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Abstract. This paper presents a connection between Galois points and rational

functions with small value sets over a finite field. This paper proves that a defining

polynomial of any plane curve admitting two Galois points is an irreducible factor of a

polynomial obtained from the equality of two rational functions in one variable for

each. Under the assumption that Galois groups of two Galois points generate their

semidirect product, a recent result of Bartoli, Borges, and Quoos indicates that one of

these rational functions over a finite field has a very small value set. This paper shows

that when two Galois points are external, the defining polynomial is an irreducible

factor of the di¤erence of two polynomials in one variable. This connects the study of

Galois points to that of polynomials with small value sets.

1. Introduction

This paper presents a connection between Galois points and rational func-

tions with small value sets over a finite field.

Let C � P2 be an irreducible plane curve of degree d > 1 over an alge-

braically closed field k of characteristic pb 0 and let kðCÞ be its function

field. Taking a point P A P2, we consider the projection pP : C a P1 from

P. A point P A P2 is called a Galois point if the field extension kðCÞ=p�
PkðP1Þ

of function fields induced by pP is a Galois extension ([5, 10, 13]). The

associated Galois group is denoted by GP. Numerous results on Galois

points have been obtained; however, there are several open problems (see

[5, 14]).

The author and Speziali examined plane curves with two outer Galois

points P1;P2 A P2nC such that hGP1
;GP2

i ¼ GP1
zGP2

([7]), and the author

examined plane curves admitting an inner Galois point P1 A CnSingðCÞ and an
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outer Galois point P2 A P2nC such that hGP1
;GP2

i ¼ GP1
zGP2

or GP1
yGP2

([6]). In a more general situation, this paper proves the following.

Theorem. Let C � P2 be defined over a finite field Fq of q elements.

Assume that C is irreducible over the algebraic closure Fq of Fq. Let P1 ¼
ð1 : 0 : 0Þ;P2 ¼ ð0 : 1 : 0Þ A P2. If P1 and P2 are Galois points such that all

automorphisms in GP1
[ GP2

are defined over Fq, and jhGP1
;GP2

ij < y, then the

following holds.

( I ) There exist polynomials f1; g1; f2; g2 A Fq½x� such that

(a) fi and gi are relatively prime for i ¼ 1; 2,

(b) maxfdeg fi; deg gig ¼ jhGP1
;GP2

ij=jGPj
j for i, j with fi; jg ¼

f1; 2g,
(c) the defining polynomial of C in the a‰ne plane is an irreducible

factor of

f1ðxÞg2ðyÞ � g1ðxÞ f2ðyÞ

over Fq,

(d) Fqð f1ðxÞ=g1ðxÞÞ ¼ Fqð f2ðyÞ=g2ðyÞÞ ¼ FqðCÞhGP1
;GP2

i
.

Let f1; g1; f2; g2 A Fq½x� be polynomials with conditions (a), (b), (c), and (d) in

(I). Then the following hold.

( II ) jhGP1
;GP2

ij ¼ jGP1
j � jGP2

j if and only if the curve C is defined

by

f1ðxÞg2ðyÞ � g1ðxÞ f2ðyÞ ¼ 0:

(III) hGP1
;GP2

i ¼ GP1
zGP2

if and only if FqðyÞ=Fqðh2ðyÞÞ is a Galois

extension for h2ðyÞ ¼ f2ðyÞ=g2ðyÞ.
(IV) Assume that P1;P2 A P2nC. Then we can take g1ðxÞ ¼ g2ðxÞ ¼ 1,

namely, a defining polynomial of C is an irreducible factor of

f1ðxÞ � f2ðyÞ over Fq. In this case, jhGP1
;GP2

ij ¼ d 2 if and only

if f1ðxÞ � f2ðyÞ is a defining polynomial.

Remark 1. (a) Theorem holds for any perfect field k0, by replacing Fq

by k0.

(b) In assertion (II), we can always replace f1 and g1 so that deg f1 0
deg g1, since if deg f1 ¼ deg g1, then f1=g1 ¼ aþ f11=g1 and Fqð f1=g1Þ
¼ Fqð f11=g1Þ for some a A Fq and f11 A Fq½x� with deg f11 < deg g1.

(c) Galois points are defined over algebraically closed fields. Theorem

indicates that it is appropriate to define a Galois point P over a finite

field Fq as an Fq-rational point of P2 such that the extension

FqðCÞ=FqðL1=L2Þ is Galois, where L1;L2 A Fq½X ;Y ;Z� are linearly

independent homogeneous polynomials of degree one defining P.
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What are these rational functions f1=g1 and f2=g2? In a recent study [1],

Bartoli, Borges, and Quoos examined rational functions hðxÞ A FqðxÞ with small

value sets, and obtained the following theorem.

Fact (Bartoli, Borges, and Quoos). Let f ðxÞ; gðxÞ A Fq½x� be rela-

tively prime. If a rational function hðxÞ ¼ f ðxÞ=gðxÞ A FqðxÞ is such that

FqðxÞ=FqðhðxÞÞ is a Galois extension, then either

aVh ¼
qþ 1

deg h

� �
or aVh ¼

qþ 1

deg h

� �
þ 1;

where Vh ¼ fhðaÞ j a A P1ðFqÞg � P1ðFqÞ and deg h ¼ maxfdeg f ; deg gg.

