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ABSTRACT. We discuss orthogonal Chebyshev-Frolov lattices, their generating matrices
and their use in Frolov cubature formula. We give a detailed account on coordinate-
permuted systems that lead to fast computation and enumeration of such lattices.
In particular, we explain the recurrences identified in (K. Suzuki and T. Yoshiki,
Hiroshima Math. J., 49(1):139-159, 2019) via a plain constructive approach exhibiting
a new hierarchical basis of polynomials. Dual Chebyshev-Frolov lattices and their
generating matrices are also studied. Lattices enumeration in axis-parallel boxes is
discussed.

1. Introduction

Numerical integration in multi-dimension is a highly active research topic.
In a variety of scientific and engineering contexts, the objective is to approx-
imate integrals on general domains Q C RY that cannot be handled analyti-
cally. For many applications, the geometries of 2 and the occurrence of
singularities are the major sources of difficulty. That said, the approxima-
tion of integrals involving smooth integrands over regular domains is still a
challenging task, especially in high dimensions. For instance, integrals of the
form

2ulf)= | fexan 1)
[0, 1)

with the proper assumptions on f, arising in innumerable areas such as physics,

data mining, finance, parametrized PDE, uncertainty quantification, etc. Sparse

Grids, Monte-Carlo (MC) and Quasi Monte-Carlo (QMC) methods, see e.g. [1,

2, 3, 4] and references their-in, account for a major part of numerical integra-

tion procedures tailored to high dimensions.
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Ideally, one aims in computing an efficient and stable numerical approx-
imation 24 y[f] to the above integral, which have reliable error guarantees for
classical smoothness manifolds. For instance, through the worst-case error

e(N, A7) == sup [24[f]—2an[/]l; 2)
/1 <1
where " is a given smoothness manifold of d-variate functions. The integer
N reflects a numerical budget, in general dominated by the number of queries
of function f.

We are interested in a specific family of lattice rules called Frolov cuba-
tures. In a nutshell, given M a fixed non singular d x d matrix and N e N a
scaling facor, we consider My = (N det(M)) ™" M (it satisfies det(My) = 1/N)
and the associated d-dimensional lattice MyZ¢ = {Myk : ke Z}. Matrix My
is called a generating matrix for the lattice. Any other generating matrix is
necessarily equal to MyS with S uni-modular, i.e. in SLy(Z) := {SeZ:
det(S) = +1}. We consider the cubature

2unlfl =y X /). g

xeMyz!

The function f is assumed to be supported on a bounded domain £2, thus only
finitely many summands contribute to the sum, i.e. quadrature nodes picked
on the grid MyZ¢ N Q. The quadrature weights are all equal to 1/N, yet the
quadrature is not a Quasi-Monte Carlo method since in general 2, y[lo] # 1.
We note however that 2, y[lo] — vol(2) as N — co.

The description of Frolov quadrature is fairly straightforward. Further-
more, the convergence analysis in the sense of (2) is rather standard, especially
through techniques of harmonic analysis, see e.g. [5, 6, 7, 8, 9, 10, 11,
12].  Frolov [5] established that under the mere admissibility condition

Nm(M):= inf |[IT% x| >0, (4)

<

there holds an optimal asymptotic worst-case behavior of (2) with respect to
functions with L,-bounded mixed derivative of order r € N supported in [0, l]d.
We refer to the tutorial paper [10] for a detailed proof. We also refer to [8] for
a survey on this optimality result in many classical function spaces on the cube.
The inspection of all the aforementioned references confirms that the perfor-
mance of the quadrature is strongly tied and can be quantified through quan-
tities that are intrinsic to the lattice MyZ? (or equally MZ?). In particular,
through invariants (invariance with respect to generating matrices) pertaining to
its geometry. For instance Nm(M), |det(M)|, inf{||MS||., : S € SL4(Z)}, and
other invariants.
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The notion of lattice admissibility is central to Frolov cubatures. Another
notion of utmost importance is that of duality. The dual of a lattice I C RY
denoted I'* is defined by I'* = {xeR?:x"yeZ Vyel'}. A matrix V is a
generating matrix for I if and only if V' := (V")T is a generating matrix for
I't. The importance of duality resides mainly on two facts. On the one hand,
it supplies a new optimal cubature, as admissibility of I" implies that of I't
(and vice versa), see e.g. [12]. On the other hand, the standard approach to
studying the stability and accuracy of the quadrature associated with I” through
harmonic analysis requires a well understanding of geometric properties of the
dual.

