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ABSTRACT. For a line bundle over a finite volume quotient of the complex hyperbolic
space, we write down an explicit trace formula for an admissible function lying in the
Harish-Chandra p-Schwartz space 4”(G), 0 < p <1, we apply it to a suitable ad-
missible function in order to discuss the analytic continuation of the associated Selberg
zeta function.

1. Introduction

Let Y be a finite volume non compact locally symmetric space of negative
curvature, that is ¥ = I'\G/K where G is a real semi-simple Lie group of R-
rank one, K is a maximal compact subgroup of G, I' = G a cofinite discrete
subgroup of G.

In 1956, for G = SL(2,R), G/K = H the upper half plane and I" a discrete
subgroup of G, Atle Selberg in his famous paper [10] introduced a function
Zr(s) of one complex variable, so called Selberg zeta function and showed that
the location and the order of the zeros of this function gives information on the
topology of the manifold Y =7\H as well as on the spectrum of the
associated Laplace-Beltrami operator.

In 1977, R. Gangolli [7] extended the result of Selberg to a general G of
rank one and Y = I'\G/K compact by constructing Selberg type Zeta function
for this general case. Two years after, the same author jointly with G. Warner
[6] treated analogously the case where I'\ G is not compact but of finite volume
for a general G of rank one. However, for technical reasons, they avoided the
case where G = SU(2n,1). Their work was based on the explicit Selberg trace
formula written down by G. Warner for G = SU(2n+ 1,1) in his survey paper
[15]. This zeta function provides some topological data on the manifold
I'\G/K as well as some spectral information. That is, the class one spectrum
induced from the trivial representation of K contained in L3 (I'\G).
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For 7 an irreducible non trivial representation of M (M = U(1)), D. Scott
[11] constructed for GL(2,C) and I" cocompact, a zeta function Z, r associated
to the data (z, G, ") which gives information about the representations induced
from 7 and appearing in L*(I'\G).

Later, in 1984 in the same context, for 7 non trivial representation of M,
M. Wakayama [13] considered the case where G = SU(n,1) and I" a discrete
cocompact subgroup of G and studied the Zeta function Z, j associated with ,
a one dimensional representation of K = U(n+1)NG.

In [3], more generally, for locally homogeneous vector bundles over
compact locally symmetric spaces, U. Bunke and M. Olbrich have developed
a new approach in the theory of Theta and Zeta functions which is dif-
ferent from the approach of Gangolli and uses operator theory and index
theory.

For 7 an irreducible one dimensional representation of U(1l) and
G =SU(n,1), the main purpose of the present paper is the extension of
the result of M. Wakayama to the finite volume case, i.e. the study of
the associated zeta function of Selberg type Z! for I' a cofinite discrete
subgroup of SU(n,1). This will be accomplished firstly by writing an ex-
plicit trace formula for this case and secondly by applying it to some suitably
chosen test function as developed by R. Gangolli [7]. For 7 =1, we recover
the result in [7] and at the same time we treat the case of G =SU(2n,1)
omitted there.

This function Z!" will allow us to give some information about the [z]-class
spectrum induced from the representation ¢ contained in L2, (I'\G) as well as
some topological information.

This paper is organized as follows: in the section 1, for I” a non uniform
lattice in SU(n, 1), we recall the general setting of the Selberg trace formula
at its second stage as exposed by G. Warner in [15] for a K-finite function.
This in order to explicit it further for the special case of a z-function (r an
irreducible representation of U(1)) that we will use later. In section 2, we
expose some general facts about the spherical Fourier analysis on homogeneous
vector bundles associated with t over G/K and write it explicitly in the form we
will use later.

In Theorem 3.2 in section 3, we write down an explicit form for both sides
of the Selberg trace formula for a z-function belonging to the functional space
%’(G), 0 < p <1, te U(l), where 4”(G) stands for the Harish-Chandra L’-
Schwartz space. While in the forth section we apply the explicit trace formula
to the study of the analytic continuation of the attached zeta function to the
whole s-plane, we give for it a functional equation and a product representation
taken over the set of primitive elements of conjugacy class of I', plus in-
formation on the location and orders of zeros and poles (see Theorem 4.2).
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2. Preliminaries and Selberg trace formula

Let G=SU(n,1) be the non compact connected semi-simple Lie
group with finite center preserving the complex quadratic form ) [, |Z,'|2 —
|Z1|* =1. Let K =S(U(n) x U(1)) be its maximal compact subgroup.
Then the symmetric space of rank one G/K is the complex hyperbolic space
H"(C).

Also, let I" be a discrete subgroup of G such that vol/(I'\G) < oo and I'\G
is not compact, let P = NAM be the Langlands decomposition of a minimal
parabolic subgroup P of G.

r denotes the number of I" inequivalent cusps, then there exists {k;}}_, € K
such that P; = %P =k Pk;' form a complete set of representatives of I-
cuspidal parabolic subgroups of G mod I". Further, throughout this paper, we
make the following assumptions on I

I'NP'=Zp-(I'NN'), 1 <i<r, where Zr is the center of I.

I’ has no finite order element other than those in Z.
It is known that for I' cofinite, the Hilbert space L*(I'\G) has the following
decomposition (the continuous part and the discrete part) with respect to the
action of the left regular representation L of G:

LX(I'\G) = L} (I'\G) ® L2,,(I'\G).

disc
Now, for 0 < p < 1 let us consider the following Schwartz space ¢”(G) which
generalizes the well known Harish-Chandra space %(G) = ¥*(G). The space
%”(G) consists of smooth functions f of G such that

vp.a(f) = sup{(1 + o(x))"@~ 2P (x)|(D1 /D) (x)[} < 0

for every neZ and Dy,D, € U(g),
where o(x) is the hyperbolic distance between K and x.K, O(x)=

[ e7"10ele®) gk the elementary spherical function and %(g) is the universal
enveloping algebra of G. %”(G) is a Frechet space with v}, as semi-norms
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and for 0 < p<1 we have the following inclusions with dense ranges
Cr(G) = 67(G)  6'(G) = C*(G).

Then, for o€ %”(G) we denote by =n,(x) the convolution operator
associated to o acting on L?(I'\G) and defined as an integral operator as
follows. For f e L*(I'\G),

(@) f](x) = j KT (x,9) £ (0)do(y),

I'\G

where dg(y) denotes the Haar measure on G and the kernel K[ (x, y) has the
following expression

Kf(x,y):Zoc(x’lyy), x,yeG and yel.
yell

The kernel K!'(x,y) converges uniformly on compact subsets of G x G.

Because of the continuous part L2, (I'\G), the operator z, () need not be
compact but for o right K-finite its restriction to L (I"\G) that we will denote
by nf is of trace class.

A function o € € (G) is said to be right K-finite if there exists a finite set
F in the unitary dual K of K such that a*yp=o, yp = pie

Then for o right K-finite in 4”(G), the operator n{.(x) is of trace class
and we have the following theorem (cf [15, page 85]) giving its Selberg trace

formula

THEOREM 2.1.

Tr 7%(«) :VOI(F\G)( oc(z)) + 3 vol(13\G)) JG LG\

seZ (rel
+ 31.1—1}}) %(S%((S)) —l—%veﬁ <L{(S)0 tr (MU(—S) <% MU(S)).UU’S(OC))CZS
— %Z:tr(MU(O)U”‘O(oc)))

Here, I'y = I' is the set of semi simple elements, G, the centralizer of y in G,
M,(s) is the intertwining operator of I' and U"* is the principal series rep-
resentation of G induced from (s,v) € C x F.

All the integrals in the above formula are absolutely convergent and

0(5) = 77 o (e ranag 1 2k (@)~ qna(e) ™)) 2P0 dy (),
ag = [ oa(kxk™")dk,
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where there is a strip Sp of C containing the imaginary axis such that the
integral defining ¢, is absolutely convergent for s € Sp as a meromorphic function
whose only possible singularity is a simple pole at s = 0.

In particular, lim,_o % (sp,(s)) exists and it is just the constant term in the
Laurent expansion of ¢,(s). More precisely (cf G. Warner [15]), it is the sum
of some tempered distributions, i.e. we have

. d 1
lim — (s0,(5)) = 7 VOI(N N I\N)[er, Ty(e) + Rp, T;() + e, Taz (%),

where
T, () = ¢ [ ox(n)dn.
T; (o) = c2 [y, [, ox(mina;) log(|lnil)dy, (n;)dn,, (n2,); N = N;No.
Toi() =5 |/1|U(;/cn0 ag (xox~")dG [ Gy, (x)]
+3 MHJG/G;O' o (xny'x"1)dG/ G, (x)],

where ng is a fixed element in N,; such that [jexp~!(no)|| = 1.

