Galois points and rational functions with small value sets

Dedicated to Professor Shun-ichi Kimura on the occasion of his 60th birthday

Satoru Fukasawa

(Received January 31, 2022)
(Revised February 27, 2023)

Abstract

This paper presents a connection between Galois points and rational functions with small value sets over a finite field. This paper proves that a defining polynomial of any plane curve admitting two Galois points is an irreducible factor of a polynomial obtained from the equality of two rational functions in one variable for each. Under the assumption that Galois groups of two Galois points generate their semidirect product, a recent result of Bartoli, Borges, and Quoos indicates that one of these rational functions over a finite field has a very small value set. This paper shows that when two Galois points are external, the defining polynomial is an irreducible factor of the difference of two polynomials in one variable. This connects the study of Galois points to that of polynomials with small value sets.

1. Introduction

This paper presents a connection between Galois points and rational functions with small value sets over a finite field.

Let $C \subset \mathbb{P}^{2}$ be an irreducible plane curve of degree $d>1$ over an algebraically closed field k of characteristic $p \geq 0$ and let $k(C)$ be its function field. Taking a point $P \in \mathbb{P}^{2}$, we consider the projection $\pi_{P}: C \rightarrow \mathbb{P}^{1}$ from P. A point $P \in \mathbb{P}^{2}$ is called a Galois point if the field extension $k(C) / \pi_{P}^{*} k\left(\mathbb{P}^{1}\right)$ of function fields induced by π_{P} is a Galois extension ([5, 10, 13]). The associated Galois group is denoted by G_{P}. Numerous results on Galois points have been obtained; however, there are several open problems (see [5, 14]).

The author and Speziali examined plane curves with two outer Galois points $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$ such that $\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle=G_{P_{1}} \rtimes G_{P_{2}}$ ([7]), and the author examined plane curves admitting an inner Galois point $P_{1} \in C \backslash \operatorname{Sing}(C)$ and an

[^0]outer Galois point $P_{2} \in \mathbb{P}^{2} \backslash C$ such that $\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle=G_{P_{1}} \rtimes G_{P_{2}}$ or $G_{P_{1}} \ltimes G_{P_{2}}$ ([6]). In a more general situation, this paper proves the following.

Theorem. Let $C \subset \mathbb{P}^{2}$ be defined over a finite field \mathbb{F}_{q} of q elements. Assume that C is irreducible over the algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q}. Let $P_{1}=$ $(1: 0: 0), P_{2}=(0: 1: 0) \in \mathbb{P}^{2}$. If P_{1} and P_{2} are Galois points such that all automorphisms in $G_{P_{1}} \cup G_{P_{2}}$ are defined over \mathbb{F}_{q}, and $\left|\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle\right|<\infty$, then the following holds.
(I) There exist polynomials $f_{1}, g_{1}, f_{2}, g_{2} \in \mathbb{F}_{q}[x]$ such that
(a) f_{i} and g_{i} are relatively prime for $i=1,2$,
(b) $\max \left\{\operatorname{deg} f_{i}, \operatorname{deg} g_{i}\right\}=\left|\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle\right| /\left|G_{P_{j}}\right|$ for i, j with $\{i, j\}=$ $\{1,2\}$,
(c) the defining polynomial of C in the affine plane is an irreducible factor of

$$
f_{1}(x) g_{2}(y)-g_{1}(x) f_{2}(y)
$$

over \mathbb{F}_{q},
(d) $\quad \begin{aligned} & \text { over } \mathbb{F}_{q}, \\ & \mathbb{F}_{q}\left(f_{1}(x) / g_{1}(x)\right)=\mathbb{F}_{q}\left(f_{2}(y) / g_{2}(y)\right)=\mathbb{F}_{q}(C)^{\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle} .\end{aligned}$

