Hardy's theorem for the Jacobi transform

Nils Byrial Andersen
(Received August 19, 2002)
(Revised October 18, 2002)

Abstract

Let $\alpha \beta=\frac{1}{4}$ for positive constants α, β. Hardy's theorem states that the function $f(x)=e^{-\alpha x^{2}}$ is the only function (modulo constants) satisfying the decay conditions $f(x)=O\left(e^{-\alpha x^{2}}\right)$ and $\hat{f}(x)=O\left(e^{-\beta x^{2}}\right)$, where \hat{f} denotes the Fourier transform of f. We generalise this theorem and its L^{p} analogues to the Jacobi transform. We then consider the Fourier transform on the real hyperbolic spaces $S O_{o}(m, n) / S O_{o}(m-1, n), m, n \in \mathbf{N}$, and show, as an application of our results for the Jacobi transform, that Hardy's theorem only can be generalised to the Riemannian $(m=1)$ case. It can, in particular, not be generalised to $\operatorname{SL}(2, \mathbf{R}) \simeq S U(1,1) \simeq$ $S O_{o}(2,2) / S O_{o}(1,2)$.

1. Introduction

Let f be a measurable function on \mathbf{R} and let \hat{f} be its Fourier transform. Assume that $|f(t)| \leq C e^{-\left.\alpha|t|\right|^{2}}$ and $|\hat{f}(\lambda)| \leq C e^{-\beta|\lambda|^{2}}$, where C, α, β are positive constants. Hardy's theorem, [11], states that if:
(1) $\alpha \beta>\frac{1}{4}$, then $f=0$.
(2) $\alpha \beta=\frac{1}{4}$, then $f(t)=$ const. $e^{-\alpha t^{2}}$.
(3) $\alpha \beta<\frac{1}{4}$, then there are infinitely many linearly independent solutions.

We note that (2) implies (1) and (3). The central part of Hardy's theorem, the $\alpha \beta=\frac{1}{4}$ case, can be reformulated in terms of the Heat kernel: $h_{t}(x):=(4 \pi t)^{-1 / 2} e^{-x^{2} / 4 t}, t>0$. We note that $\hat{h}_{t}(x)=e^{-t x^{2}}$, and thus the only functions satisfying (2) are constant multiples of h_{β}, with $\beta=1 / 4 \alpha$. The $\alpha \beta>\frac{1}{4}$ case is also known as Hardy's uncertainty principle: f and \hat{f} cannot both be very rapidly decreasing. A Generalisation of Hardy's theorem with L^{p} growth conditions was furthermore given by Cowling and Price in [6].

[^0]Analogues of Hardy's uncertainty principle and its L^{p} versions for the Fourier transforms on (semisimple) Lie groups and Riemannian symmetric spaces of the non-compact type have now been studied in several papers, see [7], [17], [21], [24] and references therein.

The Heat kernel on a Riemannian symmetric space is also a well-defined and much studied object, in particular its decay properties. It was very recently shown that the Heat kernel in this set-up also characterises the functions satisfying a natural analogue of the decay conditions above, with the Helgason-Fourier transform replacing the Fourier transform, for $\alpha \beta=\frac{1}{4}$, see [18] and [23]. See also [19] for generalisations of the Cowling-Price results.

Consider the Jacobi transform $f \mapsto \hat{f}^{a, b}$ of order (a, b), where f is an even function and a, b are complex numbers. We remark that the spherical Helgason-Fourier transform for Riemannian symmetric spaces of rank 1 can be viewed as the Jacobi transform for certain half-integer values of a and b, but that in general the notion of the Heat kernel is not defined. However, we can show the following generalisation of Hardy's theorem:

Theorem 1.1. Let $a, b \in \mathbf{C}, a \notin-\mathbf{N}$ and $\rho:=a+b+1$. Assume that f is an even measurable function on \mathbf{R} satisfying:
and

$$
|f(t)| \leq C(1+|t|)^{M} e^{-\Re p|t|} e^{-\alpha|t|^{2}}, \quad t \in \mathbf{R}
$$

for non-negative constants C, M, α, β, with $M \geq \Re a+\frac{1}{2}$ and $\alpha \beta=\frac{1}{4}$, then $\hat{f}^{a, b}(\lambda)=$ const. $e^{-\beta \lambda^{2}}$.

We remark that the (Jacobi) inverse of the function $e^{-\beta \lambda^{2}}$ is a non-zero even C^{∞} function on \mathbf{R} satisfying the left-hand-side growth estimate, and that we also prove injectivity for the Jacobi transform on the appropriate subspaces of even functions, for all a, b with $a \notin-\mathbf{N}$. The Jacobi transform reduces to the cosine-Fourier transform when $a=b=-\frac{1}{2}$, in which case Theorem 1.1 is a slight modification of Hardy's classical theorem.

The above theorem is part of our main result for the Jacobi transform, Theorem 3.5, which is a L^{p} version of Hardy's theorem for the Jacobi transform. We use a Cowling-Price approach to prove this Theorem. The $\alpha \beta>\frac{1}{4}$ and $\alpha \beta<\frac{1}{4}$ cases again follow as corollaries, see also [2] and [3] for different proofs of Hardy's uncertainty principle and its L^{p} versions for the Jacobi transform.

As an application of our results for the Jacobi transform, we consider the Fourier transform on the real hyperbolic spaces $\mathbf{X}=S O_{o}(m, n) / S O_{o}(m-1, n)$, $m, n \in \mathbf{N}$. We first give a (different) proof of Hardy's theorem in the Riemannian ($m=1$) case, using explicit expressions of the matrix coefficients in terms of modified Jacobi functions. We stress that a function satisfying the natural decay properties necessarily is spherical (bi- K-invariant), being a scalar multiple of the (spherical) Heat kernel.

We then show that a similar result does not hold in the pseudoRiemannian case. The K-types on \mathbf{X} can be identified with integers (r, s), where r is identically zero when $m=1$. It turns out that the natural decay properties only imply a restriction on the second of the K-type variables and we can construct an infinite, albeit countable (indexed by the K-types ($r, 0$)), family of linearly independent functions on \mathbf{X} satisfying them.

We note that Hardy's Uncertainty Principle and its L^{p}-versions (the $\alpha \beta \geq(>) \frac{1}{4}$ cases) still hold and that there are infinitely (uncountably) many linearly independent functions satisfying the natural decay conditions with $\alpha \beta<\frac{1}{4}$; this also follows as corollaries of the results for the Jacobi transform. Hardy's uncertainty principle for \mathbf{X} was also proved in [22], as a corollary of the similar result for the Heckman-Opdam transform (of which the Jacobi transform is a special case).

We end the paper by discussing the $S L(2, \mathbf{R}) \simeq S U(1,1) \simeq S O_{o}(2,2) /$ $S O_{o}(1,2)$ case in more detail.

2. Jacobi functions and the Jacobi transform

Let $a, b, \lambda \in \mathbf{C}$ and $0<t<\infty$. We consider the differential equation

$$
\begin{equation*}
\left(\Delta^{a, b}(t)\right)^{-1} \frac{d}{d t}\left(\Delta^{a, b}(t) \frac{d u(t)}{d t}\right)=-\left(\lambda^{2}+\rho^{2}\right) u(t) \tag{1}
\end{equation*}
$$

where $\rho:=a+b+1$ and $\Delta^{a, b}(t)=(2 \sinh (t))^{2 a+1}(2 \cosh (t))^{2 b+1}$. Using the substitution $x=-\sinh ^{2}(t)$, we can rewrite (1) as a hypergeometric differential equation with parameters $\frac{1}{2}(\rho+i \lambda), \frac{1}{2}(\rho-i \lambda)$ and $a+1$ (see [8, 2.1.1]). Let ${ }_{2} F_{1}$ denote the Gauß hypergeometric function. The Jacobi function (of order (a, b)),

$$
\varphi_{\lambda}^{a, b}(t):={ }_{2} F_{1}\left(\frac{1}{2}(\rho+i \lambda), \frac{1}{2}(\rho-i \lambda), a+1 ;-\sinh ^{2}(t)\right),
$$

is for $a \notin-\mathbf{N}$ the unique solution to (1) satisfying $\varphi_{\lambda}^{a, b}(0)=1$ and $\left.\frac{d}{d t}\right|_{t=0} \varphi_{\lambda}^{a, b}=0$. The Jacobi functions satisfy the following growth estimates:

Lemma 2.1. There exists for each $a, b \in \mathbf{C}$ a constant $C>0$ such that:

$$
\left|\Gamma(a+1)^{-1} \varphi_{\lambda}^{a, b}(t)\right| \leq C(1+|\lambda|)^{k}(1+t) e^{(|\Im \lambda|-\Re \rho) t}
$$

for all $t \geq 0$, where $k=0$ if $\Re a>-\frac{1}{2}$ and $k=\left[\frac{1}{2}-\Re a\right]$ if $\Re a \leq-\frac{1}{2}$.
Proof. See [15, Lemma 2.3].
Here [•] denotes integer part. We note that $\Gamma(a+1)^{-1} \varphi_{\lambda}^{a, b}(t)$ is an entire function in the variables a, b and $\lambda \in \mathbf{C}$ (also for $a \in-\mathbf{N}$). The Jacobi transform (of order (a, b)) is defined by:

$$
\hat{f}^{a, b}(\lambda):=\int_{\mathbf{R}_{+}} f(t) \varphi_{\lambda}^{a, b}(t) \Delta^{a, b}(t) d t
$$

for all even functions f and all complex numbers λ for which the right hand side is well-defined. The Paley-Wiener theorem for the Jacobi transform, [15, Theorem 3.4], states that the (normalised) application $f \mapsto \Gamma(a+1)^{-1} \hat{f}^{a, b}$ is a bijection from $C_{c}^{\infty}(\mathbf{R})_{\text {even }}$ onto $\mathscr{H}(\mathbf{C})_{\text {even }}$, the space of even entire rapidly decreasing functions of exponential type, for all $a, b \in \mathbf{C}$.

