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Abstract. We are interested in the classification or finding conditions for the existence

of left-invariant symplectic structures on Lie groups. Some classifications are known,

especially in low dimensions. We approach this problem by studying the ‘‘moduli space

of left-invariant nondegenerate 2-forms’’, which is a certain orbit space in the set of all

nondegenerate 2-forms on a Lie algebra. In this paper, using this approach, we give a

classification of left-invariant symplectic structures on all almost abelian Lie algebras

determined by diagonal matrices.

1. Introduction

The problem of determining whether a given manifold admits a symplectic

structure is a classical and hard problem. In the setting of Lie groups, it is

natural to ask about the existence of left-invariant structures. A symplectic Lie

group is a Lie group G endowed with a left-invariant symplectic form o (that

is, a nondegenerate closed 2-form). The study of symplectic Lie groups reduces

to the study of symplectic Lie algebras ðg;oÞ, that is, Lie algebras g endowed

with nondegenerate closed 2-forms (or equivalently two-cocycles o A Z2ðgÞ).
Still the problem of determining if a given Lie algebra admits a symplectic

structure remains di‰cult in general and the picture seems far from complete.

Only some classifications in low dimensions and some special cases in higher

dimensions are known. Some of the known classification in low dimensions

include: complete classification for the 4-dimensional case ([17]), filiform Lie

algebras up to dimension 10 ([8]), most of solvable Lie algebras up to dimen-

sion 6 ([5], [14]). Some other special higher dimensional cases can be found,

for example, in [15], [18].
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In [9], we can find a novel method to find nice (e.g., Einstein or Ricci

soliton) left-invariant Riemannian metrics. The method is based on the moduli

space of left-invariant Riemannian metrics on a Lie group G (the orbit of space

of certain group action). In [12] and [13], the authors adapted the same ideas

in the pseudo-Riemannian case successfully. It was natural then, to try to use

the same ideas for symplectic Lie groups. Inspired by those previous studies

in [6] we developed a similar approach for the study of symplectic Lie groups.

We study the moduli space of left-invariant nondegenerate 2-forms on Lie

algebras g, which is the orbit space of the action of R� AutðgÞ on the space

WðgÞ of nondegenerate 2-forms on g. As a first application of these ideas

also in [6] we studied two particular Lie algebras: the Lie algebra of the real

hyperbolic space gRH2n , and the direct sum of the 3-dimensional Heisenberg Lie

algebra and the abelian Lie algebra h3 lR2n�3. We obtained a classification

of symplectic structures on both of them.

These two Lie algebras belong to a special family of Lie algebras: they

are both almost abelian Lie algebras. An almost abelian Lie algebra is a Lie

algebra that contains a codimension one abelian subalgebra. The structure of

almost abelian Lie algebras has been studied in [1]. An interesting result is

that isomorphism classes of almost abelian Lie algebras are related to similarity

classes of linear operators. Almost abelian Lie algebras represent a good

candidate for applying our method. In this paper we study a particular family

of almost abelian Lie algebras whose adjoint homomorphism is diagonalizable

(see Section 4). In fact, we obtain

Theorem 1.1. Let g be an almost abelian Lie algebra determined by a

diagonal matrix diagðl2; . . . ; l2nÞ.
(1) There exists a symplectic form o on g if and only if there exists a

permutation s of f2; . . . ; 2ng such that

lsðiÞ þ lsðiþnÞ ¼ 0 for i ¼ 2; . . . ; n:

(2) If there exists a symplectic form o on g, then it is unique up to

automorphism and scale.

Condition (1) is an easy to check condition for the existence in terms of

the structure constants of the Lie algebra. If a symplectic form does exist, (2)

states it is actually unique.

One of the important problems in the context of symplectic Lie algebras

ðg;oÞ is to determine the existence of certain special subspaces (see [2] for more

details). In particular, a subalgebra l � g is said to be Lagrangian if

l ¼ l? :¼ fv A g joðv;wÞ ¼ 0 for all w A lg:

From Theorem 1.1, we get the following.
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Corollary 1.2. Any diagonal almost abelian Lie algebra g with a sym-

plectic structure o A WðgÞ contains a Lagrangian ideal.

Useful tools for studying the moduli space of left-invariant nondegenerate

2-forms are decompositions of matrices in terms of symplectic matrices. In

[6], we obtained a slight modification of a decomposition theorem of symplectic

matrices called symplectic QR decomposition. In this paper again we obtain

an improvement on another decomposition theorem of symplectic matrices

called symplectic SR decomposition: we showed that up to permutation every

nonsingular matrix has an SR decomposition.

The author would like to thank Hiroshi Tamaru, Takayuki Okuda,

Yuichiro Taketomi, Kaname Hashimoto, Yuji Kondo and Masahiro Kawa-

mata for helpful comments.

2. Preliminaries

In this section, we recall some basic notions on left-invariant symplectic

forms on Lie groups.

2.1. Left-invariant symplectic 2-forms. Let G be a simply connected Lie group

with dimension 2n and g its corresponding Lie algebra. We are interested in

the set of all nondegenerate left-invariant 2-forms on G, denoted by

WðGÞ :¼ foð� ; �Þ A 52
T �G jon 0 0; left-invariantg:

We want to find closed 2-forms in this set. For this set, we have the following

natural equivalence relation.

Definition 2.1. Let o1;o2 A WðGÞ. Then, ðG;o1Þ and ðG;o2Þ are said

to be equivalent up to automorphism (resp. equivalent up to automorphism and

scale) if there exists f A AutðGÞ such that f�o1 ¼ o2 (resp. if there exist

f A AutðGÞ and a constant c0 0 such that c � ðfÞ�o1 ¼ o2).