Let $f_{1}, g_{1}, f_{2}, g_{2} \in \mathbb{F}_{q}[x]$ be polynomials with conditions (a), (b), (c), and (d) in (I). Then the following hold.
(II) $\left|\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle\right|=\left|G_{P_{1}}\right| \times\left|G_{P_{2}}\right|$ if and only if the curve C is defined by

$$
f_{1}(x) g_{2}(y)-g_{1}(x) f_{2}(y)=0
$$

(III) $\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle=G_{P_{1}} \rtimes G_{P_{2}}$ if and only if $\mathbb{F}_{q}(y) / \mathbb{F}_{q}\left(h_{2}(y)\right)$ is a Galois extension for $h_{2}(y)=f_{2}(y) / g_{2}(y)$.
(IV) Assume that $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$. Then we can take $g_{1}(x)=g_{2}(x)=1$, namely, a defining polynomial of C is an irreducible factor of $f_{1}(x)-f_{2}(y)$ over \mathbb{F}_{q}. In this case, $\left|\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle\right|=d^{2}$ if and only if $f_{1}(x)-f_{2}(y)$ is a defining polynomial.

Remark 1. (a) Theorem holds for any perfect field k_{0}, by replacing \mathbb{F}_{q} by k_{0}.
(b) In assertion (II), we can always replace f_{1} and g_{1} so that $\operatorname{deg} f_{1} \neq$ $\operatorname{deg} g_{1}$, since if $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$, then $f_{1} / g_{1}=\alpha+f_{11} / g_{1}$ and $\mathbb{F}_{q}\left(f_{1} / g_{1}\right)$ $=\mathbb{F}_{q}\left(f_{11} / g_{1}\right)$ for some $\alpha \in \mathbb{F}_{q}$ and $f_{11} \in \mathbb{F}_{q}[x]$ with $\operatorname{deg} f_{11}<\operatorname{deg} g_{1}$.
(c) Galois points are defined over algebraically closed fields. Theorem indicates that it is appropriate to define a Galois point P over a finite field \mathbb{F}_{q} as an \mathbb{F}_{q}-rational point of \mathbb{P}^{2} such that the extension $\mathbb{F}_{q}(C) / \mathbb{F}_{q}\left(L_{1} / L_{2}\right)$ is Galois, where $L_{1}, L_{2} \in \mathbb{F}_{q}[X, Y, Z]$ are linearly independent homogeneous polynomials of degree one defining P.

What are these rational functions f_{1} / g_{1} and f_{2} / g_{2} ? In a recent study [1], Bartoli, Borges, and Quoos examined rational functions $h(x) \in \mathbb{F}_{q}(x)$ with small value sets, and obtained the following theorem.

FACT (Bartoli, Borges, and Quoos). Let $f(x), g(x) \in \mathbb{F}_{q}[x]$ be relatively prime. If a rational function $h(x)=f(x) / g(x) \in \mathbb{F}_{q}(x)$ is such that $\mathbb{F}_{q}(x) / \mathbb{F}_{q}(h(x))$ is a Galois extension, then either

$$
\# V_{h}=\left\lceil\frac{q+1}{\operatorname{deg} h}\right\rceil \quad \text { or } \quad \# V_{h}=\left\lceil\frac{q+1}{\operatorname{deg} h}\right\rceil+1
$$

where $V_{h}=\left\{h(\alpha) \mid \alpha \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\} \subset \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ and $\operatorname{deg} h=\max \{\operatorname{deg} f, \operatorname{deg} g\}$.
Theorem and Fact indicate that the rational function $h_{2}(y)$ as in Theorem (III) has a very small value set. More precisely:

Corollary 1. Let $f_{2}(x), g_{2}(x) \in \mathbb{F}_{q}[x]$ be as in Theorem and let $h_{2}(x)=$ $f_{2}(x) / g_{2}(x)$. If $\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle=G_{P_{1}} \rtimes G_{P_{2}}$, then either

$$
\# V_{h_{2}}=\left\lceil\frac{q+1}{\operatorname{deg} h_{2}}\right\rceil \quad \text { or } \quad \# V_{h_{2}}=\left\lceil\frac{q+1}{\operatorname{deg} h_{2}}\right\rceil+1 .
$$

Theorem (IV) connects the study of Galois points to that of polynomials over finite fields. Borges [2] developed a connection between minimal value set polynomials ($[4,9]$) and Frobenius nonclassical curves ($[8,12]$). Borges' theorem [2, Corollary 3.5] indicates the following.