The Jacobi functions of the second kind:

$$
\phi_{\lambda}^{a, b}(t)=(2 \cosh (t))^{i \lambda-\rho}{ }_{2} F_{1}\left(\frac{1}{2}(\rho-i \lambda), \frac{1}{2}(a-b+1-i \lambda), 1-i \lambda ; \cosh ^{-2}(t)\right),
$$

defines for $\lambda \notin-i \mathbf{N}$ another solution of (1), characterised by the property that $\phi_{\lambda}^{a, b}(t) \sim e^{(i \lambda-\rho) t}$ for $t \rightarrow \infty$. We also remark that $\phi_{\lambda}^{a, b}$ is singular if, and only if, $\lambda \in-i \mathbf{N}$, with simple poles. Define the meromorphic Jacobi c-functions as:

$$
\begin{equation*}
c^{a, b}(\lambda):=2^{\rho-i \lambda} \frac{\Gamma(a+1) \Gamma(i \lambda)}{\Gamma\left(\frac{1}{2}(i \lambda+\rho)\right) \Gamma\left(\frac{1}{2}(i \lambda+a-b+1)\right)} \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\varphi_{\lambda}^{a, b}=c^{a, b}(\lambda) \phi_{\lambda}^{a, b}+c^{a, b}(-\lambda) \phi_{-\lambda}^{a, b}, \tag{3}
\end{equation*}
$$

as a meromorphic identity, see $[16,(2.15-18)]$.
Lemma 2.2. Let $0 \leq \eta<\frac{1}{2}$. There exists for $\Im \lambda \geq-\eta$ a converging series such that:

$$
\phi_{\lambda}^{a, b}(t)=e^{(i \lambda-\rho) t} \sum_{n=0}^{\infty} \Gamma_{n}^{a, b}(\lambda) e^{-n t}, \quad(t>0)
$$

with $\Gamma_{n}^{a, b}(\lambda) \in \mathbf{C}, \Gamma_{0}^{a, b} \equiv 1$. There furthermore exist positive constants C and d (depending on a and b) such that:

$$
\left|\Gamma_{n}^{a, b}(\lambda)\right|<C(1+n)^{d},
$$

for $\Im \lambda \geq-\eta$ and all $n \in \mathbf{N}$. Fix $\delta>0$. There exists a constant C_{δ} such that:

$$
\left|\phi_{\lambda}^{a, b}(t)\right| \leq C_{\delta} e^{-(\Im \lambda+\Re p) t},
$$

for $\Im \lambda \geq-\eta$ and all $t \in] \delta, \infty[$.
Proof. The lemma follows by extending [9, Lemma 7] to complex a, b. See also [5] for a more general set-up.

The polynomial estimates on $\left|c^{a, b}(-\lambda)^{-1}\right|$ away from the poles given by [15, Lemma 2.2] can also be extended to $\Im \lambda \geq-\eta$.

The inversion formula for the Jacobi transform can be written as (with $\mu \geq 0, \mu>-\Re(a \pm b+1))$:

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi} \int_{\mathbf{R}} \hat{f}^{a, b}(\lambda+i \mu) \phi_{\lambda+i \mu}^{a, b}(t) \frac{d \lambda}{c^{a, b}(-\lambda-i \mu)}, \quad(t>0), \tag{4}
\end{equation*}
$$

for $f \in C_{c}^{\infty}(\mathbf{R})_{\text {even }}$, see [16, Theorem 2.2]. Using residual calculus we can rewrite (4) as follows:

Theorem 2.3. Assume that $a \notin-\mathbf{N}$. Let $D_{a, b}$ denote the finite set of zeroes for $c^{a, b}(-\lambda)$ with $\Im \lambda \geq 0$. Let $\eta=0$ if $D_{a, b} \cap \mathbf{R}=\{\varnothing\}$ and otherwise choose $0<\eta<\frac{1}{2}$ such that $c^{a, b}(\pm \lambda) \neq 0$ for $\Im \lambda \in[-\eta, \eta] \backslash\{0\}$. Then:

$$
f(t)=\frac{1}{4 \pi} \int_{\mathbf{R}} \frac{\hat{f}^{a, b}(\lambda+i \eta) \varphi_{\lambda, i \eta}^{a, b}(t)}{c^{a, b}(-\lambda-i \eta) c^{a, b}(\lambda+i \eta)} d \lambda-\sum_{v \in D_{a, b}} i k_{v} \operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \varphi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda) c^{a, b}(\lambda)}\right\},
$$

for $f \in C_{c}^{\infty}(\mathbf{R})_{\text {even }}$, where $k_{v}:=1 / 2$ if $v \in i \mathbf{N} \cup \mathbf{R}$, and $k_{v}:=1$ otherwise.
Proof. The set $D_{a, b}$ is determined by the poles of the Γ-functions of (2). It follows that $D_{a, b}$ consists of those elements $v \neq 0$, with $\Im v \geq 0$, which are of the form: $v=i(\pm b-a-1-2 m), m \in \mathbf{N} \cup\{0\}$.

Let $v \in D_{a, b}$, that is, $c^{a, b}(-v)=0$. Assume first that $v \notin i \mathbf{N}$, then $c^{a, b}(v) \neq 0$ by the condition $a \notin-\mathbf{N}$, and:

$$
\begin{aligned}
\operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \phi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda)}\right\} & =\operatorname{Res}_{\lambda=v}\left\{\hat{f}^{a, b}(\lambda)\left(\frac{\phi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda)}+\frac{\phi_{-\lambda}^{a, b}(t)}{c^{a, b}(\lambda)}\right)\right\} \\
& =\operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \varphi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda) c^{a, b}(\lambda)}\right\},
\end{aligned}
$$

by (3), since $\phi_{-\lambda}^{a, b}(t) / c^{a, b}(\lambda)$ is regular at $\lambda=v$.

Now assume $v \in i \mathbf{N} \cap D_{a, b}$. Then v is a zero for $c^{a, b}(-\lambda)$ of order 1 ; a double pole in the denominator of $c^{a, b}(-\lambda)$ at $v \in i \mathbf{N}$ would imply $a \in-\mathbf{N}$, which we have excluded. The c-function $c^{a, b}(\lambda)$ is regular and non-zero at $\lambda=v$, as the poles arising from the Γ-functions in (2) cancel each other (we have excluded the cases with double poles in the denominator). We also note that $\phi_{\lambda}^{a, b}(t)$ is regular at $\lambda=v$.

Write $v=i(\pm b-a-1-2 m)$. Fix a and m, and define, for λ in some small neighbourhood of v, a continuous function $b(\lambda)$ by the condition: $\lambda=i(\pm b(\lambda)-a-1-2 m)$. It follows that $c^{a, b(\lambda)}(-\lambda)=0$ and $\varphi_{\lambda}^{a, b(\lambda)}(t)=$ $c^{a, b(\lambda)}(\lambda) \phi_{\lambda}^{a, b(\lambda)}(t)$, for $\lambda \neq v$, by (3), and $b(v)=b$. Since $\lim _{\lambda \rightarrow n} \frac{\Gamma((\lambda-n) / 2)}{\Gamma(\lambda)}=$ 2 for $n \in-\mathbf{N} \cup\{0\}$, it can be seen from (2), that $\lim _{\lambda \rightarrow v} c^{a, b(\lambda)}(\lambda)=$ $2 \lim _{\lambda \rightarrow v} c^{a, b}(\lambda)$, and thus, by continuity of the Jacobi functions in all the variables:

$$
\begin{aligned}
& \operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \phi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda)}\right\}=\frac{1}{2} \operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \varphi_{\lambda}^{a, b}(t)}{c^{a, b}(-\lambda) c^{a, b}(\lambda)}\right\}, \\
& \text { since } \quad 2 \phi_{v}^{a, b}(t)=2 \lim _{\lambda \rightarrow v} \phi_{\lambda}^{a, b(\lambda)}(t)=2 \lim _{\lambda \rightarrow v} \frac{\varphi_{\lambda}^{a, b(\lambda)}(t)}{c^{a, b(\lambda)}(\lambda)}=\lim _{\lambda \rightarrow v} \frac{\varphi_{\lambda}^{a, b(\lambda)}(t)}{c^{a, b}(\lambda)}= \\
& \frac{\varphi_{v}^{a, b}(t)}{c^{a, b}(v)} .
\end{aligned}
$$

Now choose η as in the theorem. Using the estimates from Lemma 2.2, polynomial estimates on $c^{a, b}(\lambda)^{-1}$ and since $\hat{f}^{a, b}$ satisfies the usual PaleyWiener growth estimates, we can shift the contour toward the real axis, and (4) becomes:

$$
\begin{aligned}
f(t)= & \frac{1}{2 \pi} \int_{\mathbf{R}} \hat{f}^{a, b}(\lambda+i \eta) \phi_{\lambda+i \eta}^{a, b}(t) \frac{d \lambda}{c^{a, b}(-\lambda-i \eta)}+\text { Residual terms } \\
= & \frac{1}{4 \pi} \int_{\mathbf{R}} \hat{f}^{a, b}(\lambda+i \eta) \phi_{\lambda+i \eta}^{a, b}(t) \frac{d \lambda}{c^{a, b}(-\lambda-i \eta)} \\
& +\frac{1}{4 \pi} \int_{\mathbf{R}} \hat{f}^{a, b}(-\lambda-i \eta) \phi_{-\lambda-i \eta}^{a, b}(t) \frac{d \lambda}{c^{a, b}(\lambda+i \eta)}+\text { Residual terms }
\end{aligned}
$$

where we have moved half the integral across the real axis if $D_{a, b} \cap \mathbf{R} \neq \varnothing$ and made a sign change $\lambda \mapsto-\lambda$ in the integral over the line $\Im \lambda=-\eta$. Since $\hat{f}^{a, b}$ is even, we get our inversion formula from the identity (3).

As a corollary we get injectivity of the Jacobi transform for nice functions:
Corollary 2.4. Let $a, b \in \mathbf{C}, a \notin-\mathbf{N}$. Assume that f is an even measurable function on \mathbf{R} satisfying $|f(t)| \leq C e^{-\left.\alpha|t|\right|^{2}}, t \in \mathbf{R}$, for positive constants C and α. Then $\hat{f}^{a, b}=0$ implies $f=0$ almost everywhere.

Proof. The very rapid decay implies that $f \in L^{1}\left(\mathbf{R}_{+},\left|\Delta^{a, b}(t)\right| d t\right) \cap$ $L^{2}\left(\mathbf{R}_{+},\left|\Delta^{a, b}(t)\right| d t\right)$ and that $\hat{f}^{a, b}(\lambda)$ defines an analytic function in $\lambda \in \mathbf{C}$ for all $a, b \in \mathbf{C}$. Using (the proof of) Theorem 2.3, we see that:

$$
\begin{aligned}
\int_{\mathbf{R}_{+}} f(t) h(t) \Delta^{a, b}(t) d t= & \frac{1}{2 \pi} \int_{\mathbf{R}_{+}} \int_{\mathbf{R}} f(t) \hat{h}^{a, b}(\lambda+i \mu) \phi_{\lambda+i \mu}^{a, b}(t) \frac{d \lambda \Delta^{a, b}(t) d t}{c^{a, b}(-\lambda-i \mu)} \\
= & \frac{1}{4 \pi} \int_{\mathbf{R}} \int_{\mathbf{R}_{+}} \frac{f(t) \varphi_{\lambda+i \eta}^{a, b}(t) \hat{g}^{a, b}(\lambda+i \eta)}{c^{a, b}(-\lambda-i \eta) c^{a, b}(\lambda+i \eta)} \Delta^{a, b}(t) d t d \lambda \\
& -\sum_{v \in D_{a, b}} i k_{v} \operatorname{Res}_{\lambda=v}\left\{\frac{\int_{\mathbf{R}_{+}} f(t) \varphi_{\lambda}^{a, b}(t) \hat{h}^{a, b}(\lambda) \Delta^{a, b}(t) d t}{c^{a, b}(-\lambda) c^{a, b}(\lambda)}\right\} \\
= & \frac{1}{4 \pi} \int_{\mathbf{R}} \frac{\hat{f}^{a, b}(\lambda+i \eta) \hat{h}^{a, b}(\lambda+i \eta)}{c^{a, b}(-\lambda-i \eta) c^{a, b}(\lambda+i \eta)} d \lambda \\
& -\sum_{v \in D_{a, b}} i k_{v} \operatorname{Res}_{\lambda=v}\left\{\frac{\hat{f}^{a, b}(\lambda) \hat{h}^{a, b}(\lambda)}{c^{a, b}(-\lambda) c^{a, b}(\lambda)}\right\}
\end{aligned}
$$

is identically zero for any $h \in C_{c}^{\infty}(\mathbf{R})_{\text {even }}$, and we conclude that f is zero almost everywhere.