It is well known that the space WðGÞ can be identified with the space of

nondegenerate 2-forms on g, denoted by

WðgÞ :¼ foð� ; �Þ A 52
g� jon 0 0g:

For this set, we have the following natural equivalence relation.

Definition 2.2. Let o1;o2 A WðgÞ. Then, ðg;o1Þ and ðg;o2Þ are said to

be equivalent up to automorphism (resp. equivalent up to automorphism and

scale) if there exists f A AutðgÞ such that f�o1 ¼ o2 (resp. if there exist

f A AutðgÞ and a constant c0 0 such that c � ðfÞ�o1 ¼ o2).
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When the Lie group is simply connected, which we always assume, both

notions Definitions 2.1 and 2.2 of equivalence coincide. This fact allows us to

work at the Lie algebra level.

Remark 2.3. If ðS;o1Þ and ðS;o2Þ are symplectic manifolds and there

exists f A Di¤ðSÞ such that f�o1 ¼ o2, then ðS;o1Þ and ðS;o2Þ are said to be

symplectomorphically equivalent and f is called a symplectomorphism. Notice

that the equivalence relation in Definition 2.1 (and the corresponding notion

in Definition 2.2) is stronger, but this would be the usual notion of equivalence

in symplectic Lie groups. In fact, in the context of symplectic Lie groups,

the map in Definition 2.1 or Definition 2.2 is also sometimes called a sym-

plectomorphism.

Remember that a symplectic vector space is a pair ðV ;oÞ, where V is a

vector space and o is a nondegenerate 2-form. For every og A WðgÞ, the pair

ðg;ogÞ is a symplectic vector space. The next is a well known fact.

Proposition 2.4 (cf. [2], Chapter 0). Let og A WðgÞ, and oG A WðGÞ be the

corresponding 2-form on the Lie group. Then oG is closed if and only if og

satisfies, for all x; y; z A g

dogðx; y; zÞ :¼ ogðx; ½y; z�Þ þ ogðz; ½x; y�Þ þ ogðy; ½z; x�Þ ¼ 0:

A 2-form og A WðgÞ that satisfies the previous property is called a closed

2-form or symplectic form on the Lie algebra g.

Remark 2.5. The previous condition can be expressed in terms of the

cohomology of Lie algebras. One knows that og is closed if and only if

o A Z2ðgÞ, where Z2ðgÞ is the set of 2-cocyles in the trivial representation

over R.

From the theory of homogeneous spaces we have the identification

WðgÞGGLð2n;RÞ=SpnðRÞ:

Here we identify gGR2n, and then the general linear group GLð2n;RÞ acts

transitively on WðgÞ by

g:oð� ; �Þ ¼ oðg�1ð�Þ; g�1ð�ÞÞ Eg A GLð2n;RÞ:

We also recall that SpnðRÞ is the symplectic group, that is, the group of

linear maps which preserve the canonical symplectic 2-form o0 in R2n. If

fe1; . . . ; e2ng is the canonical basis in R2n and fe1; . . . ; e2ng is the corresponding

dual basis, then the canonical symplectic 2-form is given by

o0 :¼ e15enþ1 þ � � � þ en5e2n: ð1Þ
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Then the group SpnðRÞ can be described as

SpnðRÞ :¼ fA A GLð2n;RÞ j ðAtÞJA ¼ Jg; ð2Þ

where J :¼ 0 In

�In 0

� �
, with In the identity matrix. Note that the symplectic

group SpnðRÞ is closed under the transposition of matrices, which can be

checked just by taking the inverse of ðAtÞJA ¼ J.

We want to use Proposition 2.4 to search for 2-forms that are closed in the

set WðgÞ, but this set can be rather big so next we introduce the concept of the

moduli space.

2.2. The definition. Consider the automorphism group of g defined by

AutðgÞ :¼ ff A GLð2n;RÞ j f½� ; �� ¼ ½fð�Þ; fð�Þ�g:

Also define R� :¼ Rn0. Then we can consider the set

R� AutðgÞ :¼ ff A GLð2n;RÞ j f A AutðgÞ; c A R�g;

which is a subgroup of GLð2n;RÞ. Hence it naturally acts on WðgÞ. Note

that R� does not act as the usual scaling. In fact, for cI2n A R� AutðgÞ, we
have

ðcI2nÞ:oð� ; �Þ ¼ oððcI2nÞ�1ð�Þ; ðcI2nÞ�1ð�ÞÞ ¼ c�2o:

We can then consider the orbit space of this action.

Definition 2.6. The orbit space of the action of R� AutðgÞ on WðgÞ is

called the moduli space of left-invariant nondegenerate 2-forms and is denoted by

PWðgÞ :¼ R� AutðgÞnWðgÞ :¼ fR� AutðgÞ:o jo A WðgÞg:

One can easily see that, if o1;o2 A WðgÞ are in the same R� AutðgÞ-orbit,
then they are equivalent up to automorphism and scale. Therefore there is a

surjection from the moduli space PWðgÞ onto the quotient space

WðgÞ=“up to automorphism and scale”:

This would be not bijective, since o and �o are possibly not in the same

R� AutðgÞ-orbit. In fact, for the canonical form o0 we have

In;no0 ¼ �o0; In;n ¼
In 0

0 �In

 !
:

We could consider instead the action of ðZ2In;nÞR� AutðgÞ to avoid this, but

in many cases this is not necessary.
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In this paper, we just consider the moduli space PWðgÞ. Notice that the

action of R� AutðgÞ preserves the closedness of 2-forms. In the latter sections,

instead of studying WðgÞ directly we will focus on studying PWðgÞ: we want to

find orbits that correspond to closed 2-forms.

