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ABSTRACT. Imanishi, Jinzenji and Kuwata provided a recipe for computing Euler
number of Grassmann manifold G(k, N) using physical model and its path-integral
[S. Imanishi, M. Jinzenji and K. Kuwata, Journal of Geometry and Physics, Volume
180, October 2022, 104623]. They demonstrated that the cohomology ring of G(k, N)
is represented by fermionic variables. In this study, using only fermionic variables, we
computed an integral of the Chern classes of the dual bundle of the tautological bundle
on G(k,N). In other words, the intersection number of the Schubert cycles is obtained
using the fermion integral.

1. Introduction

1.1. Background. In this study, we aim to compute the intersection numbers
of Schubert cycles. We used fermionic variables and their integrals in [§8]. In
this section, we explain the background of the study. The complex Grassmann
manifold G(k,N) is the space parameterizing all k-dimensional linear sub-
spaces of N-dimensional complex vector space €CV. Because the elements of
its cohomology ring are represented by the Poincaré dual of some Schubert
cycles of G(k,N), their integral provides the intersection number of Schubert
cycles. This research is called Schurbert calculus, and has been studied in
combinatorics, representation theory, and other fields [6]. The integral of these
cohomology classes can be computed using localization theory or the Landau-
Ginzburg formulation. In the localization theory, a fixed-point theorem for
a compact manifold with torus action is used. In particular, the formula for
the intersection number is provided using the localization theory [5, 9, 11].
However, the Landau-Ginzburg formulation [2, 10] uses a potential function
provided by the total Chern class of the tautological bundle of G(k,N) and
residue. However, we do not use these theories. We employed the theory of
[8]. Imanishi et al. constructed a physical toy model for computing the Euler
number of G(k,N). The model was constructed using two types of variables.
One is a commutative variable called a bosonic variable, while the other is an
anticommutative variable, called a fermionic variable. In [8], it was found that
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the cohomology ring of G(k, N) can be represented by fermionic variables, and
that the Euler number is provided by their integral. Therefore, the intersection
number of Schubert cycles can be obtained using fermion integrals. Generally,
it is difficult to perform this calculation. However, in some cases, the number
of intersections can be calculated using this method. In this study, we demon-
strated the use of the method of [§].

1.2. Organization of the paper. This paper is divided into two sections.

In Section 1, we describe our background and theorem. In addition to
the background described above, we introduce the relationship between Chern
classes and Schubert cycles, our theorem in this paper, and the theory in [8§].
First, we remark on Chern classes and Schubert cycles. Next, we introduce
the theorem. Finally, we introduce the relation between the Chern classes and
fermionic variables in [8].

In Section 2, we provide the proof of our theorem. We computed the
fermion integral to prove the theorem. We also summarize the important
results of the fermion integrals.

1.3. Chern classes and Schubert cycles. In this section, we explain the rela-
tion between the Chern classes and Schubert cycles and our theorem. In this
study, we employed the notation in [8]. First, we introduce the cohomology
ring of G(k,N) [1, 8], and then remark on a tautological bundle S and
a universal quotient bundle Q. The fiber of S at A€ G(k,N) is the com-
plex k-dimensional subspace 4 C €% itself (rk(S) = k). Subsequently, a uni-
versal quotient bundle Q (rk(Q) = N — k) is defined by the following exact
sequence:

0—-S—-C"—-0—-0, (1.1)

where €V denotes the trivial bundle G(k, N) x €. We write ¢;(E) as the i-th
Chern class of the vector bundle E. Let E* be the dual bundle of E. Sub-
sequently, the cohomology ring H*(G(k,N)) of G(k,N) is

R[ci(S7),...,c(S7),c1(Q%), .-, en 4 (Q7)]
(c(S*)e(Q*) =1) '

Consider the problem of representing H*(G(k,N)) using ¢;(S*) (j=1,2,...,k).
This was presented in [8]. If we decompose S* formally by line bundle L;
(i=1,2,...,k):

H*(G(k,N)) =

(1.2)

S' =L, (1.3)
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¢(S*) and ¢;(S*) are expressed as follows:
k k )
o8 =T+ 6) =1+ ei(S7),  (xi:=c1(Ly)). (1.4)

i=1 =1

Hence, ¢;(S*) is written as the degree j elementary symmetric polynomial of

X1y...,X;. Then, the relation ¢(S*)c(Q*) =1 can be rewritten as
c(Q") = L _ ! = ia-ti (1.5)
«(S*) 1+ Z]il te(S*) = o .