Remark 2.5. Theorem 2.3 and its proof was communicated to us by H. Schlichtkrull. For $a>-1, b \in \mathbf{R}$ (which implies $\eta=0$), it is due to [10, Appendix 1] (a minor error has been corrected with the introduction of the constant k_{v}).

3. Hardy's theorem for the Jacobi transform

Our approach to Hardy's Theorem for the Jacobi transform is inspired by [17] and [19], which in turn are heavily inspired by the Cowling-Price approach. The following lemma from [6] is crucial:

Lemma 3.1. Let $1 \leq q<\infty$. Let $Q=\left\{\sigma e^{i \theta} \mid \sigma>0, \theta \in\left(0, \frac{\pi}{2}\right)\right\} . \quad$ Suppose that h is analytic on Q, continuous on the closure \bar{Q} of Q, and that h satisfies the following growth conditions:

$$
|h(\lambda)| \leq C e^{\gamma|\Re \lambda|^{2}}, \quad \lambda \in \bar{Q} \quad \text { and } \quad \int_{\mathbf{R}_{+}}|h(\lambda)|^{q} d \lambda \leq C^{q}<\infty
$$

for positive constants C and γ. Then

$$
\int_{\eta}^{\eta+1}\left|h\left(\sigma e^{i \theta}\right)\right| d \sigma \leq C \max \left\{e^{\gamma},(\eta+1)^{1 / q}\right\}
$$

for $\theta \in\left[0, \frac{\pi}{2}\right]$ and $\eta \in \mathbf{R}_{+}$.
Lemma 3.2. Let $1 \leq q<\infty$. Assume that h is an entire function on \mathbf{C} such that:
$|h(\lambda)| \leq C(1+|\Im \lambda|)^{M} e^{\gamma|\Re \lambda|^{2}}, \quad \lambda \in \mathbf{C} \quad$ and $\quad \int_{\mathbf{R}}\left((1+|\lambda|)^{-N}|h(\lambda)|\right)^{q} d \lambda<\infty$,
for positive constants C, γ, M and N. Then h is a polynomial with $\operatorname{deg} P \leq M$ and $\operatorname{deg} P<N-1$.

Proof. The bounds on the degrees are obvious as soon as we have proved that h is a polynomial. Define the function:

$$
H(\lambda):=\frac{h(\lambda)}{(i+\lambda)^{M+N}}, \quad \lambda \in \bar{Q}
$$

The function H satisfies the conditions of the previous lemma, whence:

$$
\int_{\eta}^{\eta+1}\left|H\left(\sigma e^{i \theta}\right)\right| d \sigma \leq C \max \left\{e^{\gamma},(\eta+1)^{1 / q}\right\}
$$

for $\theta \in\left[0, \frac{\pi}{2}\right]$ and $\eta \in \mathbf{R}_{+}$, where C here and in the following denotes some positive constant, and

$$
\int_{\eta}^{\eta+1}\left|h\left(\sigma e^{i \theta}\right)\right| d \sigma \leq C \max \left\{e^{\gamma},(\eta+1)^{1 / q}\right\}(\eta+2)^{M+N}
$$

for $\theta \in\left[0, \frac{\pi}{2}\right]$ and $\eta \in \mathbf{R}_{+}$. Applying the same procedure to $H_{1}(\lambda):=$ $\overline{h(\bar{\lambda})} /(i+\lambda)^{N}, H_{2}(\lambda):=\overline{h(-\bar{\lambda})} /(i+\lambda)^{N}$ and $H_{3}(\lambda):=h(-\lambda) /(i+\lambda)^{N}$ for $\lambda \in Q$, implies that:

$$
\int_{\eta}^{\eta+1}\left|h\left(\sigma e^{i \theta}\right)\right| d \sigma \leq C(\eta+2)^{M+N+1 / q}
$$

for $\theta \in[0,2 \pi]$ and large η. Cauchy's integral formula:

$$
h^{(n)}(0)=\frac{n!}{2 \pi} \int_{0}^{2 \pi} h\left(\sigma e^{i \theta}\right)\left(\sigma e^{i \theta}\right)^{-n} d \theta
$$

yields the estimate:

$$
\begin{aligned}
\left|h^{(n)}(0)\right| & \leq n!\int_{\eta}^{\eta+1} \int_{0}^{2 \pi}\left|h\left(\sigma e^{i \theta}\right)\right| \sigma^{-n} d \theta d \sigma \\
& \leq n!\eta^{-n} \int_{0}^{2 \pi} \int_{\eta}^{\eta+1}\left|h\left(\sigma e^{i \theta}\right)\right| d \sigma d \theta \\
& \leq C n!\eta^{-n}(\eta+2)^{M+N+1 / q} .
\end{aligned}
$$

We conclude that $h^{(n)}(0)=0$ for $n>M+N+1 / q$, that is, h is a polynomial.

In the following, we define: $L^{\infty}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right):=L^{\infty}(\mathbf{R})$, and otherwise define $L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right)$ for $0<p<\infty$ as usual.

Theorem 3.3. Let $a, b \in \mathbf{C}, a \notin-\mathbf{N}$, and $1 \leq p \leq \infty, 1 \leq q \leq \infty$. Assume that f is an even measurable function on \mathbf{R} satisfying:

$$
\left.(1+|\cdot|)^{-M} e^{(1-2 / p) \Re p|\cdot|} e^{\alpha|\cdot|}\right|^{2} f \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right)
$$

and

$$
(1+|\cdot|)^{-N} e^{\beta|\cdot|^{2}} \hat{f}^{a, b} \in L^{q}(\mathbf{R})
$$

for positive constants M, N, α, β such that $\alpha \beta=\frac{1}{4}$. Then $\hat{f}^{a, b}(\lambda)=P(\lambda) e^{-\beta \lambda^{2}}$ for some polynomial P, with $\operatorname{deg} P \leq \min \{k+M+1, N\}$, and $\operatorname{deg} P<N-1$ if $q<\infty$.

For $p=\infty$ and $q=\infty$, we can rewrite the above decay properties as
and

$$
|f(t)| \leq C(1+|t|)^{M} e^{-\Re|t|} e^{-\alpha|t|^{2}}, \quad t \in \mathbf{R}
$$

$$
\left|\hat{f}^{a, b}(\lambda)\right| \leq C(1+|\lambda|)^{N} e^{-\beta|\lambda|^{2}}, \quad \lambda \in \mathbf{R}
$$

for some positive constant C.
Proof. Let f be an even measurable function satisfying the above growth conditions. Then, as before, we have $f \in L^{1}\left(\mathbf{R}_{+},\left|\Delta^{a, b}(t)\right| d t\right) \cap$ $L^{2}\left(\mathbf{R}_{+},\left|\Delta^{a, b}(t)\right| d t\right)$ and $\hat{f}^{a, b}(\lambda)$ defines an analytic function in $\lambda \in \mathbf{C}$ for all $a, b \in \mathbf{C}$.

Let first $p<\infty$. Using Lemma 2.1, we get the following estimates on $\hat{f}^{a, b}(\lambda)$ (for different positive constants C):

$$
\begin{aligned}
\left|\hat{f}^{a, b}(\lambda)\right| & \leq C \int_{\mathbf{R}_{+}}|f(t)|(1+|\lambda|)^{k}(1+t) e^{(|\Im \lambda|-\Re p) t}\left|\Delta^{a, b}(t)\right| d t \\
& \leq C(1+|\lambda|)^{k} \int_{\mathbf{R}_{+}}|f(t)| e^{\alpha t^{2}} e^{(1-2 / p) \Re p t}(1+t) e^{|\Im \lambda| t} e^{-\alpha t^{2}} e^{(2 / p-2) \Re p t}\left|\Delta^{a, b}(t)\right| d t \\
& \leq C(1+|\lambda|)^{k}\left(\int_{\mathbf{R}_{+}}\left((1+t)^{M+1} e^{|\Im \lambda| t} e^{-\alpha t^{2}} e^{-\left(2 / p^{\prime}\right) \Re p t}\right)^{p^{\prime}}\left|\Delta^{a, b}(t)\right| d t\right)^{1 / p^{\prime}} \\
& \leq C(1+|\lambda|)^{k}\left(\int_{\mathbf{R}_{+}}(1+t)^{p^{\prime}(M+1)} e^{p^{\prime}|\Im \lambda| t} e^{-p^{\prime} \alpha t^{2}} d t\right)^{1 / p^{\prime}} \\
& =C(1+|\lambda|)^{k} e^{|\Im \lambda|^{2} / 4 \alpha}\left(\int_{\mathbf{R}_{+}}(1+t)^{p^{\prime}(M+1)} e^{-p^{\prime} \alpha(t-|\Im \lambda| / 2 \alpha)^{2}} d t\right)^{1 / p^{\prime}} \\
& =C(1+|\lambda|)^{k} e^{|\Im \lambda|^{2} / 4 \alpha}\left(\int_{-|\Im \lambda| / 2 \alpha}^{\infty}(1+t+|\Im \lambda| / 2 \alpha)^{p^{\prime}(M+1)} e^{-p^{\prime} \alpha t^{2}} d t\right)^{1 / p^{\prime}} \\
& \leq C(1+|\lambda|)^{k} e^{|\Im \lambda|^{2} / 4 \alpha}\left(\int_{\mathbf{R}}(1+|t|+|\Im \lambda| / 2 \alpha)^{p^{\prime}(M+1)} e^{-p^{\prime} \alpha t^{2}} d t\right)^{1 / p^{\prime}} \\
& \leq C(1+|\lambda|)^{k+M+1} e^{\left.|\Im \lambda|\right|^{2} / 4 \alpha}\left(\int_{\mathbf{R}}(1+|t|)^{p^{\prime}(M+1)} e^{-p^{\prime} \alpha t^{2}} d t\right)^{1 / p^{\prime}} \\
& \leq C(1+|\lambda|)^{k+M+1} e^{|\Im \lambda|^{2} / 4 \alpha},
\end{aligned}
$$