2.3. Milnor frames procedure. Remember that given a symplectic vector space

ðV ;oÞ with dim V ¼ 2n, we can always choose a basis fx1; . . . ; x2ng of V such

that for i < j

oðxi; xjÞ ¼
1 ðif j ¼ i þ nÞ;
0 ðall other casesÞ:

�

Such a basis is called a symplectic basis.

Remember that g is a Lie algebra of dimension 2n, and we identify

gGR2n with the canonical basis fe1; . . . ; e2ng. Let o0 be the canonical 2-form

as in (1). Then fe1; . . . ; e2ng is a symplectic basis with respect to o0. To

simplify the notation let us denote the orbit of R� AutðgÞ through o A WðgÞ
by

½o� :¼ ðR� AutðgÞÞ:o :¼ ff:o j f A R� AutðgÞg:

Definition 2.7. A subset U � GLð2n;RÞ is called a set of representatives

of PWðgÞ if it satisfies

PWðgÞ ¼ f½h:o0� j h A Ug:

Let ½½g�� denote the double coset of g A GLð2n;RÞ defined by

½½g�� :¼ R� AutðgÞg Spð2n;RÞ :¼ ffgs j f A R� AutðgÞ; s A SpnðRÞg:

By standard theory of double coset spaces, we have a criterion for a set U to

be a set of representatives (we refer to [9]).

Lemma 2.8. Let U � GLð2n;RÞ, and assume that for every g A GLð2n;RÞ
there exists h A U such that h A ½½g��. Then U is a set of representatives of

PWðgÞ.

Now we state a theorem for obtaining Milnor type frames in the sym-

plectic case.

Theorem 2.9 ([6]). Let U be a set of representatives of PWðgÞ.
Then for every o A WðgÞ there exist k > 0, f A AutðgÞ and h A U such that

ffhe1; . . . ; fhe2ng is a symplectic basis with respect to ko.

The basis obtained in this theorem will be called Milnor frames. Notice

that if U has a nice form, the bracket relations of the Milnor frames will also
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be given in terms of a nice set of parameters. In such cases, it becomes much

easier to search for closed 2-forms inside of WðgÞ. In the next section, we

introduce a tool that will be useful to calculate a nice set of representatives and

to obtain nice Milnor frames.

3. SR decomposition

To obtain a nice set of representatives, it is useful to have general results

for decomposing matrices using symplectic matrices. In this section, we give an

improvement of the so called SR decomposition. Some of the known results

can be seen in [3] or [4]. First we define some notations.

Mðn;RÞ denotes the set of all n� n real matrices. As before, GLðn;RÞ
denotes the set of all n� n nonsingular real matrices and Ik the k � k identity

matrix. Eij denotes the matrix with 1 at position ði; jÞ and zeros everywhere

else. For a matrix M, Mt denotes its transpose.

Definition 3.1. A 2n� 2n block square matrix

R ¼
A B

C D

 !

is called upper J-triangular if A, B, D are upper triangular and C is strictly

upper triangular. If in addition B is strictly upper triangular it is called

strictly upper J-triangular. A matrix L is called lower J-triangular (resp.

strictly lower J triangular) if Lt is upper J-triangular (resp. strictly upper

J-triangular).

Recall that P A GLðn;RÞ is called a permutation matrix if it induces

a permutation among the elements in the standard basis fe1; . . . ; eng of Rn.

Denote by Perðn;RÞ < GLðn;RÞ the group of all permutation matrices. In

particular, we have the stabilizer of e1

Perðn;RÞe1 ¼
1 0

0 P 0

 !�����P 0 A Perðn� 1;RÞ
( )

:

We also define the particular permutation matrix P̂P A Perð2n;RÞe1 by

P̂Pel ¼
e2l�1 ð1a la nÞ;
e2ðl�nÞ ðnþ 1a la 2nÞ:

�
ð3Þ

The next proposition is well known and can also be used as the definition

of upper J-triangular matrices.
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Proposition 3.2 (See [4]). A matrix R is upper J-triangular if and only if

there exists an upper triangular matrix T such that

ðP̂PtÞTP̂P ¼ R ¼
A B

C D

 !
:

In particular, DetðRÞ ¼ DetðAÞ DetðDÞ:

In [4], the decomposition of 2n� 2n matrices into the product of a sym-

plectic matrix and a J-triangular matrix is considered. They gave a condition

for a matrix to have such a decomposition as follows. M½k; k� will denote the

leading principal submatrix of dimension k, consisting of the first k rows and

columns. Also recall J as defined in (2).

Theorem 3.3 (SR decomposition). Let M A GLð2n;RÞ. Then there exists

a decomposition of the form

M ¼ SR;

with S A SpnðRÞ and R a strictly upper J-triangular matrix if and only if

detðP̂PM tJMP̂PtÞ½2k; 2k�0 0 ð4Þ

for all k ¼ 1; . . . ; n.

Proof. See Theorem 3:8 and Remark 3:9 in [4]. r

In the next section of this paper, it will be more convenient to use the

‘‘transpose’’ version of Theorem 3.3.

Lemma 3.4 (LS decomposition). Let M A GLð2n;RÞ. Then there exists

a decomposition of the form

M ¼ LS;

with S A SpnðRÞ and L a strictly lower J-triangular matrix if and only if M t has

an SR decomposition.