For some interesting applications of the trace formula, for instance the
investigation of the attached Selberg zeta function, it is essential to go further
in the computations, i.e. to give the Fourier transform in the sense of Harish-
Chandra of the distributions o — T} (), o — T (a) and o — T»;() involved in
the expression of lim, .o < (sp,(s)).

In their investigation of the meromorphic continuation of the logarithmic
derivative of the Selberg Zeta function for G = SU(2n+ 1, 1), R. Gangolli and
G. Warner ([6]) studied separately each term figuring in the trace formula when
applied to a certain function /(z) and prove that it can be continued mero-
morphically to the complex line C with simple poles and integer residues.
For technical reasons they avoid the case when G = SU(2n, 1) because for that
case the function J(v), appearing in the expression of a certain weighted
integral, is no longer polynomial (J(v) is a polynomial for G = SU(2n + 1,1)).
Therefore the meromorphic extension of the corresponding term needs more
detailed analysis.

Let G=SU(n,1). One of the objects of this work is to write down an
explicit formula of the Selberg trace formula for the convolution operator
associated to a 7;-radial function f;, where 7; is a one dimensional irreducible
representation of K = S(U(n) x U(1)).

In this case the functions f;, generalize to the line bundles E;, associated to
7; the notion of radial functions.

So, in the next section, we will discuss harmonic analysis on such bundles
(see [4]).
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3. Spherical Fourier transform on the vector bundle E;

Let (7, V;) be a unitary finite dimensional irreducible representation of K
of degree d, and y, its character. Let E; be the homogeneous vector bundle
over G/K associated to 7. Then, a cross section of E, may be identified with a
vector valued function f : G — V; which is right K-equivariant of type z, i.e.

flgk) =t(k""f(9), VYgeG and keK

We denote by 4”(G,7) and L*(G,t) the following spaces of cross-sections of
E..

€’ (G,7) ={f €¥"(G)® V; and the components f; of f are right

K-equivariant of type 7},
L*(G,1) = { f: G — V;|the components f; are right K-invariant of type t

and J FARES oo}.
G

Also, let denote by 47 (G, 1, 7) the related convolution algebra of radial systems
of sections of E, defined as follows

€’(G,t,7) = {F : G — End(17)

F(kigks) = t(k1)F(g)t(k2) Vki,kae K;g€ G
and or F € 47(G) ’

REMARK 3.1. The algebra above generalizes to the bundle case E, the
convolution algebra €?(K\G/K) of K bi-invariant functions on G.

An interesting feature of this algebra is that 7|,, is multiplicity free (every
o € M occurs at most once in 7|,,), it is commutative and can be identified with
a certain subalgebra I, .(G) of 4”(G) defined by

I, .(G) = {fe %’(G) such that

i) flkxk™") = f(x) Vxe G,ke K (i.e. f is K-central) }
i) d.g,* f = f = (f *d.jz,), the convolution is over K |

The following map
€?(G,1,7) — 1, :(G)
F— frp(x) =d; tr F(x),

where d; is the formal degree of 7 gives a linear bijection between the two
convolution algebras and its inverse is given by
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I, .(G) — %7 (G,1,7)
' 1 . _
£ B = | plhoe(i) k.
P d‘[ X
also
Fpwpy = Fpy x Fp, - for every fi; /2 € I, -(G).
Now, let P = MAN be the Langlands decomposition of the parabolic subgroup
P of G. Before defining the Spherical Fourier transform acting on the algebra
%’(G,t,7), we assume that t|,, is still irreducible and we keep denoting it
by 7. So, for Z€iR, let U%* be the representation of G induced from the
following representation of P: man — t(m)a’>*1y (A ~R") and we denote
by H™” the space of the representation U%* defined by
H"" ={f: G V,; f(manx) = a*"*77 ' (m)f(x) and f|g € L*(K)}.
For fe H"*, we have [U%*(g)f](x) = f(g~'.x), g,x € G.
Then take F e %”(G,t,7), F(U"):= U“*(F) is called the spherical
Fourier transform of F (Gelfand Fourier transform) and it is defined as follows.

F(U™) = dirJG Tr[u™*(x)F(x)]dx,

while for f eI, .(G), f(U"*):= U"’(f) is called the spherical trace Fourier
transform of f and it is defined by

FU) = diTJGf(x) Tr(u®(x))d,

where Tr(u™*) is called the spherical trace function of type t and u™*(g) =

P.U%*(g)P; is the operator valued spherical function. P, is the projection

operator from H%* onto V; given by P =d. [ U*(k)y (k™")dk.
Furthermore, we have the following important relation F(U%%) =

fAF(U”)-

In the case we are concerned with in this paper, that is G = SU(n, 1), we

suppose that
B 0 B 0 ;
(g D)=u(g D)=+

B 0
where Be U(n), ze U(1), det(0 ))=zdet B=1 and /€ Z.
z
Let g=t@® p be the Cartan decomposition of the Lie algebra g of G.
0,1 0 O
If H, :( 0 0 1)ep, then RHy =: a is a maximal Abelian sub-

0 1 0
algebra of p.
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Let A4, denote the Lie algebra of a, then A, is identified to R as follows.

I, 0 0
A, :=expa, = 0 cosht sinht |;7eR
0 sinh¢ cosht

Also, the centralizer M of A, in K is given by

U 0 0
M = 0 e¢” 0 |;UeUMm—1) and e’ det U =1
0 0 e

In this case, the spherical trace function of type 7; defined by & ,(f) =
Jx 1(x(x)) exp(—(i% 4 n) log a(xk))dk is given in terms of the Jacobi functions,
more precisely we have

&) =& (ar) = Tr(u™") = (2 cosh f)l(ﬂi’;fl'l(’)y

where

o+p+1—id a+f+1+ik
x,/)’_zFl( ﬁ ﬁ .

_. 2
?, 3 , 5 ;04 1, —sinh t).

Hence for f €1, ,(G), its spherical trace Fourier transform is
. X . +o0 i
FUh =) = | farm

where the density 4 is given by
A(1) = (2 sinh £)*"V(2 cosh 21).
*Discrete series representations.

As Rank(G) = Rank(K), according to Harish Chandra, in addition to the
principal series, there are also discrete series representations that figure, in the
spectral decomposition of L?(G) and that we will describe below.

Let T be the subgroup of K formed by diagonal matrices (i.e. a maximal
Abelian subgroup of K) and we denote its Lie algebra by t. The unitary dual
T of T can be identified with a lattice Ly in it*, the set of regular elements is
denoted by L. The Weyl group of G/T acts on L}. Let L} denote its
fundamental domain. Then it is known that L} uniquely parameterizes the
discrete series representations G> of G.

For every ve L%, we denote by w(v) its corresponding representation in
G?. Also let us denote by G2(z;) the set given by G*(z) = {v e L7 |
[w(v) : 7] #0}. Then for / <n the set G*(z;) is empty.
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For [ >n, G*(t)) = {U%"/v; e D;}, where

D;:={veC|some we G*(1;) can be embedded in U™}

{V_/i(ZJJrnIlI);OSjS “;’0}.

The associated Harish-Chandra c-function ¢;(v) has the expression (cf. [13])

N GE UACINCRS)
awv) = n1/221—n]"(n+i2v+/)]"(n+g'—/)

and zeros which lie in the set D;.

4. Selberg trace formula for non uniform lattices acting on ETF[ over I'\G/K
4.1 rt,-Eisenstein series

Let I' be a cofinite discrete subgroup of G = SU(n,1) which is subject
to the same assumptions as in the introduction and let r be the number of
I'-inequivalent cusps, P; = k;Pk;! (k; € K) a complete set of representatives of
I'-cuspidal parabolic subgroups of G mod I'.