for $\lambda \in \mathbf{C}$, using translation invariance of $d t$, the Hölder inequality (with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$) and the inequality $|\Im \lambda| \leq|\lambda|$. For $p=\infty$, we have:

$$
\begin{aligned}
\left|\hat{f}^{a, b}(\lambda)\right| & \leq C \int_{\mathbf{R}_{+}} e^{-\alpha t^{2}} e^{-\Re p t}(1+|\lambda|)^{k}(1+t)^{M+1} e^{(|\Im \lambda|-\Re p) t}\left|\Delta^{a, b}(t)\right| d t \\
& \leq C(1+|\lambda|)^{k} e^{\left.|\Im \lambda|\right|^{2} / 4 \alpha} \int_{\mathbf{R}_{+}}(1+t)^{M+1} e^{-\alpha(t-|\Im \lambda| / 2 \alpha)^{2}} d t \\
& =C(1+|\lambda|)^{k} e^{\left.|\Im \lambda|\right|^{2} / 4 \alpha} \int_{-|\Im \lambda| / 2 \alpha}^{\infty}(1+t+|\Im \lambda| / 2 \alpha)^{M+1} e^{-\alpha t^{2}} d t \\
& \leq C(1+|\lambda|)^{k+M+1} e^{|\Im \lambda| / 4 \alpha},
\end{aligned}
$$

for $\lambda \in \mathbf{C}$.
Define $g(\lambda):=\hat{f}^{a, b}(\lambda) e^{\lambda^{2} / 4 \alpha}=\hat{f}^{a, b}(\lambda) e^{\beta \lambda^{2}}$. Then g is an entire function, and:

$$
|g(\lambda)| \leq C(1+|\lambda|)^{k+M+1} e^{\left.\beta| | \Re \lambda\right|^{2}} \leq C(1+|\Im \lambda|)^{k+M+1} e^{\beta^{\prime}|\Re \lambda|^{2}}
$$

for some $\beta^{\prime}>\beta$. Let $q<\infty$, then:

$$
\int_{\mathbf{R}}\left((1+|\lambda|)^{-N}|g(\lambda)|\right)^{q} d \lambda=\int_{\mathbf{R}}\left(\left.(1+|\lambda|)^{-N} e^{\beta|\lambda|}\right|^{2}\left|\hat{f}^{a, b}(\lambda)\right|\right)^{q} d \lambda<\infty,
$$

so Lemma 3.2 implies that g is a polynomial, with $\operatorname{deg} g \leq k+M+1$ and $\operatorname{deg} g<N-1$. Let now $q=\infty$, then:

$$
|g(\lambda)| \leq C(1+|\lambda|)^{N}, \quad \lambda \in \mathbf{R},
$$

which implies that g is a polynomial, with $\operatorname{deg} g \leq \min \{k+M+1, N\}$. We conclude the result since $\hat{f}^{a, b}(\lambda)=g(\lambda) e^{-\beta \lambda^{2}}$.

As a corollary of Theorem 3.3, we get a L^{p} version of Hardy's Uncertainty Theorem for the Jacobi transform, see also [3, Theorem 2.3] for a different approach:

Corollary 3.4. Let $a, b \in \mathbf{C}, a \notin-\mathbf{N}$, and $1 \leq p \leq \infty, \quad 1 \leq q<\infty$. Assume that f is an even measurable function on \mathbf{R} satisfies:

$$
e^{\alpha| |^{2}} e^{(1-2 / p) \Re p|\cdot|} f \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right) \quad \text { and }\left.\quad e^{\beta|\cdot|}\right|^{a} \hat{f}^{a, b} \in L^{q}(\mathbf{R}) \text {, }
$$

for positive constants α, β such that $\alpha \beta \geq \frac{1}{4}$. Then $f=0$ almost everywhere.
Proof. It suffices to prove the theorem for $\alpha \beta=\frac{1}{4}$. Put $M=N=1$, then the function f above satisfy the decay conditions in Theorem 3.3, whence $\hat{f}^{a, b}(\lambda)=0$ as $\operatorname{deg} P<0$, and $f=0$ by Corollary 2.4.

Let $\beta>0$. Inspired by the (definition of) the Heat kernel, we define the function $h_{\beta}^{a, b}$ as the inverse of $e^{-\beta\left(\lambda^{2}+\rho^{2}\right)}$, that is, by the inversion formula (4):

$$
h_{\beta}^{a, b}(t):=\frac{1}{2 \pi} \int_{\mathbf{R}} e^{\left.-\beta(\lambda+i \mu)^{2}+\rho^{2}\right)} \phi_{\lambda+i \mu}^{a, b}(t) \frac{d \lambda}{c^{a, b}(-\lambda-i \mu)}, \quad(t>0) .
$$

Using residual calculus as before, it can be seen that $h_{\beta}^{a, b}$ extends to an even C^{∞} function on \mathbf{R}. The function $h_{\beta}^{a, b}$ is for certain half integers a, b exactly the heat kernel (with index β) for some Riemannian symmetric space of rank 1 , see $[16, \S 3]$ for details. We finally sketch a proof of the very important fact that ${\widehat{h_{\beta}^{a, b}}}^{a, b}(\lambda)=e^{-\beta\left(\lambda^{2}+\rho^{2}\right)}(*)$:

The application $(a, b) \mapsto \hat{h}_{\beta}^{a, b}{ }^{a, b}(\lambda)$ is an entire function in a and b. Following $[15, \S 4]$ we can show that $(*)$ holds for $\Re a>-\frac{1}{2}$ and $|\Re b|<\Re(a+1)$ (writing the Jacobi transform as a composition of the "Abel" transform and the cosine transform). Then (*) holds for all a, b by holomorphy. Note that we also have used the growth estimates deduced below.

As for the Heat kernel, we can prove nice growth estimates for $h_{\beta}^{a, b}$: Fix $\delta>0$. Using Lemma 2.2 we get, for $t \geq \delta$:

$$
\begin{aligned}
h_{\beta}^{a, b}(t)= & \frac{1}{2 \pi} \sum_{n=0}^{\infty} e^{-n t+\beta \mu^{2}-\beta \rho^{2}-\mu t-\rho t} \int_{\mathbf{R}} e^{-\beta \lambda^{2}} e^{-2 i \beta \mu \lambda} e^{i \lambda t} \frac{\Gamma_{n}^{a, b}(\lambda+i \mu)}{c^{a, b}(-\lambda-i \mu)} d \lambda \\
= & \frac{1}{2 \pi} \sum_{n=0}^{\infty} e^{-n t+\beta \mu^{2}-\beta \rho^{2}-\mu t-\rho t-t^{2} / 4 \beta} \int_{\mathbf{R}} e^{-\beta(\lambda-i t / 2 \beta)^{2}} e^{-2 i \beta \mu \lambda} \frac{\Gamma_{n}^{a, b}(\lambda+i \mu)}{c^{a, b}(-\lambda-i \mu)} d \lambda \\
= & \frac{1}{2 \pi} \sum_{n=0}^{\infty} e^{-n t+\beta \mu^{2}-\beta \rho^{2}-\mu t-\rho t-t^{2} / 4 \beta} \\
& \times \int_{\mathbf{R}} e^{-\beta \lambda^{2}} e^{-2 i \beta \mu(\lambda+i t / 2 \beta)} \frac{\Gamma_{n}^{a, b}(\lambda+i \mu+i t / 2 \beta)}{c^{a, b}(-\lambda-i \mu-i t / 2 \beta)} d \lambda \\
= & \frac{1}{2 \pi} \sum_{n=0}^{\infty} e^{-n t+\beta \mu^{2}-\beta \rho^{2}-\rho t-t^{2} / 4 \beta} \int_{\mathbf{R}} e^{-\beta \lambda^{2}} e^{-2 i \beta \mu \lambda} \frac{\Gamma_{n}^{a, b}(\lambda+i \mu+i t / 2 \beta)}{c^{a, b}(-\lambda-i \mu-i t / 2 \beta)} d \lambda
\end{aligned}
$$

We have the following estimates of the c-function:

$$
\begin{aligned}
\left|c^{a, b}(-\lambda-i \mu-i t / 2 \beta)\right|^{-1} & \leq C(1+|\lambda+i \mu+i t / 2 \beta|)^{a+1 / 2} \\
& \leq C(1+|\lambda|)^{a+1 / 2}(1+t / 2 \beta)^{a+1 / 2}
\end{aligned}
$$

for some positive constant C. Together with the estimates of $\Gamma_{n}^{a, b}(\lambda)$ from Lemma 2.2, we thus have, for some positive constant C :

$$
\begin{equation*}
\left|h_{\beta}^{a, b}(t)\right| \leq C(1+t)^{a+1 / 2} e^{-\Re \rho t-t^{2} / 4 \beta} \tag{5}
\end{equation*}
$$

for $t \in \mathbf{R}_{+}$. We actually have the following sharp estimate for $a, 2 b \in \mathbf{N} \cup\{0\}$ and $a \geq b$:

$$
h_{\beta}^{a, b}(t) \asymp \beta^{-3 / 2}(1+t)(1+(1+t) / \beta)^{a-1 / 2} e^{-\rho t-\beta \rho^{2}-t^{2} / 4 \beta}
$$

for $t \geq 0$, see [4, Theorem 5.9].
Let $\alpha=1 / 4 \beta$. Then:

$$
\int_{\mathbf{R}}\left((1+t)^{-M} e^{(1-2 / p) \Re \rho t} e^{\alpha t^{2}} h_{\beta}^{a, b}(t)\right)^{p}\left|\Delta^{a, b}(t)\right| d t<\infty
$$

if $M>\Re a+\frac{1}{2}+\frac{1}{p}$. Putting all the above together, we can formulate Hardy's theorem for the Jacobi transform:

Theorem 3.5. Let $a, b \in \mathbf{C}, a \notin-\mathbf{N}$, and $1 \leq p \leq \infty, 1 \leq q \leq \infty$. Let $1<N \leq 2$ if $q<\infty$ and $0 \leq N<1$ if $q=\infty$. Assume that f is an even measurable function on \mathbf{R} satisfying:
and

$$
(1+|\cdot|)^{-M} e^{(1-2 / p) \Re p|\cdot|} e^{\alpha \cdot|\cdot|^{2}} f \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right)
$$

with M a positive constant such that $M>\Re a+\frac{1}{2}+\frac{1}{p}$, and $\alpha \beta=\frac{1}{4}$ for positive α, β. Then $f=\hat{f}^{a, b}(i \rho) h_{\beta}^{a, b}$.