We can rewrite ¢; in (1.5) as
(0 =a; (i=1,2,...,N—k), a=0 (i>N-—k). (1.6)

Moreover, a; is the degree i homogeneous polynomial of ¢;(S*)’s (j =1,2,...,
k). Thus, ¢;(Q*) in (1.2) can be rewritten as ¢;(S*). Consequently, we obtain
another representation of H*(G(k,N)):

Rlci(S*), ..., ck(S™)]
(a;=0 (i>N—k)"

H*(G(k,N)) = (1.7)

Second, we introduce the Schubert cycle and explain the relationship between
Chern classes and Schubert cycles. For a more detailed discussion, please
refer to [4]. For any flag V:0C Vy C Vo C--- C Vy = €V, Schubert mani-
fold ¢,(V) is defined as follows:
o,(V)={AeGlk,N)|dm(ANVy_piia)=i (1<i<k)}, (1.8)

where a = (a,...,a;) denotes a sequence of natural numbers that satisfies
O<ax <ar1<---<ag <N—k. o,V)is a subvariety of G(k, N) of dimen-
sion szz1 a;.  The homology class of a,(V) is independent of the chosen flag.
Therefore, let o,(7) as the homology class be denoted by g,. Let o) be the
Poincaré dual of the cycle g,. For simplicity of notation, we omit 0 from a.
,,,,, a, denotes a4, 4. a,0,..,0- The relationship between i-th
Chern class of a vector bundle £ and that of its dual bundle E* is provided by
¢i(E*) = (=1)'¢;(E). From this formula and the Gauss-Bonnet theorem, we
obtain:

(™) = (=1)'ci(S) = a] | =) (1.9)

Finally, we introduce.
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THEOREM 1.
k=1
(o) = ey — gep L0 7 (1.10)
1 N-T
Gk, N) [liv— /!

kN—k2=2
L(k e )

(kN — k2 = 2){(N —k)(N —k + Dk(k— 1) T /!
2 H;/Svlfkﬂ.

kN —k2—4 2
L(/ i (o)
i

(1.11)

(KN — k? — &N — k)(N — k + Dk(k — 1)
4

[T /
X ﬁ[k(k— 1)(N —k)(N —k—1)
j=N—k J*

+2(k —2)(k—3)(N—k)+4(k—2)(N -k - 1).  (1.12)

Here, we assume that N and k in (1.11) and (1.12) satisfy kN —k*> —2 >0 and
kN — k? —4 > 0, respectively.

Note that these are the intersection numbers of o;n and ¢,. However,
the results of (1.10) are already well known [2, 3]. When k = 2, the intersec-
tion numbers of ¢}, and o], in G(2,N) are known [2].

VPN gy g e -2-n)
1@ (N=2-DI(N-1=1])"

(1.13)

(It is also derived by S. Imanishi’s Masters thesis using fermionic variables
[7].) In particular, we obtain the following results from (1.10), (1.11), and
(1.12):

v ooN4 (2N —4)!
JG(Z,N)(UI(I)) - (N*2)'(N* l)'7 (114)
v - \% o (2N—6)'
JG(Z,N)(O-I(I) 2N 6(0-1(2)) - (N* 3)'(N* 2)'7 (115)
v \ _ (2N— 8)'
JG(2 N)(O'lm)zN 8(0'1(2))2 — (N - 4)'(N — 3)' . (1.16)
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1.4. Fermionic variables and Cohomology ring of G(k, N) (Review of [8]). We
summarize the representation of the cohomology ring of G(k,N) using fer-

mionic variables [8]. We introduce the fermionic variables v/, Yl (s=1,...,
N—k,j=1,... k) and (k x k) matrix

1,1 1k
el
@ = E . ) E . (1 17)
A
The fermionic variables 1//{ , 1//3{7 satisfy the following conditions.
W] =gl =0, =~y
Wi =—yiul, vl =~y (1.18)

(s,/=1,2,...,N—k,i,j=1,2,...,k). The fermion integral is defined as
follows:

N—k B _
| 0w T il vk =1, (119)
s=1
where Dy := H dlp dlp dlkfdl//f. We define 7; (j=1,2,...,k) as
k
141114 + it = det(I + 1D) :H + At). (1.20)

Here, 7; (j=1,...,k) are eigenvalues of &. Specifically, 7; is the degree j
elementary symmetric polynomial of 4i,...,4;. Note that 7 is identified with
det(®) and 7, is identified with tr(®@). In [8], the following theorems were
proved:

THEOREM 2 ([8]).
I /!
I_I/N;V1 k]
THEOREM 3 ([8]).