The 7,-Eisenstein series (with parameter ¢;) corresponding to P’ =
kiMANK;" is defined by the series (cf. [8])

E{(Gdnx)= Y uleclyx)”" g(m(yx)ett-losatrx)
ye INNA\T

where Zeal ~C, xeG a, ¢; € L*(I'y,\M;,7/), Ty, = 'N M; and

f(mimz) = 17" (ma) f (my); f (ym) = £ (m) }

L3 (My\M. 1)) >~ M-V,
(I'n\M, 7)) {f - Vu for every my,mye M;ye Iy

For example, one can take ¢,;[,, = cste =1y, such that

E(Gdnx)= D ulc(yx)) elmloeat),
ye TNNA\T"

E[(2,¢;,x) are 7; functions €* on {4, R(1) < —n} x G and left invariant under
I'. Also E/(2,¢4,x) is an eigenfunction of Z(g)

2E[ (2,41, %) = E[ (2,61, X0 (1:(2))  for z€ Z(g).

Here Z(g) denotes the center of the enveloping algebra of g¢, xu 1S a
representation of Z(m) (the center of the enveloping algebra of m¢) on the
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space V; commuting with 7;, then there exist an injective homomorphism x (cf.
(8]); w:Z(g) = Z(m) such that for ze Z(g) we have u(z)=>¢q,
qi € S(ac); &€ Z(m) and p;(z) = >_ &qi(4).

REMARK 4.1. In our case Vi = C, y,, is the infinitesimal character of M
determined by 7, so if we take ¢ =1 then for C € Z(g) the Casimir operator we
have 73 (1,(C)) = (22 + 12 = n?).

However, E/(4,¢,x) is not square integrable with respect to x, E/(4, ¢;, x) ¢
L*(G, 1), we denote by E,P"(P,»,ﬂ»,qﬁ, X) its constant term along P/ = M/A/N/;
ie.

E[(P, ), ¢y x) = E} (2, ¢, myx)dn;.

JN/-W \N;
Then, it is known from the theory of Eisenstein series that there exists a linear
transformation M;(s,2) from @, L*(I'y\M,7;) to itself called the inter-
twining operator of I” such that we have

E[(Pydygoman) = %" [M[(s, L)) (m)e 0.
SEW(A,‘,A/)

W(A;,A4;) is the set of bijections s:A; — A;, where for w the non trivial
element of W (the Weyl group), the linear transformation M;(w,1) =
(M,” (kjwkfl,k,'/l))i’ ; that we will denote from now on simply by M;(4) as a
function of 4 is holomorphic in the region R(1) < —n and it can be mero-
morphically continued to the whole complex A-plane, its poles in (1) < 0 lies
in the set {seR,—n <s <0} and are all simple and of finite number.

Furthermore, M;(1) satisfies the functional equation M;(—A)M;(1) = Id.

Let E;(4,x) be the column vector with entries E;(4,1,x) hence, as a
function of 4 it can be meromorphically continued to the whole A-plane,
moreover its poles are the poles of M;(1) and we have the following functional
relation for Ej(4,x):

E](/l, x) = M[(l)E/(-l, x).

Now, let 7 denote the left regular representation of G.
Let Y €1, ,(G) and n(y) the associated operator acting on L*(I'\G, 1))
defined by:

For feL3(I\Gr),  [x (h)f](x) = jG W) f )y = (W * £)().

The operator 7/ () acts on the L>-sections of the homogeneous vector bundle
E,, associated with 7;, i.e. we have the following mapping
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n' () : L*(I\G, 1)) — L*(I'\G, 7)),
where for f e L>(I'\G,t;) we have

vel yel

=) = S jr\G W) f () = jF\G (Z w(xlyy))f(y)dy-

Let us denote by K I‘f (%, 3) =2 er W(xyy~!) the integral kernel of the integral
operator n/ () when acting on L*(I'\G, 7).

We have the following decomposition for L>(1"\G,t;) with respect to the
action of the left regular representation of G-

LZ(F\G? Tl) = chiis(r\Ga Tl) ® chont(F\Gv Tl);
chiis(r\G’ ) = L?usp(r\Gv ) @ eres(F\Gv 7).
Here L2 (I'\G,t;),L2, (I'\G,t;) and L2 (I'\G, ;) are respectively the closure

cont cusp res
of the subspaces spanned by wave packets formed with Eisenstein Series of type
7, the cusp forms and the residues of the Eisenstein Series.

Then, for Y €1, ,,(G) (0 < p < 1) the operator n’ () is of trace class on

L2 (I'\G,7) and as an integral operator its trace can be written as follows:

Trz! () = J {tr K (x, %) — tr K7 (x, x) }dx
G

- JF\G{Z Ylxyx) — K (x, X)}dx,

yell

where

Kl (x,y) = J [E(s, %) Ei(s, ») Ju" ()ds =y J Ei (5 x)E{ (s, )l (§)dbs.

S5=0 pary

Therefore, as i is in the space ”(G) and K-finite (  x,, = ), we can apply
the trace formula given in [6] to the operator 7z ().

On the other hand, 7z’ () can be written also as Y, np(U"*) tr U4 (),
where {U l’)"f}j € G(17) denotes the set of 7;-spherical representations occurring
in L3 (I'\G,7;) and n/ their multiplicities. Then, we have

dis
try (W) = rmy () = > np(UH).
J

Also, we should mention that every function Y €I, ,(G) can be determined
from its values in the Abelian part 4 of G, where G = KAK is the Cartan
decomposition of G, more precisely we have
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Veh (G (g = dilx,m(g))w(a,(g)),

where

. x1(g) 0
v = (") ) ml) e V0. walg) e UG

and det xi(g) x k2(g) = 1.

Hence, the trace formula of theorem 1.1 applied to 7/ () at its first stage for
VY el,.,(G) leads to the following:

THEOREM 4.1. For 0 < p <1, let Yyel, (G) be a v-radial function.
Then, the Selberg trace formula for the corresponding operator !l (Y) on
L%.(I'\G,7)) reads as follows.

Y i) = vol(I\G) Y w(z)+ Y wl(Gy\Fy)J \ Y (xpx)d(G\G)(x)

j=0 zeZr {y}ecr, G\G

+ klcr/,_ T,(l//) + kzl’n T:(l//) + k3Cr2/1 Tz;_(lﬁ)

+ %LRS:O tr(M;(—s) X %M;(s)) A (s)ds —% 1r(M;(0)),(0).

where kicr,;korr,; kscp, are constants depending on G and I' (for their explicit
expression see [15]) and the distributions T, T] and T,; have respectively the
following integral representations

() = dllJNx;(Kl(n))lﬂ(az(n))dn,

) - | U saloer () W a(mimss) ), | Toglin
N; LN,

T = | ot o Do) 609

+j Tt (o) (a o )60,
G,1\G 0

In order to investigate the meromorphic extension of the Selberg zeta
function for the vector bundle E; associated with 7;, we need to give an explicit
formula for the integrals 7;(y), T/(¥) and T,,(y) in terms of the 7;-spherical
Fourier transform of .

For this, we will need first to give an explicit inverse for the 7;-Abel
transform defined on the algebra I, ., (G).
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4.2 7;-Abel transform acting on I, . (G)

For every function f in I,.(G), its 7;-Abel transform is given by the
following integral transform

Mﬂ@zWLWMML

and we have the following well-known formula

~ +UV . —~
G = | dre Lt = Ao
— 00
which means that the t;-spherical Fourier transform of f is the Euclidean
Fourier transform on R of its 7;-Abel transform.
Hence

jo = anasio,

-0
1.e.

+00

Af (1) = J ef ().
Then, we have the proposition.
PROPOSITION 4.1.  Let A; denotes ti-Abel transform defined on the algebra
I, . (G), then its inverse is given by the following integral transform
o -
1) ri-y
o0 ; 3/2 —d I+n—1
X J d(cosh 2s)(cosh 2s — cosh 2¢) (m) S (s)ds.

t

(4,1 /1(1) = 272332 /o (cosh 7)™

Proor. Our method of giving the inverse of the Abel transform is torelate
it to the Abel-Jacobi transform A4,z investigated by T. H. Koornwinder ([9]),
by choosing suitable parameters o, f.

For f e %;°(R), its Jacobi transform is defined as follows

[wa](x>=J FOes" 4, p(0)dt; Ay p() = (2 sinh 1) (2 cosh 1) FH,
0
where (p;’ﬁ is the usual Jacobi function.

