theta \in \Gamma\left(\pi_{2}\right)$, with $n_{j i}\left(g, g^{\prime}\right) \in \mathbf{Z}$. Then we must have $n_{j i}\left(g, g^{\prime}\right)=n_{i j}\left(g^{\prime}, g\right)$. Note that the sum which defines θ is finite. Let us write the element $\theta \otimes_{\Lambda} 1 \in \pi_{2} \otimes_{\Lambda} \pi_{2}$ as $\sum_{i, j} a_{i} \otimes a_{j} \gamma_{j i}$ with $\gamma_{j i}=\sum_{g, g^{\prime}} n_{j i}\left(g, g^{\prime}\right)$. $g^{\prime} g^{-1} \in \Lambda$. The above symmetry condition then implies $\gamma_{j i}=\overline{\gamma_{i j}}$, i.e., the matrix $\Gamma=\left(\gamma_{j i}\right) \in M(k, k ; \Lambda)$ is hermitian: $\bar{\Gamma}^{t}=\Gamma$. Conversely, let be given any hermitian matrix $\Gamma=\left(\gamma_{j i}\right)$ over Λ. Let us write the elements $\gamma_{j i} \in \Lambda$ as $\gamma_{j i}=$ $\sum_{g \in \pi_{1}} n_{j i}(g) g$. Then $\gamma_{j i}=\bar{\gamma}_{i j}$ implies $n_{j i}(g)=n_{i j}\left(g^{-1}\right)$. Let

$$
\theta=\sum_{i, j, g}\left\{a_{i} \otimes a_{j} g n_{j i}(g)+a_{j} g \otimes a_{i} n_{i j}\left(g^{-1}\right)\right\}+\sum_{i} a_{i} \otimes a_{i} n_{i i}(1)
$$

The first sum is taken over all $i, j=1, \ldots, k$ and $g \in \pi_{1}^{\prime} \cup\{1\}$, where π_{1}^{\prime} is a subset of $\pi_{1} \backslash\{1\}$ containing for any $g \in \pi_{1}$ either g or g^{-1}. Then $\theta \in \Gamma\left(\pi_{2}\right)$ and $\theta \otimes_{A} 1=\sum_{i, j} a_{i} \otimes a_{j} \gamma_{j i}$. Applying $(\bigcap[Y]) \circ \mathrm{PD}_{X}^{-1}$ to the basis a_{1}, \ldots, a_{k} we get from Corollary 3.2

$$
\begin{aligned}
(\bigcap[Y]) \circ \mathrm{PD}_{X}^{-1}\left(a_{\ell}\right) & =a_{\ell}+\sum_{i, j} a_{i} \lambda_{X}\left(a_{j} \gamma_{j i}, a_{\ell}\right) \\
& =a_{\ell}+\sum_{i, j} a_{i} \bar{\gamma}_{j i} \lambda_{X}\left(a_{j}, a_{\ell}\right) \\
& =a_{\ell}+\sum_{i, j} a_{i} \gamma_{i j} \lambda_{X}\left(a_{j}, a_{\ell}\right) .
\end{aligned}
$$

If we denote by L_{X} the intersection matrix $\left(\lambda_{X}\left(a_{j}, a_{\ell}\right)\right)$ we get the matrix

$$
I_{k}+\Gamma L_{X}=\Sigma
$$

associated to $(\bigcap[Y]) \circ \mathrm{PD}_{X}^{-1}$. Since L_{X} is invertible and hermitian, we can solve this equation for Γ. Hence, beginning with an invertible hermitian matrix $\Sigma L_{X}^{-1}=\Omega$ we obtain an hermitian Λ-matrix Γ from which we can construct $\theta \in \Gamma\left(\pi_{2}\right)$ such that $Y=X^{(3)} \cup_{\psi} D^{4}$ with $[\psi]=[\varphi]+\theta$ is a Poincaré duality complex. On the other hand it was shown in [2] that the isomorphic intersection forms λ_{X} and λ_{Y} determine homotopy equivalent Poincaré spaces X and Y. This means that if the cup product pairings

$$
H^{2} \otimes H^{2} \rightarrow \Lambda
$$

given by $[X]$ and $[Y]$ are the same then X and Y are homotopy equivalent. Note that the cup product with respect to $[Y]$ is defined by the composition

$$
H^{2} \otimes H^{2} \longrightarrow H^{4}\left(Y, \Lambda \otimes_{\mathbf{Z}} \Lambda\right) \xrightarrow{\cap[Y]} H_{0}\left(Y, \Lambda \otimes_{\mathbf{Z}} \Lambda\right) \cong \Lambda \otimes_{\Lambda} \Lambda \cong \Lambda
$$