Jplp(d t(@)NF =1. (1.21)

Rlc(S*),...,ck(S*)]

H*(G(k,N)) = (a;i=0 (i>N—k))

QIR[‘L'l,...,Tk]. (122)

Theorem 3 is provided by ring homomorphism f : R[c;(S*), ..., (S*)] —
RJty,. .., 7%, which is defined as

IS =5  (U=12...,k). (1.23)
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From the isomorphism H*(G(k,N)) = Rlri,..., 7], x; is identified as 4.
Theorem 2 corresponds to the normalization condition of the integration on
G(k,N) given by
J (7)) F =1 (1.24)
G(k,N)

Therefore, we obtain the following formula:

[T /!
J g(th,xk)_%JD¢9(11,-~~77~1<), (1.25)
G(k,N) HJ Nk J!
where g(xp,...,xx) is a symmetric polynomial of xi,...,x; that represents an

element of H*(G(k,N)).

2. Proof of our theorem

2.1. Proof of Theorem 1. First, we prove (1.10). From (1.4), (1.20), and
(1.25), we have

kN—k? Hk:olf kN—k2
J (o))" Z%JDW( ()"
G(k,N) H] Yy

Nek k kN —k?
zinn J'j J ( S iy ) L (2.26)
j=N—k s=1 j=1

From the multinomial theorem and the conditions of the fermionic variables
iyl = WW =0, we obtain:

k-1 . 3
G ORR —kz)!MJDIﬁN vl
G(k,N) [y /! e
15
2
= (kN — k*)! — 3= (2.27)
Hj:N—k J:

Second, we show that (1.11) and (1.12). In the same way as in (1.10),
k=20, v
| @ e’
Gk, N)

k—1
_ H/O]'

_WJ DY) ) =12 (228)
j=N—k
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As 7y = H{(tr())? — tr(D?)},

JDMTI)kN—kZ—zi(TZ)l
= 51 | Pt @) @) - (@) (2.29)

1
= %Z (,i,) (=" JD¢<tr(¢))"N*"‘*m(tr(qﬂ))’”. (2.30)

m=0

Let us define
P, = JD¢(tr(¢))"N*szzm(tr(qﬂ))m (m=0,1,2). (2.31)

As can be observed from the calculation in (1.10), Py = (kN — k?)!. We can
obtain the following result for P; and P.

ProrosiTION 1.
Py = (kN — k* = 2)"k(N — k)(N — 2k). (2.32)
Py = (kN — k* — 4)!k(N — k)
X [le(N = k)? = 2(N = k)* (k> +2) 4+ (N — k) (k® + 10k) — 4k> = 2].  (2.33)

We will prove these results later in this paper. From Proposition 1, we
have

| Dty 2 =S po - )
= %(kN —k* = 2)%k(N — k){(kN — k* — 1) — (N — 2k)}
=%(kN—k2—2)!(N—k)(N—k+1)k(k— 1). (2.34)

We obtain (I.11). Similarly, we obtain (1.12) from [ Dy (z)*¥ % 4(zy)? =
1(Py—2P; 4+ P,). We have proved Theorem 1.

2.2. Proof of Proposition 1. We compute P;. Let w? be ZSN: _lk lﬁjx//g . By
definition,

k

k
(@) = > ool = (") +> olo’ (2.35)
i,j=1

i=1 i#]
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P - jD¢(tr<¢>>kN*k”<tr<¢2>> (236)

k kN —k?-2
+ Jan (Z co) oo’ (2.37)
k 2 k )
_ > (kN kk '2)'JD‘// <H(wnn)lin> (wn)Z

2 k P
I oy ([ oot @3y

i#] Pa [1=i 4! n=1

Here, >, indicates that the sum includes all combinations from 0 to
kN — k? — 2 indices p; through py, such that the sum of all p, (n=1,...,k)
is kN —k*—2. In the first term, because each w? (i=1,...,k) must be
N —k for the fermion integral to be non-zero, p, =N —k (n#1i) and p; =
N —k—2. In the second term, p,=N—k (n#i,j) and p;=p =N —

k—1.
— kN kz ) k I‘N’l
S e eI 401

i=1 n=1

(kN—kz_z)' nn\N—k
+;((N_k)!)k—2((zv_k_1)!)2JW<H(w) )

n#i,j

x (0N g (2.39)

From o =YY zp\//:, the multinomial theorem and conditions of the fer-
mionic variables WW vyl =o0.

kN — k2
P :;WW )

kN k2 pag n.n
Z N k_l J <n#l/l_[1¢1lp>

i#]

N—k - -
% (@i NV (Z w;w;‘w’w;?) (240

s, t=1
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In the second term, (i #) ™" contains N —k — 1 y/y!, and y/yL. There-
fore, it must be s = ¢ based on the conditions of the fermionic variables.

