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Abstract. Ravenel [8] has introduced p-local spectra TðmÞ for mb 0. The Adams-

Novikov E2-term converging to p�ðTðmÞÞ is isomorphic to

Ext�Gðmþ1ÞðBP�;BP�Þ;

where Gðmþ 1Þ ¼ BP�½tmþ1; tmþ2; . . . �, and thus we may follow the chromatic method

introduced in [4] to compute the E2-term. One of the crucial point is to determine the

Ext groups Ext�Gðmþ1ÞðBP�;M
n
s Þ. In particular Ext0Gðmþ1ÞðBP�;M

1
2 Þ has already been

known except for p ¼ 2 and m ¼ 1. In this paper we will give the explicit description

of the last unknown case.

1. Introduction

The homotopy groups of Ravenel spectrum TðmÞ give information

on the homotopy groups of spheres using ‘‘the method of infinite descent’’,

which was the main subject of [8] Chapter 7. Its BP-homology group is

given by BP�ðTðmÞÞGBP�½t1; . . . ; tm�. The Adams-Novikov E2-term for TðmÞ
is

Ext�BP�ðBPÞðBP�;BP�ðTðmÞÞÞ;

which is isomorphic to ExtGðmþ1ÞðBP�;BP�Þ by the change-of-rings isomor-

phism. So this object is computable using the chromatic spectral sequence

introduced in [4]. Define comodules Mn
m by

Mn
m ¼ v�1

mþnBP�=ð p; . . . ; vm�1; v
y
m ; . . . ; vymþn�1Þ

as usual. Then the chromatic E1-term is

E
s; t
1 ¼ Ext tGðmþ1ÞðBP�;M

s
0Þ:
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We can determine the structure of this Ext group beginning with the s-th

Morava stabilizer algebra ExtGðmþ1ÞðBP�;M
0
s Þ by Bockstein spectral sequences

Ext�Gðmþ1ÞðBP�;M
n
s�nÞ ) Ext�Gðmþ1ÞðBP�;M

nþ1
s�n�1Þ:

Recently, these Ext groups have been researched by the first author,

Ravenel, Shimomura and their coworkers. Notice that Shimomura denotes

our Ext�Gðmþ1ÞðBP�;M
n
s�nÞ by Ext�BP�BPðBP�;M

n
s�n½m�Þ, and he has determined

the complete structure of Ext�Gðmþ1ÞðBP�;M
1
s�1Þ in [9] for mb s2 � s� 1.

Moreover, Ext0Gðmþ1ÞðBP�;M
1
2 Þ is known for various p and m. In par-

ticular, it is determined by

Ichigi-Nakai-Ravenel ½2�

Ichigi-Shimomura ½3�

Mitsui-Shimomura ½5�

Ichigi ½1�

for p ¼ 2 and mb 3 or pb 3 and mb 2;

for p ¼ 3 and m ¼ 1;

for pb 5 and m ¼ 1;

for p ¼ 2 and m ¼ 2:

The purpose of this paper is to determine the structure of

Ext0Gðmþ1ÞðBP�;M
1
2 Þ in case that p ¼ 2 and m ¼ 1, which had been the last

unsolved case. We will define integers âaðkÞ in (4.2) and elements x̂xk ðkb 0Þ
inductively on k by

x̂x0 ¼ v4

and x̂xk ¼ x̂x2
k�1 þ ŷyk for kb 1;

where each ŷyk is v2-multiple and defined in (4.4). We will see that x̂xk=v
âaðkÞ
2

is in Ext0Gð2ÞðBP�;M
1
2 Þ and that the image of x̂xk=v

âaðkÞ
2 under the connect-

ing homomorphism d : Ext0Gð2ÞðBP�;M
1
2 Þ ! Ext1Gð2ÞðBP�;M

0
3 Þ is nontrivial and

cohomologous to the image of v2
k

4 =v
âaðkÞ
2 .

Denote Z=ðpÞ½vG1
2 ; v3� by K̂Kð2Þ� and Z=ðpÞ½v2; v3� by k̂kð2Þ� respectively.

Then our main theorem is

Theorem 1.1. Assume that p ¼ 2. Then, as a v�1
3 k̂kð2Þ�-module,

Ext0Gð2ÞðBP�;M
1
2 Þ is the direct sum of

( i ) the cyclic Z=ð2Þ½v2; vG1
3 �-modules isomorphic to Z=ð2Þ½v2; vG1

3 �=ðvâaðkÞ2 Þ
generated by x̂xs

k=v
âaðkÞ
2 for kb 0 and 2F s > 0; and

(ii) v�1
3 K̂Kð2Þ�=k̂kð2Þ�, generated by 1=v j

2 for jb 1.

Although Ichigi-Shimomura [3] has shown that x̂xk for p ¼ 3 are the same

as those for p > 3 [5], our result shows that p ¼ 2 case di¤ers from the odd p

cases.

Hirofumi Nakai and Daichi Yoritomi138



In § 2 we review some basic facts about Brown-Peterson theory (cobar

complex, Bockstein spectral sequence and Morava stabilizer algebra). In § 3

we list up formulas for the right unit hR on Hazewinkel generators vn and

elements ŵw4 and ŵw5 given in (3.2). In § 4 we construct key elements x̂xk and

compute the first cobar di¤erential d ¼ hR � hL on x̂xk. The proof of Theorem

1.1 is completed in § 5.

We wish to thank Ippei Ichigi for reading carefully a draft of this paper

and checking some calculations. We also would like to thank the referee for

his helpful advice.

2. Bockstein spectral sequence

Hereafter we will abbreviate Ext�Gðmþ1ÞðBP�;MÞ to Ext�Gðmþ1ÞðMÞ for

simplicity.