If $\xi, \eta \in H^{2}$ we have $(\xi \cup \eta) \cap[Y]=\xi \cap(\eta \cap[Y])$. Now $\eta \cap[Y]=\eta \cap[X]+$ $\sum_{i, j} a_{i} \overline{\eta\left(a_{j} \gamma_{j i}\right)}$ (considering $\eta \in H^{2} \cong H_{2}^{*}$). If we calculate the products of the Hom_{A}-dual basis $a_{1}^{*}, \ldots, a_{k}^{*} \in H^{2}$ we obtain

$$
\left(a_{r}^{*} \cup a_{s}^{*}\right) \cap[Y]=\left(a_{r}^{*} \cup a_{s}^{*}\right) \cap[X]+\gamma_{r s} .
$$

We can therefore summarize to get the following
Theorem 3.3. Let X^{4} be a closed connected PL 4-manifold with $\pi_{1}(X) \cong$ ${ }^{p} \mathbf{Z}$. Fixing a Λ-basis $\left\{a_{1}, \ldots, a_{k}\right\}$ of $H_{2}(X, \Lambda)$, there is a bijective correspondence between hermitian invertible matrices Ω of type k and homotopy equivalence classes of Poincaré duality 4-complexes Y with $Y^{(3)} \cong X^{(3)}$.

4. A remark on special hermitian forms and their realization by 4-manifolds.

If $\pi_{1} \cong \mathbf{Z}$ any non-singular hermitian form has a realization by a 4manifold (see [4]). There are forms such that the resulting manifold is not homotopy equivalent to $\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right) \# M^{\prime}$ with M^{\prime} simply-connected, because there are forms over $\Lambda=\mathbf{Z}[\mathbf{Z}]$ which are not extended from \mathbf{Z} (see [5]). If the rank of the free group is greater than 1 the realization of a non-singular hermitian form as intersection form of a closed 4-manifold is a difficult problem because free non-abelian groups are supposed to be not "good" in the sense of surgery theory (see [4]). An analogous problem arises by trying to realize surgery obstructions in dimension 4 (see [9], p. 54). Here the relevant hermitian forms are "special hermitian forms" (G, λ, μ) (see [9], p. 47). Besides being based (which we can ignore since the Whitehead group of $\pi_{1}=*^{p} \mathbf{Z}$ is zero), a special hermitian form can be considered as an even hermitian space (see [7], Ch. 1). An even hermitian form is an orthogonal complement of a hyperbolic space (see [9], Lemma 5.4, or [7], Corollary 3.5.4). A hyperbolic space can be realized by $M=\#^{p}\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right) \#\left(\#^{n}\left(\mathbf{S}^{2} \times \mathbf{S}^{2}\right)\right)$ for some n. The collapsing map $c: M \rightarrow \#^{p}\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right)$ is a normal map of degree 1 with associated surgery obstruction $\sigma(c)=0 \in L_{4}\left(\pi_{1}\right)$, where $L_{4}\left(\pi_{1}\right)$ is the Wall group of π_{1}. Recall that $L_{4}\left(\pi_{1}\right)=\mathbf{Z}$ and the surgery obstruction is the signature of the special hermitian form in question (see [1]). Now let us realize the even hermitian form (G, λ) by a Poincaré duality space Y and suppose that $\operatorname{sign}(Y)=0$. We consider $H_{2}(Y, \Lambda)$ as an orthogonal summand in $H_{2}(M, \Lambda)$.

Now let $V \subset H_{2}(M, \Lambda)$ be the orthogonal complement of $H_{2}(Y, \Lambda) \subset$ $H_{2}(M, \Lambda)$. Then $\operatorname{sign}(V)=0$ since $\operatorname{sign}(M)=\operatorname{sign}(Y)=0$. This means that V is stably a hyperbolic form. In other words, let us consider $N=$ $M \#\left(\#^{r}\left(\mathbf{S}^{2} \times \mathbf{S}^{2}\right)\right)$ for a large enough r. Let $H \subset H_{2}(N, \Lambda)$ be the hyperbolic
space defined by $\#^{r}\left(\mathbf{S}^{2} \times \mathbf{S}^{2}\right)$. Then $V \oplus H$ is a sum of hyperbolic planes $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with respect to a symplectic base $\left(a_{1}, b_{1}, \ldots, a_{m}, b_{m}\right)$ of $V \oplus H \subset$ $H_{2}(N, \Lambda)$. In higher dimension, surgery on a_{1}, \ldots, a_{m} can be done to kill $V \oplus H$. In dimension 4 surgery can be done to kill $V \oplus H$ if the basis $\left(a_{1}, b_{1}, \ldots, a_{m}, b_{m}\right)$ can be represented by a map

$$
\varphi: \bigcup^{m}\left(\mathbf{S}^{2} \vee \mathbf{S}^{2}\right) \rightarrow N
$$