= (kN — k* = 2)!k(N — k)(N —k — 1)
kN k N—k
S I oo I T vt
i#j s=I1 n#i,j I
> (wiiwjj)N_k_l(W;‘ﬁélﬁlﬁg) (2.41)
= (kN — k> = 2)Wk(N — k)(N —k — 1)

Y Y- —2>!JD¢< 1T ﬁw7¢f)

i£] s=1 n#i,j =1

H il | (Wiviwiv) (242)
q#&
N—k
= (kN — k> =2)%k(N —k)(N =k —1) =Y > (kN —k*=2)!  (2.43)
i#j s=1
= (kN —k?> =2){k(N —k)(N —k — 1) = (N — k)k(k — 1)} (2.44)
= (kN — k?> = 2)Wk(N — k)(N — 2k). (2.45)

Therefore, we obtain P;. We compute P;.

% kN-k2=4 , 2
P, = JDxp (Z w”"> (Z(w”)z + Z a)"ja)j’) (2.46)
n=1 i j

kN—k*—4
:JDlp(Zw"") [Zw w// +ZZZ mm 2 Ve
L]

n=1 m=1i#j

+ Z Z w”bwbawijw-"i] . (2.47)

a#b i#j

We define Q;, 0> and Q3 as follows.

k kN—k*—4
0= [y (Z w) (@i, (248)
i,j n=1
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kN—k>—4
0,:=2 Z Z JDl// (Z " ) (") wln’ (2.49)

B kN—k2—4
0s := Z Z JDW <Z w””) w0 wn . (2.50)

Thereafter, P, = Q1 + Q> + O3. We consider Oy:
k & kN —k>—4
Ql _ Z JDlP (Z wnn) (w[i)4
i=1 n=1
kN—k2—4
+ ZJDzﬁ (Zw > (w2, (2.51)

[y
We can compute the above equation in the same manner as P;. Consequently,
Q1 = (kN — k* — 4)!k(N — k)
Xx{(N—k—-1)(N—-—k-2)(N—-k-3)
+ (k= 1)(N —k)(N —k —1)*}. (2.52)

Subsequently, we calculate Q.

i kN—k2>—4
Q2 — ZZJDW (Z wnn) (wii)Za)[/a)ji
n=1

i#j

« kN—k2—4
+ZZJD$ <Z ) (@) 2wlw’

i#j

k kN—k2—4
+2 Z Z Jan (Z co”") (@™, (2.53)

i#j m#i,j

From w/w/ = w/iw¥, if we replace i with j and j with 7 in the second term,
it is the same as in the first term.

kN—k2—4
Q24ZJDw<Zw ) (@) oo

i#j

r kN—k2—4
+2 Z Z JDlp (Z_; w"”) (0"l (2.54)

i%j m#i,j
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k
_422 (kN — kpq )JD[#(H(w”")p")(w”)zwijw‘ﬁ

i#] Pn q 1 n=I1

k
+2) > Z (kN — k —4 JDlp (H(w"")ﬂ)(wm'")zw"fwﬁ. (2.55)
i#j m#i,j pn q 1P q n=1

Thereafter, >, is the sum of all combinations from 0 to AN — k*—4
indices p; through p; such that the sum of p, (n=1,...,k) is kN — k* —
From the condition of fermionic integration and the condition of fermionic
variables tpjlpj =0, in the first term, p, =N —k (n#1,j) and p;=N —k — 3,
pij=N—k—1. In the second term, p, =N —k (n#1i,j,m) and p,=p;, =
N—k—1, p,=N —k—2. Therefore,

(kN — k? — 4)! = NN—k—1 i i
4ZN ke — 3 N k—l J (,1#,/ 1// 6060) w’w

l;é/ I=1

(kN — k* — 4)I(N — k)!
H;,,;]N k—=2)I(N —k—1))?

N—k
) J v < 11 Ww?> (0"0”) ol (2.56)
n#i,j I=1

Here, we can calculate the fermion integral in the same manner as P;. We
obtain

J (HMW ) NN F il = (N — k) (N —k — 1)) (2.57)

n#i,j I=1

(KN — k2 — 4)I(N — k)!