A well known decomposition result is the so called LU-decomposition: a

decomposition in terms of a lower triangular matrix L and an upper triangular

matrix U . In fact, this result is related to the proof of Theorem 3.3. It is

also well known that up to permutation any matrix has a LU-decomposition

([10] Theorem 3.5.8). We shall prove a similar result for the SR decompo-

sition: up to permutation every nonsingular matrix has an SR decomposition

(cf. Theorem 3.8).

The matrix MtJM that appears in (4) is a skew-symmetric matrix. We

recall some basic facts about skew-symmetric matrices that will be useful. Let
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Skewðn;RÞ denote the set of all n� n skew-symmetric matrices. The deter-

minant of a skew-symmetric matrix can always be written as the square of a

polynomial in the matrix entries. The value of this polynomial evaluated in

the coe‰cients of a matrix A is called the Pfa‰an of A and is denoted by

pfðAÞ. The Pfa‰an can be defined in several ways, here we present a recursive

definition.

Definition 3.5 (Pfa‰an). Let A ¼ ðaijÞ A Skewð2n;RÞ, then its Pfa‰an is

defined inductively by

pfðAÞ ¼
X
j0i

ð�1Þ iþjþ1þyði�jÞ
aij pfðA{̂{|̂|Þ;

where y is the Heaviside step function, i can be chosen freely, A{̂{|̂| A
Skewð2n� 2;RÞ is the matrix obtained by removing both the i-th and j-th

row and columns from A. The P¤afian of a 0� 0 matrix is defined as 1.

Remember the Heaviside step function y is defined by

yðxÞ ¼ 1 ðx > 0Þ;
0 ðxa 0Þ:

�
ð5Þ

Theorem 3.6 (Cayley 1842). If A A Skewð2n;RÞ, then the determinant of

A is given by detðAÞ ¼ ðpfðAÞÞ2.

The proof of the second part of the next lemma might follow easily from

a known formula for minors of skew symmetric matrices, but for the sake of

completeness we present the proof.

Lemma 3.7. Let A A Skewð2n;RÞ \GLð2n;RÞ, n > 1. Then there exists

a permutation matrix P such that detððPtÞAP½2n� 2; 2n� 2�Þ0 0. Further-

more, P can be an element of Perð2n;RÞe1 .

Proof. We have detðAÞ ¼ ðpfðAÞÞ2 0 0. From the definition of pfðAÞ,
there exist i, j such that pfðAîiĵjÞ0 0. Since Aîiĵj A Skewð2n� 2;RÞ, we have

detðAîiĵjÞ ¼ ðpfðAîiĵjÞÞ
2 0 0. Now it is easy to see that there is a permutation P

such that

ðPtÞAP ¼
Aîiĵj �

� �

 !
:

For the second part, it is enough to show that there exist i; j0 1 such that

detðAîiĵjÞ0 0. If this is the case, then it is easy to see that the permutation
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P defined previously can be of the desired form. Suppose that detðAîiĵjÞ ¼
ðpfðAîiĵjÞÞ

2 ¼ 0 for all i; j0 1, then for all i0 1,

pfðAÞ ¼
X
j0i

ð�1Þ iþ1þjþyði�jÞ
aij pf A{̂{|̂| ¼ ð�1Þ iþ1þ1þyði�1Þ

ai1 pf A{̂{1

¼ �ð�1Þ iai1 pf A{̂{1 ¼ ð�1Þ ia1i pf A1{̂{:

By summing over i, we get

ð2n� 1Þ pfðAÞ ¼
X2n
i¼2

ð�1Þ ia1i pf A1{̂{ ¼ pfðAÞ;

then pfðAÞ ¼ 0 which is not possible. r

Theorem 3.8. Let M A GLð2n;RÞ. Then there exists a permutation P

such that MP has an SR decomposition. Furthermore, P can be an element of

Perð2n;RÞe1 .

Proof. From Theorem 3.3, we just need to prove that there is a permu-

tation matrix P such that for all k ¼ 1; . . . ; n,

detðP̂PPtM tJMPP̂PtÞ½2k; 2k�0 0: ð6Þ

In fact, because P̂P is itself a permutation matrix, it will be enough to show that

there is a permutation matrix P such that for all k ¼ 1; . . . ; n,

detðPtM tJMPÞ½2k; 2k�0 0: ð7Þ

Note that if such matrix P exists, then the permutation matrix PP̂P is su‰cient

for satisfying (6).

To prove (7), we just need to apply Lemma 3.7 repeatedly. Note that

MtJM A Skewð2n;RÞ. If n ¼ 1 there is nothing to prove, because MtJM is

nonsingular. If n0 1, from Lemma 3.7, there exists a permutation P1 such

that

detðPt
1M

tJMP1Þ½2n� 2; 2n� 2�0 0:

We again have

B :¼ Pt
1M

tJMP1½2n� 2; 2n� 2� A Skewð2n� 2;RÞ \GLð2n� 2;RÞ;

so by Lemma 3.7, there exists a matrix P 0
2 such that

detðP 0t
2BP

0
2Þ½2n� 4; 2n� 4�0 0:
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If we define

P2 :¼
P 0
2 0

0 I2

 !
;

then we have that for k ¼ n; n� 1; n� 2

detðPt
2P

t
1M

tJMP1P2Þ½2k; 2k�0 0:

It is easy to see that we can continue this procedure until we have a matrix P

such that (7) is satisfied.

For the second part just notice that also from Lemma 3.7 all the permu-

tation matrices used can be selected to have the desired form. r

Hence it is clear that the same result extends to Lemma 3.4. In the latter

sections, we use the next statement.

Corollary 3.9. Let M A GLð2n;RÞ. Then there exist a permutation

matrix P A Perð2n;RÞe1 and S A SpnðRÞ such that

PMS ¼
A B

C D

 !

is strictly lower J-triangular (with A and D nonsingular lower triangular, and B

and C strictly lower triangular).

