Stable extendibility of vector bundles over real projective spaces and bounds for the Schwarzenberger numbers $\boldsymbol{\beta}(\boldsymbol{k})$

Teiichi Kobayashi and Toshio Yoshida

(Received April 8, 2003)
(Revised July 7, 2003)

Abstract

For a non-negative integer k, R. L. E. Schwarzenberger defined in [7] an integer $\beta(k) \geq 0$ which we call the Schwarzenberger number of k. Let ζ be a k dimensional F-vector bundle over the real projective n-space $R P^{n}$, where F is either the real number field R or the complex number field C. Then $\beta(k)$ is closely related to the problem to find the dimension m with $m \geq n$ which has the property that ζ is stably equivalent to a sum of $k F$-line bundles if ζ is stably extendible to $R P^{m}$. The problem for $F=R$ has been studied in [7], [5] and [4], and that for $F=C$ has been studied in [6] and [4]. In this note we obtain further results on the problem and determine bounds for the Schwarzenberger numbers $\beta(k)$.

1. Introduction

Throughout this note, F denotes either the real number field R or the complex number field C, and N is the set of all non-negative integers. Let X be a space and A its subspace. A k-dimensional F-vector bundle ζ over A is said to be extendible (respectively stably extendible) to X, if there is a k-dimensional F-vector bundle over X whose restriction to A is equivalent (respectively stably equivalent) to ζ, that is, if ζ is equivalent (respectively stably equivalent) to the induced bundle $i^{*} \eta$ of a k-dimensional F-vector bundle η over X under the inclusion map $i: A \rightarrow X$ (cf. [7, p. 20], [8, p. 191] and [3, p. 273]).

For a positive integer i, write $i=(2 a+1) 2^{v(i)}$, where $a \in N$, and for $k \in N$ define an integer $\beta(k) \in N$ by

$$
\beta(k)=\min \{i-v(i)-1 \mid k<i\}
$$

which we call the Schwarzenberger number of k.
Let ζ be a k-dimensional F-vector bundle over the real projective n-space $R P^{n}$ where $k>0$. We study the problem to find the dimension m with $m \geq n$ which has the property that ζ is stably equivalent to a sum of $k F$-line bundles if ζ is stably extendible to $R P^{m}$.

2000 Mathematics Subject Classification. Primary 55R50; Secondary 55N15.
Key words and phrases. vector bundle, extendible, stably extendible, KO-theory, K-theory, real projective space, Schwarzenberger number.

Let $\phi(n)$ denote the number of integers s with $0<s \leq n$ and $s \equiv 0,1,2$ or $4 \bmod 8$. For $F=R$, we have

Theorem 1. Let ζ be a k-dimensional R-vector bundle over $R P^{n}$, where $k>0$, and consider the following four conditions.
(1) ζ is stably extendible to $R P^{m}$ for every $m \geq n$.
(2) ζ is stably extendible to $R P^{m}$, where $m \geq n, m \geq 2 k-1$ and $\phi(m) \geq$ $\phi(n)+\beta(k)$.
(3) ζ is stably extendible to $R P^{m}$, where $m=2^{\phi(n)}-1$.
(4) ζ is stably equivalent to a sum of $k R$-line bundles.

Then all the four conditions are equivalent. Moreover, when $k=1$ or $n=1,3$ or 7, the conditions always hold.

Let $[x]$ denote the largest integer q with $q \leq x$. For $F=C$, we have
Theorem 2. Let ζ be a k-dimensional C-vector bundle over $R P^{n}$, where $k>0$, and consider the following four conditions.
(1) ζ is stably extendible to $R P^{m}$ for every $m \geq n$.
(2) ζ is stably extendible to $R P^{m}$, where $m \geq n, m \geq 4 k-1$ and $\phi(m) \geq$ $[n / 2]+\beta(2 k)+1$.
(3) ζ is stably extendible to $R P^{m}$, where $m=2^{[n / 2]+1}-1$.
(4) ζ is stably equivalent to a sum of $k C$-line bundles.

Then all the four conditions are equivalent. Moreover, when $k=1$ or $n=1,2$ or 3, the conditions always hold.

Concerning bounds for the Schwarzenberger numbers $\beta(k)$, we obtain
Theorem 3. Let k be a positive integer, let $\alpha(k)$ denote the number of the non-zero terms of the 2-adic expansion of k, and let $\beta(k)$ denote the Schwarzenberger number of k. Then the inequalities $k-\alpha(k) \leq \beta(k) \leq k$ hold.