The Abel-Jacobi transform considered in [9] is defined as follows

0

A, 51 (s) ::J F()Aup(si0)di for fe€™(R),

s
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where

23°‘+2ﬂ+1f(a + 1)

T inh(2¢)(cosh £)*7V?(cosh ¢t — cosh 5)*"/?
T+ (20)( ) ( )

Ao(”g(s, l‘) =

1 1 1 cosh ¢t —coshs
Fl=4+p=—Bio+=j———"").
x <2+ﬁ’2 LA T pee >

We have also
Jupf =Aupf.
Hence one can write
£ = Ju1{2% cosh d'f (1)} = J e™(A,-1.19)(t)dt,
R
where g(t) = 2% cosh ¢/f(¢). Then we have
f(t) = A7 411 (1) = 27 (cosh 1) "g(r) = 27 (cosh )/ 4,1, Ay, -19(1),
and as A, _g(t) = A;f (1) we write
F(@) =27 (cosh )74,y _[Aif (1))
The inverse of the Abel-Jacobi transform was given explicitly in [9] in terms

of fractional Weyl’s transform as A,;ll’f,(g):2’3(”’”’1/2711/2%%'31/20

W, _,.1(g) where for x> 0, the fractional Weyl’s transform W," is defined as
follows (for Ru >0, 7 > 0)

WS (1) = ﬁjf £ (s)(cosh(zs) — cosh(zt)d cosh(2s),
%r ° %T — ,%}l+d,
W= I,

Also W7, f (1) = ({,(*—fl,)) S(@).
Hence we obtain

1
(1) =27(cosh 1—1)273(”71)71/2ﬂ1/2mszl/z oW1 (Af).

By replacing the Weyl transformations by their integral expressions we get the
desired result.

4.3 Computation of the distributions 7, 7] and 7,; and the trace formula.

In this subsection we will proceed to give the spherical Fourier transform
for the distributions 7,7, and T;
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1) Tiw)

100 = | wondn =52 | s

2) Ti(w)
As we consider the case G = SU(n,1), we have

T/{(lﬁ) B JN; |:JN2

where for g = (g5); € SU(n 1), g =rK1(g)a(g)a(g)c’, we have ri(g) = 12
and cosh(r) = |(g)oo -
Hence

e (”i”zi))‘ﬁ(at(”A”Z/l))dNu] log(nz) ;.

A

Kl(ns.,g) - |1+i3‘+%|5‘2|

cosh(t(n, c)) = |1+ is + 1 [¢P’|

If we write y(¢) := Y(a,) = Y(cosh 1), we get

s+ 187 | - 1
T{(d;):J B JXI Lz'ﬂz t//(‘1+is+§|é|2
o Jr ‘1+zs+%|é|‘

Next, by using successively polar coordinates in C"! ie., & =rw, we S¥3,
dé =3 drdw and afterwards by setting x = r2, we obtain

)ds log|&|dé.

!
i) = 08) J‘“ r‘” L is + 3|
A 4

0 J- ’1+is+%|x|2‘

~ 1
X¢d1+m+§KV

) log|x|x"~" dsdx,

and by using the Inverse of the 7;-Abel transform applied to the function y we
have

o0

d

I+n—1
GES constJ d(cosh 2s)(cosh 2s — cosh 21) 1=3/2 (m) ' (An)(s)ds.

t
As (1) = y(cosh 1) where V: [I,+00[ — R and by setting 7= coshs, dr=
sinh s ds, we obtain

- 1 o1 12
U(r) = 2—21—3"—5/2\/5(}1 —py (cosh ) ’41_(1 = (1 — 5)

2

NG (%)Hn(/lll/;)(f)dﬁ
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Hence, by substituting it into the integral formula giving 7(y) we get

/

_12
e l+is+lx2 x\?
rw = [ e o (4 (143)
0 J-w ‘1+is+%|x\ ’

AN-1/2
X J 2 — 5% — (1 + x)
(s2+(1+x/2)) 2 2

Now by using Fubini’s Theorem, we get

rw =] v oox| (O i

1+x/2

[~ (14x/2)]"2 X! , \2
X J 1—is+—= o —(14+=
—[2—(14x/2)' 2 2

If we denote by A(x, x) the inner integral in the expression of 7 (y) and
1/2 1/2
we set s = {rz — (1 +§)2} t, ds = {r - (1 +§)2} dt, ie.,

—(14x/2)]"? ~1 2
J <1—is+x) 1'2—<1+x)
—(14x/2)'2 2 2
2 Iy N
X X
l+-—it[2=(1+2 1—2)"2ar
l J_1[+2 z<r <+2>>] ( ) ;

1+
/ n1/2
x 5 X
- —(1+Z
[1+2+l<r ( +2>> ]

we put y =" to obtain
-

(%yﬂ (A,l;)(r)df] dsdsx.

1-1/)2
dsdtdx.

1-1/2
ds

A(z,x) = 2! [12 - (1 +§)2

) Jl . 21’(12 -1 +§)2)1/2

"l re3+i(2-(1+3)°)

y171/2(1 o y)/*l/zdy.

12

By using the integral representation for the hypergeometric function of Gauss
([5], page 59):

8 1
2Fi(a,byc;z) = LJ tb71(1 _ t)"‘fbfl(l i),
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we get as expression for A(r,x):
21! 2\!'/2] 1 1
ri+Hri+i
A o2 (14% lo2eile2— (142 L Vi S V4
(7,x) lt ( +2> { +2+1 T +2 TRI+ D)

12
2i(72 — (1 4+ %)
X 2 Fy 1,l+%;21+1, ( ( 2)) -
rs+i(e—(1+3))

Next, by applying successively the following transformation formulas

1\ a a+1 1 z )’
2F1(a,b,2b,Z)—<1_§Z) 2F1<§7T7b+§a(22>> (1)

1
2F (a—i,a;Za;z>:22“_1(14-(1—2)1/2)12“ (2)

we get the following simple expression for A(z,Xx).

Az, x) = ru+3)ri+3) (f - (1 +f))l.

I'2l+1) 2
Hence, by substituting it in the integral defining the distribution 7 (y) we get

/() = (I, n) J: X" log x Lix/z (%)Hn(Anﬁ)(r) <f - (1 + %) )Id‘[dx.

Also, as lim._ o (£)"(4p)(7) — 0, we have:

J:x/z (%)HH(AIJ)(T) (r - (1 + g) )ldr = (- Jix/z (%)n(A,\&)(r)dr.

Therefore

W) = @) [ o x(iyl“"b (1+3)

0 n—2
= / — ! | n-2 Y f d n—2
' (ln)(=1)'112 L (Aiy) (1+2) (_dr) [x"* log x].
As
g H[ " log x] = (n— 2)!(log x+ 1 4 4o
dr * og x] = | log x 513 3
I'(n—2)
fr— _— ' - .
(n 2).10gx+r(n_2)+y’

(y is the Euler constant)
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we get

'(n—-2)
I(n-2)

— 2" 2 (n —2)!¢’ ln A[l/l 1+ )logxdx

TI($) = 2" (n— 21, m) ( +y)An//< )

Now, by using the sublemma in ([15], page 121) we get the following final
expression for T (y):

- %J j () ?((11 i iivv)) dv] '

3) Tu)
We have cp, 75, () =1imSHo(d3SL¢,( )), where the function Lj(s) is
defined as follows.