There exists a generic procedure to building admissible lattices in any
dimension d. If P* is a polynomial of degree d such that (i) P* has leading
coefficient 1, (ii) P* has integer coefficients, (iii) P* is irreducible over Q[X],

and (iv) P* has d distinct real roots ¢y, ..., ¢y, then the Vandermonde matrix
V= (f{’l)l <ij<q generates an admissible lattice, with
Nm(V)=1, Nm(V*)=|det(V)| > (5)

We recall that |det(V)]* = [Ic.:1ék —&|. For this special lattice, the nodes
are the vectors (P(&),...,P(&;))" for P varying in Zg_1[X] (polynomials in
Z[X] of degree at most d — 1). It is worthwhile to point out that given S a
d x d unimodular matrix, VS = (L;(&;)),.; ;<4 Where Li,..., Ly is the family
of polynomials in Z,_[X] whose transition matrix from the canonical basis
{1,X,...,.X% 1} is S. As S varies in SLy(Z), {L1,...,Lq} can be any basis
of Z;-1[X] (linear combinations with respect to Z). In particular, for L,...,
Ly any polynomial sequence of Z;_[X] (L; has degree j — 1 and leading coeffi-
cient 1) the matrix (L;(¢;)), ;<4 is @ generating matrix for VZ?. Depend-
ing on a desired and within reach structure (orthogonality, recurrences, fast
computation, etc) on the generating matrix, one can plug in the appropriate
basis.

The algebraic construction is extremely useful since it systematically pro-
vides the invariants Nm(-) and |det(:)| for the lattice "= VZ? and its dual
It =V+'Z? The estimation of Nm(-) for an arbitrary matrix do not seem
straightforward. Frolov [5] have used polynomials P*(x) := —1 +de:1(x—
2j+ 1) in his construction. Constructions based on Chebyshev polynomials
were considered in [6, 7, 11, 12, 13, 14] giving rise to the so called Chebyshev-
Frolov lattices, i.e. {(P(¢)),...,P(&)) : PeZy[X]} where &,...,&, are
roots of specified irreducible factors of Chebyshev polynomials, e.g. [13] for
more details.

In this paper, we study orthogonal Chebyshev-Frolov lattices. In §2, we
recall succinctly definitions and properties. In §3, we investigate their gen-
erating matrices. We show in particular that using the appropriate reordering
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of rows and columns of the so-called Chebyshev-Vandermonde matrices, one is
able to identify recurrences that are favorable to fast generation and enumer-
ation of these lattices. We identify the polynomial sequence of Z[X] which
allows to derive the recurrences derived in [14] thus providing an explicit
constructive approach. In §4, we discuss the fast enumeration procedure of
[14].

2. Chebyshev-Frolov lattices

We let (Tj)jzo be Chebyshev pqunomials of the first kind, defined by
Tj(cos(0)) = cos(j0). We then let (7)., be the scaled ‘Chebyshev polyno-
mials whose leading coefficients are 1. They are given by T;(x) = 27;(x/2) for
j =1, which are Chebyshev polynomials rescaled to [—2,2]. These polyno-
mials have integer coefficients and simple real roots. Moreover, the irreduci-
bility is well understood. A Chebyshev polynomial 7} (hence T}) is irreducible
if and only if k& is a power of 2. The algebraic construction can thus be
invoked. We denote the roots of Chebyshev polynomials 75. and Th. for
n=>0 by

n

511,()7 cee 75/1,2”—1}; én,i = Cos(an,i) L 2i+1 2
él/l,Ov"'7én,2”—]}7 énﬁizzcos(gn,i)’ e 2x2n .

1 [

= {
i (©)

[x

n

The roots of the scaled polynomials Th. lie in [-2,2]. The Vandermonde
matrices ((En,i)j)ogjgztl generate admissible Frolov lattices in dimensions
d =2". We note the use of 0-indexing of matrices rows and columns. For
the sake of notational clarity, 0-indexing is used throughout the paper.