This note is arranged as follows. We study some properties of $\beta(k)$ in Section 2. We prove Theorems 1 and 2 in Section 3, and prove Theorem 3 in Section 4.

2. Some properties of $\boldsymbol{\beta}(\boldsymbol{k})$

Lemma 2.1. Let k be a positive integer and t be any integer with $k<2^{t}$. Then $\beta(k)=\min \left\{i-v(i)-1 \mid k<i \leq 2^{t}\right\}$.

Proof. Clearly it suffices to prove that

$$
\min \left\{i-v(i)-1 \mid 2^{t}<i\right\} \geq \min \left\{i-v(i)-1 \mid k<i \leq 2^{t}\right\}
$$

Comparing $2^{t}-v\left(2^{t}\right)-1$ with $i-v(i)-1$ for $i=a 2^{t}+b$, where $a \geq 1$ and $0<b<2^{t}$, and with $i-v(i)-1$ for $i=a 2^{t}$, where $a>1$, we have

$$
\begin{aligned}
& a 2^{t}+b-v\left(a 2^{t}+b\right)-1-\left\{2^{t}-v\left(2^{t}\right)-1\right\} \\
& =(a-1) 2^{t}+b-v(b)-1+t+1>0,
\end{aligned}
$$

and

$$
a 2^{t}-v\left(a 2^{t}\right)-1-\left\{2^{t}-v\left(2^{t}\right)-1\right\}=(a-1) 2^{t}-v(a)>a-1-v(a) \geq 0,
$$

since

$$
j-v(j)-1=(2 x+1) 2^{y}-v\left((2 x+1) 2^{y}\right)-1 \geq 2^{y}-y-1 \geq 0,
$$

where $j=(2 x+1) 2^{y}(x, y \in N)$. We therefore obtain the desired inequality.

Remark. It seems to us that in line 11 of [7, p. 21], the last inequality $i<2^{t}$ should be replaced by the inequality $i \leq 2^{t}$. In fact, $\min \{i-v(i)-1 \mid$ $\left.k<i<2^{t}\right\}$ is not necessarily equal to $\beta(k)$ (for example, if $(k, t)=(6,3)$, $\min \left\{i-v(i)-1 \mid k<i<2^{t}\right\}=6$ and $\left.\beta(k)=4\right)$, the first inequality in line 11 of [7, p. 21] holds also for $i=2^{t}$ and $\min \left\{i-v(i)-1 \mid k<i \leq 2^{t}\right\}$ is equal to $\beta(k)$ by Lemma 2.1.

Lemma 2.2. $\beta\left(2^{r}\right)=2^{r}$ for $r \geq 2, \beta(2)=1$ and $\beta(1)=0$.
Proof. We prove the first equality. Suppose $r \geq 2$. Since $\beta\left(2^{r}\right) \leq 2^{r}$ (cf. [7, Examples]), it suffices to prove that $\min \left\{i-v(i)-1 \mid 2^{r}<i \leq 2^{r+1}\right\} \geq 2^{r}$ by Lemma 2.1. If $i=2^{r}+b$, where $0<b<2^{r}$, we have $i-v(i)-1=2^{r}+$ $b-v(b)-1 \geq 2^{r}$, and if $i=2^{r+1}$, we have $i-v(i)-1=2^{r+1}-(r+1)-1 \geq 2^{r}$ for $r \geq 2$. Hence we obtain the desired inequality. The other equalities are easily verified.

Corollary 2.3. $\beta(0)=0$, and $\beta(k)>0$ for $k>1$.
Proof. By definition, $j \geq k$ implies $\beta(j) \geq \beta(k)$. Hence the results follow from Lemma 2.2.

Lemma 2.4. Let $j=1,2,3$ or 4 and let $k=2^{r}-j$, where $r \geq 0$ for $j=1$, $r \geq 1$ for $j=2$, and $r \geq 3$ for $j=3$ or 4 . Then

$$
\beta(k)=2^{r}-r-1 .
$$

Moreover,

$$
\beta\left(2^{r}-5\right)=2^{r}-r-1 \quad \text { for } r \geq 6, \quad \beta\left(2^{r}-5\right)=2^{r}-7 \quad \text { for } 3 \leq r \leq 5 .
$$