Li(s) = J@< Z e (ama) b (alama_))e 0+ dr.

nely;n#1
We have for # =n(v,0) € I3, = Nyy:

1+€2t(l1.7+1|f| )
’1+€2t(w+l|f| )‘

k1 (ama;) and alama_,) = ‘1 + ¥ (lv + = ¢ )‘

Hence

too 1+ 6’2[iU l~ 1/2
L*(S) — J < >¢(( +02€4t) / )eZnt(lJrs) dt
W
(Lo)grz o0 |1+ e%iv|

T+ iy ' 2 4 1/2y o
_ nt(1+s)
E JOC(“ . >tﬁ((l+ve ) e dt

2
n=n(v,0)eI3;;v>0" " te tw'
too /1 — ele"U| l~ 12
+ Z J (7 Y((1+ 02 4t) / )e 2n1(1+5) g4
oo \1+ 62’1v>
n=n(v,0) € I3;;v<0 "~

X

Next by setting x = e¥|v|, dr =%, we get
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. 1 1 o ix 24 1/2\ _n(145)-1
50=3( 2, ) | (g e e

1
el3;;v>0 |U| +9)

i > : Jm( - )I'ﬁ((l + %) 2t g
- - — X X X
2 n=n(v,0) e I3;;v<0 |U‘n (1) 0 |1 + lx‘

1 1 A 1+ix Y 1—ixV
) G+ )
n=n(v,0) € I3;;0#0 |U| 0 29 ix

X P((1+x2) x0T gy,

Since Lj is regular at s =0, we simply have

. +eo 1+ix Y 1—ix V] - 12y e
e, T (W) = Ly(0) = cp, JO {(U n ix|) + (|1 n ix|> }!P((l + %) )" dx,

where c¢p;, is the constant term in the Epstein zeta function associated to the
Lattice 75,. Now as

7 12y _ 2 (7 A -1/2
(1 +x)") = el (1 + x?) sz (%) Ao —1—x%)ar,

we get

= [ ([ () a1
” ’ 0 14x2) dr !
1+ix 1—ix\ ) ,_
X{<|1+ix|> () }" -

and using the Fubini and afterwards the change of variable x = (% — 1)1/ 2y we
get

(2-1)'72
X J (2 =1-x)"{A—ix) "+ (1 +ix) }x" T dx
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Now, by using the Picard’s integral representation for the first Appell’s
hypergeometric function F\(a,b,b’,c,x, y) given by ([5], page 231)

_ 1 ,
L@ =) b4 b b e, ) = j w1 =) (1 = ) (1 — ) d,
F(C) 0
we get

I'(mI'(] 1\ po d Hn )
() = C"’II“((};)T(IJ—:;L <%) A(2) (2 — 10D/

1 1
X {F1 (n,l,—l+§,l+§+n,i(rz— 1)1/2,—1>

+E<mhl+;l+%+n,iﬁ2lfﬂ,l)}dn

For /=0 the involved Appell’s function reduces to the following simple
expression
rQri+n

11 11
Fi(no= = 2=V 1) =,F (n=.= 1) =" 07
1("’ g i =D 2\t rg+s

IS

and by replacing it we find the result for 75;(y) given in [15] for / =0.
Afterwards by using successively the formula ([2] page 15)

= b, m)
F ! . — (a7m)( ? F / m
1<a7b7b7y7xay) ;(y,m)(l,mf 1(“+m7b73’+m7J’)x 5

and the formula ([5] page 104)
I'(1+a-b)r(3)

Fi(a,b,1+a—b,—1)=27¢ l+a—-b¢Z™,
i Tyt f
we obtain
1 1 2 12
Filnl,—l4+=,l4+=+ni(z"—-1)"", -1
2 2
1 1 (2 1/2
+ F n,l,—l+§,l+§—|—n,—l(r -1/ -1
_I(i+5+n) S AR/ AR} G B
rmri) rEj+0ri+3+5+)Hris+J)

(1-1%)/
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RUenrl) a1
F(n)F(g%—l—i—é)3F2<2’2a2+2,2,2+2—|—l,1—r)

where G)"."( ) is the Meijer’s G-function (Erdely [5] page 207).

_ —d__1 d
Now we set t =cosht, D= = -4 so that

I+n
(5) Awto =" ano

and as y is an even function and Ap(r) = [, ¥,(v) cos(vt)dv we have
(.
D" Ap(1) = %J ¥, (v)D"™! cos(v)dv.
0

By replacing all the terms by their expression we get the following form for

Ty (Y):

T, () = cn_;J J ¥, (v) D" cos(vi)dv sinh 12"

0 Jo
-5 1-3 33
dt.
1 n 1
0 2 il

Next, if we apply the formula ([5] page 209)

1
X G;; (—sinh2 t

o m,n ar _ m,n ar +o
x°G,Y (x br) =G, (x b, +J>7
we get
o
T () = cn’,(—l)””/zj oOOJ tﬂ,(v)D”“ cos(vl)a’vG;g3
0 0 ’
) 1 1 H»_n 1+/+n
x | —sinh? ¢ +! + 2 2 )de
l+% I+ % +3 3
where
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where %’ is the Legendre function of the first kind and %" is the zonal
spherical function on SO(n,1) attached to the class one principal series rep-
resentation associated with v.

Hence, for any m > 0 there exists ¢y > 0 and an integer M > 0 such

that
d m N
\(E)e%(o

By using the above growth estimate as well as the following asymptotic
behavior ([5], page 212) when ¢ — oo for

w(1+H)Y

m VlZOand veR.

<eu(l+v?)

1,3 )
G313<—smh t

141 1 I+n  1+l4n
+ 13 2 dvdt < 0.

I+ 1+3+% 3

Gy3 (—sinh2 t

Hence, we can use Fubini’s theorem to obtain

To) = ens | 1(0) % S(3)a,
0

where J;(v) is an entire function of polynomial growth given by

0 ] 1 Ji 1 I+n 1+/4+n
Ji(v) = J G} | —sinh? ¢ * 3 —
% l+g Z+%+§

)D”” cos(vt)dr.
0

o=

By collecting all the terms involved in the trace formula for the
operator 7! (p), we obtain the following theorem giving an explicit trace
formula for the convolution operator associated to a function y in the algebra
I, .,(G).

P

THEOREM 4.2. For Y e€l,.(G), 0<p<1 the operator Trrn'(y) on
L2 (I'\G,7)) is given by the formula
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D> my(U)

j=0

—wl(N\G)ZW(e) + Y wol(I\Gy) j\ Y (x)d(G\G,)

{rteCr\(zr]

| s+ 30 o) - 5 [ i) )

sl [ hiamar+ | o o (i) G ) .

— 0

where M,(s) € End(L*(I'y\M,/|,,)) is the intertwining operator of I' and {UAIJ}
the set of t-spherical representations occurring discretely in L*(I'\G,1;).

REMARK 4.2. In [1], for I cocompact, we have established an explicit trace
formula that we have used to give the small eigenvalue for the associated Laplace
operator.

5. Selberg zeta function associated to ETF/

In order to apply the trace formula of Theorem 3.2 to the study of
the associated zeta function we will need the characterization of the space
%”(G,71), 0 < p <1 under the 7;-spherical Fourier transform. For this we
describe the result of Trombi concerning this characterization (for more details,
see Trombi [12]).

5.1 Characterization of the space 4”(G,7;), 0 < p <1

For 0 < p < 1, let us consider the strip # (p,n) = <ve C/|Sv] < (% - 1>n}
and U(y) ={veC;v=ir,r <0 and ¢;(v) =0}. We put U,(t)) = F(p,n)N
U(r;). Then, for |/| >n we have U,(t;) ={—ik/0 <k <m} where m=
min(|l| = n, (2—1)n). Also, for we G*(x;)\G”(z;) where G’ (/) is the set of
elements w in G(t;) whose matrix coefficient are L” summable over G, let us

denote by I,(w) the following set (it describes the numbers v € C for which w is
embedded in U"")

L,(w) = {ve C/Hom g)(w, Uy # {0}}.
REMARK 5.1 (cf [12]). Let we G%, 0 < p<2. Then L(w)NZ(p,n) #0
if and only if we G*\G”. Hence, we have

Uy(t1) = U I,(w).

we G (1)\G? (1))
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Let &, the linear space spanned by 7;-Fourier coefficient of the irreducible
characters involved in the decomposition of 0" re W(A4), ¢ e Uy,(t;) where
0" is the distribution defined by the character U’* (note that for we
G*(1)\G" (1)), we &)

We choose a basis 4, for the space &, as follows:

B, ={0";w e G*(1))\G”(1;)} U {linearly independent elements 0"';
re W(A);é € Up(m)}-

We put C{’(G) ={0"";velnt 7 (p,n)}U{0",we G*(v)NF (p,n)}UB,.
For a function L: C/(G) — C we put L(0"") = L(I,v). Then we define the
functional space:

¢’(C(G),u)y

i) v— L(/,v) is holomorphic on Int # (p,n)
=< L:CP(G) — Clii) L(l,sv) = L(I,v) Vs W(A) ,
ii) v/ (L) < oo Yo eR and ue 7(C)

u,o

where  the semi-norms v/, are defined as follows. v? (L)=
SUD, e e 7 (p,my 1LV = 1) |(1 + lv|*)* for 2 € R and u in the symmetric algebra S(C)
of differential operators on C.