It is well known that Ext�Gðmþ1ÞðMÞ can be computed as cohomology

groups of the cobar complex

0 ��! M ��!d0 C1
Gðmþ1ÞðMÞ ��!d1 C2

Gðmþ1ÞðMÞ ��!d2 � � � ��!dk�1
Ck
Gðmþ1ÞðMÞ ��!dk � � � ;

where Cn
Gðmþ1ÞðMÞ ¼ Gðmþ 1Þnn nM (n-fold tensor product). The di¤er-

entials of this complex are defined using the right unit hR and the coproduct D

of Hopf algebroid ðBP�;Gðmþ 1ÞÞ. In particular we have d0 ¼ hR � hL and

Ext0Gðmþ1ÞðMÞ ¼ ker d0.

We will determine the structure of Ext0Gðmþ1ÞðM 1
2 Þ for p ¼ 2 and m ¼ 1

using Bockstein spectral sequence. In fact, the following lemma plays a fun-

damental role.

Lemma 2.1 ([4] Remark 3.11). Assume that there exists a v�1
3 k̂kð2Þ�-

submodule Bt of Ext tGð2ÞðM 1
2 Þ for each t < N, such that the following sequence

is exact:

0 ��! Ext0Gð2ÞðM 0
3 Þ ��!1=v2 B0 ����!v2

B0 ����!d
Ext1Gð2ÞðM 0

3 Þ ��!1=v2 � � �

� � � ��!1=v2 BN�1 ��!v2 BN�1 ��!d ExtNGð2ÞðM 0
3 Þ;

where d is the restriction of the coboundary map

d : Ext tGð2ÞðM 1
2 Þ ! Ext tþ1

Gð2ÞðM
0
3 Þ:

Then the inclusion map it : B
t ! Ext tGð2ÞðM 1

2 Þ is an isomorphism between

k̂kð2Þ�-modules for each t < N.

In order to apply this lemma we will construct a module B0 which satisfies

the above condition. Because B0 has a submodule isomorphic to Ext0Gð2ÞðM 0
3 Þ,

it is a natural way to construct B0 by extending Ext0Gð2ÞðM 0
3 Þ.
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The following generalization of Morava-Landweber theorem is straight-

forward.

Lemma 2.2 (cf. [8] Proposition 7.1.7). For any prime p, we have

Ext0Gð2ÞðM 0
3 ÞGKð3Þ�½v4� ¼ Z=ðpÞ½vG1

3 ; v4�:ð2:3Þ

This Ext group is the starting point to construct B0. Notice that for

x=vi2 A B0 there is an element x 0 ¼ xþ ðvi2-multiples) such that x 0=viþ1
2 A B0 if

dðx=vi2Þ ¼ 0. In this sense, an element of B0 is divided by v2 and we obtain

a new element in B0 if its d image is zero.

We will choose elements x̂xk ðkb 0Þ each of which is v2
k

4 plus v2-multiples

in (4.3) and (4.4), and denote the minimal exponent of v2 by âaðkÞ (4.2) such

that dðx̂xk=vâaðkÞ2 Þ0 0. Then the following lemma is standard.

Lemma 2.4. We may define B0 in Lemma 2.1 by

v�1
3 k̂kð2Þ�

�
x̂xs
k=v

âaðkÞ
2 : kb 0 and pF s > 0

�
l v�1

3 K̂Kð2Þ�=k̂kð2Þ�;

if the set

�
dðx̂xs

k=v
âaðkÞ
2 Þ : kb 0 and pF s > 0

�
HExt1Gð2ÞðM 0

3 Þð2:5Þ

is linearly independent over Z=ðpÞ½vG1
3 �, where d is the coboundary map in

Lemma 2.1.

In order to check the condition (2.5) we have to know the first coho-

mology Ext1Gð2ÞðM 0
3 Þ, which has fortunately been obtained in [7].

Proposition 2.6 ([7] Theorem 1.1).

Ext1Gð2ÞðM 0
3 ÞG K̂Kð3Þ�fĥh1;0; ĥh1;1; ĥh1;2; ĥh2;0; ĥh2;1; ĥh2;2; r3g;ð2:7Þ

where each ĥhi; j is the class corresponding to t
p j

iþ1 and r3 is a suitable element

with degree 0.

By this proposition the basis of the vector space Ext1Gð2ÞðM 0
3 Þ is described

explicitly, so that it is easy to confirm whether the set (2.5) is linearly in-

dependent or not.

3. Preliminary calculations

Here we list up some formulas which we will use in § 4. By the formula

(1.1) and (1.3) in [4], we can deduce the formulas of hRðviÞ.

Lemma 3.1. The right unit

hR : v�1
3 BP� ! v�1

3 BP� nBP� Gð2Þ
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on Hazewinkel generators vi are expressed as

hRðv3Þ1 v3 modð2; v1Þ;

hRðv4Þ1 v4 þ v2t
4
2 þ v42t2 modð2; v1Þ;

hRðv5Þ1 v5 þ v43t2 þ v3t
8
2 þ v82t3 þ v2t

4
3 modð2; v1Þ;

hRðv6Þ1 v6 þ v44 t2 þ v4t
16
2 þ v83t3 þ v3t

8
3 þ v2t

4
4 modð2; v1; v22Þ;

hRðv7Þ1 v7 þ v45 t2 þ v5t
32
2 þ v84 t3 þ v4t

16
3

þ v163 t4 þ v163 t52 þ v43t
33
2 þ v3t

8
4 modð2; v1; v2Þ:

Define elements ŵwi A v�1
3 BP� ði ¼ 4; 5Þ by

ŵw4 ¼ v�1
3 v5ð3:2Þ

and ŵw5 ¼ v�1
3 ðv6 þ v4ŵw

2
4Þ:

Lemma 3.3. The di¤erentials

d ¼ hR � hL : v�1
3 BP� ! v�1

3 BP� nBP� Gð2Þ

on ŵwi are expressed as

dðŵw4Þ1 v33t2 þ v82v
�1
3 t3 þ v2v

�1
3 t43 þ t82 modð2; v1Þ;

dðŵw5Þ1 t83 þ v73t3 þ v53v4t
2
2 þ v�1

3 v44 t2

þ v2ðv�1
3 t202 þ v�1

3 t44 þ v53t
6
2 þ v�3

3 v25 t
4
2Þ modð2; v1; v22Þ:

Proof. dðŵw4Þ is straightforward by Lemma 3.1. For dðŵw5Þ, we observe

that

dðv�1
3 v6Þ1 t83 þ v73t3 þ v�1

3 v4t
16
2 þ v�1

3 v44 t2 þ v2v
�1
3 t44 ;

dðv�1
3 v4ŵw

2
4Þ1 v�1

3 v4t
16
2 þ v53v4t

2
2 þ v2ðv�1

3 t202 þ v53t
6
2 þ v�3

3 v25 t
4
2Þ

modulo ð2; v1; v22Þ. Summing these two congruences, we have the desired

formula.

By this lemma we have dðŵw4Þ1 v33t2 þ t82 and dðŵw5Þ1 t83 þ v73t3 þ v53v4t
2
2 þ

v�1
3 v44 t2 modulo ð2; v1; v2Þ. These show that

t2 ¼ v�3
3 t82

and t3 ¼ v�7
3 t83 þ v�2

3 v4t
2
2 þ v�8

3 v44 t2

in Ext1Gð2ÞðBP�;M
0
3 Þ. So we may replace ĥh1; i with ĥh1; iþ3 and ĥh2; i with ĥh2; iþ3 in

(2.7). Therefore Proposition 2.7 implies
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Corollary 3.4.

Ext1Gð2ÞðM 0
3 ÞG K̂Kð3Þ�fĥh1;2; ĥh1;3; ĥh1;4; ĥh2;4; ĥh2;5; ĥh2;6; r3g:

We will use this K̂Kð3Þ�-basis rather than the one of (2.7) because it would

allow us to make the construction of x̂xk easy.

4. The elements x̂xk and its d-image

The elements x̂xk are constructed by adding some v2-multiples to v2
k

4 A
Ext0Gð2ÞðM 0

3 Þ. In other words, they satisfy the equality

v2
ks

4 =v2 ¼ x̂xs
k=v2

in Ext0Gð2ÞðM 1
2 Þ. In this section we will make the full description of x̂xk and

compute the first cobar di¤erential

d ¼ hR � hL : v�1
3 BP� ! v�1

3 BP� nBP� Gð2Þ

on x̂xk in Lemma 4.5.

From now on, we set v3 ¼ 1 for simplicity because v3 is a unit in

v�1
3 BP�. Define elements fi ð1a ia 6Þ by

f1 ¼ v2ŵw
4
4 þ v4; f2 ¼ v22ŵw4 þ v24 ; f3 ¼ v2ŵw

4
5 þ v174 ;

f4 ¼ v167 þ ŵw80
4 ; f5 ¼ v22ŵw

8
4 þ v24 and f6 ¼ v42ŵw

2
4 þ v44 :

Using Lemma 3.1 and Lemma 3.3 we can compute dðfiÞ easily.

Lemma 4.1. The di¤erentials on fi are expressed as

dðf1Þ1 v2t
32
2 þ v42t2 þ v52t

16
3 modð2; v1; v122 Þ;

dðf2Þ1 v22t2 þ v32t
4
3 þ v82t

2
2 modð2; v1; v102 Þ;

dðf3Þ1 v2ðt43 þ t323 þ v44 t
8
2Þ þ v42v

16
4 t2;

þ v52ðt242 þ t802 þ t164 þ v85 t
16
2 Þ modð2; v1; v82Þ;

dðf4Þ1 t164 þ t1284 þ v164 t2563 þ v1284 t163 ;

þ t1922 þ t6402 þ v165 t642 þ v645 t1282 modð2; v1; v32Þ;

dðf5Þ1 v22t
64
2 modð2; v1; v52Þ;

dðf6Þ1 v42t
2
2 modð2; v1; v62Þ:
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Define integers âaðkÞ ðkb 0Þ inductively on k by

âaðkÞ ¼

2k ð0a ka 2Þ;
3 � 2k�1 ð3a ka 4Þ;
50 ðk ¼ 5Þ;
103 ðk ¼ 6Þ;
207 ðk ¼ 7Þ;
49 � 2k�5 þ âaðk � 4Þ ðkb 8Þ:

8>>>>>>>><
>>>>>>>>:

ð4:2Þ

Define elements x̂xk A v�1
3 BP� ðkb 0Þ inductively on k by

x̂xk ¼ x̂x2
k�1 þ ŷyk;ð4:3Þ

where

ð4:4Þ

ŷyk ¼

0 for 0a ka 2;

v72f1 þ v92f2 þ v112 f3 þ v102 v44 x̂x1 þ v132 v164 f2
þ v152 v164 f3 þ v142 v204 x̂x1 for k ¼ 3;

v272 v44f1 for k ¼ 4;

v242 x̂x4 þ v362 x̂x3 þ v442 v644 x̂x2 þ v472 v164 f1 þ v482 ŵw16
5 for k ¼ 5;

v982 v324 x̂x2 þ v992 v44f1 þ v1012 v44f2 þ v1022 v324 ŵw2
4 for k ¼ 6;

v2052 v24f1 for k ¼ 7;

v3642 x̂x5 þ v4122 v1924 x̂x2 þ v4132 ðv164 f2 þ f6Þ
þ v4142 ðv204 x̂x1 þ f5 þ v1604 f5Þ þ v4152 ðv164 f3 þ v2564 f1Þ
þ v4162 ðf4 þ v164 ŵw32

5 þ v1284 ŵw16
5 þ v1284 ŵw32

5 Þ for k ¼ 8;

v49�2
k�5

2 x̂xk�4ðx̂xk�4 þ x̂x2
k�5Þ for kb 9:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Then we have