Proof. Theorem 3.3 implies that $\hat{f}^{a, b}=$ const. $\hat{h}_{\beta}^{a, b}$, so $f=$ const. $h_{\beta}^{a, b}$ by Corollary 2.4. We finally note that $\hat{f}^{a, b}(\pm i \rho)=\int_{\mathbf{R}_{+}} f(t) \Delta^{a, b}(t) d t$.

For $p=\infty$, it is easily seen that the decay condition on f can be reformulated as:

$$
|f(t)| \leq C(1+|t|)^{M} e^{-\Re p|t|} e^{-\alpha|t|^{2}}, \quad t \in \mathbf{R}
$$

for a non-negative constant M such that $M \geq \Re a+\frac{1}{2}$, and Theorem 1.1 in the introduction follows with $N=0$.

For completeness, we finally consider the $\alpha \beta>\frac{1}{4}$ and $\alpha \beta<\frac{1}{4}$ cases:
Corollary 3.6. Let $1 \leq p \leq \infty, 1 \leq q \leq \infty$. Assume that f is an even measurable function on \mathbf{R} satisfying:

$$
e^{\alpha|\cdot|^{2}} f \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right) \quad \text { and } \quad e^{\beta|\cdot|^{2}} \hat{f}^{a, b} \in L^{q}(\mathbf{R})
$$

for positive constants α and β. If
(1) $\alpha \beta>\frac{1}{4}$, then $f=0$.
(2) $\alpha \beta<\frac{1}{4}$, then there are infinitely many linearly independent solutions.

Proof. Let $\alpha \beta>\frac{1}{4}$. Choose $0<\alpha^{\prime}<\alpha$ and $0<\beta^{\prime}<\beta$ such that $\alpha^{\prime} \beta^{\prime}=\frac{1}{4}$. Then f satisfy the conditions in Theorem 3.3 with α, β replaced with $\alpha^{\prime}, \beta^{\prime}$, whence $\hat{f}^{a, b}(\lambda)=P(\lambda) h_{\beta^{\prime}}(\lambda)$ for some polynomial P. But $P h_{\beta^{\prime}}$ does not satisfy $(1+|\cdot|)^{-N} e^{\beta|\cdot|^{2}} P h_{\beta^{\prime}} \in L^{q}(\mathbf{R})$, that is, $\hat{f}^{a, b}=0$ almost everywhere and $f=0$ by Corollary 2.4.

Let $\alpha \beta<\frac{1}{4}$. Choose any $\beta^{\prime}>\beta$ such that $\alpha \beta^{\prime}<\frac{1}{4}$ still holds. It follows that $h_{\beta^{\prime}}$ satisfies the above conditions.

The $p=q=\infty, \alpha \beta>\frac{1}{4}$ case is Hardy's Uncertainty Principle for the Jacobi transform, see also [2, Theorem 2.3] for a different proof.

4. The Fourier transform on real hyperbolic spaces

Let $m \geq 1$ and $n \geq 2$ be two integers and consider the bilinear form $\langle\cdot, \cdot\rangle$ on \mathbf{R}^{m+n} given by

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{m} y_{m}-x_{m+1} y_{m+1}-\cdots-x_{m+n} y_{m+n}, \quad x, y \in \mathbf{R}^{m+n}
$$

Let $G=S O_{o}(m, n)$ denote the connected group of $(m+n) \times(m+n)$ matrices preserving $\langle\cdot, \cdot\rangle$ and let $H=S O_{o}(m-1, n) \subset G$ denote the isotropy subgroup of the point $(1,0, \ldots, 0) \in \mathbf{R}^{m+n}$. Let $K=S O(m) \times S O(n) \subset G$ be the (maximal compact) subgroup of elements fixed by the classical Cartan involution on $G: \quad \theta(g)=\left(g^{*}\right)^{-1}$.

The space $\mathbf{X}:=G / H$ is a semisimple symmetric space (an involution τ of G fixing H is given by $\tau(g)=J g J$, where J is the diagonal matrix with entries $(1,-1, \ldots,-1)$). The map $g \mapsto g \cdot(1,0, \ldots, 0)$ induces an embedding of \mathbf{X} in \mathbf{R}^{m+n} as the hypersurface (with $x_{1}>0$ if $m=1$):

$$
\mathbf{X}=\left\{x \in \mathbf{R}^{m+n} \mid\langle x, x\rangle=1\right\} .
$$

Let $\mathbf{Y}:=\mathbf{S}^{m-1} \times \mathbf{S}^{n-1}$. We introduce spherical coordinates on \mathbf{X} as:

$$
x(t, y)=(v \cosh (t), w \sinh (t)), \quad t \in \mathbf{R}_{+}, y=(v, w) \in \mathbf{Y}
$$

The map is injective, continuous and maps onto a dense subset of \mathbf{X}. The (K invariant) metric distance from $x \in \mathbf{X}$ to the origin is given by $|x|=|x(t, y)|=$ $|t|$.

The unique (up to a constant) G-invariant measure on \mathbf{X} is in spherical coordinates given by:

$$
\int_{\mathbf{X}} f(x) d x=\int_{\mathbf{R}_{+} \times \mathbf{Y}} f(x(t, y)) J(t) d t d y
$$

see [12, Part II, Example 2.3], where $J(t)=\cosh ^{m-1}(t) \sinh ^{n-1}(t)$ is the Jacobian, $d t$ the Lebesgue measure on \mathbf{R} and $d y$ an invariant measure on \mathbf{Y}, normalised such that $\int_{\mathbf{Y}} 1 d y=1$.

The action of $S O(m)$ on $C^{\infty}\left(\mathbf{S}^{m-1}\right)$ decomposes into irreducible representations \mathscr{H}^{r} of spherical harmonics of degree $|r|$, see [13, Introduction], characterised as the eigenfunctions of the Laplace-Beltrami operator Δ_{m} on \mathbf{S}^{m-1} with eigenvalue $-r(r+m-2)$. Here $r=0$ if $m=1, r \in \mathbf{Z}$ for $m=2$ and $r \in \mathbf{N} \cup\{0\}$ for $m>2$.

Let $\mathscr{H}^{r, s}=\mathscr{H}^{r} \otimes \mathscr{H}^{s}$ and denote the representation of K on $\mathscr{H}^{r, s}$ by $\delta_{r, s}$. Let $d_{r, s}=\operatorname{dim} \mathscr{H}^{r, s}$ and $\chi_{r, s}$ denote the dimension and the character of $\delta_{r, s}$. A function in $L^{2}(\mathbf{X})$ is said to be of K-type (r, s) if its translations under the left regular action of K span a vector space which is equivalent to $\mathscr{H}^{r, s}$ as a K-module. We write $L^{2}(\mathbf{X})^{r, s}$ for the collection of functions of K-type (r, s). The projection $\mathbf{P}^{r, s}$ of $L^{2}(\mathbf{X})$ onto $L^{2}(\mathbf{X})^{r, s}$ is given by:

$$
\mathbf{P}^{r, s} f(x)=d_{r, s} \int_{K} \chi_{r, s}\left(k^{-1}\right) f(k \cdot x) d k, \quad f \in L^{2}(\mathbf{X})
$$

for $x \in \mathbf{X}$, see [13, Chapter V, §3] and [14, Chapter III, §5]. There are similar definitions and results for functions in $L^{2}(\mathbf{Y})$ and also for functions in $C^{\infty}(\mathbf{X})$ and $C^{\infty}(\mathbf{Y})$.

The algebra of left- G-invariant differential operators on \mathbf{X} is generated by the Laplace-Beltrami operator $\Delta_{\mathbf{X}}$, see [12, Part II, Example 4.1], which in spherical coordinates is given by:

$$
\Delta_{\mathbf{X}} f=\frac{1}{J(t)} \frac{\partial}{\partial t}\left(J(t) \frac{\partial f}{\partial t}\right)-\frac{1}{\cosh ^{2}(t)} \Delta_{m} f+\frac{1}{\sinh ^{2}(t)} \Delta_{n} f, \quad f \in C^{\infty}(\mathbf{X})
$$

see [20, p. 455]. It reduces to a differential operator $\Delta_{\mathbf{X}}^{r, s}$ in the t-variable when acting on functions of K-type (r, s) :
$\Delta_{\mathbf{X}}^{r, s} f=\Delta_{\mathbf{X}} f=\frac{1}{J(t)} \frac{\partial}{\partial t}\left(J(t) \frac{\partial f}{\partial t}\right)+\frac{r(r+m-2)}{\cosh ^{2}(t)} f-\frac{s(s+n-2)}{\sinh ^{2}(t)} f, \quad f \in C^{\infty}(\mathbf{X})^{r, s}$.
Consider the differential equation:

$$
\begin{equation*}
\Delta_{\mathbf{x}} f=\Delta_{\mathbf{X}}^{r, s} f=\left(\lambda^{2}-\rho^{2}\right) f, \quad f \in C^{\infty}(\mathbf{X})^{r, s} \tag{6}
\end{equation*}
$$

where $\rho=\frac{1}{2}(m+n-2)$. Altering the proof of [14, Chapter I, Proposition 2.7] to fit our setup, we see that we can write any function $f \in C^{\infty}(\mathbf{X})^{r, s}$ in spherical coordinates as:

$$
\begin{equation*}
f(x(t, y))=\sum_{i} f_{i}(t) \phi_{i}^{r, s}(y) \tag{7}
\end{equation*}
$$

where $\left\{\phi_{i}^{r, s}\right\}=\left\{\phi^{r} \otimes \phi^{s}\right\}_{i}$ is a (finite) basis for $\mathscr{H}^{r, s}$, and f_{i} is a function of the form $f_{i}(t)=t^{|s|} f_{i, o}(t)$, with $f_{i, o}$ even. Let $x=-\sinh ^{2}(t)$ and $g=$ $(1-x)^{-|r| / 2}(-x)^{-|s| / 2} f_{i}$. Then g is a solution to the hypergeometric differential equation with parameters $1 / 2(\lambda+\rho+|r|+|s|), 1 / 2(-\lambda+\rho+|r|+|s|)$ and $q / 2+|s|$. Let $\Phi_{o}^{r, s}(\lambda, \cdot)$ denote the regular (for generic λ) solution to this hypergeometric differential equation satisfying the asymptotic condition $\Phi_{o}^{r, s}(\lambda, t) \sim e^{(\lambda-\rho) t}$ for $t \rightarrow \infty$ (for $\Re \lambda>0$ and when defined), then

$$
\begin{aligned}
\Phi_{o}^{r, s}(\lambda, t)= & 2^{\lambda-\rho-|r|-|s|} \cosh ^{|r|}(t) \sinh ^{|s|}(t) \\
& \times \frac{\Gamma\left(\frac{1}{2}(\lambda+\rho+|r|+|s|)\right) \Gamma\left(\frac{1}{2}(\lambda-\rho+n-|r|+|s|)\right)}{\Gamma(\lambda) \Gamma\left(\frac{n}{2}+|s|\right)} \\
& \times{ }_{2} F_{1}\left(\frac{1}{2}(\lambda+\rho+|r|+|s|), \frac{1}{2}(-\lambda+\rho+|r|+|s|) ; \frac{n}{2}+|s| ;-\sinh ^{2}(t)\right),
\end{aligned}
$$

for $\Re \lambda>0$, see [1, pp. 72 and 76]. We also note that the function $x(t, y) \mapsto$ $\Phi_{o}^{r, s}(\lambda, t) \phi(y)$ extends to a solution of (6) on \mathbf{X} for any $\phi \in \mathscr{H}^{r, s}$.