such that $\pi_{1}(\operatorname{Im} \varphi) \rightarrow \pi_{1}(N)$ is the zero-map (see [3]). Completing these surgeries on N we get a manifold W^{4} with intersection form isomorphic to that of Y, hence W is homotopy equivalent to Y (see [2]). The above discussion gives also a "stable" result. Note that we can use the interior of the attached 4 -cell of Y to form connected sums with manifolds. Then, if as before, λ_{Y} is even and $\operatorname{sign}(Y)=0$, then for some $r \geq 0, Y \#\left(\#^{r}\left(\mathbf{S}^{2} \times \mathbf{S}^{2}\right)\right)$ is homotopy equivalent to $\#^{p}\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right) \#\left(\#^{r+k}\left(\mathbf{S}^{2} \times \mathbf{S}^{2}\right)\right)$, where k is the rank of $H_{2}(Y, \Lambda)$. This follows again from [2], since the intersection forms are isomorphic.

5. Non-extended hermitian forms.

Let (G, λ) be a hermitian form over the group ring $\Lambda=\mathbf{Z}\left[\pi_{1}\right]$. Note that $\mathbf{Z} \subset \Lambda$. Let $\varepsilon: \Lambda \rightarrow \mathbf{Z}$ be the augmentation map. Suppose $G \cong \oplus^{k} \Lambda$. The hermitian form λ is extended from \mathbf{Z} if there is a symmetric bilinear form $b:\left(\oplus^{k} \mathbf{Z}\right) \times\left(\oplus^{k} \mathbf{Z}\right) \rightarrow \mathbf{Z}$ such that (G, λ) is isomorphic to (G, \bar{b}), where $\bar{b}:\left(\oplus^{k} \mathbf{Z}\right) \otimes_{\mathbf{Z}} \Lambda \times\left(\oplus^{k} \mathbf{Z}\right) \otimes_{\mathbf{Z}} \Lambda \rightarrow \Lambda$ is defined by $\bar{b}(x \otimes \alpha, y \otimes \beta)=\bar{\alpha} b(x, y) \beta$ for $x, y \in \oplus^{k} \mathbf{Z}, \alpha, \beta \in \Lambda$. This construction is a special case of the "change of ring"-construction (see [7]). One can apply this construction to the augmentation homomorphism $\varepsilon: \Lambda \rightarrow \mathbf{Z}$. With respect to an associated matrix $B=\left(b_{i j}\right) \in M(k, k ; \Lambda)$ one gets the matrix $\varepsilon(B)=\left(\varepsilon\left(b_{i j}\right)\right) \in M(k, k ; \mathbf{Z})$. It becomes clear that if (G, λ) is extended, it must be extended from this \mathbf{Z} bilinear form. A connected sum $\#^{p}\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right) \# M^{\prime}, \pi_{1}\left(M^{\prime}\right)=\{1\}$, has an intersection form over Λ which is extended from the \mathbf{Z}-intersection form of $H_{2}\left(M^{\prime}, \mathbf{Z}\right)$. Even if there are many non-singular hermitian forms over Λ which are not extended from forms over \mathbf{Z}, concrete examples seem to be rare. Here we report an example of Quebbemann used in [5] to construct a 4-manifold X with $\pi_{1}(X) \cong \mathbf{Z}$ and $H_{2}(X, \Lambda) \cong \oplus^{4} \Lambda$ which is not a connected $\operatorname{sum}\left(\mathbf{S}^{1} \times \mathbf{S}^{3}\right) \# M^{\prime}, \pi_{1}\left(M^{\prime}\right)=\{1\}$. Since we will consider $\pi_{1}=*^{p} \mathbf{Z}, p \geq 1$, the calculations are slightly different. Let $h \in \pi_{1}$ be an arbitrary element $\neq 1$. Denote $t=h+h^{-1}$ and let

$$
L=\left(\begin{array}{cccc}
1+t+t^{2} & t+t^{2} & 1+t & t \\
t+t^{2} & 1+t+t^{2} & t & 1+t \\
1+t & t & 2 & 0 \\
t & 1+t & 0 & 2
\end{array}\right)
$$

As is indicated in [5], we have $\operatorname{det}(L)=1$ and $\varepsilon(L)$ is equivalent to the standard form