For a fixed integer n, d = 2" and abscissas &, Z, as before, we denote
by V, and V, the associated Chebyshev-Vandermonde matrices (with respect
to the families 7" and T), i.e. Vi == (T;(&ni))o<ij<a1> Vi = (T(&ni))o<i j<a-
Since the polynomials 7; have degrees j, integer coefficients and leading co-
efficients 1, the transition matrix from the canonical basis {1, X,..., X“!} into
{1, Tl, R Td,l} is lower triangular with unit diagonal hence in SL;. As a
consequence, the matrix V, is a generating matrix for the identified admissible
lattice in dimension 2”.

For the sake of clarity, we drop the subscript 7 in the notation of &, ;, 5,,7,-,
0,,; and én, ;. The matrices V,, and V, are given by

L Ti&) - Taa(o) I cos(bp) -~ cos((d —1)by)
1 Ti(&) - Tua(&) 1 cos(¢)) --- cos((d—1)6r)

U TG - Tuaen))  \1 costlar) - cos((d— 1))
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and
1 Ti(&) - Tia(&) 1 2cos(fy) -+ 2cos((d—1)0p)
1 Ti(&) - Ti(&) - 1 2cos(;) --- 2cos((d—1)0)
i Tl(éd—l) : Td—l(.gd—l) 1 2 COS(.del) : 2 cos((d — 1)04-1)

respectively. The matrix V), has entries in [—1,1] while the matrix V,
has entries in [-2,2]. We note that ¥V, = V, diag[1,2,...,2] and it can be
checked that V'V, =dhL.. Lattice I, := V,Z is orthogonal and V,V, =
diag[d,2d,...,2d]. The associated dual lattice I is generated by V' =V, /d
and is therefore given by I L = I,/d with T, := V,Z. We will use the naming
convention introduced in [12] and refer to I, as Chebyshev-Frolov lattices (CF-
lattices for short). When necessary, we will refer to I, as dual CF-lattices. In
light of what precedes and invoking the conclusions of the algebraic construc-
tion, the invariants of lattices I, and I, are given by

|det(V,)| = (V2d)" /V/2 Nm(V,) =1
Vi

, , 7
det(V)] = VAW Nm(1) =22 7
while clearly the infimum of ||¥,S||,, and ||V,S||, over S e SL,(Z) are smaller
than 1 and 2 respectively.
Enumeration of CF-lattices in hypercubes has already been addressed, see
e.g. [11, 12, 13, 14]. For example, given a function f supported in the hyper-
cube @ =[—1/2,1/2]¢, one is interested in enumerating the quadrature nodes
contributing to (3) with My = (N det(¥,))"/?V,. The previous amounts to
enumerating V,k with ke Z? such that

- d/ N 1/d
LS Vk <l A= (> 7 @)
2\v2
where 1= (1,...,1)" e R? and < is coordinate-wise comparaison. By simply

using k =V, 'V,k = V.| V,k/d, one derives ||k||,, < ||V,k||,. This shows that
k belongs to {—|4],...,+[A]}?. The previous isotropic grid has cardinality
(2|4] + 1) which is of order (v2d)“(N/v/2). For small dimensions d (e.g.
d =2',22,2% and small scaling factors N, one can simply enumerate all the
integer vectors k in the grid and verifies if —41 < V,k < A1. This plain pro-
cedure is also disposed to parallelization by enumerating independently the
components of a partition of the grid. In spite of this, it is unpractical for
higher dimensions, for instance (v2d)? becomes very large ((v2d) =832 >
102 for d = 32).
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In [11, 12], an enumeration procedure based on orthogonality of CF-
lattices was introduced. Since ||V, k||3 = d(k? +2k3 + -+ 2k3) for k= (ki,
ky,....kq) and [—4, 2] c {xeR?: x|, < VdA}, then V,ke[-7,]" implies
that (k +2k3 +--- +2k3) < A>. The previous encodes integers in Z¢ located
within an ellipse and which can be enumerated using a nested loop. We refer
to [11, 12] for more details on this strategy and its performance.

