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ABSTRACT. Sampling theorems are one of the basic tools in information theory. The
signal function f whose band-region is contained in a certain interval can be recon-
structed from their values f(x;) at the sampling points {x;}. We obtain analogues of
this theorem for the cases of the Fourier—Jacobi series, the complex sphere S”~! and the
complex semisimple Lie groups. And as an application of these formulae, we show a
version of the sampling theorem for the Radon transform on the complex hyperbolic
space.

1. Introduction

Sampling theorems are one of the basic tools in information theory
and various types of sampling theorems are obtained in many papers. The
Shannon sampling theorem is well known as a fundamental tool. A signal
function is called to be band-limited if its band—region is contained in a certain
interval. In the terminology of Fourier analysis, the band-limitedness con-
dition is equivalent to the condition that the support of the Fourier transform
f of feL?R) is contained in a certain interval. The Shannon sampling
theorem yields that if a function f e L?>(R) is band-limited, then f can be
reconstructed by samples taken at the equidistant sampling points. We are
interested in generalizing sampling theorems to the cases of homogeneous
spaces. In this paper, we obtain analogues of this theorem in the cases of
the Fourier-Jacobi series, the complex sphere S”! = U(n)/U(n—1) and the
complex semisimple Lie groups.

On the other hand, the problem how to recover the values of the functions
from the samples of their Radon transforms is studied in the theory of the
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computerized tomography. There are also many papers related to these
tomographic inversion problems. We can find a number of algorithms in the
book of Natterer [9]. An irregular version of this problem is studied in the
paper [4]. In [2] we study the Fourier reconstruction algorithm and extend
this algorithm to the case of Riemannian symmetric spaces. In [2] we fix a K-
type 0 and give the reconstruction formula for the function of type 0 on the
Riemannian symmetric space G/K. By using this, the reconstruction formula
for the band-limited function can be formally constructed. In this paper, by
taking sampling points suitably, we concretely construct the sampling function
for the complex sphere. And using this, we obtain a version of the sampling
theorem for the Radon transform on the complex hyperbolic space.

We shall describe here the context of this paper. Section 2 is devoted
to the overview of the Shannon sampling theorem on R? and the regular or
irregular sampling theorems on the torus T¢. These are directly proved by
using the Lagrange interpolation theorem. In Section 3, applying the sampling
theorem on T¢, we show a sampling theorem for the Fourier—Jacobi series. In
Section 4, with the help of the Shannon sampling theorem on RY, we give a
sampling theorem for the complex semisimple Lie group. Section 5 is devoted
to showing a sampling theorem for the complex sphere S"~! = U(n)/U(n — 1).
In this case, the spherical functions of the U(n — l)-invariant irreducible
representations of U(n) are written in terms of the Jacobi polynomials. So by
using the sampling formula for the Fourier—Jacobi series given in Section 3 and
the sampling formula for the torus given in Section 2, we can obtain a sampling
theorem for S"-!. In Section 6 we consider the Fourier reconstruction al-
gorithm for the case of the complex hyperbolic space. Applying the Shannon
sampling theorem on R? and the one on S" ! to this theorem, we can get a
version of the sampling formula for the Radon transform on the complex
hyperbolic space.

2. Sampling theorems on the Euclidean space and the torus

We shall first survey the sampling theorems on the Euclidean space and the
torus. These theorems are used to derive sampling theorems for the complex
semisimple Lie groups and the complex sphere S”~!. For details, see [2, 7].
The Fourier transform f of f e L'(R?) is defined by

- 1
f(/t):W

Here 4 - x denotes the natural inner product of 4 and x. f € L*(RY) is called
to be band-limited on [—L,L]? if supp f = [-L,L]Y. Then the following
proposition is called the Shannon sampling theorem.

J e f()dx,  (heRY),
R(/
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PrOPOSITION 2.1 ([7, Theorem 14.1]). Ler f € L*(RY) be band-limited on
[—L,L]Y. Then f is reconstructed by

f(x) = Z f(%k) jljsinc(%xj _ kj),

keZ!
where k = (ky,... ks) e Z? and x = (x,...,xq) € R

The Shannon sampling theorem is called a regular sampling theorem
because, in this theorem, the samples are taken at the equidistant sampling
points.