Lemma 4.5. Modulo ð2; v1; v1þâaðkÞ
2 Þ, the di¤erentials on x̂xk are expressed as

dðx̂xkÞ1

v2
k

2 t2
kþ2

2 for 0a ka 2;

v3�2
k�1

2 ðt2kþ1

3 þ t2
kþ2

3 Þ for 3a ka 4;

v502 v24 t
16
2 for k ¼ 5;

v1032 v4t
16
2 for k ¼ 6;

v2072 v4t
8
2 for k ¼ 7;

v49�2
k�5

2 v2
k�4

4 dðx̂xk�4Þ for kb 8:

8>>>>>>>>>>><
>>>>>>>>>>>:
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Proof. For 0a ka 2, it directly follows from (3.1). For k ¼ 3, we have

dðv72f1Þ1 v82t
32
2 þ v112 t2 þ v122 t163 ;

dðv92f2Þ1 v112 t2 þ v122 t43 þ v172 t22 ;

dðv112 f3Þ1 v122 ðt43 þ t323 þ v44 t
8
2Þ þ v152 v164 t2 þ v162 ðt242 þ t802 þ t164 þ v85 t

16
2 Þ;

dðv102 v44 x̂x1Þ1 v122 v44 t
8
2 þ v142 v24 t

16
2 þ v162 t242 þ v182 v44 t

2
2 ;

dðv132 v164 f2Þ1 v152 v164 t2 þ v162 v164 t43 ;

dðv152 v164 f3Þ1 v162 v164 ðt43 þ t323 þ v44 t
8
2Þ;

dðv142 v204 x̂x1Þ1 v162 v204 t82 þ v182 v184 t162

modulo ð2; v1; v192 Þ. Summing these congruences, we obtain

dð ŷy3Þ1 v82t
32
2 þ v122 ðt163 þ t323 Þ þ v142 v24 t

16
2 þ v162 ðt802 þ t164 þ v164 t323 þ v85 t

16
2 Þ

þ v172 t22 þ v182 ðv44 t22 þ v184 t162 Þ

and dðx̂x3Þ1 v122 ðt163 þ t323 Þ þ v142 v24 t
16
2 þ v162 ðt802 þ t164 þ v164 t323 þ v85 t

16
2 Þ

þ v172 t22 þ v182 ðv44 t22 þ v184 t162 Þ

modulo ð2; v1; v192 Þ. For k ¼ 4, we have

dð ŷy4Þ ¼ dðv272 v44f1Þ

1 v282 v44 t
32
2

and dðx̂x4Þ1 v242 ðt323 þ t643 Þ
modulo ð2; v1; v312 Þ. For k ¼ 5, we have

dðv482 ŵw16
5 Þ1 v482 ðt163 þ t1283 þ v164 t322 þ v644 t162 Þ;

dðv472 v164 f1Þ1 v482 v164 ðt322 þ v32t2 þ v42t
16
3 Þ;

dðv442 v644 x̂x2Þ1 v482 v644 t162 ;

dðv362 x̂x3Þ1 v482 ðt163 þ t323 Þ þ v502 v24 t
16
2 þ v522 ðt802 þ t164 þ v164 t323 þ v85 t

16
2 Þ

þ v532 t22 þ v542 ðv44 t22 þ v184 t162 Þ;

dðv242 x̂x4Þ1 v482 ðt323 þ t643 Þ

modulo ð2; v1; v552 Þ. Summing these congruences, we obtain
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dð ŷy5Þ1 v482 ðt643 þ t1283 Þ þ v502 v24 t
16
2 þ v512 v164 t2

þ v522 ðt802 þ t164 þ v164 t163 þ v164 t323 þ v85 t
16
2 Þ

þ v532 t22 þ v542 ðv44 t22 þ v184 t162 Þ

and dðx̂x5Þ1 v502 v24 t
16
2 þ v512 v164 t2 þ v522 ðt802 þ t164 þ v164 t163 þ v164 t323 þ v85 t

16
2 Þ

þ v532 t22 þ v542 ðv44 t22 þ v184 t162 Þ

modulo ð2; v1; v552 Þ. For k ¼ 6, we have

dðv992 v44f1Þ1 v992 fdðv44Þf1 þ hRðv44Þdðf1Þg

1 v1002 v44 t
32
2 þ v1032 ðv4t162 þ v44 t2Þ þ v1042 ðt482 þ v44 t

16
3 þ v45 t

16
2 Þ;

dðv1022 v324 ŵw2
4Þ1 v1022 ðv324 t22 þ v324 t162 Þ þ v1042 v324 t83 ;

dðv982 v324 x̂x2Þ1 v1022 v324 t162 ;

dðv1012 v44f2Þ1 v1032 v44 t2 þ v1042 v44 t
4
3 þ v1052 v24 t

16
2

modulo ð2; v1; v1062 Þ. Summing these congruences, we obtain

dð ŷy6Þ1 v1002 v44 t
32
2 þ v1022 v324 t22 þ v1032 v4t

16
2

þ v1042 ðt482 þ v44 t
4
3 þ v44 t

16
3 þ v324 t83 þ v45 t

16
2 Þ þ v1052 v24 t

16
2

and dðx̂x6Þ1 v1032 v4t
16
2 þ v1042 ðt482 þ t1602 þ t324 þ v44 t

4
3 þ v44 t

16
3 þ v324 t83 þ v324 t323

þ v324 t643 þ v45 t
16
2 þ v165 t322 Þ þ v1052 v24 t

16
2

modulo ð2; v1; v1062 Þ. For k ¼ 7, we have

dð ŷy7Þ ¼ dðv2052 v24f1Þ

¼ v2052 fdðv24Þf1 þ hRðv24Þdðf1Þg

1 v2062 v24 t
32
2 þ v2072 v4t

8
2 þ v2082 ðt402 þ v45 t

8
2Þ þ v2092 v24 t2

and dðx̂x7Þ1 v2072 v4t
8
2 þ v2082 ðt402 þ t962 þ t3202 þ t644 þ v84 t

8
3 þ v84 t

32
3 þ v644 t163 þ v644 t643

þ v644 t1283 þ v45 t
8
2 þ v85 t

32
2 þ v325 t642 Þ þ v2092 v24 t2

modulo ð2; v1; v2102 Þ. For k ¼ 8, we have
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dðv3642 x̂x5Þ1 v4142 v24 t
16
2 þ v4152 v164 t2 þ v4162 ðt802 þ t164 þ v164 t163 þ v164 t323 þ v85 t