Corollary 2. Assume that $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$. Let $f_{1}(x), f_{2}(x) \in \mathbb{F}_{q}[x]$ be polynomials as in Theorem and let $V_{f_{1}}^{\prime}$, $V_{f_{2}}^{\prime}$ be their value sets, that is, $V_{f_{i}}^{\prime}=\left\{f_{i}(\alpha) \mid \alpha \in \mathbb{F}_{q}\right\}$ for $i=1,2$. If f_{1}, f_{2} are minimal value set polynomials such that $V_{f_{1}}^{\prime}=V_{f_{2}}^{\prime}$ and either $\left|V_{f_{1}}^{\prime}\right|>2$ or $\left|V_{f_{1}}^{\prime}\right|=2=p$, then C is q-Frobenius nonclassical.

The Fermat curve

$$
x^{(q-1) /\left(q^{\prime}-1\right)}+y^{(q-1) /\left(q^{\prime}-1\right)}+1=0
$$

with $\mathbb{F}_{q^{\prime}} \subset \mathbb{F}_{q}$ is a typical example of a curve that satisfies the assumptions in Corollary 2. Points $(1: 0: 0),(0: 1: 0)$ are outer Galois points ([5, 10, 13]), and polynomials $x^{(q-1) /\left(q^{\prime}-1\right)}$ and $-y^{(q-1) /\left(q^{\prime}-1\right)}-1$ have the same minimal value set $\mathbb{F}_{q^{\prime}}([2])$. Another example is found in [3, Theorem 2].

Remark 2. Assume that $f(x) \in \mathbb{F}_{q}[x]$ and a field extension $\mathbb{F}_{q}(x) / \mathbb{F}_{q}(f(x))$ is Galois. A place at infinity is a total ramification point and there exist at most two short orbits. An approach similar to the proof of Fact (see [1, Proof of Theorem 2.1]) can be used to confirm that $f(x)$ is a minimal value set polynomial.

2. Proofs

Proof (Proof of Theorem). Assume that points $P_{1}=(1: 0: 0), P_{2}=$ $(0: 1: 0) \in \mathbb{P}^{2}$ are Galois points, and that the group $G:=\left\langle G_{P_{1}}, G_{P_{2}}\right\rangle$ is of finite order. The projections $\pi_{P_{1}}$ and $\pi_{P_{2}}$ from points P_{1} and P_{2} are represented by

$$
\pi_{P_{1}}(x, y)=y \quad \text { and } \quad \pi_{P_{2}}(x, y)=x
$$

respectively. Since all elements of $G_{P_{1}} \cup G_{P_{2}}$ are defined over \mathbb{F}_{q} and the defining polynomial of C over \mathbb{F}_{q} is irreducible over $\overline{\mathbb{F}}_{q}$, it follows that $\mathbb{F}_{q}(C)^{G_{P_{1}}}=\mathbb{F}_{q}(y)$ and $\mathbb{F}_{q}(C)^{G_{P_{2}}}=\mathbb{F}_{q}(x)$. Since $|G|<\infty$, by Lüroth's theorem, there exists a function $t \in \mathbb{F}_{q}(C)^{G}$ such that $\mathbb{F}_{q}(t)=\mathbb{F}_{q}(C)^{G}$. Since $\mathbb{F}_{q}(t) \subset \mathbb{F}_{q}(y)$ and $\mathbb{F}_{q}(t) \subset \mathbb{F}_{q}(x)$, there exist polynomials $f_{2}(y), g_{2}(y) \in \mathbb{F}_{q}[y]$ and $f_{1}(x), g_{1}(x) \in \mathbb{F}_{q}[x]$ such that