On the other hand, in the case of the torus TY = RY/(2zZ)?, various
types of sampling theorems are given in [2, 7). For pe L'(T9), its Fourier
transform p is defined by

= 7; efim»() m d
pm) = <zn>dL«”(9’ a0, (mez).

And the inversion formula is the following:

p(0)= 3 plm)e™. 2.1)

meZ?

In this case, the band-limitedness condition is interpreted as the condition
that the support of p is a finite set. We call p e L*(T¢) is band—limited
on {—=Np,...,Ni} x---x{=Ng...,Ng} if suppp<{—Ni,...,Ni} x---X
{=Ny,...,Ng}. In this case we can directly obtain an irregular sampling
theorem on T? by way of the Lagrange interpolation formula.

ProposITION 2.2 ([2, Lemma 3]). Let 0, _y,,...,0, n, be 2N, + 1 distinct
numbers in [—m, ) for each £ =1,...,d. If a function p e L*(T) is band—
limited on {—Ny,...,N1} x -+ x {=Ng,..., Ny}, then we have

PO 0= D . > pOiks--0ak)SE N O 00),

where
d it, i0, ;
~d — e
SNI""’N“(Hl Qd) = e_ZZ/:lN/(H/_H/-"‘/) H | I —e ¢ (2 2)
ks kg LA ek, — o004, [ ’
(=1 \jr#ke

RemARk. If we take 6, = kn/(2N; + 1), (ks = =Ny, ..., Nyt =1,...,
d) in (2.2), then we have
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a1 _ =
d s1n2<9/ 2N/+1>
i (ke=Jjo)m ’
(=1 \jo#ke S 55T

(2.3)

and Proposition 2.2 gives a version of the regular sampling theorem on T¢.
In [7], there is another version of the sampling theorem on T which is
deduced from Cauchy’s formula.

ProposiTION 2.3 ([7, Example 4.1]). If pe L*(T) is band-limited on
{=N,...,N}, then we have

p(0) = i: » 2kn 1 XN: o~/ (0=2kn/(2N+1)
= 2N+ 1) 2N+ 1 4~ '

We shall next describe a sampling theorem for the Radon transform on
R? that is called the Fourier reconstruction algorithm (see [9, Chapter 5)).
Let %(R?) denote the set of rapidly decreasing functions on R2.  For
f e %(R?), its Radon transform Rf is defined by

[ee]

(Rf ) (g, 1) = J f(rcos ¢ —tsin ¢, rsin ¢ + t cos ¢)dr,

-0

(reR,w4 = (cos ¢,sin ¢) € T).

It is known that the Fourier transform of f is the composition of the Radon
transform Rf and the l-dimensional Fourier transform %, with respect to the
second variable r:

fray) = 2r)"A(F(RY)) (@4, ). (2.4)
This formula is called the Fourier slice formula. Let L,N > 0. We call that
[ €%(R%) is band-limited if
(1) supp f ={¢eR%|¢| <L)

2) L [T f(zwg)e ™ dp =0 for |m| > N.

The Fourier reconstruction algorithm is performed by the following process.
Since

(Z2(RN) (w4, 7) = 27) *f(rwg) =0 for || > L,
it follows from the Shannon sampling theorem that
(Rf)(wy,1) = Z(Rf) oy %) sinc Er—n .
7 nel L n

And hence from the Fourier slice formula (2.4) we have
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fwg) = Y (Rf) <w¢, z ) z_lnji sinc (%r - n> eI d

nel
—Z (Rf) (wqﬁv > mm/LX(fL,L)(T)»
nel

where y_; ;)(tr) denotes the characteristic function of the open interval
(=L,L). Applying Proposition 2.3 to the last equation, we have

1 —innt/L S —il(p—¢
TQ)¢ Z Z Rf <w¢,; )2]4(2]\74—1)6 innt/ X(fL,L)(T) Z e it ( /c)7