Now, let 7(C(G),r;) be the subspace of %7(C(G),1;), consists of
functions that satisfy in addition the following linear relation

L(1,1€) =Y ap(0")L(0),  Vie W(A) and & e Uy() (%)

Oe B,

where, as the elements of %, are linearly independents, for each 0e %,
there exists oy € 6°(G,7;) such that [.ag(g7")0'(9)dg =0 if 0' # 0, 0" € B,;
o e0(g7)0(g)dg = 1 and further [ ag(g~")(g)0s dg =0 for we G'()).

We endow %”(C(G),1;) with the topology generated by the semi-norms

1/2
1 (L) =V L)+ D 1L
we G (1))
Within these notations, we have the following theorem.
THEOREM 5.1 (See [12]). The map Z;:%67(G,v;) — €7 (C(G),7)) is sur-
Jective.
5.2 Zeta function

In this subsection we will define the logarithmic derivative of the zeta
function and study its analytic continuation.
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Let ¢ be a fixed real number. Let g€ € (R) defined as follows (for
a < g).
0 if |¢f| <a,
¢ 1if |I| > &.

mo:mm:{

We put &(j) = %((—l)"”ﬂ + 1) and we define the polynomial P; as follows

P 1 if || <n,
1(v) = {H;’”—l(vz _|_j2)e/(j) if || > n.

Let D; be the differential operator on R whose Fourier transform is P;.

Then, for se C we define the function i, on A by setting ;hs(a,) =
Di(g(|t|) exp(n — s)|¢]) it is clear that ;4 is a smooth function on A.

Let H(r) = [, g'(x) exp(irx)dx. From the definition of g,¢’ € 6 (R) and
g'(x) =0 for |x| = &.

Hence, by applying the classical Paley Wiener theorem we have the
following lemma.

LEMMA 5.1. H is entire, moreover Yn > 1, m > 0, there exists a constant
Cm,n Such that we have the following estimates.

ennllr] + 1) expleolSrl) if Sr<0.

d"H (r)
drm

Also, direct computations gives

LeEmMMA 5.2. For Rs > 2n, we have

H(i(s—n)—v) +H(i(s—n)+v)}.

S—n—+iv s—n—1iv

i) =i

As a consequence of the above two lemmas we have the following proposition.

ProposITION 5.1.  Suppose that Rs > 2n, then there exist a number p,
0< p<1 and a function 19, € 67(G,7;) such that F;(,9;)(v) = ths(v). There-
fore, 1gs is admissible for the trace formula and A;(,gs5) = ihs.

PrOOF. Let us consider the function /4, defined on the set %(G) as
follows.

S—n+iv S—n—iv

0 for 0" e GX(1)\G” ().

. P[(V){H(i(sfn)fv) +H(i(sfn)+v)} for 0]71;; v ef(p,n),
lhs =

It is sufficient to show that there exist 0 < p < 1 such that ;i,(v) € €”(C(G), 1;)
and the surjectivity in Theorem 5 of the 7;-spherical Fourier transform will
ensure the existence of the function ;g, € 4”(G, 1;) such that #;(,g,)(v) = ihy(v).
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The functions (s—n+ —iv)"' have all their derivatives bounded in a
strip |Sv| < n+ ¢ where 0 < e < R(s — 2n) so if we take 0 < py < 1 such that
(ﬁ— 1)n =n+ ¢ and we choose a number p such that 0 < p < pg < 1 we see
that (s —n + iv)~" have all their derivatives bounded in a strip |Sv| « (% + l)n
and also from Lemma 1 and lemma 2, the functions P;(v)H(i(s—n) +v)
are holomorphic and rapidly decreasing functions of v, hence v/ “(,fzs) < o0
Vo eR and ue #(C). Also it is clear that jk, is an even function. Therefore
thy € €’ (C(G),11),. Furthermore as P;(v) = 0 for all v e U,(1;), i.e. ;}Azs|Up(fl> =
0. Then for e U,(r;) we have

> a0 ) h(0) = Y o (07)hy(0™) = 0.

Oe%), we G2 (1)\G? (1))

Hence, also the linear relation (*) holds for Jhs and then the claim of the
Proposition follows.

Hence the function /A, is admissible for the trace formula.

Applying the trace formula to ;g, we get

S () = vl (T\G)Zrligs(e) + 3 0l(I\G) jG s s

Ve CrI

+oo 1 R
+ ky J ths(v)dv + —(V —tr M[(O))[hs(())

r Jmi’ I'(1+iv)
. 4

C2n) TN (1 + i)

~+00 1 +oo d
+ ko Jioc ths(W)Ji(v)dv + EL@ ths(v) tr <M/(iv) X de/(iv))dv.

It is known that

vl(I;\G,) JG 90 ey = ) HGYIG) el 1)),
where j(y) is the positive integer such that y =/?) with & primitive in I
e(a(y)) = e (@)(a(r)  Thyep (1= &(a() )", here for any peap &,
stands for the character of A4 defined by &,(a) = exp(u(log(a))), ¢(a) is the
sign of 1— im_nﬂ(a)*l.

Also, for hyperbolic elements the set {/(y),y € CI\\{e}} is bounded away
from zero. Then when defining g(¢) if choose & smaller enough than all /(y),
we have g(/(y)) = ¢ for every y € CI\\{e} and ;h,(a;) = cPi(i(n — s)) exp(n — s)t.

DEerFINITION 5.1.  We put

£ (s,9) = g(eo)Pi(i(n — ) > wu(y) 1)) cla(y) exp(n — 5)I().
yeCT\{e}
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The sum defining Z/ (s, g) is absolutely and uniformly convergent in any half
plane Rs > 2n + &, hence it is holomorphic for s > 2n. By replacing it in the
trace formula we get

2 (s,9) = Y_njihs(2%)) = vol(I'\G)[Zr]igs(e)
j

s JW s (v)dy — % (r — tr My(0))/hs(0)

— 0

ro(t s T'(1+ i) +oo
+ EJ—@ lhs(V) m dv — kzj Ihs(V)Jz(v)dv

— o0

1t . . d
— EL@ ths(v) lr(M;(—lv) X EM/(V))dv.

There are seven terms on the right side of the above formula. We shall
call them respectively A(s),...,A7(s) and we shall study the analytic con-
tinuation of each of them separately.

For the terms A, (s) and A»(s), the proof is the same as in Wakayama [13].

For the terms As(s), A4(s), As(s) and A7(s) as their expression is almost the
same as the ones for / =0 (the scalar case) the proof of their analytic con-
tinuation does not differ in an essential way from the one in [6].

So except for Ag(s), we only report the results of their analytic contin-
uation with respect to s, i.e. their poles and the residues at these poles.

A(s) = S nlih()
J

The following lemma is needed to prove the analytic continuation for A4;(s) to
the whole complex line C.

LemMa 5.3 (Wallach, [14]). There exist ag > 0 such that for every o > oy
we have

Z mp(n) (1 + |z(Q2)]) ™ < 0.
e G(t))
Q is the Casimir operator of G.
Thanks to the lemma above and Proposition 2, for Rs > 2n the series

H(l(s_”)f4i)_,_H(l(s_n)flj) for s > 2n,
s—n+il s—n—ik

Ai(s) = nlPi(%y)

i=1

converge absolutely and uniformly in compact sets disjoint from s;—“ =n+ ik
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Hence A(s) has a meromorphic continuation to the whole complex plane
C with simple poles in 5.

If 57 # 57, the residues of A;(s) at s are n’P;( JVH (0).

If 57 =s;, the residues of A;(s) at sf are Zn P,( /)H (0).

When P;(4;) =0, we interpret that there is no pole at s=n+ il;.

Aa(s) = —vol(I'\G)[Zr]igs(e),

where ;g,(e) = fR M 1y, (v)dv, by shifting to the complex plane and

S—n—iv

using rectangular contour we apply residue theorem to get

1gs(e) = lzwﬂ(rk)dk for Rs > 2n.
k=0 ST Uk

Hence A,(s) can be continued meromorphically to C with simple poles at
sk =n+irg (k>0,keZ) and has the residues —iH(0)P;(ry)dj at s.

Where the numbers ry (ry = iax,ax > 1) are the poles in the upper half
plane of the Plancherel measure z(v) = [¢;(v) x ¢;(—v)]™" and dj the residues of
1 at ry (for a detailed expression for ry and d; see Wakayama [13]).