16
2 Þ

þ v4172 t22 þ v4182 ðv44 t22 þ v184 t162 Þ;

dðv4132 v164 f2Þ1 v4152 v164 t2 þ v4162 v164 t43 ;

dðv4152 v164 f3Þ1 v4162 ðv164 t43 þ v164 t323 þ v204 t82Þ;

dðv4142 v204 x̂x1Þ1 v4162 v204 t82 þ v4182 v184 t162 ;

dðv4162 f4Þ1 v4162 ðt164 þ t1284 þ v164 t2563 þ v1284 t163 þ t1922 þ t6402 þ v165 t642 þ v645 t1282 Þ;

dðv4162 v164 ŵw32
5 Þ1 v4162 ðv164 t323 þ v164 t2563 þ v484 t642 þ v1444 t322 Þ;

dðv4142 f5Þ1 v4162 v484 t642 ;

dðv4162 v1284 ŵw16
5 Þ1 v4162 ðv1284 t163 þ v1284 t1283 þ v1444 t322 þ v1924 t162 Þ;

dðv4122 v1924 x̂x2Þ1 v4162 v1924 t162 ;

dðv4162 v1284 ŵw32
5 Þ1 v4162 ðv1284 t323 þ v1284 t2563 þ v1604 t642 þ v2564 t322 Þ;

dðv4142 v1604 f5Þ1 v4162 v1604 t642 ;

dðv4152 v2564 f1Þ1 v4162 v2564 t322 ;

dðv4132 f6Þ1 v4172 t22

modulo ð2; v1; v4192 Þ. Summing these congruences, we obtain

dð ŷy8Þ1 v4142 v24 t
16
2 þ v4182 v44 t

2
2

þ v4162 ðt802 þ t1922 þ t6402 þ t1284 þ v164 t163 þ v164 t323

þ v1284 t323 þ v1284 t1283 þ v1284 t2563 þ v85 t
16
2 þ v165 t642 þ v645 t1282 Þ

and dðx̂x8Þ1 v4162 ðv164 t323 þ v164 t643 Þ

1 v4162 v164 dðx̂x4Þ

modulo ð2; v1; v4192 Þ.
For kb 9, we prove the formula by induction. Assume that the con-

gruence

dðx̂xk�1Þ1 v49�2
k�6

2 x̂xk�5dðx̂xk�5Þ modðv3þâaðk�1Þ
2 Þð4:6Þ

is satisfied. Notice that (4.2) may be rewritten as
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âaðkÞ ¼ 2âaðk � 1Þ þ

2 for k1 0 ð4Þ;
2 for k1 1 ð4Þ;
3 for k1 2 ð4Þ;
1 for k1 3 ð4Þ:

8>>><
>>>:

This suggests that we should compute dðx̂xkÞ modulo ðv3þâaðkÞ
2 Þ rather than

modulo ðv1þâaðkÞ
2 Þ. Denote x̂xk þ x̂x2

k�1 by ẑzk. By definition, ẑzk is related to ẑzk�4

by
ẑzk ¼ v

âaðkÞ�âaðk�4Þ
2 x̂xk�4ẑzk�4:

Then dðẑzkÞ is computed as

dðẑzkÞ ¼ v
âaðkÞ�âaðk�4Þ
2 dðx̂xk�4ẑzk�4Þð4:7Þ

¼ v
âaðkÞ�âaðk�4Þ
2 ðdðx̂xk�4Þẑzk�4 þ hRðx̂xk�4Þdðẑzk�4ÞÞ:

Define integers nðkÞ by

nðkÞ ¼

24 for k ¼ 9;

98 for k ¼ 10;

205 for k ¼ 11;

364 for k ¼ 12;

âaðk � 4Þ � âaðk � 8Þ for kb 13:

8>>>>><
>>>>>:

By definition, ẑzk�4 is divisible by v
nðk�4Þ
2 so that we observe that

v
âaðkÞ�âaðk�4Þ
2 � dðx̂xk�4Þẑzk�4 ¼ v

âaðkÞ�âaðk�4Þ
2 � dðx̂xk�4ÞvnðkÞ2 z

¼ v
âaðkÞ�âaðk�4ÞþnðkÞ
2 z � dðx̂xk�4Þ

for some z. Because dðx̂xk�4Þ is trivial modulo ðvâaðk�4Þ
2 Þ and the inequality

âaðkÞ þ nðkÞb âaðkÞ þ 3

is satisfied, we can ignore the first term of (4.7) modulo ðv3þâaðkÞ
2 Þ. We can also

apply the similar statement for the second term. Thus we have

dðẑzkÞ1 v
âaðkÞ�âaðk�4Þ
2 x̂xk�4dðẑzk�4Þ modðvâaðkÞþ3

2 Þ:ð4:8Þ

On the other hand, by assumption (4.6) we have

dðx̂x2
k�1Þ1 v49�2

k�5

2 x̂x2
k�5dðx̂x2

k�5Þð4:9Þ

1 v49�2
k�5

2 x̂xk�4dðx̂x2
k�5Þ:

Summing (4.8) and (4.9), we obtain the desired formula.