—NneZ /=—N

where ¢, = 2kn/(2N +1). Noting

N 1 2n )
Fult) =5, | " Fwwg)e ™ ag
- 1 —innt/L —img
:kZNZ;(Rf) (U’rﬁ“ )2L(2N+1)e X(—rn)(T)e ™%,
we have
e WG
7277.' R?
= Y ime™ | £ ( rt)tdt X = rwyg
> e [ @ ds (x=rou)
1
= 3% S (on ) s

L
Mo im(0—g¢y.) J —innt/L
X i e Jn(ro)T dr.
E . (r7)
Here J,, denotes the Bessel function of the first kind. We use the sampling

theorem on the Fourier—Bessel transform (cf. [8]) to compute the integral
appeared in the last equation. We set

L
p(r) = J e~ mILy (rt)T dr.
0

Because ¢ is band-limited on [0,L] with respect to the Fourier—Bessel
transform

o(t) = J% o(r) o (ro)r dr,



130 M. EBaTA, M. EcucHi, S. Koizumr and K. KUMAHARA

we have from the sampling theorem on the Fourier—Bessel transform that

zoo: 2}’/] ) JL —mm'/LJ rdrt
V —LV JerI(V() 0 " L '

=1

where {r;} denotes the set of positive zeroes of J,. Summarizing these, we
have the following proposition.

PROPOSITION 2.4. Let L, N > 0 and assume that [ € 4(R?) is band—limited
in the above sence. Then f is reconstructed as follows:

VCO() Z Z Rf <a)¢“ ) 2NL+ 1

—NneZ

0

i o1(0—¢) Cmnty Jm Lr )
X Z ! Z 2 2
m=—N /=1 V - L m+l (V/)

where ¢, =2kn/(2N + 1) and cpy = fol e~ ], (r,7)T d.

The concepts of the Radon transforms are generalized by various ho-
mogeneous spaces (cf. e.g. [5, 6]). In [1], Berenstein explaines how the Radon
transform on the hyperbolic plane is utilized to solve the problem of Electrical
Impedance Tomography. So we think that it is meaningful to study the
generalization of the above proposition to the cases of homogeneous spaces.
In Section 6, we shall treat the case of the complex hyperbolic space.

3. A sampling theorem on the Fourier—Jacobi series

We shall first summarize the notation of the Jacobi polynomials and the
Fourier-Jacobi series. For the detail of the Fourier—Jacobi series, see [10].
Let o,f>—1 and put p=a+pf+1. Let neZsy. The polynomial

1
R;a’ﬁ)(x)_zfﬁ(—n n+p,oc+1 2x)a (—1SXS1)

is called the Jacobi polynomial. Here ,F; denotes the Gauss hypergeometric
function. It is known that the system {RSf"ﬁ)(x);n €Zsy} is an orthogonal
system with respect to the measure

I'(p+1)
20 (a+ 1)I(B+1)

duP (x) = (1—x)*(1 + x)Pdx.

Moreover, it is satisfied that
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M (p+ )+ DI(B+n+ 1)
(p+ 20 (p+mI(a+n+ DIF+1)

(= (dP), say). (3.1)

1
|| repaun o -
-1

For f e L*([-1,1],du*P)(x)), its Fourier—Jacobi transform f is defined by

1
F =] SR @ ).

And the inversion formula is the following:

£ = dD ) R (). (32)
n=0

The above series is called the Fourier—Jacobi series of f.
Take x =cos 20, (0 <60 <=x/2). Then it follows from (3.2) that

N
f(cos 20) = Z d*P f(n)R*P (cos 20).
n=0

By definition, R*P (cos 20) is a polynomial of sin 6 with degree 21 and hence f
is a polynomial of e with degree at most 2N. Then the following theorem
is easily follows from Proposition 2.2 with d = 1.

THEOREM 3.1. Let x_ay,...,xaoy be 4N + 1 distinct points on [—1,1). If
e L2([-1,1],du*P)(x)) is band—limited to {0,...,N}, then we have

N
f(x) = Z S SEY <; cos~! x>,

k=—2N
where SZN is given in (2.2).