H{(i(s —n))
s—n

As(s) = —%(r —tr M;(0))P;(0) for Rs > 2n.

The right side defines a meromorphic continuation of A3(s) with simple poles at
s =n with residue —1((r— tr M;(0))P;(0)H(0).

.A4(S) =0.
+oo
Aa(s) = ki J ths(v)dv = h(e) =

ot . T+ i)
.AS(S) = %J7% ]hx(V) m dV,

shifting again to the complex plane and applying the residue theorem we pick

residues of the function % in the upper half plane to get

= —rZP (ik) —n+k)) for s > 2n.
k>1 n+k

The series in the right hand side defines a meromorphic continuation for
As(s) to C with simple poles at the points s=n—k, k> 1 with residues
—rP;(ik)H(0).

Az (s) = —

1 (T -~ yf(iv)
)L O
where ;(v) = det M;(v).
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The function y; can be written as a ratio of two entire functions P, Q both
of finite order and have no zeros in common. Let {gx},- be the zeroes of order
br of Q where only a finite number {qg,...q¢;} lies in R(s) > 0. Then we have

Aq(s) = Z kal(iqk)M for Rs > 2n.
k>4 SN =4k

The series on the right converges absolutely, uniformly in compact sets disjoint
from {n+ gx;k > j+ 1} and defines a meromorphic continuation of the left
side to all of C.

The poles of A;(s) thus continued are simple and are at the points
{n+qr/k =1+ 1}. The residue at the pole n+ g is by P;(igi)H(0).

5.3 Discussion of the term Ag(s) = [~ jh,(v)J;(v)dv

Our aim in this subsection is to show that Ag(s) = 0 for s > 2n (and then
we extend the particular case when / = 0 and n odd considered by R. Gangolli
and G. Warner in [Ga)).

act = | {Hle =)o) HOC ) Y,
=2 JHO Pi(v) Wﬁ(\))d\/,

where
%) ) 1 Ji 1 I+n 14+/4+n
Ji(v) = J Gy | —sinh? ¢ + 3 .3
: I+4% I+3+%

Hence, by using the expression for DV cos(vf) we get

)D”” cos(vt)dt.

w2V (0 (4 n—1)%)
Ix3x---x(2l+2n-1)

13 2
XL G31’3 —sinh” ¢

also with the help of the growth estimate for the spherical function %, there
exists M > 0 integer and a constant ¢y, > 0 such that

024 1) . (02 +n—1)%)
I x3x---x(2[+2n-1)

o0 ) 1 1 4n  1+l4n
X J Gy; | —sinh? ¢ +nl —: 20T et My,
0 ' [+5 1+3+5 3

() = (1)

1+1 1+I+Tn 1+é+n @2[+2n+1(l)d1
I+% I+3+5 3 )7 ’

i()| < em x (1+v)Y

]
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where the integral [J° G;’3 (—sinh2 t

I+ 1 +I+Tn 1+Tl+n>e(l+n)t(1 + [2)Md[
I+% I+3+1 3
is convergent. . .

Hence [J(v)] < ¢ S elrbn il (1407) Y.

Now let T > 0, by using Cauchy’s theorem on the contour consisting of

the semi circle of radius 7 centered at 0 we have
+T o o
J H(i(s—n)+v) Ji(v)dv = J P/(V)H(l(s n)+v)

Pi(v) - —
r S—n—iv ar S—n—iv

Ji(v)dv,

Qr is the semi-circle traversed positively of length 7.

Using Lemma 1 as well as the growth estimate for J;(v); we have
UQW P;(v)%];(v)dv’ = O(|T|™"), where N is an integer that we choose
at will. Letting T — oo, we see that Ag(s) =0 for Rs > 2n.

As seen in [6], the manifold I'\G/K has the homotopy type of a compact
manifold M and vo/(I'\G) is a rational multiple of the Euler characteristic E of
M. Also looking at the expression of idj (cf [13]), we see that these numbers
are rational with dominator depending only on (G, K) not on k and /. Hence
there exist a Positive integer x such that i vol(I'\G)dy = ex £, ¢, integers. We

put H(0) = k.

PROPOSITION 5.2.  We summarize the informations about the poles of zZ| in
the following table:

poles residues
=n+ il | knPi()) Jj=124;#0
=n 2in! Py(0) = Src(r — tr My (0))P1(0) | j=1; 4 =0
—x(r — tr M;(0))P;(0) Ai#0; j>1
s=n—k | —rcP(ik) k>1; k#n
s=0 kP(in)(1 —r)
s=2n KP(in)
S =n+irg 7€k[Zr]EP/(Vk) k>1
s=n+qr | kb Pi(iqx) k>j+1

5.4 Functional equation

We set
41(t) = rc 10l (I\G)Py(it)p i),
i) = 21— e ST b ) S k(i — ),

I'(l14+s—n) = (s—n—qi)
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9i(s) = 0y(s) + 0,(2n — 5) + ¢ (s — n) — K%P;(i(n —5)).

Then we have:

é/(s) é;(2n —)
poles residues poles residues
s=n+ik Kanl(/l/) n+ ik —Kn}P;(ij)
s=n 3 K(r —tr M;(0))P;(0) | n Lrc(r — tr M;(0))P;(0)
s=mn; A= 2Kl’l]lP[(O) n, 4 =0 —2Knj’P1(0)

—3(r — r M;(0))P1(0) +55(r — 1r M;(0)) Py (0)

s=0; 2n KP;(in) 0; 2n —xP;(in)
S =n+irg —ek[Zr]EP/(rk) n—irg ek[Zf]EP[(rk)
s =n-+qi; Kby Py(iqy) n—qi —ichi Pi(iqy)
k>1

The function 6;(s) + 6;(2n — 5) has simple poles in {n + ir;;n + g} with
residues respectively FexEP;(rr) and +ichi Pi(igy).

The poles of ¢,(¢) are in s = n + ir; with residues +e, EP;(r;) and the poles
of v (n" f; are in s =n + g, with residues +by. )

Hence the function  g;(s) = 0;(s) + 0,(2n — ) + (s — n) — Kﬁll((:;::;
Pi(i(n —s)) is an entire function.

ProposITION 5.3.

015)+ 120 =)+ (s =) L=t — )
= —dnick; Pi(i(n — 5)) — dnxky Pi(i(n — 5))Ji(s).

where ki, ky and J; are as defined in the former section.

Proor. First we perform the change of variable s=n+iz (z =i(n —s)),
the condition s > 2n is equivalent to \sz < —n and we keep the notations
0(z )—91(n+zz) &)(z) = ¢)(n + iz) and % ( ) = W (n+iz). Then

W
2) =xPi(z) > 1()j a(y)) exp(=izl(y))
yeCIy
I'(1 4 iz) / by
—KmPI(Z)-‘rk;KmPl(Z)'

The above sum is absolutely and uniformly convergent in Sz < —n—9
(0 > 0). Also, we have
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O(z)=~iy njgpl(ij){H(—z— 4) +H(—z+xj)}

e Z+ij Z—)\y
H(—z+r
— vol(I'\G)[Zr] Z(Ziirkk)Pl(rk)dk
k>0
1 H(-z) . H(—z—iqp)
2P1(0)(V tr MI(O))T‘F/;kal(ZQk)ﬁ-

Let fix ¢ >0 and let b be an even holomorphic function that is rapidly
decreasing in the strip {z/ |Sz] < (% - l>n + 23}. We consider the rectangular
contour O, in the complex z-plane with vertices +x + iy and sides E}, B}, E_;
B (y = (% — l)n +éex>0x€ Q,). By applying the residue theorem to the
function 6;(z)b(z) (b(z) is holomorphic) we get

JO b(2)0(z)dz = 2ni{—ii€ > nlPi(iy)(b(4) + b(—4))

v;€ QN0

+iElZr] Y b(n)e+ %K(r — tr M;(0))P,(0)5(0)
e <(2/p=1)n

— ix > kaz(iQk)b(iQk)}-
k>1;|qk| < (2/p—1)n

Put O, =lim,_,,, O,. Then

(1) J b(2)0/(z)dz = 4mc Y n[Pi(A)b(3) + —2=E[Zr] Y exPi(ri)b(re)
0, €0 1e<(2/p=1)n

— quc(r — tr M;(0))P;(0)b(0) + 27xc Z bi P (igr)b(igy)-
k>1;|qr| <(2/p=1)n

On the other hand the evenness of & and the relation 0(z) — 6)(—z) =
20,(z) + ¢,(iz) — IZ’]((::)) Pi(z) — gi(z) gives

J b(2)0)(z)dz =
O,

b(2)0)(z)dz + J b(z2)0,(z)d=

B B

+ JH b(2)0;(z)dz + J b(z2)0,(z)d=

EL
Wl/(_iz)
Yy (—iz)

=2 JB b(2)0;(z)dz — KJ b(z)

Pi(z)dz + J b(z)¢,(iz)dz
B

X X X

- | bt a1,
B

where [ = [}. b(r)0,(r)dr.
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We let x — oo, lim,_.,, Iy =0 and we put L, = lim, . {—x — iy; —x + iy}
(the complex line {—x — iy;x — iy} when x — o0) to obtain

(2) JOI b(2)0,(z)dz = zJ

L,

b(z)0i(z)dz= + JL b)) (iz)dz
o - W (—iz) N — Ao\
L b( )l//,(—iz) Pi(z)d J b(2)g(2)d=.