4. Almost abelian Lie algebras

Let g be a Lie algebra over R of dimension n (not necessarily even).

Definition 4.1. A non-abelian Lie algebra g is called almost abelian if it

contains a codimension 1 abelian subalgebra.

Remark 4.2. In our definition we exclude abelian Lie algebras from almost

abelian Lie algebras. Some authors prefer to include abelian Lie algebras in the

class of almost abelian Lie algebras. We follow the convention in [1].

Proposition 4.3 ([1]). An almost abelian Lie algebra g has a codimension

1 abelian ideal I, and is therefore isomorphic to the semidirect product

g ¼ ReyI

for some e A gnI.

The Lie algebra structure of an almost abelian Lie algebra g ¼ ReyI, as

in the previous proposition, is completely determined by adejI A EndðIÞ:

½e; v� ¼ adejIv; v A I:
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Any pair ðV ;TÞ, where V is a vector space and T a nonzero linear map,

determines an almost abelian Lie algebra g and vice versa, but di¤erent maps

can yield isomorphic Lie algebras.

Definition 4.4. Two pairs ðV1;T1Þ and ðV2;T2Þ are said to be similar if

there exist l A R� and an invertible linear map f such that T2 ¼ lðfT1f
�1Þ. In

this case we write ðV1;T1Þ@ ðV2;T2Þ.

Isomorphism classes of almost abelian Lie algebras correspond to the

similarity classes of linear operators on vector spaces.

Theorem 4.5 ([1]). Two almost abelian Lie algebras g ¼ ReyI and g 0 ¼
Re 0 yI 0 are isomorphic if and only if ðI; adejIÞ@ ðI 0; ade 0 jI 0 Þ.

For the proof of our main result in the next section, we need a descrip-

tion of the automorphism group of an almost abelian Lie algebra g. A com-

plete description can be found in [1]. In fact, we will not need the complete

description, and only use the following weaker result. For a given almost

abelian Lie algebra g ¼ Ry1 yI, we fix a basis fy1; . . . ; yng of g such that

I ¼ Spanfy2; . . . ; yng.

Theorem 4.6. For the automorphism group of an almost abelian Lie

algebra g ¼ Ry1 yI, we have

AutðgÞ � a 0

b A

� ����� a A R�; b A Rn�1; Aðady1 jIÞ � aðady1 jIÞA ¼ 0

� �
:

Proof. By a direct calculation. Compare with [1], Proposition 8. r

In this paper we focus on a special family of almost abelian Lie algebras:

those that are diagonalizable.

Definition 4.7. Let g ¼ Ry1 yI be an almost abelian Lie algebra of

dimension n such that

ady1 ¼
l2

. .
.

ln

0
BB@

1
CCA:

We will call g a diagonal almost abelian Lie algebra and will usually just say g

is an almost abelian Lie algebra determined by diagðl2; . . . ; l2nÞ.

In particular, for the automorphism group of a diagonal almost abelian

Lie algebra, we have the following elements.
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Proposition 4.8. For a diagonal almost abelian Lie algebra g ¼ Ry1 yI,

any nonsingular matrix of the following form is an element of R� AutðgÞ:

�

� �
..
. . .

.

� �

0
BBBB@

1
CCCCA:

Proof. From Theorem 4.6, we have that

1

� �
..
. . .

.

� �

0
BBBB@

1
CCCCA A AutðgÞ:

Then the proposition follows immediately. r

Proposition 4.9. Let g ¼ Ry1 yI be the diagonal almost abelian Lie

algebra determined by diagðl2; . . . ; lnÞ. If lk ¼ ll , then a map h satisfying the

following is an automorphism:

hðSpanfyk; ylgÞ ¼ Spanfyk; ylg; hðyiÞ ¼ ðyiÞ ði0 k; lÞ:

Proof. It follows directly from Theorem 4.6. r

5. Proof of the main theorem

In this section, we prove Theorem 1.1, that is, for diagonal almost abelian

Lie algebras, we give a condition for the existence of symplectic structures and

show the uniqueness.

First we prove some results that are true for particular almost abelian Lie

algebras, not necessarily diagonal. Let g ¼ Spanfx1; . . . ; x2ng ¼ Rx1 yI with

I ¼ Spanfx2; . . . ; x2ng be an almost abelian Lie algebra of dimension 2n. The

structure constants of g can be described by the matrix

Cg ¼
0

adx1 jI

 !
¼ ðcijÞ;

so that

½x1; xi� ¼
X
j

cjixj :
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First of all we show that if fxig is a symplectic basis and the corresponding

matrix Cg is J-triangular, then the closed condition (Proposition 2.4) has a very

simple form. Recall that WðgÞ is the set of nondegenerate 2-forms on g.

Lemma 5.1. Let g be an almost abelian Lie algebra and o A WðgÞ. Let

fx1; . . . ; x2ng be a symplectic basis of g such that g ¼ Rx1 y Spanfx2; . . . ; x2ng
and the matrix Cg ¼ ðcijÞ of structure constant is strictly lower J-triangular.

Then do ¼ 0 if and only if Cg is diagonal and

cii ¼ �ciþn iþn ði A f2; . . . ; ngÞ:

Notice that c11 ¼ 0 and there is no condition on the element cnþ1 nþ1.