Let $\varepsilon \in\{0,1\}$ and define $C_{\varepsilon}^{\infty}(\mathbf{Y}):=\left\{\phi \in C^{\infty}(\mathbf{Y}) \mid \phi(-y)=(-1)^{\varepsilon} \phi(y)\right\}$. The Poisson transform, $F_{\varepsilon, \lambda}: C_{\varepsilon}^{\infty}(\mathbf{Y}) \rightarrow C^{\infty}(\mathbf{X})$, is defined as:

$$
\begin{equation*}
F_{\varepsilon, \lambda} \phi(x)=\int_{\mathbf{Y}}|\langle x, y\rangle|^{(-\lambda-\rho)} \operatorname{sign}^{\varepsilon}\langle x, y\rangle \phi(y) d y, \quad \phi \in C_{\varepsilon}^{\infty}(\mathbf{Y}) \tag{8}
\end{equation*}
$$

when $-\Re \lambda \geq \rho$.
Lemma 4.1. Let $\phi \in C_{\varepsilon}^{\infty}(\mathbf{Y})$. The (meromorphic extension of the) function $F_{\varepsilon, \lambda} \phi$ is an eigenfunction of the Laplace-Beltrami operator $\Delta_{\mathbf{X}}$ with eigenvalue $\lambda^{2}-\rho^{2}$ (when defined), i.e.,:

$$
\Delta_{\mathbf{X}} F_{\varepsilon, \lambda} \phi=\left(\lambda^{2}-\rho^{2}\right) F_{\varepsilon, \lambda} \phi
$$

The asymptotic behaviour of $F_{\varepsilon, \lambda} \phi$ for $t \rightarrow \infty$ is given by (when defined):

$$
F_{\varepsilon, \lambda} \phi(x(t, y)) \sim e^{(\lambda-\rho) t} c(\varepsilon, \lambda) \phi(y)
$$

for $\Re \lambda>0$, where $c(\varepsilon, \lambda)$ is the so-called c-function for \mathbf{X} given by:

$$
c(\varepsilon, \lambda)=\frac{2^{2 \rho-1} \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}{\pi} \frac{\Gamma(\lambda)}{\Gamma(\lambda+\rho)} \begin{cases}\tan \left(\frac{\pi}{2}(\lambda+\rho+\varepsilon)\right) & \text { if } m \text { is even } \tag{9}\\ 1 & \text { if } m \text { is odd }\end{cases}
$$

Proof. The function $F_{\varepsilon, \lambda} \phi$ extends meromorphically to \mathbf{C} by distribution theory, see [20, Lemma 5(a)]. Differentiating under the integral sign for $\Re(\lambda+\rho)$ very negative and then using meromorphic continuation shows that it is an eigenfunction of the Laplace-Beltrami operator $\Delta_{\mathbf{X}}$ with eigenvalue $\lambda^{2}-\rho^{2}$. The asymptotic behaviour is computed in [20, Appendix A], see also [20, Lemma 4 and Lemma 5].

Let $\phi \in \mathscr{H}^{r, s}$. Using Schur's Lemma and properties of the Poisson transform, see $[1, \mathrm{pp} .74-76]$ for details, it can be seen that (with $\varepsilon \equiv r+s \bmod 2)$:

$$
\begin{equation*}
F_{\varepsilon, \lambda} \phi(x(t, y))=c(\varepsilon, \lambda) \Phi_{o}^{r, s}(\lambda, t) \phi(y)=\Phi^{r, s}(\lambda, t) \phi(y), \quad((t, y) \in \mathbf{R} \times \mathbf{Y}) \tag{10}
\end{equation*}
$$

where $\Phi^{r, s}(\lambda, \cdot):=c(\varepsilon, \lambda) \Phi_{o}^{r, s}(\lambda, \cdot)$.
We define the Fourier transform $\mathscr{F} f$ of any function $f \in C_{c}^{\infty}(\mathbf{X})$ as:

$$
\begin{equation*}
\mathscr{F} f(\varepsilon, \lambda, y):=\int_{\mathbf{X}}|\langle x, y\rangle|^{(\lambda-\rho)} \operatorname{sign}^{\varepsilon}\langle x, y\rangle f(x) d x \tag{11}
\end{equation*}
$$

for $\varepsilon \in\{0,1\}, \Re \lambda \geq \rho$ and $y \in \mathbf{Y}$. Let now $f \in C_{c}^{\infty}(\mathbf{X})^{r, s}$ for some fixed K type (r, s). Using spherical coordinates and (10), we can (re)write the Fourier transform of f as:

$$
\mathscr{F} f(\varepsilon, \lambda, y)=\int_{\mathbf{R}_{+}} \Phi^{r, s}(-\lambda, t) f(x(t, y)) J(t) d t .
$$

We see that $\mathscr{F} f(\varepsilon, \lambda, y)$ extends to a meromorphic function in the λ-variable, with zeros and poles completely determined by the above expressions of $\Phi_{o}^{r, s}$ and (9).

We first consider the Riemannian case, that is $m=1(\Rightarrow r=0)$. We note that $\langle x, y\rangle>0$ for all $x \in \mathbf{X}, y \in \mathbf{Y}$. The Fourier transform (11) is thus the Helgason-Fourier transform on $S O_{o}(1, n) / S O_{o}(n)$, see [14, Chapter 3], and we can formulate Hardy's theorem in this case as follows:

Theorem 4.2. Let $1 \leq p \leq \infty, 1 \leq q \leq \infty$. Let $1<N \leq 2$ if $q<\infty$ and $0 \leq N<1$ if $q=\infty$. Assume that f is a measurable function on $\mathbf{X}=$ $S O_{o}(1, n) / S O_{o}(n)$ satisfying:

$$
(1+|\cdot|)^{-M} e^{(1-2 / p) p|\cdot|} e^{\alpha|\cdot|} f \in L^{p}(\mathbf{X}) \quad \text { and } \quad(1+|\cdot|)^{-N} e^{\beta|\cdot|} \mathscr{F} f \in L^{q}(i \mathbf{R} \times \mathbf{Y}) \text {, }
$$

for positive constants M, α, β, with $M>\rho+\frac{1}{p}$, and $\alpha \beta=\frac{1}{4}$. Then f is a constant multiple of the Heat kernel $h_{\beta}=h_{\beta}^{n / 2-1,-1 / 2}$ on \mathbf{X}, i.e., f is in particular a spherical (bi-K-invariant) function.

Proof. Let f be a measurable function satisfying the above growth conditions, whence as before $f \in L^{1}(\mathbf{X}) \cap L^{2}(\mathbf{X})$, and we see that the Fourier transform $\mathscr{\mathscr { F } f}$ is well-defined.

Define $\tilde{\rho}=\rho+|s|, a=|s|+\frac{n}{2}-1$ and $b=-\frac{1}{2}$ (i.e., $\tilde{\rho}=a+b+1$), then (modulo constants):

$$
\Phi^{0, s}(\lambda, t)=\sinh ^{|s|}(t) \frac{\Gamma(\lambda+\rho+|s|)}{\Gamma(\lambda+\rho)} \varphi_{-i \lambda}^{a, b}(t)=\sinh ^{|s|}(t) P_{s}(\lambda) \varphi_{-i \lambda}^{a, b}(t),
$$

where $P_{s}(\lambda):=(\lambda+\rho)(\lambda+\rho+1) \ldots(\lambda+\rho+|s|-1)$. Let $f_{0, s}(t, y):=$ $\mathbf{P}^{0, s} f(x(t, y)) / \sinh ^{|s|}(t)$. By (7) and continuity of the projection $\mathbf{P}^{0, s}$ we see that $f_{0, s}$ is a measurable function on $\mathbf{R} \times \mathbf{Y}$, even in the t-variable. With these identifications, we get:

$$
\hat{f}_{0, s}^{a, b}(i \lambda, y):=\int_{\mathbf{R}_{+}} f_{0, s}(t, y) \varphi_{i \lambda}^{a, b}(t) \Delta^{a, b}(t) d t=P_{s}(\lambda)^{-1} \mathscr{F} \mathbf{P}^{0, s} f(\lambda, y) .
$$

We note that $\hat{f}_{r, s}^{a, b}(\lambda, y)$ is well-defined for all $\lambda \in \mathbf{C}$. Using spherical coordinates and the definition of $\mathbf{P}^{0, s}$, we get the following estimates of $f_{0, s}$ and $\hat{f}_{0, s}^{a, b}$:

$$
\left.(1+|\cdot|)^{-M} e^{(1-2 / p p \tilde{p}|\cdot|} e^{\alpha \cdot \mid}\right|^{2} f_{0, s}(\cdot, y) \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right)
$$

and

$$
\left|P_{s}(i \cdot)\right|(1+|\cdot|)^{-N} e^{\beta|\cdot|} \hat{f}_{0, s}^{a, b}(\cdot, y) \in L^{q}(\mathbf{R}),
$$

for $y \in \mathbf{Y}$. It follows from (the proof of) Theorem 3.3 (and Lemma 3.2), that $\hat{f}_{0,0}^{a, b}(\lambda, y)=$ const. $e^{-\beta \lambda^{2}}$ and that $\hat{f}_{0, s}^{a, b}=0$ for $s \neq 0$. We conclude that $\mathscr{F} f=$ $\mathscr{F} \mathbf{P}^{0,0} f$ and thus $f=\mathbf{P}^{0,0} f$, that is, f is a spherical (bi- K-invariant) function and $\mathscr{F} f=$ const. $\mathscr{F} h_{\beta}$, implying that $f=$ const. h_{β}.