L

—y —y

Also

= Y I 05z | BRI ezl
yeCIy L,

r I'(1+iz)

J
- KEL} b(z) mP/(z)dz + KZ bi Py (iqi)b(igy).

k=0

If we put f,(r) = Pi(r)b(r), we can check that 5, € €”(C(G),1;) and it follows
that there exists a function f € é”(G,7;) such that

AN =p and 5| P exp—it)dr = 4G

Since ¢;(iz) is a tempered function and b is rapidly decreasing we use again the
residue theorem to get

1 ; = i z)@,(iz)dz — r r
ML i)z = 5| b1z — ELZ1) 3 e
=2k vol(I'\G)[Zr]f(e) — E|Zr] Z b(re)ex P (1)
[re] <(2/p—D)n

Also, we have

W//(—iz) s — e - ‘P//(iz) .
i) < S Vo)

- j Bi()

J
+ 27K Z b (igr) — ZnKZbkﬂ,(iqk).
kzj+1;lqe < (2/p=1)n i=1

After substituting, we compare (1) and (2) to obtain
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LJ " b(2)gi(2)dz = (2] vol(P\G)f + )1 a(y)Ai(/)U())
drr )_ ., yeCI;
- Z ’/f, (r—tr M;(0))5,(0)
V,EQ[

1 Y, (iz) ro (TP (1 +iz)
+ELC By 0 T P

Now by applying the trace formula to the function f, we see that

1 +00

| s@aea= k[ pee k| pene

4km ) _ o J—w

Since f;(z) can be varied over a wide class of functions, we see that g;(z) =
—4nk\icPy(z) — 4nkyicPi(z)Ji(z) for z real and as the involved functions are
entire the claim of Proposition 4 is proved.

Now we put z0(s) = 2(s)(P(i(s — ))) ™, 6(s) = G1(s) (Pi(i(s —)))”", and
#(s) = —dy(s — m)(Pi(i(s — m))) ' = —x vol(I\G)py(i(s — m)).  Suppose  that
[l >n, then we have Pi(i(s—n)) =[]/ {~(s— n)? + 23U Then
21,0,( s) and ¢?(s) might have additional simple poles at s=n+ j
(Je{l,...,m}).

Let r,i (j) = Ress—n+; z0(s). The functional equation

07 (s) + 0)(2n — 5) = ¢)(s) + Kﬂ(n — ) — dnicky — dnrckrJi(s),

7

gives rf(]/) — 17 (j) = di(j) + xa(j) where dj(j) = Ress—ns; ¢} (s) and a(j) =
Ress—pj lf/’/—’l(n — ).
We further put

m + (]) - (]) &(J)
F / / ;
1(s) 1 {S + }

—-n—j s—n+j

s—n—j s—n+j

Gils) = m{ d(j) () }é/m’

A al) ) Y
Ails) = l{s—n—js—n—i—j} ’
zi(s) = 20(s) = Fi(s), O(s) = 0] (s) = Fi(s), gi(s) = ¢/ (s) — Gi(s) and %(S) =

v/ I
2 (s) — A(s).
If we replace k¥ by 4x we have the following proposition.
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PROPOSITION 5.4. z;(s) is a meromorphic function with simple poles and
integer residues. The spectral poles of z(s) are located at s=n =+ il; with
residues 4Kn;. Also there exists a series of other poles given in the following
table:

Poles residues

s=n —2ic(r — tr M;(0))

s=n-+ir, | —4E|Zr]ex = 4i vol(I'\G)[Zr]dk
s=n+gqi | drbr; k> j+1

n—k —4icr; k> 1

Also we have the following functional equation.

-/
0,(s) + 0,(2n — 5) = ¢,(s) + 4KM + ki + k5Ji(s).
Yy(n—s)

REMARK 5.2. We see that the functions z} (s) (0:(s)) have only simples
poles with integer residues. Hence we can find meromorphic functions Z[ (s)
(Q/(s)) defined up to a scalar such that

d

—(log Z{'(5)) = z} (s) and

o < (log €4(s)) = 01(),

ds
where
J
Qi(s) = Zr(s) x T(1+s—n) " x JJ(s —n — gi) "™
k=1

Now, let us denote by my the even positive integer —2x(r — tr M;(0)). As
Z[ is defined up to a multiplicative constant, we normalize it by requiring that
lim,(s —n)"™Z[ (s) = 1, which fixes Z/ completely and we call it Selberg
zeta function associated to (G, I, 7).

As an immediate consequence, we have

LemMa 5.4. The following functional equation holds for €;:

S

Qi(2n —5) = ()P (n — 5)™ x exp Uo ' ¢, (0)dt + k| J‘Y Ji(t)dt + ky(s —n)|.

n

In the following theorem we summarize all properties of the Selberg zeta
function Z/:

THEOREM 5.2. 1) Z[" is a meromorphic function having no poles in Rs > 2n
and it has the following functional equation
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Zi @n =) = 2 s) x (,w>4 X [y(n — )* x f[ (H—qk)‘”

(14+s5—n)

n

X exp Uos—n b (t)dt + k| J Ji(t)dt + k(s — n)] .

Let S; = {J; | the t;-spherical representation U'% occurs in L% (I'\G)}.
Z!' has spectral zeros at s =n + ik;, (A € Si,/; # 0) with order 4101}.
These zeroes determine the location of A; corresponding to the t-
spherical representation U occurring in L2 (I'\G).

There is also a spectral zero of order 4k at 2n.
There are also a series of topological poles or zeroes (depending on the
sign of idy) of Z! at {n+irc/k > 1} with order |4exE|[Zr], where
{re,k > 1} are the poles of the Harish-Chandra measure c;(r)”"¢c;/(—r)™"
in Sr>0 and dy their order.
n may be a pole or a zero of Z} depending on the sign of the related
residue:
If 2;=0€eS, its order is |8Kn} —2K(r — tr M;(0))|.
If 2;=0¢5,, its order is |2x(r — tr M;(0))|.
s=0 is a zero (resp. pole) of order |4(k—eE)| of ZI' when
4(x — eoE) is positive (resp. negative).
Z[!' has poles at the points {n—k;k € Z} of order 4r.
Z[" has zeroes of order 4xby at the points {n+ qi/k > j+1}. Where
qi; k= j+ 1 are the poles of the function (s) = det M;(s) lying in
R(s) <0 and by their order. L o
1f we put fi(s) = exp[[3(~Fi(2))dz] (Fi(s) = S {i50 + 505} for
Rs > 2n.  Since the residues r,i (j) at the poles z=n+ j (1 < j<m)
of the meromorphic function Fi(z) need not be integers, fi(s) is well
defined only in: C\(—00,0]. Therefore we take and fix a particular
path in the half plane Rs > 2n, when the above integral is interpreted
as a contour integral. With these, the function Z] has the following
miscellaneous formula

zl () =¢cfits) T[T -a(a@) & (@)™ exp(=s1(0)] "

o€ Primp el

Here, C is some constant determined by our normalization of Z|, Primp
is the set of primitive hyperbolic conjugacy classes, L is the semi-Lattice
of linear forms in af of the form Zle m;o;, o; € Py and m; being
non-negative integers. For A€ L, m is the number of distinct t-tuples
(my,...,my) of non-negative integers such that ) = Zle myoy; and &) is
the character of a corresponding to A.
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