Proof. It is easy to see that do ¼ 0 if and only if doðx1; xi; xjÞ ¼ 0 for

1 < i < j. By a direct calculation, we get

doðx1; xi; xjÞ ¼ oðxj; ½x1; xi�Þ þ oðxi; ½xj; x1�Þ

¼
X
k

ckioðxj; xkÞ �
X
l

cljoðxi; xlÞ: ð8Þ

We can now consider di¤erent cases. Let us consider the square block

decomposition

Cg ¼
T1 T2

T3 T4

 !
:

Case 1: 1 < i < ja n. In this case, by Equation (8), we have

doðx1; xi; xjÞ ¼ cjþn ioðxj; xjþnÞ � ciþn joðxi; xiþnÞ ¼ cjþn i � ciþn j ¼ 0: ð9Þ

This is a condition on block T3. Recall that this block can be written as

T3 ¼
0 0

0 T 0
3

 !
;

where T 0
3 A Mðn� 1;RÞ is strictly lower triangular. Then Equation (9) is

equivalent to T 0
3 ¼ ðT 0

3Þ
t, but T 0

3 is strictly lower triangular so T 0
3 ¼ 0. Then

we get T3 ¼ 0.

Case 2: n < i < j. In this case, by Equation (8), we have

doðx1; xi; xjÞ ¼ cj�n ioðxj ; xj�nÞ � ci�n joðxi; xi�nÞ ¼ �cj�n i þ ci�n j ¼ 0: ð10Þ

This is a condition on block T2, and is equivalent to T2 ¼ T t
2 . Since T2 is also

strictly lower triangular, we get T2 ¼ 0.

Case 3: 1 < ia n < j. In this case, by Equation (8), we have

doðx1; xi; xjÞ ¼ cj�n ioðxj ; xj�nÞ � ciþn joðxi; xiþnÞ ¼ �cj�n i � ciþn j ¼ 0: ð11Þ
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This condition relates blocks T1 and T4. These blocks can be written as

T1 ¼
0 0

0 T 0
1

 !
; T4 ¼

� 0

a T 0
4

 !
;

where T 0
1;T

0
4 A Mðn� 1;RÞ are both lower triangular. When j ¼ nþ 1, Equa-

tion (11) implies a ¼ 0. When j0 nþ 1, Equation (11) implies T 0
1 ¼ �ðT 0

4Þ
t.

Since T 0
1 and T 0

4 are lower triangular, only the diagonal elements are nonzero

and we get the condition of this lemma. r

From here onward, we will restrict our attention to diagonal almost abe-

lian Lie algebras. Let gAGR2n ¼ Spanfe1; . . . ; e2ng ¼ Re1ySpanfe2; . . . ; e2ng
denote the diagonal almost abelian Lie algebra determined by A ¼
diagðl2; . . . ; l2nÞ, so the matrix of structure constants with respect to the

canonical basis is given by

CgA
¼

0 0

0 A

 !
¼ ðaijÞ: ð12Þ

Lemma 5.2. Let gA be a diagonal almost abelian Lie algebra as above. A

set of representatives U for the action of R� AutðgAÞ on WðgAÞ is given by

U ¼ PL

L ¼ ðlijÞ is strictly lower J-triangular

lii ¼ 1 for all i and li1 ¼ 0 for i > 1

P A Perð2n;RÞe1

�������
8><
>:

9>=
>;:

Proof. Take g A GLð2n;RÞ. By Corollary 3.9, there exists S A SpnðRÞ,
a permutation matrix P A Perð2n;RÞe1 and a strictly lower J-triangular matrix

L with all the diagonal elements nonzero such that

PgS ¼ L:

Therefore,

½½g�� C gS ¼ P�1L:

We can take a matrix

h1 ¼
�

. .
.

�

0
B@

1
CA;

such that h1L ¼: L 0 ¼ ðl 0ijÞ with l 0ii ¼ 1 for all i. From Proposition 4.8, we have

P�1h1P A R� AutðgAÞ, since it is still diagonal. Hence,

½½g�� C ðP�1h1PÞðP�1LÞ ¼ P�1L 0:
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We can take a matrix

h2 ¼

1

� 1

..

. . .
.

� 1

0
BBBB@

1
CCCCA;

such that h2L
0 ¼: L 00 ¼ ðl 00ij Þ with l 00ii ¼ 1 for all i and l 00j1 ¼ 0 for j > 1. Since

P�1 A Perð2n;RÞe1 , P
�1h2P remains of the same shape as h2. Therefore, from

Proposition 4.8, P�1h2P A R� AutðgAÞ. Hence,

½½g�� C ðP�1h2PÞðP�1L 0Þ ¼ P�1L 00:

Note that L 00 remains strictly lower triangular. This finishes the proof. r

Now we can state a Milnor-type theorem using the set of representatives

obtained in the previous lemma.

Theorem 5.3 (Milnor-type). Let gA be a diagonal almost abelian Lie

algebra as before. For all o A WðgAÞ, there exist t > 0, u A U (as in Lemma

5.2) and a symplectic basis fx1; . . . ; x2ng � gA with respect to to such that the

only nonzero brackets are given by

½x1; xk� ¼
X
l

blkxl for k ¼ 2; . . . ; 2n;

where B ¼ u�1CgA
u ¼ ðbijÞ.

Proof. Let fe1; . . . ; e2ng be the canonical basis of gA, whose bracket

relation is given by ½e1; ei� ¼
P

l aliel for i > 1. In Lemma 5.2, we obtained

a set of representatives U for the action of R� AutðgAÞ on WðgAÞ. Take

any o A WðgAÞ. Then it follows from Theorem 2.9 that there exist u ¼ ðuijÞ A
U ; t > 0 and f A AutðgAÞ such that fx1 :¼ fue1; . . . ; xn :¼ fueng is symplectic

with respect to to. Hence we only have to check the bracket relations among

them.