5. Proof of the Theorem 1.1

Define integers ĉcðkÞ ðkb 0Þ by
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ĉcðkÞ ¼

0 for 0a ka 4;

2 for k ¼ 5;

1 for 6a ka 7;

2k�4 þ ĉcðk � 4Þ for kb 8:

8>>><
>>>:

ð5:1Þ

This is the exponent of v4 in dðx̂xkÞ and thus Lemma 4.5 is rewritten as

dðx̂xkÞ1 v
âaðkÞ
2 v

ĉcðkÞ
4

t2
kþ2

2 for 0a ka 2;

ðt163 þ t323 Þ for k ¼ 3;

ðt323 þ t643 Þ for k1 0 modð4Þ;
t162 for k1 1 and 2 modð4Þ;
t82 for k1 3 modð4Þ:

8>>>>>><
>>>>>>:

ð5:2Þ

modulo ðv1þâaðkÞ
2 Þ. By (5.2) and the multiplicative property of hR, we obtain

dðx̂xs
k=v

âaðkÞ
2 Þ ¼ v

2kðs�1ÞþĉcðkÞ
4

ĥh1;kþ2 for 0a ka 2;

ðĥh2;4 þ ĥh2;5Þ for k ¼ 3;

ðĥh2;5 þ ĥh2;6Þ for k1 0 modð4Þ;
ĥh1;4 for k1 1 and 2 modð4Þ;
ĥh1;3 for k1 3 modð4Þ:

8>>>>>><
>>>>>>:

ð5:3Þ

Because of the condition (2.5), it su‰ces to show that these elements are

linearly independent over Z=ð2Þ (recall that we set v3 ¼ 1).

For kb 8, set k ¼ k0 þ 4k1 with 4a k0 a 7 and k1 b 1. Then (5.1) may

be rewritten as

ĉcðkÞ ¼

24ð16k1�1 þ 16k1�2 þ � � � þ 162 þ 16þ 1Þ for k1 0 modð4Þ;
25ð16k1�1 þ 16k1�2 þ � � � þ 162 þ 16þ 1Þ þ 2 for k1 1 modð4Þ;
26ð16k1�1 þ 16k1�2 þ � � � þ 162 þ 16þ 1Þ þ 1 for k1 2 modð4Þ;
27ð16k1�1 þ 16k1�2 þ � � � þ 162 þ 16þ 1Þ þ 1 for k1 3 modð4Þ:

8>>><
>>>:

Denote 2kðs� 1Þ þ ĉcðkÞ (the exponent of v4 in dðx̂xs
k=v

âaðkÞ
2 Þ) by Dðk; sÞ. The

next is the table which classified Dðk; sÞ according to the classes ĥh1; j ð2a ja 4Þ
or ĥh2; j þ ĥh2; jþ1 ð j ¼ 4; 5Þ (see (5.3)).

class exponent of v4

ĥh1;2 Dð0; sÞ

ĥh1;3 Dð1; sÞ, Dð7; sÞ, Dð7þ 4k1; sÞ

ĥh1;4 Dð2; sÞ, Dð5; sÞ, Dð6; sÞ, Dð5þ 4k1; sÞ, Dð6þ 4k1; sÞ

ĥh2;4 þ ĥh2;5 Dð3; sÞ

ĥh2;5 þ ĥh2;6 Dð4; sÞ, Dð4þ 4k1; sÞ
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In order to confirm that the set of elements (5.3) is linearly independent, it is

enough to check that two Dðk; sÞ belonging to the same class are di¤erent each

other. For example, Dðk; sÞ corresponding to ĥh1;3 are

Dð1; sÞ ¼ 2ðs� 1Þ;
Dð7; sÞ ¼ 27ðs� 1Þ þ 1;

Dð7þ 4k1; sÞ ¼ 27þ4k1ðs� 1Þ þ 27ð16k1�1 þ 16k1�2 þ � � � þ 162 þ 16þ 1Þ þ 1:

8<
:

Dð1; sÞ is clearly di¤erent from other cases because only Dð1; sÞ is even.

Moreover, we see that

Dð7; sÞ1 1 modð28Þ;

but Dð7þ 4k1; sÞ1 27 þ 1 modð28Þ:

because s� 1 is even, so Dð7; sÞ0Dð7þ 4k1; sÞ.
We also have to confirm that two integers Dð7þ 4l1; s1Þ and Dð7þ 4l2; s2Þ

are di¤erent each other whenever ðl1; s1Þ0 ðl2; s2Þ. Assume that

Dð7þ 4l1; s1Þ ¼ Dð7þ 4l2; s2Þ

with l1 < l2. Then we see that

27þ4l1ðs1 � 1Þ � 27þ4l2ðs2 � 1Þ ¼ 27ð16l2�1 þ 16l2�2 þ � � � þ 162 þ 16þ 1Þ

� 27ð16l1�1 þ 16l1�2 þ � � � þ 162 þ 16þ 1Þ

¼ 27ð16l2�1 þ 16l2�2 þ � � � þ 16l1Þ

¼ 27 � 16l1ð16l2�l1�1 þ 16l2�l1�2 þ � � � þ 16þ 1Þ

¼ 27þ4l1ð16l2�l1�1 þ 16l2�l1�2 þ � � � þ 16þ 1Þ:

Dividing both sides by 27þ4l1 , we have

s1 � 1� 24ðl2�l1Þðs2 � 1Þ ¼ 16l2�l1�1 þ 16l2�l1�2 þ � � � þ 16þ 1:

Observe that the left hand side is even (because s1 � 1 is even) while the right

hand side is odd in this equality. This is a contradiction and we can conclude

that Dð7þ 4l1; s1Þ0Dð7þ 4l2; s2Þ.
Similar statements are satisfied in other cases, too. Consequently, (5.3) is

a linearly independent set over Z=ð2Þ and thus B0 is isomorphic to our target

Ext0Gð2ÞðM 1
2 Þ.