Proof. By definition and by Lemma 2.2, we have

$$
\begin{aligned}
\beta\left(2^{r}-1\right) & =\min \left\{2^{r}-v\left(2^{r}\right)-1, \beta\left(2^{r}\right)\right\}=\min \left\{2^{r}-r-1,2^{r}-\delta\right\} \\
& =2^{r}-r-1,
\end{aligned}
$$

where $\delta=0$ if $r \geq 2$ and $\delta=1$ if $r=0$ or 1 . By the result above, we have, for $r \geq 1$,

$$
\begin{aligned}
\beta\left(2^{r}-2\right) & =\min \left\{2^{r}-1-v\left(2^{r}-1\right)-1, \beta\left(2^{r}-1\right)\right\} \\
& =\min \left\{2^{r}-2,2^{r}-r-1\right\}=2^{r}-r-1
\end{aligned}
$$

Similarly, we have, for $r \geq 3$,

$$
\begin{aligned}
\beta\left(2^{r}-3\right) & =\min \left\{2^{r}-2-v\left(2^{r}-2\right)-1, \beta\left(2^{r}-2\right)\right\} \\
& =\min \left\{2^{r}-4,2^{r}-r-1\right\}=2^{r}-r-1 \\
\beta\left(2^{r}-4\right) & =\min \left\{2^{r}-3-v\left(2^{r}-3\right)-1, \beta\left(2^{r}-3\right)\right\} \\
& =\min \left\{2^{r}-4,2^{r}-r-1\right\}=2^{r}-r-1
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\beta\left(2^{r}-5\right) & =\min \left\{2^{r}-4-v\left(2^{r}-4\right)-1, \beta\left(2^{r}-4\right)\right\} \\
& =\min \left\{2^{r}-7,2^{r}-r-1\right\} \\
& =2^{r}-r-1 \quad \text { for } r \geq 6, \quad=2^{r}-7 \quad \text { for } 3 \leq r \leq 5 .
\end{aligned}
$$

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Clearly (1) implies (2) and (3). In [7, Theorem 3] R. L. E. Schwarzenberger proved that (2) implies (4) (cf. Remark in Section 2). In the original result of Schwarzenberger, the R-vector bundle ζ is assumed to be extendible, but his result is also valid if we only assume that ζ is stably extendible instead of extendible (cf. [3, Section 1]). We proved in [4, Theorem $3.1(\mathrm{i})$] that (3) implies (4) for $n \neq 1,3,7$, and in [4, Theorem 3.2] that (4) is equivalent to (1). We therefore proved the theorem for the case $n \neq 1,3,7$.

When $n=1,3$ or 7 , it suffices to prove (4). In fact, (4) for $n=1,3$ or 7 follows from [4, Theorem 3.1 (ii)]. The latter part for $k=1$ is clear (cf. [4, Theorem 3.2]).

Remark. If $k>1$, then $\beta(k)>0$ by Corollary 2.3 and so the inequality $\phi(m) \geq \phi(n)+\beta(k)$ implies the inequality $m>n$.

Proof of Theorem 2. Clearly (1) implies (2) and (3). We proved in [6, Theorem 2.2 and Remark] that (3) implies (4) for $n>3$, and in [4, Theorem 3.2] that (4) is equivalent to (1). Hence for the proof for the case $n>3$, it suffices to prove that (2) implies (4). Though the proof is parallel to that of [7, Theorem 3], for completeness we prove that (2) implies (4) below.

Assume that (2) holds for ζ. Then there is a k-dimensional C-vector bundle η over $R P^{m}$ such that $i^{*} \eta$ is stably equivalent to ζ, where $i: R P^{n} \rightarrow$ $R P^{m}$ is the standard inclusion. According to [1, Theorem 7.3], we have, for some integer q with $0 \leq q<2^{[m / 2]}, \eta-k=q c\left(\xi_{m}-1\right)$ in the reduced K-group $\tilde{K}\left(R P^{m}\right)$, and so

$$
\zeta-k=i^{*} \eta-k=q c\left(i^{*} \xi_{m}-1\right)=q c\left(\xi_{n}-1\right)
$$

in $\tilde{K}\left(R P^{n}\right)$, where ξ_{N} is the canonical R-line bundle over $R P^{N}$ and c denotes the complexification. Let r denote the forgetful map. Then

$$
r \eta-2 k=r c q\left(\xi_{m}-1\right)=2 q\left(\xi_{m}-1\right)
$$

since $r c=2$. In the terminology of [2, Section 2], the element $2 q\left(\xi_{m}-1\right)$ has geometrical dimension not exceeding $2 k$. If $q \leq k$, then ζ is stably equivalent to a sum of $k C$-line bundles. If $q>k$, then, by [1, Theorem 7.4] and [2, Proposition 2.3], for all $i>2 k$,