In the recent paper [14], an optimal enumeration procedure is described,
with optimality in the sense only the desired integers k are touched during
the procedure. It is based on generating matrices 4, that are more suitable
for enumeration. Moreover, the procedure is more general since it covers
enumeration of ¥,Z“ in any axis-parallel box [b,c] := {ze R*" : b <z < ¢} for
b,ce R*". This procedure will be discussed in §4.

REMARK 1.  Enumeration of dual CF-lattices V,Z is computationally equiv-
alent to that of CF-lattices V,, . Strategies discussed above can be examined for
matrices V,. Otherwise, one can use 2V,Z% = V,,Y with Y = diag[2,1,..., I]Zd
and adapt the strategies accordingly. More precisely,

b<V,k<c < 2b<Vk<2c (9)

where k,ice Z¢ are related by 121 =2k, 1%2 =ky,... ,lgd =ky. Enumerating
nodes V,k (k e Z°) in [b, ¢| amounts to enumerating nodes V,k (k € Y) in [2b, 2c|
then normalizing by 2. An illustration of this stratagem is given in §4.

3. New coordinates-permuted systems

3.1. Two specific families of permutations. We let (.%,),., and (.%,),, be the
“ordered” sets of indices, defined recursively by: %, = ¢, = {0}, and

It = Ig A2 =1 = 4}
1 =25, 027, + 14

where 2" — 1 — 7, .= 2" — 1 —i:ie s}, 24, ={2i:je 4}, 29, +1:=
{2/+1:je #,} and A is the concatenation operation. For instance,

4, ={0,1}, #H={0,1,3,2}, #=1{0,1,3,2,7,6,4,5}
f1:{071}7 f2:{0a2a1a3}7 j3:{0747276717573a7}7““

The nested sets of indices .4y C .4 C --- and %, C # C ---, reflect two specific
ways of re-ordering the nested sets of indices {0,...,2" — 1}, n > 0. In partic-
ular, in every _#, the first 2”~! numbers are the even numbers ordered according
to decreasing “largest” dividing power of 2, the ordering of the odd numbers is
accordingly implied.

The sets .4, and 4, can be described by permutations over {0,1,...,

2" —1}. We denote z) and z\” such permutations, ie. %, = {n,gb(i) ti=

n=0, (10)

(11)
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0,.. —1} and ¢, = {nn ( ):j=0,. —1}. The recursions (10) can
be readlly reflected in these permutatlons. Indeed,

. nél) is the identity permutation over {0}, then having n,(z‘) computed,

My — o Des
nn+l(l) iy (l) 0 ’ i:0,...,2” —-1. (12)
R0, ) =211 2

. 7[87> is the identity permutation over {0}, then having A
() =277 ()
m (274 ) = 2m () + 1

REMARK 2. The permutations nf,‘) are the restriction of ¢ : N — N a fixed

permutation of N. This permutation can be described using a “bit-flip” pro-
cedure; a(0) =0, (1) =1 then for 2" < ke < 2" and o(k —2") =Y 27,
olk) =21 —1—g(k—2") =2"+ i (1 —&)2/. As for the permutations
n,(f), they can be produced using the “‘bit-reversal” Vander-Corput sequence
(ck)kso- This sequence takes value in [0,1[ and is defined by co =0 and

1 n—1
:%}j k=>"a2’. (14)
J=0

One can verify that k — 2"c; define a permutation over {0,...,2" — 1} which
satisfies the same recursion as "), hence n,,(k) =2"¢; for ke {0,...,2" —1}.
From this identification, we observe that n,, ) have order 2, ie.

computed,

j=0,...,2"—1. (13)

7 ol D)) = J, n>0,j=0,...,2"—1. (15)

n n

We let P,S‘),P,(f) € {0, 1}2”2” be the permutatlon matrices associated with
n,g), n,(,7> (ie. P,gf) = (51 N ))0<1J<d , and Pn = (61.%(‘)(].))09’/9_1). Based
n (12) and (13), one can derive recursions for these matrices. Such recursions
will not be relevant in our analysis. We note however in light of (15) that P
are symmetric and

P x P =D, n20, (16)

where I is the 2" x 2" identity matrix. Also, note that P\~ =1, P\ = I,.
For later use, we introduce the 2" x 2" matrices Q, defined by: Qp = (1),
0= (} ?), otherwise for n > 1

1 n n
Qn=P P = N e {0,137, (17)
11
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Matrices Q, have at most two units along every row or column and clearly
0, € SLy.(Z). The inverse matrices Q' = P,(f)Jz‘n]P,(f) have their entries in
{=1,0,1} but are relatively full (having (2" + 1)2"/2 non-zero entries). We
note in view of (16) that for any n >0

On =D+ (571,57)(1‘),n(f)(j)Jrl)OSi:jSZ”fl' (18)

n

Building on this, we are able to derive a recurrence for Q,.