Appendix A. A beginner’s guide to the calculation by Mathematica program

Here we exhibit some Mathematica programs which would be useful for

those who are working in BP theory. The programming is not so di‰cult, but
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there are few guides for programming in terms of Brown-Peterson theory or

related topics. That is why we think that it might be better to give explanation

for the program which we used to obtain the results in this paper.

Our steps to obtain the results in this paper were as follows: First we

used Mathematica to obtain the exact definition of âaðkÞ (4.2) and ŷyk (4.4).

Next we confirmed it both by Mathematica and by hand.

Because it is possible to make some mistakes in programming, it is not

good to depend only on calculating by computer, we think. However, it is of

benefit to reduce the amount of our computational jobs. (We usually waste

almost of our time to get exact definition of x̂xk and âaðkÞ!) So we checked our

results not only by computer but also by hand. In fact, the first author used

Mathematica to obtain the results of [6] and [2] in a similar way.

The first author studied how to program using Mathematica from some

programs by D. C. Ravenel. We thank him so much for giving us his useful

Mathematica programs and permission to exhibit some of them here.

A.1. Definition of some functions. We must specify a prime number at first.

For example, if we set p ¼ 2, then we write

Clear[p]; p = 2;

Denote li (generators of BP� nQ) by l[i] and Hazewinkel generators vi
by v[i] as usual. Because of formulas

pl1 ¼ v1

and pli ¼ vi þ
Xi�1

k¼1

v
pk

i�klk for ib 2

we can express l[i] using v[i] as

Clear[l, v, t];

l[0] = 1; l[1] = v[1]/p; t[0] = 1;

l[i_] := Expand[

(v[i] + Sum[v[i - k]^(p^k)*l[k], {k, 1, i - 1}])/p

]; i >= 2;

The following program (originally due to Ravenel) is designed in order to

define the algebra structure of the right unit hR : BP� ! BP�ðBPÞ.

(A.1) Clear[RU, RRU]

RU[x_ + y_] := RU[x] + RU[y];

RU[x_*y_] := RU[x]*RU[y];

RU[x_/y_] := RU[x]/RU[y];
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RU[x_^i_Integer] := RU[x]^i;

RU[x_Rational] := x;

RU[x_Integer] := x;

RU[x_Rational*y_] := x*RU[y];

RU[x_Integer*y_] := x*RU[y];

RRU[x_] := Expand[RU[x] - x];

Here the symbol RU means the right unit hR and RRU means the reduced right

unit hR � hL. Recall that hRðviÞ is given by the recursive formulas

hRðv1Þ ¼ phRðl1Þ

and hRðviÞ ¼ phRðliÞ �
Xi�1

k¼1

hRðv
pk

i�kÞhRðlkÞ:

If we denote hRðliÞ by RUonl[i], then the above formulas are rewritten

as

(A.2) Clear[RUonl]

RUonl[i_] := Sum[l[k]*t[i - k]^(p^k), {k, 0, i}];

RU[v[1]] = Expand[p*RUonl[1]];

RU[v[i_]] := Expand[p*RUonl[i]

- Sum[RU[v[i - k]]^(p^k)*RUonl[k],

{k, 1, i - 1}]];

Under these preparations, we can make the program calculate hRðviÞ. For

example, input as

In[1] := RU[v[1]]

RU[v[2]]

RU[v[3]]

Then the corresponding outputs are

Out[1] := 2t[1] + v[1]

Out[2] := -4t[1]3 + 2t[2] - 5t[1]2v[1] - 3t[1]v[1]2 +v[2]

Out[3] := -16t[1]7 - 4t[1]t[2]2 + 2t[3] - 56t[1]6v[1]

- 4t[1]3t[2]v[1] - t[2]2v[1] - 85t[1]5v[1]2

- 2t[1]2t[2]v[1]2 - 70t[1]4v[1]3 - 2t[1]t[2]v[1]3

- 36t[1]3v[1]4 - t[2]v[1]4 - 11t[1]2v[1]5

- 2t[1]v[1]6 + t[1]4v[2] - 4t[1]t[2]v[2]

- 2t[1]3v[1]v[2] - 2t[2]v[1]v[2] - t[1]2v[1]2v[2]

- t[1]v[1]3v[2] - t[1]v[2]2 + v[3]
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A.2. Programs for mod p calculation. Here we introduce some programs

which we actually used to obtain the results in this paper.

If there are so many processes in running programs, then a computer

would need very long time (or stop). So, whenever we do programming, we

must make our best e¤ort at designing programs so as to reduce the size of

computation.

When we do calculations modulo p, then we put the following program in

front of (A.1):

Clear[PM, PR, SP]

PM[x_] := PolynomialMod[x, p];

PR[x_, e_] := PolynomialRemainder[x, v[2]^e, v[2]];

SP[x_Plus, k_] := (#^(p^k)) & /@ x

SP[x_Times, k_] := (#^(p^k)) & /@ x

SP[x_Integer, k_] := x

SP[x_, k_] := x^(p^k)

and change the first line of (A.1) into

Clear[RU, RRU, padic, pdigits]

padic[i_] := IntegerDigits[i, p];

pdigits[i_] := Length[padic[i]];

the fifth line of (A.1) into

RU[x_^i_Integer] := Product[

SP[RU[x]^(padic[i][[pdigits[i] - k]]), k],

{k, 0, pdigits[i] - 1}];

and the fourth line of (A.2) into

RU[v[i_]] := PM[p*RUonl[i]

- Sum[RU[v[i - k]]^(p^k)*RUonl[k],

{k, 1, i - 1}]];

In the above program PM[(polynomial)] means the reduced polynomial

modulo ðpÞ, PR[(polynomial), e] means the reduced polynomial modulo ðve2Þ,
and SP[

P
i xi; k] (each xi is a monomial) means

P
i x

pk

i .