The above theorem has for general Riemannian symmetric spaces of the non-compact type been proved in [19] for the $p=q=\infty$ case and in [18] for the $p, q<\infty$ case. Note however that our proof is different, in particular the conclusion that the contribution from the K-types $(0, s)$ is zero for $s \neq 0$. Let us sketch their argument for this: It follows from (8) and (10) that $\left|\Phi^{0, s}(\lambda, t)\right| \leq \Phi^{0,0}(\Re \lambda, t)$, for all s, whence also $\left|\mathscr{F} \mathbf{P}^{0, s} f(\lambda, y)\right| \leq$ $\left|\mathscr{F} \mathbf{P}^{0,0} f(\Re \lambda, y)\right|$. Assume that f and $\mathscr{F} f$ satisfy the natural decay conditions. Arguing as in the proof of theorem 3.3, it follows that $\mathscr{F} \mathbf{P}^{0, s} f(\lambda, y)=$ $\phi^{0, s}(y) e^{-\beta \lambda^{2}}$, for some function $\phi^{0, s}$ on Y. But $\Phi^{0, s}(-\rho, t)=0$ since $F_{-\rho} \phi(x)=$ $\int_{\mathbf{Y}} \phi(y) d y=0$ for $\phi \in \mathscr{H}^{0, s}, s \neq 0$, and we conclude that $\mathscr{F} \mathbf{P}^{0, s} f=0$ for $s \neq 0$.

We now turn to the pseudo-Riemannian case, that is, $m>1$. It is in this case more convenient to consider a normalised Fourier transform: $\mathscr{F}_{o} f(\varepsilon, \lambda, y):=c(\varepsilon,-\lambda)^{-1} \mathscr{F} f(\varepsilon, \lambda, y)$; in particular:

$$
\mathscr{F}_{o} f(\varepsilon, \lambda, y)=\int_{\mathbf{R}_{+}} \Phi_{o}^{r, s}(-\lambda, t) f(x(t, y)) J(t) d t
$$

for $f \in C_{c}^{\infty}(\mathbf{X})^{r, s}$.
It is remarkable that the decay conditions in the Riemannian case force the function f to be spherical (bi- K-invariant). More so, because this is not the case in the pseudo-Riemannian case. In fact, we will show that there are infinitely (albeit countably) many linearly independent non-zero functions f on \mathbf{X} satisfying the natural decay conditions with $\alpha \beta=\frac{1}{4}$, namely the pseudo-Heat kernels defined below: Let $a=\frac{n}{2}-1$ and $b=|r|+\frac{m}{2}-1$ and define the pseudo-Heat kernel $h_{\beta}^{r, 0}(\phi)$ with index $(r, 0)$ on \mathbf{X} by:

$$
h_{\beta}^{r, 0}(\phi)(x(t, y)):=\cosh ^{|r|}(t) h_{\beta}^{a, b}(t) \phi(y), \quad\left((t, y) \in \mathbf{R}_{+} \times \mathbf{Y}\right)
$$

for any $\phi \in \mathscr{H}^{r, 0}$. It can be seen that $h_{\beta}^{r, 0}(\phi)$ defines a function in $C^{\infty}(\mathbf{X})^{r, 0}$, see $[1$, p. 71] , and (5) yields the following estimates:

$$
\begin{equation*}
\left|h_{\beta}^{r, 0}(\phi)(x(t, y))\right| \leq C(1+t)^{(1 / 2)(n-1)} e^{-\rho t-t^{2} / 4 \beta}|\phi(y)| \tag{12}
\end{equation*}
$$

for all $(t, y) \in \mathbf{R}_{+} \times \mathbf{Y}$, where $C>0$ is a positive constant.
Theorem 4.3. Let $m \geq 2$. Let $1 \leq p \leq \infty, 1 \leq q \leq \infty . \quad$ Let $\frac{1}{2}(n+1)<$ $N \leq \frac{1}{2}(n+3)$ if $q<\infty$ and $\frac{1}{2}(n-1) \leq N<\frac{1}{2}(n+1)$ if $q=\infty$. Assume that f is a measurable function on \mathbf{X} satisfying:
and

$$
(1+|\cdot|)^{-M} e^{(1-2 / p) \rho|\cdot|} e^{\alpha \cdot \mid \cdot} f \in L^{p}(\mathbf{X})
$$

$$
(1+|\cdot|)^{-N} e^{\beta|\cdot|^{2}} \mathscr{F}_{o} f \in L^{q}(\{0,1\} \times i \mathbf{R} \times \mathbf{Y})
$$

for positive constants M, α, β, with $M>\frac{1}{2}(n-1)+\frac{1}{p}$, and $\alpha \beta=\frac{1}{4}$. Then $f=$ $\sum_{r} \mathbf{P}^{r, 0} f$. The pseudo-Heat kernels $h_{\beta}^{r, 0}(\phi)$ satisfy the above decay conditions for any r and any $\phi \in \mathscr{H}^{r, 0}$.

Proof. Let f be a measurable function satisfying the above growth conditions, then $f \in L^{1}(\mathbf{X}) \cap L^{2}(\mathbf{X})$ and the Fourier transform $\mathscr{F} f$ is welldefined.

Define $\quad \tilde{\rho}=\rho+|r|+|s|, \quad a=|s|+\frac{n}{2}-1 \quad$ and $\quad b=|r|+\frac{m}{2}-1 \quad$ (i.e., $\tilde{\rho}=a+b+1$), then:
$\Phi_{o}^{r, s}(\lambda, t)=2^{\lambda-\tilde{\rho}} \cosh ^{|r|}(t) \sinh ^{|s|}(t) \frac{\Gamma\left(\frac{1}{2}(\lambda+\tilde{\rho})\right) \Gamma\left(\frac{1}{2}(\lambda-\tilde{\rho}+n+2|s|)\right)}{\Gamma\left(\frac{n}{2}+|s|\right) \Gamma(\lambda)} \varphi_{-i \lambda}^{a, b}(t)$.
Let $f_{r, s}(t, y):=\mathbf{P}^{r, s} f(x(t, y)) / \cosh ^{|r|}(t) \sinh ^{|s|}(t)$. By (7) and continuity of the projection $\mathbf{P}^{r, s}$, we see that $f_{r, s}$ is a measurable function on $\mathbf{R} \times \mathbf{Y}$, even in the t-variable. Let also

$$
Q_{r, s}(\lambda):=2^{\lambda-3 \tilde{\rho}} \frac{\Gamma\left(\frac{1}{2}(\lambda+\tilde{\rho})\right) \Gamma\left(\frac{1}{2}(\lambda-\tilde{\rho}+n+2|s|)\right)}{\Gamma\left(\frac{n}{2}+|s|\right) \Gamma(\lambda)}
$$

We note that $\left|Q_{r, s}(i \lambda)\right| \sim$ const. $|\lambda|^{|s|+(1 / 2)(n-1)}$ for $|\lambda| \rightarrow \infty$, see [8, 1.18(6)]. From the above we can write:

$$
\hat{f}_{r, s}^{a, b}(i \lambda, y):=\int_{\mathbf{R}_{+}} f_{r, s}(t, y) \varphi_{i \lambda}^{a, b}(t) \Delta^{a, b}(t) d t=Q_{r, s}(\lambda)^{-1} \mathscr{F}_{o} \mathbf{P}^{r, s} f(\varepsilon, \lambda, y)
$$

We note that $\hat{f}_{r, s}^{a, b}(\lambda, y)$ is well-defined for all $\lambda \in \mathbf{C}$. Using spherical coordinates and the definition of $\mathbf{P}^{r, s}$, we get the following estimates of $f_{r, s}$ and $\hat{f}_{r, s}^{a, b}$:

$$
\left.(1+|\cdot|)^{-M} e^{(1-2 / p) \tilde{\rho}|\cdot|} e^{\alpha|\cdot|}\right|^{2} f_{r, s}(\cdot, y) \in L^{p}\left(\mathbf{R},\left|\Delta^{a, b}(t)\right| d t\right)
$$

and

$$
\left|Q_{r, s}(i \cdot)\right|(1+|\cdot|)^{-N} e^{\beta|\cdot|^{2}} \hat{f}_{r, s}^{a, b}(\cdot, y) \in L^{q}(\mathbf{R})
$$

for $y \in \mathbf{Y}$. It follows from (the proof of) Theorem 3.3 (and Lemma 3.2), that $\hat{f}_{r, 0}^{a, b}(\lambda, y)=$ const. $e^{-\beta \lambda^{2}}$ for $y \in \mathbf{Y}$, and that $\hat{f}_{r, s}^{a, b}=0$ for $s \neq 0$.

We finally note that $\mathscr{F}_{o} h_{\beta}^{r, 0}(\phi)(\varepsilon, \lambda, y)=Q_{r, 0}(\lambda) e^{-\beta\left(-\lambda^{2}+(\rho+|r|)^{2}\right)} \phi(y)$, which together with the estimates (12) show that the pseudo-Heat kernels $h_{\beta}^{r, 0}(\phi)$ satisfy the decay conditions.

In other words, we cannot generalise the main part of Hardy's theorem, the $\alpha \beta=\frac{1}{4}$ case, to pseudo-Riemannian symmetric spaces: there is not a unique (modulo constants) function satisfying the natural decay conditions-unless we fix the index r in the K-types $(r, 0)$.

For completeness, we state Hardy's Uncertainty Principle, and its L^{p} versions, for the Fourier transform on \mathbf{X}, see also [2, Theorem 3.2] and [3, Theorem 3.2] for other proofs.

Corollary 4.4. Let $1 \leq p \leq \infty, 1 \leq q \leq \infty$. Assume that f is a measurable function on \mathbf{X} satisfying:

$$
e^{(1-2 / p) \rho|\cdot|} e^{\alpha|\cdot|^{2}} f \in L^{p}(\mathbf{X}) \quad \text { and } \quad e^{\beta|\cdot|^{2}} \mathscr{F}_{o} f \in L^{q}(\{0,1\} \times i \mathbf{R} \times \mathbf{Y}),
$$

for positive constants α and β. If
(1) $\alpha \beta>\frac{1}{4}$, then $f=0$.
(2) $\alpha \beta=\frac{1}{4}$ and $q<\infty$, then $f=0$.
(3) $\alpha \beta<\frac{1}{4}$, then there are infinitely many linearly independent solutions.

Proof. Follows as above from the similar results (or their proofs) for the Jacobi transform.

5. Remarks and further results

It is well-known that $S O_{o}(2,2) / S O_{o}(1,2) \simeq S L(2, \mathbf{R}) \simeq S U(1,1)$. We established in [1, Chapter 5] a link between the Fourier transform on $S O_{o}(2,2) / S O_{o}(1,2)$ and the group Fourier transform on $S L(2, \mathbf{R})$, and this allows us to transfer the results in $\S 4$ to $S L(2, \mathbf{R})$. A function f of K-type $(r, 0)$ on $S O_{o}(2,2) / S O_{o}(1,2)$ corresponds to a spherical function f of type (r, r) on $S L(2, \mathbf{R})$, i.e., $f\left(k_{1} x k_{2}\right)=e_{r}\left(k_{1}\right) f(x) e_{r}\left(k_{2}\right)$, for all $k_{1}, k_{2} \in S O(2), x \in$ $S L(2, \mathbf{R})$, where the e_{r} 's are the usual characters on $S O(2)$. So, in the $S L(2, \mathbf{R})$ picture, the condition $s=0$ implies that a function f on $S L(2, \mathbf{R})$ has the same K-dependence from the left and from the right.