$$
t=f_{2}(y) / g_{2}(y) \quad \text { and } \quad t=f_{1}(x) / g_{1}(x) .
$$

We can assume that polynomials $f_{i}(x)$ and $g_{i}(x)$ are relatively prime for $i=1,2$. Let $h_{i}(x)=f_{i}(x) / g_{i}(x)$ for $i=1,2$. Since

$$
\begin{aligned}
& \mathbb{F}_{q}(y) / \mathbb{F}_{q}\left(h_{2}(y)\right)=\mathbb{F}_{q}(C)^{G_{P_{1}}} / \mathbb{F}_{q}(C)^{G} \\
& \mathbb{F}_{q}(x) / \mathbb{F}_{q}\left(h_{1}(x)\right)=\mathbb{F}_{q}(C)^{G P_{2}} / \mathbb{F}_{q}(C)^{G}
\end{aligned}
$$

it follows that

$$
\max \left\{\operatorname{deg} f_{2}, \operatorname{deg} g_{2}\right\}=|G| /\left|G_{P_{1}}\right|, \quad \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}=|G| /\left|G_{P_{2}}\right| .
$$

Since $f_{1}(x) / g_{1}(x)=t=f_{2}(y) / g_{2}(y)$ in $\mathbb{F}_{q}(C)$, it follows that

$$
f(x, y):=f_{1}(x) g_{2}(y)-g_{1}(x) f_{2}(y)=0
$$

in $\mathbb{F}_{q}(C)$. Assertion (I) follows.
Let $f_{1}, g_{1}, f_{2}, g_{2} \in \mathbb{F}_{q}[x]$ be polynomials with conditions (a), (b), (c), and (d) in (I). Assume that $|G|=\left|G_{P_{1}}\right| \times\left|G_{P_{2}}\right|$. Note that

$$
\left|G_{P_{1}}\right|=|G| /\left|G_{P_{2}}\right|=\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\} .
$$

Since

$$
\operatorname{deg}_{x} f(x, y) \leq \max \left\{\operatorname{deg} f_{1}(x), \operatorname{deg} g_{1}(x)\right\}=\left|G_{P_{1}}\right|=\operatorname{deg} \pi_{P_{1}}
$$

it follows that $\operatorname{deg}_{x} f(x, y)=\operatorname{deg} \pi_{P_{1}}$ and $f(x, y)$ is a minimal polynomial of x over $\overline{\mathbb{F}}_{q}(y)$. This indicates that $f(x, y)$ is irreducible as an element of $\overline{\mathbb{F}}_{q}(y)[x]$. Thus, $f(x, y)$ is irreducible in $\overline{\mathbb{F}}_{q}[x, y]$.

Assume that $f(x, y)$ is a defining polynomial of C. Note that if $\alpha \in \mathbb{F}_{q}$ and $\beta \in \mathbb{F}_{q}$ are the leading coefficients of $f_{1}(x)$ and of $g_{1}(x)$ respectively, then
the leading coefficient of $f(x, y)$ as an element of $\left(\mathbb{F}_{q}(y)\right)[x]$ is $\alpha g_{2}(y),-\beta f_{2}(y)$, or $\alpha g_{2}(y)-\beta f_{2}(y)$. Then

$$
\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}=\operatorname{deg}_{x} f(x, y)=\operatorname{deg} \pi_{P_{1}}=\left|G_{P_{1}}\right| .
$$

Since $|G| /\left|G_{P_{2}}\right|=\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}$, it follows that

$$
|G|=\left|G_{P_{1}}\right| \times\left|G_{P_{2}}\right| .
$$

Assertion (II) follows.
$G=G_{P_{1}} \rtimes G_{P_{2}}$ if and only if $G_{P_{1}}$ is a normal subgroup of G. Assertion (III) follows, by Galois theory.