In this paper we considered the right unit M 1
2 ! M 1

2 nBP�ðBPÞ=ðt1Þ, so
we set

t[1] = 0; v[1] = 0;

Moreover, because M 1
2 is v3-local, we may also set

v[3] = 1;
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For dðx̂xkÞ ð0a ka 2Þ, input data of x̂xk as

Clear[a, x]

a[0] = 1; a[1] = p; a[2] = p^2;

x[0] = v[4]; x[1] = x[0]^p; x[2] = x[1]^p;

Do[

Print[""]

Print["d(x[", i, "]) is computed as follows:"]

Print[" a[", i, "]=", a[i]]

Print[" x[", i, "]=", x[i]]

Print[" d(x[", i, "])=", PM[RRU[x[i]]],

" mod (", p, ",v[1])"]

Print[" d(x[", i, "])=", PR[PM[RRU[x[i]]], 1 + a[i]],

" mod (", p, ",v[1],", v[2]^(1 + a[i]), ")"]

, {i, 0, 2}

]

Then the corresponding outputs are

d on x[0] is computed as follows:

a[0] = 1

x[0] = v[4]

d(x[0]) = t[2]4v[2] + t[2]v[2]4 mod (2,v[1])

d(x[0]) = t[2]4v[2] mod (2,v[1],v[2]2)

d on x[1] is computed as follows:

a[1] = 2

x[1] = v[4]2

d(x[1]) = t[2]8v[2]2 + t[2]2v[2]8 mod (2,v[1])

d(x[1]) = t[2]8v[2]2 mod (2,v[1],v[2]3)

d on x[2] is computed as follows:

a[2] = 4

x[2] = v[4]4

d(x[2]) = t[2]16v[2]4 + t[2]4v[2]16 mod (2,v[1])

d(x[2]) = t[2]16v[2]4 mod (2,v[1],v[2]5)

For dðx̂xkÞ ðkb 3Þ, programming becomes more complicated because there

are many monomials in x̂xk � x̂x2
k�1. The next program is designed in order to

make outputs easy to see.
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Do[Dx[j] = PM[RRU[x[j]]], {j, 0, 2}];

Result[k_] := (

DA[k, i_] = RRU[A[k, i]];

Dy[k] =

Collect[PM[Sum[PR[PM[DA[k, i]], aa[k]],

{i, ElementNum[k]}]], v[2]];

Dx[k] = Collect[PM[SP[Dx[k - 1], 1] + Dy[k]], v[2]];

RU[x[k]] = Dx[k] + x[k];

Print["If we set "]

Print[" a[", k, "]=", a[k]]

Print[" aa[", k, "]=", aa[k]]

Print["then we have "]

Do[Print[" d(A[", k",", i, "])=", PR[PM[DA[k, i]],

aa[k]], " mod(", v[2]^(aa[k]), "),"],

{i, ElementNum[k]}]

Print["Summing these congruences, we have "]

Print[" d(y[", k, "])=", Dy[k],

" mod(", v[2]^(aa[k]), "),"]

Print["Consequently, we obtain "]

Print[" d(x[", k, "])=", PR[Dx[k], aa[k]],

" mod(", v[2]^(aa[k]), ")"]

Print[" d(x[", k, "])=", PR[Dx[k], 1 + a[k]],

" mod(", v[2]^(1 + a[k]), ")"]

);

Here the symbols a[k], x[k], Dx[k] and Dy[k] mean âaðkÞ, x̂xk, dðx̂xkÞ
and dð ŷykÞ respectively, and aa[k] is a larger integer than a[k]. Notice

that we actually computed dðx̂xkÞ modulo ðvaa[k]2 Þ in the proof of Lemma

4.5.

Each A[k‚i] consists of elements added to x̂xk�1, i.e.,

ŷyk ¼
X
i

A[k‚i]

and DA[k‚i] is dðA[k‚i]Þ. ElementNum[k] is the number of such A[k‚i]

(so i runs from 1 to this number in the above sum).

The next program defines ŵwi ði ¼ 4; 5Þ in (3.3):

Clear[w];

w[4] = v[5]; w[5] = v[6] + v[4]*v[5]^2;
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Under these preparations, we are ready to compute dðx̂xkÞ for kb 3. For

example, input data of elements of x̂x3 � x̂x2
2 as

Clear[k, A]

k = 3;

A[k, 1] = v[2]^8*w[4]^4;

A[k, 2] = v[2]^7*x[0];

A[k, 3] = v[2]^(11)*w[4];

A[k, 4] = v[2]^9*x[1];

A[k, 5] = v[2]^(12)*SP[w[5], 2];

A[k, 6] = v[2]^(11)*v[4]^(16)*x[0];

A[k, 7] = v[2]^(10)*v[4]^4*x[1];

A[k, 8] = v[2]^(15)*v[4]^(16)*w[4];

A[k, 9] = v[2]^(13)*v[4]^(16)*x[1];

A[k, 10] = v[2]^(16)*v[4]^(16)*SP[w[5], 2];

A[k, 11] = v[2]^(15)*v[4]^(32)*x[0];

A[k, 12] = v[2]^(14)*v[4]^(20)*x[1];

ElementNum[k] = 12; a[k] = 12; aa[k] = 19;

Result[k]

Then the corresponding outputs show the same results as described in the

proof of Lemma 4.5. We have got the results on dðx̂xkÞ for higher k in similar

ways. We believe that interested readers can follow kb 4 cases, referring to

the above-mentioned programs.

To obtain dðx̂xkÞ we needed about 1.733 second for k ¼ 3, 0.233 second for

k ¼ 4, 1.233 second for k ¼ 5, 0.817 second for k ¼ 6, 0.4 second for k ¼ 7,

11.967 second for k ¼ 8, and so on, with Mathematica Ver. 4.1 and 667 MHz

PowerBook G4 with Mac OS Ver. 9.2.2.

Of course, we think that the programs exhibited here might be naive and

that some professional persons can make better programs. We will appreciate

it if the reader could show us a better way.
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