Let us consider the group $G=S U(1,1)$ in more detail. We use $[16, \S 4.3]$ as reference. Let $G=K A N$ denote an Iwasawa decomposition of G, where in particular:

$$
\begin{aligned}
& K=\left\{\left.u_{\theta}=\left(\begin{array}{cc}
e^{i \theta / 2} & 0 \\
0 & e^{-i \theta / 2}
\end{array}\right) \right\rvert\, \theta \in[0,4 \pi[\} \quad \text { and }\right. \\
& A=\left\{\left.a_{t}=\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \\
\sinh (t) & \cosh (t)
\end{array}\right) \right\rvert\, t \in \mathbf{R}\right\}
\end{aligned}
$$

Let also $M=\{ \pm I\}$. The irreducible representations $\hat{K} \simeq \mathbf{Z} / 2$ of K are given by: $\delta_{r}\left(u_{\theta}\right)=e^{i r \theta}$, and $\hat{M} \simeq\left\{0, \frac{1}{2}\right\}$ in the same identification. The principal series representation $\left(\pi_{\xi, \lambda}, \mathscr{H}_{\xi, \lambda}\right), \lambda \in \mathbf{C}, \quad \xi \in\left\{0, \frac{1}{2}\right\}$, of G is induced by the representation $m a_{t} n \mapsto e^{-i \lambda t} \delta_{\xi}(m)$ of $M A N$. Let $\left\{e_{r}\right\}_{r \in \mathbf{Z}+\xi}$ be an orthonormal basis of $\mathscr{H}_{\xi, \lambda}$ with $e_{r}\left(u_{\theta}\right)=e^{i r \theta}$. The matrix coefficients $\pi_{\xi, \lambda, r, s}(x)=$ $\left\langle\pi_{\xi, \lambda}(x) e_{s}, e_{r}\right\rangle, x \in G, \quad \xi \in\left\{0, \frac{1}{2}\right\}, r, s \in \mathbf{Z}+\xi$, of the principal series representation of G can be written in terms of Jacobi functions as:

$$
\pi_{\xi, \lambda, r, s}\left(a_{t}\right)=P_{|r-s|}(\lambda) \sinh ^{|r-s|}(t) \cosh ^{r+s}(t) \varphi_{\lambda}^{|r-s|, r+s}(t)
$$

where $P_{|r-s|}$ is a polynomial of degree $|r-s|$, with $P_{0}=1$. This explicit expression of the matrix coefficients on G yields another path to "Hardy's theorem" for $S U(1,1) \simeq S L(2, \mathbf{R})$. We note in particular that the matrix coefficients:

$$
\pi_{\xi, \lambda, r, r}\left(a_{t}\right)=\cosh ^{2 r}(t) \varphi_{\lambda}^{0,2 r}(t)
$$

for $t \in \mathbf{R}_{+}$, satisfy the "same" growth estimates and that they do not have any zeroes.

The Fourier transform \mathscr{F}_{G} is defined as:

$$
\mathscr{F}_{G} f\left(\pi_{\xi, \lambda}\right):=\int_{G} f(x) \pi_{\xi, \lambda}(x) d x
$$

for a nice function f on G. Let now f be an even function on \mathbf{R} and define a spherical function f^{r} of type (r, r) on G by: $f^{r}\left(u_{\theta_{1}} a_{t} u_{\theta_{2}}\right):=$ $\cosh ^{2 r}(t) f(t) e^{i r\left(\theta_{1}+\theta_{2}\right)}$. Using the Cartan decomposition of G, we compute the matrix coefficients of $\mathscr{F}_{G} f^{r} r\left(\pi_{\xi, \lambda}\right)$:

$$
\begin{aligned}
\left\langle\mathscr{F}_{G} f^{r}\left(\pi_{\xi, \lambda}\right) e_{r}, e_{r}\right\rangle & =\int_{\mathbf{R}} f^{r}\left(a_{t}\right)\left\langle\pi_{\xi, \lambda}\left(a_{t}\right) e_{r}, e_{r}\right\rangle \sinh (t) \cosh (t) d t \\
& =\int_{\mathbf{R}} f^{r}\left(a_{t}\right) \cosh ^{2 r}(t) \varphi_{\lambda}^{0,2 r}(t) \sinh (t) \cosh (t) d t \\
& =\int_{\mathbf{R}} f(t) \varphi_{\lambda}^{0,2 r}(t) \sinh (t) \cosh ^{4 r+1}(t) d t=2^{(-4 r-1)} \hat{f}^{0,2 r}(\lambda)
\end{aligned}
$$

Consider in particular the functions $h_{\beta}^{r}\left(u_{\theta_{1}} a_{t} u_{\theta_{2}}\right):=\cosh ^{2 r}(t) h_{\beta}^{0,2 r}(t) e^{i r\left(\theta_{1}+\theta_{2}\right)}$, for $r \in \mathbf{Z} / 2$, then $\left\langle\mathscr{F}_{G} h_{\beta}^{r}\left(\pi_{\xi, \lambda}\right) e_{r}, e_{r}\right\rangle=c e^{-\beta \lambda^{2}}$ and $\left|h_{\beta}^{r}\left(u_{\theta_{1}} a_{t} u_{\theta_{2}}\right)\right| \leq C(1+t)^{1 / 2}$. $e^{-t-t^{2} / 4 \beta}$, for positive constants c and C.

Let \mathbf{F} be either \mathbf{C} or \mathbf{H} and let $x \mapsto \bar{x}$ be the standard (anti)-involution of F. Let m and n be two positive integers and let [,] be the Hermitian form on \mathbf{F}^{m+n} given by

$$
[x, y]=x_{1} \bar{y}_{1}+\cdots+x_{m} \bar{y}_{m}-x_{m+1} \bar{y}_{m+1}-\cdots-x_{m+n} \bar{y}_{m+n}
$$

for $x, y \in \mathbf{F}^{m+n}$. Let $G=U(m, n ; \mathbf{F})$ denote the group of all $(m+n) \times(m+n)$ matrices over \mathbf{F} preserving [,]. Thus $U(m, n ; \mathbf{C})=U(m, n)$ and $U(m, n ; \mathbf{H})=$ $S p(m, n)$ in standard notation. Let H be the subgroup of G stabilising the line $\mathbf{F}(1,0, \ldots, 0)$ in \mathbf{F}^{m+n}. We can identify H with $U(1,0 ; \mathbf{F}) \times U(m-1, n ; \mathbf{F})$ and the homogeneous space G / H (which is a reductive symmetric space) with the projective image of the space $\left\{z \in \mathbf{F}^{m+n} \mid[z, z]=1\right\}$. The statement and proofs in the previous chapter also hold for the Fourier transform on G / H. This is seen either by embedding G / H into $S O_{o}(d m, d n) / S O_{o}(d m-1, d n)$, with $d=$ $\operatorname{dim}_{\mathbf{R}} \mathbf{F}$, or again by expressing the Fourier transform of K-finite functions using modified Jacobi functions. See [1, p. 117] for more details.

References

[1] N. B. Andersen, Paley-Wiener Theorems for Hyperbolic Spaces, J. Funct. Anal. 179 (2001), 66-119.
[2] N. B. Andersen, Hardy's uncertainty principle on Hyperbolic Spaces, Bull. Austral. Math. Soc. 66 (2002), 165-172.
[3] N. B. Andersen, L^{p} versions of Hardy's uncertainty principle on Hyperbolic Spaces, has appeared Proc. Amer. Math. Soc. 131 (2003), 2797-2807.
[4] J-Ph. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic $A N$ groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 643-679.
[5] E. P. van den Ban and H. Schlichtkrull, Expansions for Eisenstein integrals on semisimple symmetric spaces, Ark. Mat. 35 (1997), 59-86.
[6] M. Cowling and J. F. Price, Generalisations of Heisenberg's inequality, Harmonic analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, 443-449.
[7] M. Cowling, A. Sitaram and M. Sundari, Hardy's uncertainty principle on semisimple groups, Pacific J. Math. 192 (2000), 293-296.
[8] A. Erdélyi et al, Higher Transcendental Functions, Volume I, McGraw-Hill, New York, 1973.
[9] M. Flensted-Jensen, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Ark. Mat. 10 (1975), 143-165.
[10] M. Flensted-Jensen, Spherical functions on a simply connected semisimple Lie group. II. The Paley-Wiener theorem for the rank one case, Math. Ann. 228 (1977), 65-92.
[11] G. H. Hardy, A theorem concerning Fourier transforms, J. London Math. Soc. 8 (1933), 227-231.
[12] G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, San Diego, 1994.
[13] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, 1984.
[14] S. Helgason, Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs. Vol. 39, American Mathematical Society, Providence, Rhode Island, 1994.
[15] T. H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145-159.
[16] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple groups, Special Functions: Group Theoretical Aspects and Applications, Reidel, 1984, 1-84.
[17] E. K. Narayanan and S. K. Ray, L^{p} versions of Hardy's theorem on semisimple Lie groups, Proc. Amer. Math. Soc. 130 (2002), 1859-1866.
[18] E. K. Narayanan and S. K. Ray, The heat kernel and Hardy's theorem on symmetric spaces of noncompact type, Proc. Indian Acad. Sci. (Math. Sci.) 112 (2002), 321-330.
[19] S. K. Ray and R. P. Sarkar, Cowling-Price theorem and characterization of heat kernel on symmetric spaces, preprint.
[20] W. Rossmann, Analysis on Real Hyperbolic Spaces, J. Funct. Anal. 30 (1978), 448-477.
[21] J. Sengupta, The uncertainty principle on Riemannian symmetric spaces of the noncompact type, Proc. Amer. Math. Soc. 130 (2002), 1009-1017.
[22] N. Shimeno, An analogue of Hardy's theorem for the Heckman-Opdam transform, J. Math. Kyoto Univ. 41 (2001), 251-256.
[23] N. Shimeno, An analogue of Hardy's theorem for the Harish-Chandra transform, Hiroshima Math. J. 31 (2001), 383-390.
[24] A. Sitaram and M. Sundari, An analogue of Hardy's theorem for very rapidly decreasing functions on semisimple Lie groups, Pacific J. Math. 177 (1997), 187-200.

School of Mathematics
University of New South Wales
Sydney NSW 2052, Australia
E-mail address: byrial@maths.unsw.edu.au

[^0]: 2000 Mathematics Subject Classification. Primary 43A85, 22E30.
 Key words and phrases. Hardy's theorem, Jacobi transform, hyperbolic spaces, Fourier transform.
 The author is supported by a research grant from the Australian Research Council (ARC).