REMARK. As is well-known (cf. [6, 10]), the spherical functions on the
compact isotropic Riemannian spaces are written in terms of the Jacobi
polynomial. We thus have a sampling theorem for the spherical transform on
the compact isotropic Riemannian spaces as special cases of Theorem 3.1.

4. A sampling theorem on the complex Lie group

In the case of the complex semisimple Lie groups, since the zonal spherical
functions and the Harish-Chandra c-functions are explicitly written, we can get
a sampling theorem on such groups by way of the Shannon sampling theorem
on the Euclidean space.
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Let G be a complex semisimple Lie group of rank r and K a maximal
compact subgroup of G. We denote by g and f the Lie algebras of G and K,
respectively. Let g =f+ p be a fixed Cartan decomposition of g with Cartan
involution #, a a maximal abelian subspace of p, and 2 the corresponding set
of restricted roots. The Killing form <-,-» induces an inner product on a and
on its dual space a*. Let M’ and M be the normalizer and the centralizer of a
in K, respectively, and denote by W = M'/M, the Weyl group of G/K, and let
w be its order. Fix a positive Weyl chamber a™ and put AT =exp a™. We
then obtain the Cartan decomposition G = KATK. Let X be the corre-
sponding set of positive restricted roots and |XT| be its order. For ae X,
g, denotes the root subspace and m, = dim g, the multiplicity of «. Let n=
Syes+ 9, and p=13" .muo. Then g=Tf+a+n is an Iwasawa decom-
position of g. Let N denote the analytic subgroup of n. Then we have G =
KAN. For xe G, H(x)ea denotes the element uniquely determined by
x € Kexp(H(x))N. For ae A, we sometimes write loga instead of H(a).
We choose an orthonormal basis {Hj,...,H,} of a and its dual basis
{e1,...,&} of a* and identify both a and a* to R". We normalize them by
multiplying (271)7’/ % and denote them by dH and dA, respectively. According
to the Cartan decomposition, we have a Haar measure dg = A(H)dk,dHdk,
on G. Here A(H) = [],.5+ sinh” «(H). The zonal spherical function ¢, on G
is given by

9:(9) = J elF=)HK)) g (ge G, Aea").
K

We set
I ={Aea";—L<{gy<L fori=1,2,...,r}.

For /e ¢(K\G/K), the space of rapidly decreasing functions on K\G/K, its
spherical Fourier transform f(1) is given by

7= | ftexo typ stexp At

And the inversion formula is the following:

flexp 1) = | Fs(exp H)Je(2)| 2d
Let fe%(K\G/K) be such that supp(f) <l;. Similarly to the case of
Euclidean sapce, f is called to be band-limited on /;. From [3, p. 251], we
have

w(p)A(H) f (exp ) = | Flaym(-in)e ™ s,

a*
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where (1) = [[, .5+ <4, ). By definition, n(—il) is a polynomial on a* and
hence the support of f(A)z(—il) is also contained in I,. And the function
H — A(H)"?f(exp H) on a is square—integrable with respect to the usual
Euclidean measure dH. Consequently, applying Proposition 2.1 to the func-
tion H — (H)l/zf(exp H), we have the following theorem.

THEOREM 4.1. Retain the above notation. Suppose that [ € €(K\G/K) is
band—limited on I;. Then f is reconstructed as follows:

r 1/2 r
flexpH)= Y AH)4 (Z%niH,) f(expz%niH,)
i=1

(ny,econ) €L’ i=1
L L

X sinc| —¢g(H) —n; ).
[T sine( o) )

5. A sampling theorem on the complex sphere

Let S7~! be the unit sphere ||+ ---+|&,[>=1 in C". The unitary
group U = U(n) acts naturally on S"~! and the stabilizer of the element e, =
’(0,...,0,1) e S"~! is isomorphic to K=U(m—1). So S"!~U/K. We
define the elements dj(¢) and g;(0) in U by

I
() cos 0 sin 0
(o) = di ip (0) —
d(p) = diag(l,..., 1% 1. 1), g(0) o ,
L

where 0 <¢; <2z and 0 <0; <m/2. For any ge U, we define ¢,,...,9,,
0y,...,0,_1 as follows:

Let ge, ="'(&,...,&,). We set g, =argé and r;=4/>0 &% If
1 =0 and ri; # 0 for some k, we set 6 =--- =60, =0. And for j > k, we

give 0; by cos 0; = |&;,1|/rjr1 and sin 0; = r;/r;;1. Then an arbitrary ge U is
written as

g = di(9))d2(92)91(61) - . . du(@,,)gn—1(0n-1)k, (k € K). (5.1)
By using this polar coordinate system, we write g € U/K as
g(wae) = g((ph' "7¢117915 .. '76'1—1)
= d\(p1)d2(92)g1(01) - - - dn(0)gn-1(On-1). (5.2)

We set A = {gn—1(0,-1)} and U,(1) = {d,(p,)}. We consequently have the
Cartan decomposition U = KU,(1)4K. Let dgx denote the Haar measure on
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U/K normalized so that the total measure is 1. Then under the above Cartan
decomposition, we have

(n—1)!
2n"

n n—1

dgx = [T do; T sin™ " 6k cos 6x db.

j=1 k=1

Let V), , be the set of harmonic polynomials in z € C" of bidegree (p,q). We
define the action 7, , of U(n) on V,, by

(tp.4(9)0)(z,2) = (/’(gilz» 9712)7 (e Vpq)

Then (7,4, V), ) is a class 1 representation with respect to K. We use the
terminology of the Gel’fand-Tsetline basis for U(n) to denote the elements in
V,q We set

1 ’ 1
<n+lZ)> = {(ml,...,m() eR/;mje mZ and

m; —mjy1 € Lo for all j}.

A sequence M = (my,,m,_1,...,m) is called a Gel'fand-Tsetline data if
1 J
(1) my=(myj....m;)e <n+1z);
(2) mjx —mjp1 € Lzo and myj g1 — mji1 k € Lxo.

Let (7;,¥;) be a finite dimensional irreducible representation of U(n) with
highest weight A. It is known that for any Gel'fand-Tsetline data M = (m,,
my,_1,...,m) with m, = J, there exists an element v(M) € V, such that the set
{v(M)} forms a basis for V. This basis is called a Gef’fand—Tsetline basis.
For detail, see [11, Vol. 3, p. 363].

We restrict our attention to the case of (7,4,V,,). Let ps,....p,€
Z-o, ¢2,...,qn €Ly and reZ be such that p=p, > p,_1 == p2, ¢ =
Gn = qn-1 = ---=¢q>» and —qr < r < po, respectively. For a previous r, we
define py,q; € Z>o by p; = max{r,0} and ¢; = —min{r,0}. In the following
we interprets pg, qo as 0 when they appear in a calculation. We define m;

Jj=2
by m; = (p;,0,...,0,—¢;), (j=2) and m; = (r). We define the Gel’fand—
Tsetline datas M and M, by M= (m,,m,_,...,m;) and M= (m,,

. HIA .
0,-1,...,0;), respectively. Here 0, =(0,...,0). Putting p= (p,,...,p1) and
q=1(qn,---,q1), we frequently write (p,q) instead of M. Keeping these
notation, we define the spherical function @, ,(9) on U/K by
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‘D(p,q)<gK) = <Tp,q(gK)U(M0>7 v(p, )>qu

The explicit expression of @, ,(g) is given as follows (see [11, Vol. 2,
p. 313]):
For the above Gel'fand-Tsetline data M = (p,q), we put o; = p; +¢q; +

J=V1 bj=pixi—pi—qi1+q; B=Ib| and y; =min{p;s1 — pj,qi11 — g}

Moreover we put
1/2
(.8;)
b(p,q) { n _ 1 1Dn— IH ! }
(o, B)

where d, is the constant given in (3.1). Using these notation and the
Cartan decomposition (5.1), we have

n n—1
D(p.0)(9(0, OK) =b(p o 1_[1 e ]1_[1 sin” % O cos/t O R\ (cos 20,). (5.3)
Jj= =

For f e L*(U/K), its Fourier transform f(p,q) is defined by

F(p.a) = jw 1(9(0.0K)®(y 4 (90, DK ) dys.