$$
\gamma^{i}\left(2 q\left(\xi_{m}-1\right)\right)=C_{2 q, i}\left(\xi_{m}-1\right)^{i}=(-1)^{i-1} 2^{i-1} C_{2 q, i}\left(\xi_{m}-1\right)=0
$$

where γ^{i} is the Grothendiek operator and $C_{j, i}$ is the binomial coefficient $j!/((j-i)!i!)$, and so, by [1, Theorem 7.4],

$$
i-1+v\left(C_{2 q, i}\right) \geq \phi(m) \quad \text { for all } i \text { with } 2 k<i \leq 2 q .
$$

Since $r \eta$ is stably equivalent to $2 q \xi_{m}$, the total Stiefel-Whitney class $w(r \eta)$ of $r \eta$ is $\left(1+x_{m}\right)^{2 q}$, where x_{m} is the generator of $H^{1}\left(R P^{m} ; Z_{2}\right)$. On the other hand, by [7, Theorem 2],

$$
w(r \eta)=w\left(s \xi_{m} \oplus(2 k-s)\right)=\left(1+x_{m}\right)^{s} \quad \text { for some } s \text { with } 0 \leq s \leq 2 k
$$

since $m \geq 4 k-1$, where \oplus denotes the Whitney sum. Hence

$$
2 q=(2 a+1) 2^{t}+s \quad \text { for some } a \in N \text { and } t \in N \text { with } m<2^{t}
$$

It follows from the inequalities $3 \leq m<2^{t}$ that $t \geq 2$. So s is even and $0 \leq s / 2 \leq k$. Now,

$$
v\left(C_{(2 a+1) 2^{t}+s, i}\right)=v\left(C_{2^{t}+s, i}\right) \leq v\left(C_{2^{t}, i}\right) \quad \text { for all } i \text { with } s<i \leq 2^{t},
$$

and $v\left(C_{2^{t}, i}\right)=t-v(i)$. Therefore

$$
i-1+t-v(i) \geq \phi(m) \quad \text { for all } i \text { with } 2 k<i \leq 2^{t}
$$

and so $t-1 \geq \phi(m)-\beta(2 k)-1 \geq[n / 2]$ by Lemma 2.1 and by the assumption. Therefore $\zeta-k=(s / 2) c\left(\xi_{n}-1\right)$, since $c\left(\xi_{n}-1\right)$ is of order $2^{[n / 2]}$ by [1, Theorem 7.3]. Hence ζ is stably equivalent to a sum of $k C$-line bundles and so (4) holds. Thus we have completed the proof of the former part.

To prove the theorem for the case $n=1,2$ or 3 , it suffices to prove (4) (cf. [4, Theorem 3.2]). By [1, Theorem 7.3] there is an integer l such that $\zeta-k=(k+l) c\left(\xi_{n}-1\right)$, where $0 \leq k+l<2^{[n / 2]}$. If $l>0,[n / 2]<k+l$ by $[\mathbf{6}$, Theorem 2.1]. This contradicts the inequality $k+l<2^{[n / 2]}$ if $n=1,2$ or 3 . Hence $l \leq 0$, and so (4) holds. The latter part for $k=1$ is clear (cf. [4, Theorem 3.2]).

Remark. For $k>0, \beta(2 k)>0$ by Corollary 2.3 and so the inequality $\phi(m) \geq[n / 2]+\beta(2 k)+1$ implies the inequality $m>n$.

4. Proof of Theorem 3

Lemma 4.1. For $0<i<2^{r}, \alpha\left(2^{r}-i-1\right)=\alpha\left(2^{r}-i\right)+v(i)-1$.
Proof. Let $v(i)=s$. Then $v\left(2^{r}-i\right)=s$ and $2^{r}-i=(2 a+1) 2^{s}$, for some $a \in N$. Hence $2^{r}-i-1=a 2^{s+1}+2^{s-1}+2^{s-2}+\cdots+2+1$ and so $\alpha\left(2^{r}-i-1\right)=\alpha\left(a 2^{s+1}+2^{s-1}\right)+s-1=\alpha\left(a 2^{s+1}+2^{s}\right)+s-1=\alpha\left(2^{r}-i\right)+v(i)$ -1 .