Assume that $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$. Let $\varphi_{i}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be the morphism corresponding to $\overline{\mathbb{F}}_{q}(C)^{G P_{i}} / \overline{\mathbb{F}}_{q}(C)^{G}$ for $i=1,2$. Let Q be a place of $\overline{\mathbb{F}}_{q}(C)$ coming from $C \cap \overline{P_{1} P_{2}}$, where $\overline{P_{1} P_{2}}$ is a line passing through P_{1} and P_{2}. Since the fiber of $\varphi_{i}\left(\pi_{P_{i}}(Q)\right)$ for the covering $\varphi_{i} \circ \pi_{P_{i}}$ coincides with the orbit $G \cdot Q$ (see [11, III.7.1]), it follows that

$$
\varphi_{i}^{-1}\left(\varphi_{i}\left(\pi_{P_{i}}(Q)\right)\right)=\pi_{P_{i}}(G \cdot Q),
$$

for $i=1,2$. Since $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$, it follows that

$$
\pi_{P_{i}}(G \cdot Q)=\left\{\pi_{P_{i}}(Q)\right\},
$$

and that φ_{i} is totally ramified at $\pi_{P_{i}}(Q)$, for $i=1,2$. We take a system $(Y: Z)$ of coordinates on $\pi_{P_{1}}(C) \cong \mathbb{P}^{1}$ (resp. a system $(X: Z)$ of coordinates on $\pi_{P_{2}}(C) \cong \mathbb{P}^{1}$) such that $\pi_{P_{1}}(Q)=(1: 0)$ (resp. $\left.\pi_{P_{2}}(Q)=(1: 0)\right)$. Note that

$$
\varphi_{1}\left(\pi_{P_{1}}(Q)\right)=\varphi_{2}\left(\pi_{P_{2}}(Q)\right) .
$$

We consider a system $(t: 1)$ of coordinates on $\varphi_{1}\left(\pi_{P_{1}}(C)\right)=\varphi_{2}\left(\pi_{P_{2}}(C)\right) \cong \mathbb{P}^{1}$ such that

$$
\varphi_{1}\left(\pi_{P_{1}}(Q)\right)=(1: 0)=\varphi_{2}\left(\pi_{P_{2}}(Q)\right) .
$$

Since φ_{1} (resp. φ_{2}) is totally ramified at $(1: 0)$ and $\varphi_{1}(1: 0)=(1: 0)$ (resp. $\left.\varphi_{2}(1: 0)=(1: 0)\right)$, it follows that $\varphi_{1}(y: 1)=\left(f_{2}(y): 1\right)\left(\right.$ resp. $\left.\varphi_{2}(x: 1)=f_{1}(x)\right)$ for some polynomial $f_{2}(y) \in \mathbb{F}_{q}[y]$ (resp. $\left.f_{1}(x) \in \mathbb{F}_{q}[x]\right)$. Since $f_{2}(y)=t=$ $f_{1}(x)$ in $\mathbb{F}_{q}(C)$, the former assertion of (IV) follows. The latter assertion of (IV) comes from assertion (II).

Corollary 2 is derived from Borges' theorem [2, Corollary 3.5]. In [2, Theorem 3.4, Corollary 3.5], it is assumed that all irreducible factors of $f(x)-g(y)$ are defined over \mathbb{F}_{q}. Therefore, we confirm that the reasoning in Borges' study [2] can be applied to our case, and that any factor of $f_{1}(x)-f_{2}(y)$ defined over \mathbb{F}_{q} is q-Frobenius nonclassical, under the assumption on f_{1}, f_{2} as in Corollary 2.