Theorem and Fact indicate that the rational function h2ðyÞ as in Theorem

(III) has a very small value set. More precisely:

Corollary 1. Let f2ðxÞ; g2ðxÞ A Fq½x� be as in Theorem and let h2ðxÞ ¼
f2ðxÞ=g2ðxÞ. If hGP1

;GP2
i ¼ GP1

zGP2
, then either

aVh2 ¼
qþ 1

deg h2

� �
or aVh2 ¼

qþ 1

deg h2

� �
þ 1:

Theorem (IV) connects the study of Galois points to that of polynomials

over finite fields. Borges [2] developed a connection between minimal value

set polynomials ([4, 9]) and Frobenius nonclassical curves ([8, 12]). Borges’

theorem [2, Corollary 3.5] indicates the following.

Corollary 2. Assume that P1;P2 A P2nC. Let f1ðxÞ; f2ðxÞ A Fq½x� be

polynomials as in Theorem and let V 0
f1
, V 0

f2
be their value sets, that is,

V 0
fi
¼ f fiðaÞ j a A Fqg for i ¼ 1; 2. If f1, f2 are minimal value set polynomials

such that V 0
f1
¼ V 0

f2
and either jV 0

f1
j > 2 or jV 0

f1
j ¼ 2 ¼ p, then C is q-Frobenius

nonclassical.

The Fermat curve

xðq�1Þ=ðq 0�1Þ þ yðq�1Þ=ðq 0�1Þ þ 1 ¼ 0

with Fq 0 � Fq is a typical example of a curve that satisfies the assumptions in

Corollary 2. Points ð1 : 0 : 0Þ, ð0 : 1 : 0Þ are outer Galois points ([5, 10, 13]),

and polynomials xðq�1Þ=ðq 0�1Þ and �yðq�1Þ=ðq 0�1Þ � 1 have the same minimal

value set Fq 0 ([2]). Another example is found in [3, Theorem 2].

Remark 2. Assume that f ðxÞ A Fq½x� and a field extension FqðxÞ=Fqð f ðxÞÞ
is Galois. A place at infinity is a total ramification point and there exist at

most two short orbits. An approach similar to the proof of Fact (see [1, Proof

of Theorem 2.1]) can be used to confirm that f ðxÞ is a minimal value set

polynomial.
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2. Proofs

Proof (Proof of Theorem). Assume that points P1 ¼ ð1 : 0 : 0Þ;P2 ¼
ð0 : 1 : 0Þ A P2 are Galois points, and that the group G :¼ hGP1

;GP2
i is of

finite order. The projections pP1
and pP2

from points P1 and P2 are repre-

sented by

pP1
ðx; yÞ ¼ y and pP2

ðx; yÞ ¼ x

respectively. Since all elements of GP1
[ GP2

are defined over Fq and the

defining polynomial of C over Fq is irreducible over Fq, it follows that

FqðCÞGP1 ¼ FqðyÞ and FqðCÞGP2 ¼ FqðxÞ. Since jGj < y, by Lüroth’s theo-

rem, there exists a function t A FqðCÞG such that FqðtÞ ¼ FqðCÞG. Since

FqðtÞ � FqðyÞ and FqðtÞ � FqðxÞ, there exist polynomials f2ðyÞ; g2ðyÞ A Fq½y�
and f1ðxÞ; g1ðxÞ A Fq½x� such that

t ¼ f2ðyÞ=g2ðyÞ and t ¼ f1ðxÞ=g1ðxÞ:

We can assume that polynomials fiðxÞ and giðxÞ are relatively prime for

i ¼ 1; 2. Let hiðxÞ ¼ fiðxÞ=giðxÞ for i ¼ 1; 2. Since

FqðyÞ=Fqðh2ðyÞÞ ¼ FqðCÞGP1 =FqðCÞG;

FqðxÞ=Fqðh1ðxÞÞ ¼ FqðCÞGP2=FqðCÞG;

it follows that

maxfdeg f2; deg g2g ¼ jGj=jGP1
j; maxfdeg f1; deg g1g ¼ jGj=jGP2

j:

Since f1ðxÞ=g1ðxÞ ¼ t ¼ f2ðyÞ=g2ðyÞ in FqðCÞ, it follows that

f ðx; yÞ :¼ f1ðxÞg2ðyÞ � g1ðxÞ f2ðyÞ ¼ 0

in FqðCÞ. Assertion (I) follows.