Theorem 3 is a consequence of the following result.
Theorem 4.2. Let k be a positive integer. Then we have the following.
(i) If $k \neq 2^{r}-1$ and $k \neq 2^{r}-2, k-\alpha(k)<\beta(k) \leq k-\varepsilon$, where $\varepsilon=0$ for k even and $\varepsilon=1$ for k odd.
(ii) If $k=2^{r}-1$ or $k=2^{r}-2, \beta(k)=k-\alpha(k)$.

Proof. (i) The inequality $\beta(k) \leq k-\varepsilon$ follows from [7, Examples].
By Lemma 2.2, clearly the inequality $k-\alpha(k)<\beta(k)$ holds for $k=2^{r}$ for $r \geq 2$. We prove the inequality $k-\alpha(k)<\beta(k)$ for $k \neq 2^{r}-1$ and $k \neq 2^{r}-2$ by a downward induction on $k=2^{r}-i$, where $r \geq 3$ and $3 \leq i<2^{r-1}$. If $i=3$, by Lemma 2.4, $\beta\left(2^{r}-3\right)=2^{r}-r-1$. On the other hand, $\alpha\left(2^{r}-3\right)=$ $r-1$, and so $k-\alpha(k)<\beta(k)$ holds for $k=2^{r}-3$.

Suppose that the inequality $k-\alpha(k)<\beta(k)$ holds for $k=2^{r}-i$, where $4 \leq i+1<2^{r-1}$. Since $\quad \beta\left(2^{r}-i-1\right)=\min \left\{2^{r}-i-v\left(2^{r}-i\right)-1, \beta\left(2^{r}-i\right)\right\}$, $\beta\left(2^{r}-i-1\right)=2^{r}-i-v\left(2^{r}-i\right)-1$ or $\beta\left(2^{r}-i-1\right)=\beta\left(2^{r}-i\right)$.

If $\beta\left(2^{r}-i-1\right)=2^{r}-i-v\left(2^{r}-i\right)-1$, we have, by Lemma 4.1,

$$
\begin{aligned}
\beta\left(2^{r}\right. & -i-1)-\left\{2^{r}-i-1-\alpha\left(2^{r}-i-1\right)\right\} \\
& =2^{r}-i-v\left(2^{r}-i\right)-1-\left\{2^{r}-i-1-\left(\alpha\left(2^{r}-i\right)+v(i)-1\right)\right\} \\
& =\alpha\left(2^{r}-i\right)-1>0,
\end{aligned}
$$

since $\alpha\left(2^{r}-i\right)>1$ for $3 \leq i<2^{r-1}$. If $\beta\left(2^{r}-i-1\right)=\beta\left(2^{r}-i\right)$, we have, by Lemma 4.1 and by the inductive assumption,

$$
\begin{aligned}
\beta\left(2^{r}\right. & -i-1)-\left\{2^{r}-i-1-\alpha\left(2^{r}-i-1\right)\right\} \\
& =\beta\left(2^{r}-i\right)-\left\{2^{r}-i-1-\left(\alpha\left(2^{r}-i\right)+v(i)-1\right)\right\} \\
& =\beta\left(2^{r}-i\right)-\left\{2^{r}-i-\alpha\left(2^{r}-i\right)\right\}+v(i)>0
\end{aligned}
$$

So the inequality $k-\alpha(k)<\beta(k)$ holds for $k=2^{r}-i-1$.
(ii) Note that if $k=2^{r}-1$ or $k=2^{r}-2, r=\alpha(k)$ or $r=\alpha(k)+1$, respectively. By Lemma 2.4, if $k=2^{r}-1, \beta(k)=2^{r}-r-1=k-\alpha(k)$, and if $k=2^{r}-2, \beta(k)=2^{r}-r-1=k-\alpha(k)$.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1961), 125-132.
[3] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999), 273-279.
[4] T. Kobayashi and T. Yoshida, Extendible and stably extendible vector bundles over real projective spaces, J. Math. Soc. Japan 55 (2003), 1053-1059.
[5] T. Kobayashi, H. Maki and T. Yoshida, Remarks on extendible vector bundles over lens spaces and real projective spaces, Hiroshima Math. J. 5 (1975), 487-497.
[6] T. Kobayashi, H. Maki and T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999), 631-638.
[7] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19-21.
[8] R. M. Switzer, Algebraic Topology-Homotopy and Homology, Springer-Verlag, Berlin-Heiderberg-New York, 1975.
T. Kobayashi

Asakura-ki 292-21
Kochi 780-8066 Japan
E-mail: kteiichi@lime.ocn.ne.jp
T. Yoshida

Department of Mathematics
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521 Japan
E-mail: t-yosida@mis.hiroshima-u.ac.jp