Proof (Proof of Corollary 2). Let $P_{1}, P_{2} \in \mathbb{P}^{2} \backslash C$, and let $f_{1}, f_{2} \in \mathbb{F}_{q}[x]$ be polynomials as in Theorem. Assume that f_{1}, f_{2} are minimal value set polynomials such that $V_{f_{1}}^{\prime}=V_{f_{2}}^{\prime}$ and either $\left|V_{f_{1}}^{\prime}\right|>2$ or $\left|V_{f_{1}}^{\prime}\right|=2=p$. By [2, Theorem 2.2], there exist $\theta_{i} \in \mathbb{F}_{q}^{*}$ and a monic polynomial $T_{i}=\prod_{\gamma \in V_{f_{i}}^{\prime}}(x-\gamma) \in$ $\mathbb{F}_{q}[x]$ such that

$$
T_{i}\left(f_{i}\right)=\theta_{i}\left(x^{q}-x\right) f_{i, x}
$$

for $i=1,2$, where $f_{i, x}$ is the formal derivative of f_{i} by x. Since $V_{f_{1}}^{\prime}=V_{f_{2}}^{\prime}$, it follows that $T_{1}=T_{2}$. By [2, Lemma 2.4 (ii)], $\theta_{1}=\theta_{2}$. Since $X-Y$ divides $T_{1}(X)-T_{1}(Y)$, it follows that $f(x, y)=f_{1}(x)-f_{2}(y)$ divides

$$
\left(x^{q}-x\right) f_{x}+\left(y^{q}-y\right) f_{y}=\left(x^{q}-x\right) f_{1, x}-\left(y^{q}-y\right) f_{2, y} .
$$

Since the defining polynomial f_{0} of C is an irreducible factor of $f(x, y)$, it follows from [2, Lemma 3.2] and [2, Lemma 3.3 (i) \Rightarrow (ii)] that f_{0} divides

$$
\left(x^{q}-x\right) f_{0, x}+\left(y^{q}-y\right) f_{0, y},
$$

that is, C is q-Frobenius nonclassical.

Acknowledgements

The author is grateful to Doctor Kazuki Higashine for the helpful discussions during this study. The author thanks Professor Nobuyoshi Takahashi for helpful comments, which improved assertion (II) in Theorem.

References

[1] D. Bartoli, H. Borges, and L. Quoos, Rational functions with small value set, J. Algebra 565 (2021), 675-690.
[2] H. Borges, Frobenius nonclassical components of curves with separated variables, J. Number Theory 159 (2016), 402-425.
[3] H. Borges and S. Fukasawa, An elementary abelian p-cover of the Hermitian curve with many automorphisms, Math. Z. 302 (2022), 695-706.
[4] L. Carlitz, D. J. Lewis, W. H. Mills, and E. G. Straus, Polynomials over finite fields with minimal value sets, Mathematika 8 (1961), 121-130.
[5] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Geom. Dedicata 139 (2009), 211-218.
[6] S. Fukasawa, Algebraic curves admitting inner and outer Galois points, preprint, arXiv:2010.00815.
[7] S. Fukasawa and P. Speziali, Plane curves possessing two outer Galois points, preprint, arXiv:1801.03198.
[8] A. Hefez and J. F. Voloch, Frobenius non classical curves, Arch. Math. 54 (1990), 263-273.
[9] W. H. Mills, Polynomials with minimal value sets, Pacific J. Math. 14 (1964), 225-241.
[10] K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), 283-294.
[11] H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.
[12] K.-O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. Lond. Math. Soc. (3) 52 (1986), 1-19.
[13] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001), 340-355.
[14] H. Yoshihara and S. Fukasawa, List of problems, https://sites.google.com/sci.kj.yamagata-u.ac.jp/fukasawa-lab/open-questions-english

Satoru Fukasawa
Faculty of Science
Yamagata University Yamagata 990-8560 JAPAN
E-mail: s.fukasawa@sci.kj.yamagata-u.ac.jp

[^0]: The author was partially supported by JSPS KAKENHI Grant Number JP19K03438.
 2020 Mathematics Subject Classification. Primary 14H05; Secondary 11T06.
 Key words and phrases. Galois point, plane curve, finite field, rational function, value set.