For any u A U , we have ue1 ¼ e1 and uei A Spanfe2; . . . ; e2ng for i0 1.

Among fue1; . . . ; ue2ng, the only possible nonzero bracket relations are

½ue1; uei� ¼ ½e1; uei�; i0 1:

By the usual argument of change-of-basis matrix, we get

½e1; uei� ¼
X
j;k; t

ujiðu�1Þtkakjuet:
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Finally, apply f to both sides

½x1; xi� ¼
X
j;k; t

ujiðu�1Þtkakjfuet ¼
X
j;k; t

ujiðu�1Þtkakjxt:

This finishes the proof. r

We introduce a notation. For each permutation P A Perð2n;RÞ, we denote

by sP the permutation on f1; . . . ; 2ng corresponding to P. That is, Pei ¼ esPðiÞ
for i ¼ 1; . . . ; 2n.

Lemma 5.4. Let gA be a diagonal almost abelian Lie algebra as before.

For PL A U (as in Lemma 5.2), consider PL:o0 A WðgAÞ. Then we have

dPL:o0 ¼ 0 if and only if

lsPðiÞ þ lsPðiþnÞ ¼ 0 ði ¼ 2; . . . ; nÞ; ð13Þ

lijðlsPðiÞ � lsPð jÞÞ ¼ 0 ði0 jÞ: ð14Þ

Proof. By Theorem 5.3, there exist t > 0 and a symplectic basis with

respect to tPL:o0 such that the structure constants are given by the matrix

B ¼ L�1P�1CgA
PL ¼ ðbijÞ. Notice that dðtPLÞ:o0 ¼ 0 if and only if dðPLÞ:o0

¼ 0. Remember that

CgA
¼ diagð0; l2; . . . ; l2nÞ;

so that

P�1CgAP ¼ diagð0; lsPð2Þ; . . . ; lsPð2nÞÞ ¼: D:

Note that both L and L�1 are strictly lower J-triangular with diagonal elements

equal to 1. Then B can be calculated as follows

B ¼ L�1DL ¼

0 0 � � � 0 0 � � � 0

0 lsPð2Þ 0 0 0

..

. . .
. . .

.

0 � lsPðnÞ � 0

0 0 0 lsPðnþ1Þ 0

..

. . .
. . .

.

0 � 0 � lsPð2nÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

so that B is again a strictly lower J-triangular matrix. Therefore we can use

Lemma 5.1 to obtain dPL:o0 ¼ 0 if and only if B is diagonal and

bii ¼ �biþn iþn ði A f2; . . . ; ngÞ:
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For the elements of the diagonal, we obtain immediately Equation (13). Non-

diagonal elements are all equal to 0, this is equivalent to the condition

B ¼ D:

From the definition of B, this is equivalent to the equation

DL ¼ LD:

Finally, if we write this equation in terms of the parameters of the matrices

L and D we get Equation (14). r

Equation (13) proves the first part of the main result in Theorem 1.1 as

follows.

Proposition 5.5. Let g be a diagonal almost abelian Lie algebra deter-

mined diagðl2; . . . ; l2nÞ. There exists a symplectic form o A WðgÞ if and only if

there exists a permutation s of f2; . . . ; 2ng such that

lsðiÞ þ lsðiþnÞ ¼ 0 for i ¼ 2; . . . ; n:

Proof. First suppose there exists a symplectic form o A WðgÞ. Then we

have ½o� ¼ ½PL:o0�, where PL is as in Lemma 5.2. Then from (13) in Lemma

5.4, we get the desired condition.

Now suppose that there exists s such that lsðiÞ þ lsðiþnÞ ¼ 0 for i ¼
2; . . . ; n: We can rearrange the basis to the following order

fe1; esð2Þ; . . . ; esð2nÞg:

Then from Lemma 5.4 with L ¼ I2n, we can check that the 2-form o associated

with this basis is symplectic. r

Remark 5.6. In fact, the first part of our main result can also be obtained

relatively easily by direct calculations. Our method will be particularly useful

for the second part of our Main result. Our method will also provide ideas to

study other examples.

From now on we prove the second part of our main theorem. Let gG
R2n ¼ Spanfe1; . . . ; e2ng ¼ Re1 y Spanfe2; . . . ; e2ng denote the diagonal almost

abelian Lie algebra determined by diagðl2; . . . ; l2nÞ. Assume that there exist a

symplectic form o A WðgÞ. Then (13) must be satisfied and similarly as in the

proof of Proposition 5.5 we can assume without loss of generality that g ¼ gA is

a diagonal almost abelian Lie algebra determined by

A ¼ diagðl2; . . . ; ln; lnþ1;�l2; . . . ;�lnÞ with l2 b � � �b ln b 0: ð15Þ

As before o0 denotes the canonical 2-form.
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Lemma 5.7. Let g ¼ gA be the diagonal almost abelian Lie algebra deter-

mined by A as in (15). Let PL A U(as in Lemma 5.2). If dPL:o0 ¼ 0, then

½PL:o0� ¼ ½P:o0�.

Proof. Write the matrix L ¼ ðlijÞ as

L ¼ ðL1; . . . ;L2nÞ;

that is, Li ¼ ðl1i; . . . ; li�1i; 1; liþ1i; . . . ; l2niÞ t. Define the matrix

Qi ¼ ðe1; . . . ;L 0
i ; . . . ; e2nÞ;

where L 0
i :¼ ð�l1i; . . . ;�li�1i; 1;�liþ1i; . . . ;�l2niÞ t. Now suppose that j is the

largest integer such that L ¼ ðe1; . . . ; ej�1;Lj ; . . . ;L2nÞ and Lj 0 ej. By the

definition of L, we know jb 2. Notice that

QjL ¼ ðe1; . . . ; ej; �; . . . ; �Þ:

This operation eliminates the parameters in the j-th column of L. It leaves the

previous columns without change. It changes the values of the latter columns,

but L remains a J-triangular matrix with diagonal elements equal to 1. We

can repeat this procedure until L is transformed into the identity matrix.