And the Plancherel inversion formula is the following:

Pn An

f(g ZZZZ

Pn=Dn—1 4n=4qn-1 Pn—1=Pn-2 4n—-1=4n-2

Py 43 P2

NSNS 0. (90, 0)K).

P2=0 x=0r=—q2

After these preparations, we can deduce a sampling theorem for the complex
sphere. By the explicit expression of @, 4, the Fourier transform f (p,q) can
be regarded as the composition of the Fourier transform on T” related to
the variable (¢;,...,¢,) € T" and the Fourier—Jacobi transforms related to
the variables 6;,...,0,_;. Therefore we obtain a sampling formula for the
complex sphere by combining the sampling theorem for T" (Proposition 2.2)
and the one for the Fourier—Jacobi series (Theorem 3.1). This theorem is used
to show a sampling theorem for the Radon transform of the complex hy-
perbolic space in Section 6.

In Section 2, to get the expression of the reconstruction formula on R?
(Proposition 2.4), we use the regular sampling theorem on T. For constructing
a similar sampling function to the case of R?, we shall here take the samples at
the equidistant sampling points on T” and use the sampling function given in
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(2.3). Let Ny,...,N,€Zso be such that N, > N,,_; > --- > N;. We call that
f e L*(U/K) is band-limited on the n-tuple (Ny,...,N,) if f(p,q) =0 unless
0 <max{p;,q;} <N;for j=1,...,n. We suppose that f € L?>(U/K) is band—
limited on the n-tuple (Ny,...,N,). Then it is easy to check that —N; < b;_; <
N; for j=1,...,n. And we have from the Plancherel inversion formula
that

N> N, N3 N3

.08 = 3 {z 3PP

P2=P1 42=41 P3=P2 43=

Z Z f(p.q)Pp.q)(9 (%9)1{)} (54)

Pn=Pn—1 4n="

We first note that sin?% 0, cosPx HkR ol ")(cos 20;) is a polynomial of e+
with degree px + qx + f; + 29, = pi+1 + qi+1.  Therefore the right-hand side
of (5.4) is a polynomial of e ... e*®-1 with degree at most 2N,,...,2N,,
respectively. Therefore by using Proposition 2.2 and remark, we have the
following theorem.

THEOREM 5.1. Let Ny,...,N, € Zsy be such that N, > N, > ---> N
and suppose that f € L*>(U/K) is band-limited on the n-tuple (Ny,...,N,). Let
Oj.1,» (kj = =2Njy1,...,2N;1) be distinct points in [0,7/2] for each j=1,...,
n—1. And we put ¢; ;. = ki/(2N;+1) for j=1,...,n and k; = =N, ..., N;.
Then f is reconstructed by

Sf(g9(p,0)K)
Ny N, 2N, 2N,
k=N,  kp=—N, (1=—2N>  (4_1=—2N,

X f(g(¢l,k17 <o Pk 01,/17 s 70n_]¢/;1—1)K)

x Spt Mo 0) ST 01) SN (00),
®1,-..,0,) are given in (2.3) and Sf,fv"(ﬁk) are given in (2.2) with
d=1.
6. A sampling theorem on the complex hyperbolic space

In this section, as an application of Theorem 5.1, we give a sampling
theorem for the Radon transform on the complex hyperbolic space. Let
G=S8U(n,1), (n>2) and define subgroups K, 4 and N of G by
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K= {(X u);Xe Un),ue U(1),udet X = 1},

Infl
A=Xa;,= cosht sinht |;teR 3,
sinh z cosh ¢
L, z —z
N=Ln(zu)=| -z 1l-w2 /2 |izeC" " ueciRw=|z*-2u

-z —w/2 1+w/2

Then we have an Iwasawa decomposition G = KAN. For ge G, we
define #(g) eR by ge Kay,N. By a simple calculation we have #(g) =
log|g(e, + e,41)/V2|. The Lie algebra a of A4 and the centralizer M of a in K
are given by

M= u XeUmn—1),ueU(l),u*det X =1
u

In our case K/M can be identified with the complex sphere S”~!.  We thus give
the coordinate system on K/M induced from the polar coordinate system on
S"=1 described in the previous section. Let dk denote the invariant measure
on K normalized so that [, dk =1. We identify R with 4 via the mapping
t — a, and da, denotes the measure on 4 indeuced from the measure (27)”"/2dt
on R. We write dn for the invariant measure on N given by
dn =dn(z,u) = # dzdzZdu.