Let f1; g1; f2; g2 A Fq½x� be polynomials with conditions (a), (b), (c), and (d)

in (I). Assume that jGj ¼ jGP1
j � jGP2

j. Note that

jGP1
j ¼ jGj=jGP2

j ¼ maxfdeg f1; deg g1g:

Since

degx f ðx; yÞamaxfdeg f1ðxÞ; deg g1ðxÞg ¼ jGP1
j ¼ deg pP1

;

it follows that degx f ðx; yÞ ¼ deg pP1
and f ðx; yÞ is a minimal polynomial

of x over FqðyÞ. This indicates that f ðx; yÞ is irreducible as an element of

FqðyÞ½x�. Thus, f ðx; yÞ is irreducible in Fq½x; y�.
Assume that f ðx; yÞ is a defining polynomial of C. Note that if a A Fq

and b A Fq are the leading coe‰cients of f1ðxÞ and of g1ðxÞ respectively, then
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the leading coe‰cient of f ðx; yÞ as an element of ðFqðyÞÞ½x� is ag2ðyÞ, �bf2ðyÞ,
or ag2ðyÞ � bf2ðyÞ. Then

maxfdeg f1; deg g1g ¼ degx f ðx; yÞ ¼ deg pP1
¼ jGP1

j:

Since jGj=jGP2
j ¼ maxfdeg f1; deg g1g, it follows that

jGj ¼ jGP1
j � jGP2

j:

Assertion (II) follows.

G ¼ GP1
zGP2

if and only if GP1
is a normal subgroup of G. Assertion

(III) follows, by Galois theory.

Assume that P1;P2 A P2nC. Let ji : P
1 ! P1 be the morphism corre-

sponding to FqðCÞGPi =FqðCÞG for i ¼ 1; 2. Let Q be a place of FqðCÞ coming

from C \ P1P2, where P1P2 is a line passing through P1 and P2. Since the

fiber of jiðpPi
ðQÞÞ for the covering ji � pPi

coincides with the orbit G �Q (see

[11, III.7.1]), it follows that

j�1
i ðjiðpPi

ðQÞÞÞ ¼ pPi
ðG �QÞ;

for i ¼ 1; 2. Since P1;P2 A P2nC, it follows that

pPi
ðG �QÞ ¼ fpPi

ðQÞg;

and that ji is totally ramified at pPi
ðQÞ, for i ¼ 1; 2. We take a system ðY : ZÞ

of coordinates on pP1
ðCÞGP1 (resp. a system ðX : ZÞ of coordinates on

pP2
ðCÞGP1) such that pP1

ðQÞ ¼ ð1 : 0Þ (resp. pP2
ðQÞ ¼ ð1 : 0Þ). Note that

j1ðpP1
ðQÞÞ ¼ j2ðpP2

ðQÞÞ:

We consider a system ðt : 1Þ of coordinates on j1ðpP1
ðCÞÞ ¼ j2ðpP2

ðCÞÞGP1

such that

j1ðpP1
ðQÞÞ ¼ ð1 : 0Þ ¼ j2ðpP2

ðQÞÞ:

Since j1 (resp. j2) is totally ramified at ð1 : 0Þ and j1ð1 : 0Þ ¼ ð1 : 0Þ (resp.

j2ð1 : 0Þ ¼ ð1 : 0Þ), it follows that j1ðy : 1Þ ¼ ð f2ðyÞ : 1Þ (resp. j2ðx : 1Þ ¼ f1ðxÞ)
for some polynomial f2ðyÞ A Fq½y� (resp. f1ðxÞ A Fq½x�). Since f2ðyÞ ¼ t ¼
f1ðxÞ in FqðCÞ, the former assertion of (IV) follows. The latter assertion of

(IV) comes from assertion (II). r

Corollary 2 is derived from Borges’ theorem [2, Corollary 3.5]. In [2,

Theorem 3.4, Corollary 3.5], it is assumed that all irreducible factors of

f ðxÞ � gðyÞ are defined over Fq. Therefore, we confirm that the reasoning

in Borges’ study [2] can be applied to our case, and that any factor of

f1ðxÞ � f2ðyÞ defined over Fq is q-Frobenius nonclassical, under the assumption

on f1, f2 as in Corollary 2.
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Proof (Proof of Corollary 2). Let P1;P2 A P2nC, and let f1; f2 A Fq½x�
be polynomials as in Theorem. Assume that f1, f2 are minimal value set

polynomials such that V 0
f1
¼ V 0

f2
and either jV 0

f1
j > 2 or jV 0

f1
j ¼ 2 ¼ p. By [2,

Theorem 2.2], there exist yi A F�
q and a monic polynomial Ti ¼

Q
g AV 0

fi

ðx� gÞ A
Fq½x� such that

Tið fiÞ ¼ yiðxq � xÞ fi;x

for i ¼ 1; 2, where fi;x is the formal derivative of fi by x. Since V 0
f1
¼ V 0

f2
,

it follows that T1 ¼ T2. By [2, Lemma 2.4 (ii)], y1 ¼ y2. Since X � Y divides

T1ðX Þ � T1ðYÞ, it follows that f ðx; yÞ ¼ f1ðxÞ � f2ðyÞ divides

ðxq � xÞ fx þ ðyq � yÞ fy ¼ ðxq � xÞ f1;x � ðyq � yÞ f2;y:

Since the defining polynomial f0 of C is an irreducible factor of f ðx; yÞ, it

follows from [2, Lemma 3.2] and [2, Lemma 3.3 (i) ) (ii)] that f0 divides

ðxq � xÞ f0;x þ ðyq � yÞ f0;y;

that is, C is q-Frobenius nonclassical. r
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