Therefore, we just have to show that if dPL:o0 ¼ 0, then

½PL:o0� ¼ ½PQjL:o0�:

Since PQjL ¼ ðPQjP
�1ÞPL, it is enough to prove that

PQjP
�1 A R� AutðgAÞ: ð16Þ

Qj can be written as

Qj ¼ I �
X
i0j

lijEij ¼
Y
i0j

ðI � lijEijÞ:

Then we have

PQjP
�1 ¼ P

Y
i0j

ðI � lijEijÞ
 !

P�1 ¼
Y
i0j

ðI � lijPEijP
�1Þ

¼
Y
i0j

ðI � lijEsPðiÞsPð jÞÞ: ð17Þ

If dPL:o0 ¼ 0, P and L must satisfy (13) and (14). From (14), we get lij ¼ 0

or lsPðiÞ ¼ lsPð jÞ. In both cases, it is easy to see from Proposition 4.9 that

I � lijEsPðiÞsPð jÞ A R� AutðgAÞ:

This and (17) imply (16). This finishes the proof. r
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Lemma 5.8. Let g ¼ gA be the diagonal almost abelian Lie algebra deter-

mined by A as in (15). Let P A Perð2n;RÞe1 . If dP:o0 ¼ 0, then ½P:o0� ¼ ½o0�.

Proof. Remember that a permutation s is called a transposition when it

is a cycle with only two elements. In the usual cycle notation, if s permutes

the i-th and j-th element, then the permutation is denoted by s ¼ ðijÞ. Now

let P A Perð2n;RÞe1 and assume that dP:o0 ¼ 0.

Claim 1: there exists P 0 such that

½P:o0� ¼ ½P 0:o0�; jlsP 0 ð2Þjb � � �b jlsP 0 ðnÞj:

We can choose a matrix

P3 ¼
P 0
3

P 0
3

 !
; P 0

3 A Perðn;RÞe1

such that jlsPP 0
3
ð2Þjb � � �b jlsPP 0

3
ðnÞj. Set P 0 :¼ PP3. Since P3 A SpnðRÞ, we

have

½P:o0� ¼ ½PP3o0� ¼ ½P 0:o0�:

Claim 2: there exists P 00 such that

½P 0:o0� ¼ ½P 00:o0�; lsP 00 ð2Þ b � � �b lsP 00 ðnÞ b 0:

Suppose lsP 0 ðiÞ < 0 for some 0 < ia n. Consider the permutation P2 such that

sP2
¼ ði i þ nÞ. The e¤ect of this permutation is

lsP 0P2 ðkÞ
¼

lsP 0 ðkÞ ðk0 i; i þ nÞ;
�lsP 0 ðkÞ ðk ¼ i; i þ nÞ:

(
ð18Þ

We can repeat this operation to obtain the desired order. Then we have only

to show that

½P 0:o0� ¼ ½P 0P2:o0�:

First notice that

ðI � 2EiiÞP2 A SpnðRÞ:

Also from Proposition 4.8, we have

P 0ðI � 2EiiÞðP 0Þ�1 ¼ ðI � 2EsP 0 ðiÞsP 0 ðiÞÞ A R� AutðgAÞ:

Therefore we have

½P 0:o0� ¼ ½P 0ððI � 2EiiÞP2Þ:o0� ¼ ½ðP 0ðI � 2EiiÞðP 0Þ�1ÞP 0P2:o0�

¼ ½ðI � 2EsP 0 ðiÞsP 0 iÞP 0P2:o0� ¼ ½P 0P2:o0�:
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Claim 3: P 00 A R� AutðgAÞ. Therefore

½P 00:o0� ¼ ½o0�:

For each pair i; j ði0 jÞ such that li ¼ lj, consider a permutation P3 such that

sP3
¼ ðijÞ. From Proposition 4.9, we have that

P3 A R� AutðgAÞ: ð19Þ

Since P 00 is just a composition of this type of permutations, Claim 3 follows.

This completes the proof of this lemma. r

This lemma proves the second part of the main result Theorem 1.1 as

follows.

Proposition 5.9. Let g be a diagonal almost abelian Lie algebra. If there

exists a symplectic form on g, then it is unique up to symplectomorphism and

scale.

Proof. We can assume without loss of generality that g ¼ gA, where A

is as in (15). Let o0 denote the canonical 2-form. Note that in this case, o0

is closed by Lemma 5.4. Take a symplectic form o. Then we have ½o� ¼
½PL:o0� where PL is as in Lemma 5.2. Finally by Lemmas 5.7 and 5.8, we

have

½o� ¼ ½PL:o0� ¼ ½P:o0� ¼ ½o0�;

which finishes the proof. r

Finally, we can give a proof of Corollary 1.2.

Proof (of Corollary 1.2). From our main theorem, we can just assume

that fe1; . . . ; e2ng is a symplectic basis and o ¼ o0 is the canonical form.

Define l ¼ Spanfe1; . . . ; eng. Then it is easy to show that l is a Lagrangian

ideal. r

References

[ 1 ] Avetisyan, Z.: Structure of almost abelian Lie algebras, arXiv 1610.05365 (2016).

[ 2 ] Baues, O. and Cortés, V.: Symplectic Lie groups. Astérisque 379 (2016).
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