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis of $\oplus^{4} \Lambda$. Let λ be the form defined by L. Then $\lambda\left(e_{1}, e_{1}\right)=1+t+t^{2}$. The extended form of A is the standard form μ on $\oplus^{4} \Lambda$. Note that $\mu(v, v)=\sum \bar{v}_{i} v_{i}$ if $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \bigoplus^{4} \Lambda$. The proof of the non-extendibility consists in showing that there does not exist a vector $v \in \bigoplus^{4} \Lambda$ such that $\mu(v, v)=1+t+t^{2}$. Let us write $v_{i}=\sum_{g} n_{i}(g) \in \Lambda$. Then $\quad 1+t+t^{2}=3+h+h^{-1}+h^{2}+h^{-2}=\sum_{i=1}^{4} \bar{v}_{i} v_{i}=\sum_{i, g, g^{\prime}} n_{i}(g) n_{i}\left(g^{\prime}\right) g^{\prime} g^{-1}$ would imply $3=\sum_{i, g} n_{i}(g)^{2}$, hence $n_{i}(g) \neq 0$ only for three cases (i, g). If $n_{i}(g) \neq 0$, then $n_{i}(g)= \pm 1$. Let us suppose that $n_{i_{1}}\left(g_{1}\right)= \pm 1, n_{i_{2}}\left(g_{2}\right)= \pm 1$, $n_{i_{3}}\left(g_{3}\right)= \pm 1$. As in [5] we distinguish three cases:

1. case i_{1}, i_{2}, i_{3} are distinct: then we have $v_{i_{1}}= \pm g_{1}, v_{i_{2}}= \pm g_{2}, v_{i_{3}}= \pm g_{3}$. It follows $\sum \bar{v}_{i} v_{i}=3 \neq 3+h+h^{-1}+h^{2}+h^{-2}$.
2. case $i_{1}=i_{2} \neq i_{3}$: then we have $v_{i_{1}}=\varepsilon g_{1}+\varepsilon^{\prime} g_{2}$ with $\varepsilon, \varepsilon^{\prime} \in\{ \pm 1\}$ and $v_{i_{3}}= \pm g_{3}$. One obtains $\sum \bar{v}_{i} v_{i}=3+\varepsilon \varepsilon^{\prime}\left(g_{1} g_{2}^{-1}+g_{2} g_{1}^{-1}\right)$. Write $g=g_{1} g_{2}^{-1}$, then we must have

$$
\varepsilon \varepsilon^{\prime}\left(g+g^{-1}\right)=3+h+h^{-1}+h^{2}+h^{-2}
$$

in Λ with $g, h \in \pi_{1}$. This cannot hold either.
3. case $i_{1}=i_{2}=i_{3}$: here we have $v_{i_{1}}=\varepsilon g_{1}+\varepsilon^{\prime} g_{2}+\varepsilon^{\prime \prime} g_{3}$ with $\varepsilon, \varepsilon^{\prime}, \varepsilon^{\prime \prime} \in\{ \pm 1\}$. Let us write $x=\varepsilon g_{1}, y=\varepsilon^{\prime} g_{2}, z=\varepsilon^{\prime \prime} g_{3}$. Then we obtain $\bar{v}_{i_{1}} v_{i_{1}}=\bar{x} x+\bar{y} y+$ $\bar{z} z=3+x y^{-1}+x z^{-1}+y x^{-1}+y z^{-1}+z x^{-1}+z y^{-1}$. Putting $\alpha=x y^{-1}, \beta=x z^{-1}$, $\gamma=y z^{-1}$ we get the condition

$$
\alpha+\alpha^{-1}+\beta+\beta^{-1}+\gamma+\gamma^{-1}=3+h+h^{-1}+h^{2}+h^{-2}
$$

in Λ with $\alpha, \beta, \gamma \in \pi_{1}$ (up to sign), which cannot hold.

References

[1] S. Cappell, Mayer-Vietoris sequences in hermitian K-theory, Proc. Conf., Battelle Memor. Inst., Seattle, 1972, Springer Lect. Notes 343 (1973), 478-512.
[2] A. Cavicchioli and F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
[3] M. H. Freedman, Poincaré transversality and four dimensional surgery, Topology 27 (1988), 171-175.
[4] M. H. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Univ. Press, Princeton, N. J., 1990.
[5] I. Hambleton and P. Teichner, A non-extended hermitian form over $\mathbf{Z}[\mathbf{Z}]$, Manuscripta Math. 93 (1997), 435-442.
[6] A. Katanaga and T. Matumoto, On 4-dimensional closed manifolds with free fundamental groups, Hiroshima Math. J. 25 (1995), 367-370.
[7] M. A. Knus, Quadratic and hermitian forms over rings, Grundlehren der Math. Wiss 294, Springer, 1991.
[8] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London-New York, 1970.
[9] J. H. C. Whitehead, On a certain exact sequence, Ann. of Math. 52 (2) (1950), 51-110.

Friedrich Hegenbarth
Dipartimento di Matematica
Università di Milano
Via Saldini 50, 20133 Milano, Italy
E-mail: hegenbarth@umimat.mat.unimi.it

Salvina Piccarreta
Dipartimento di Matematica

Università di Milano
Via Saldini 50, 20133 Milano, Italy
E-mail: piccarreta@socrates.mat.unimi.it