4,;&] (N —k—3)!
_2#/ ;j (kN — k2 — — 4)! S{N Z;c) (N — k) 55
S _(1];2__;{41! (3];[! “El e - 1)
5 (kN — kZ(N )! (kzv z;{) (N—k)k<k_ k-2

= (kN — k* —4)lk(N — k)(k — 1)
X [~4(N —k—1)(N -k —=2)=2(N —k)(N —k - 1)(k—2)]. (2.59)
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Finally, we compute Qs.

. JeN—k>—
03 = Z Z JDlﬁ (Z co”") a)“bwh“w"wﬁ. (2.60)

akb i£) n=1

The sum >, > ;,; can be divided into the following seven cases.

Sum patterns of (i, j) and (a, b)

WYi=a, j=b Q)i=b j=a @)i=a, j#b. @A) i=b, j#a (5
i#a, j=b. (6)i#b, j=a (7)i#ab j+#a,b.

From the symmetry of a, b and i, j, (1) and (2) have the same form:
Similarly, (3), (4), (5), and (6) have the same form: Therefore,

kN—k2>—4
o -rs (o) s

i#j

kN—k>—4
+4Z Z JD&p (Zw > P wlmliopl

i#] b#i,j
A kN —k*—4
+ Z JDw (Z w"") o®w™ oo’ (2.61)
(i,j,a,b) n=1

Here, Zél j.ab) implies that i, j, a, and b are different from each other in the
summation.

B (kN — k> — 4)!
&= 2;<<N—k>!>’“*2<<N—k—2>!>2

X JD!// < H (wnn)Nk> (wiiw'ﬁ)ka*z(w”w-/")z

n#i,j

(kN k2 — 4)!
+4ZZ BN —k=2)I((N—k—1))?

i#j b#i, /

™ JD¢< H (wnn)N—k> (wii)N—k—Z(wbbwjj)N—k—lwibwbiwijwji

n#i,j,b

’ (kN — k* — 4)!
" <i,fZ;b> (N =)WV —k=1))*
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X JDl//< 11 (co”")Nk> (0w &N b pbig e (2.62)

(kN —k* - 4) jiN N—k—2
ZN k— Z)J (HH% )ww’)

i] n#i,j I

x( > w;‘lwiw,’;w;wézwiwéwé)

S1,82, 11,02

1#1[)#1] N k 2 ((N k_l

N—k
4y SLa J ( W) Nk
n#i,j

X (wb/’w” N=k= 1( Z ‘//sll//ml//tl‘//lll’bs’lpsj2 "b >

S1,82, 11,12

/ L2 N—k . . )
> (((kzirv—/f— 1;))‘!1]’3‘//( II H‘WW) (0" olol) !

(i,j,a,b) n#ab,i,j =1
X( > w;wé’,wﬁwzwézwé‘zw{;w;z). (2.63)
S1,82,1,0

We consider sums of sy, 55, #; and #,. In the first term, the sum can be divided
into two ways, (s) =t, s =t, 51 #s) and (s1 =tr, $2 =11, 51 # 52). In the
second term, it must be (s; = #, s2 =2, 51 # s2). In the third term, it must
be (s; =1, s =1). Because the first term is symmetric for s; and s, and ¢
and 1,

kN — k? R Y
0 =4 S B o TT T v ooty

i#j s i 1=1

X (LWL VL)
(kN — k? — 4)!
>IDIDY )

i#] b#i,js1#82 (N k — 2) ((N_k_ 1)')2

Nk Nk2 bb N—k—1
xj IRIERAL (@)

n#i,j I=1

U R AR IAIR R ERTEN
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+ZZkN k2 )))4J (H H%%)www ¥kt

lj,abnh n#a,b,i,j =1
x (Wi vs, t/fnlﬁulﬁ‘,lﬁ]) (2.64)
=43 N (kN — kP =4 +4> "N N (kN — k7 - 4)!
i#] s1#8 i#] b#i,js1#52
!
+ Y ) (kN - k> —4)! (2.65)
(i,j,a,b) 51,52

= (kN — k* — 4)|[4k(k — 1)(N — k)(N —k — 1)

+ 4k(k = 1)(k = 2)(N — k)(N —k — 1)

+ k(k —1)(k —2)(k — 3)(N — k)?] (2.66)

= (kN — k> — 4)\k(N — k)[4(k — 1)*(N —k — 1)

4 (k= 1)(k —2)(k — 3)(N — k)]. (2.67)

Therefore, we obtain (2.33) from P, = Q1 + Q> + Q3 and these results. We
complete the proof of proposition 1.

(1]

[2]
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