Denoting a* by the real dual of a, we identify a and a* with R via the
correspondence H, — t and A+ A(H;), respectively.

We define the invariant measure dg on G by dg = e?" dkda,dn. Let dgx

be the measure on G/K such that

L £(g)dg = JG/K jK 1 (gk)didg.

Let ¥(G/K) denote the space of rapidly decreasing functions on G/K. For
f €¥(G/K), its Radon transform Rf and Helgason—Fourier transform f are
defined by
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(Rf) (kM. a,) = JNf(ka,n)dn,

kM, ) = J f(g)el =) gy
G/K

And the Fourier inversion formula is the following:

f(g)zlj J e £ M | ) e(2)| 2 dkd 2. (6.1)
K/M Ja*

2
Here ¢(1) is the Harish-Chandra c-function.
In the case of the Helgason—Fourier transform on the Riemannian
symmetric space, the Fourier slice formula is given by the following form:

f(kM, 1) = L TN RN (KM, a;)da. (6.2)

We shall here prove a sampling theorem for the Radon transform by using the
Fourier reconstruction algorithm that is similar to the case of R%. Let L >0
and Ny,...,N, € Z> be such that N, > --- > N;. We call that f € 4(G/K) is
band-limited if

(1) supp(f) = K/M x {ieR:|i| <L};

() S SM,2) @ gy (kM)dlcps = 0 unless 0 < max{p;,q;} < N;.
The Fourier slice theorem (6.2) yields that the Fourier transform of f(kM, 1)
on A is equal to e™(Rf)(kM,a;). Therefore using the Shannon sampling
theorem, we have

e"(Rf)(kM,a) = """ (Rf) (KM, 1) sinc <§z - p>, (6.3)

peL

(see [2, Lemma 3.1]). Substituting (6.3) into (6.2), we have

f(kM, ) = Z(Rf)(kM’al’”/L)J "L ginc (ét _ p) e da,
A T

peL

T —iA+n)(pr
S R M) ) (64)
peZL

In this case, by using Theorem 5.1, we can explicitly construct the recon-
struction formula for (Rf)(kM,a,,r) (cf. [2, Corollary 3.4]). From the as-
sumption (2), (Rf)(kM,a,,;) is band—limited to the n-tuple (Ni,...,N,) as a
function of S"~! and hence
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(Rf) (ka apn/L)

N, 2N, 2N,
ZN] k;N /1;]\,2 loe 1Z—:zzv,,

X (Rf)(k(wl,klv"'(pn,k”v O ryseOnr,r, )M, apn/L)

x Spt Moy, 0) ST (00 - ST (On), (6.5)

where 0;, are chosen as arbitrary distinct points in [0,7/2] and ¢, =
kin/(2N; +1). We set

Sli\:,l’“:}clv,”/lr,w/n,l (kM) = Nl’ 7 ((017 R ¢n>S/%1N2 (6 ) S/zfv’;(gnfl)'

Substituting (6.4) and (6.5) into the Fourier inversion formula (6.1), we finally
obtain the following theorem.

THEOREM 6.1. Let L >0 and Ni,...,N, € Z~y be such that N, > --- >
Ni.  Assume that f e ¥(G/K) is band-limited. Then f is reconstructed as
follows:

N+1 N
PEZ/ﬂ:—M kn=—Ny
2N, 2N,

Z (Rf)(k((ol,klv <o Pk, 01«/17 s 0"—17/,171)M’ apn/L)

/1=—2N, ln1=—2N,

N N ,, ~
S| L S )

x e~ M) | (22 dkepyd .
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