LemMmA 1. There holds Qy = (1) and for n >0,

0 Op— b
by 0o )

Proor. We use the shorthands =z, = ny) for simplicity. In view of
(13), 1 (2" + j) = mys1(j) + 1 for any 0 < j < 2" — 1, hence the lower block
Ly in (19). For 2" < j<2"1! —1, one has m,,1(j) = 2m,(j — 2") + 1 hence
Tus1(J) + 1 =2(m,(j — 2") + 1) which is equal to 7m,41(i) where 0 <i<2"—1
is such that n,(j —2")+ 1 =mx,(i). This implies the upper block Q, — .

O

We introduce the 2" x 2" matrices Q, defined by: 0y = (2), 0, = (2 9),
otherwise for n > 1

Qn+l - Izn+l - < (19)

Q,=P P Jp= €{0,1,2}*"% . (20)

1

NN
I 1

Since the first row and column of P,(f) consist in (1,0,...) for any n > 1, then

P\ and by = diag[2,1,...,1] commute and Q, = L. Q, for any n > 1. Com-

pared to Q, only the unit at position (i, j) = (0,0) is different and it is equal to

2 (0y = Ou+ Eno)

REMARK 3. In view of (19), matrices Q,, — Ln = Q, — L =: R, satisfy the
recursion Ry = (0) and Ry = (2 ™) for n>0. The action of R, is rather
straightforward, in view of (15) and (18), for x = (xo,...,x1_1), y = R,x is
given by yo =0 and y; =x; with j= nH(nH(i) — 1) otherwise.

The families of permutations n,gb and n,<f> will be used for permuting rows

and columns of generating matrices. Matrices Q, and Q, are transition
matrices associated with Chebyshev bases.

3.2. Coordinate-permuted Chebyshev abscissas. The roots of Chebyshev poly-
nomials 75» and T»., introduced in (6), =, ={&,0,...,&, 001} and 5, =



Orthogonal Chebyshev-Frolov lattices 243

{5,1’0,...75,,’?,1} are formulated using a standard order. Subsequently, we
consider the order implied by .7, =, ={&,};c, and Z, = {&nitics We
recall that %, = %, A ] with #/ =2""1 —1 — 7, see (10). This shows that

7, =5t _gt 7 =5t _=t i F+ — .
S =5, A5, and B =5, A-5), with 5, = {&1,itics, and

Enil = {&u11,i}ics, comprising only roots that are > 0. We condense the main
interest in introducing permuted roots on the following: for £k =0,...,2" — 1,
i=nll (k)e g and i' =z} 2"+ k) =21 —1-ies),

fn+1,z" = —fn+1,z‘

. (21)
T2(§n+l,i’) = TZ(érHl,i) = 5n,i
We recall that T5(x) = cos(20) = 2x2 — 1 for x = cos(#). The same holds with
abscissas &, ; up to changing 7> by T (T>(x) = x? —2).
We denote by D, the 2" x 2" diagonal matrices

Dn = diag[(énJrl,i)iE]n] =2x diag[(énﬂ,i)ief”]' (22)

For example Dy = (v/2) and D; = diag[2 cos(n/8),2 cos(37/8)]. The numbers
on the diagonal belong to ]0,2[. Since

Tywa (x) = (x = Epy10) -« (x = Epapann 1),

substituting by x =0 = 2 cos(z/2) implies det(D,) = /2 for any n > 0.

We let Ly,...,Lomi_; be an arbitrary family of polynomials such that
every L; has the same parity as k (as functions, Ly; are even while L, are
odd). We then let ag,..., 0001, Byy---, Py and yg,...,7_; be the families
defined by Ly;i(x) = o;(p), Lojr1(x) = 2x8;(y) and 2xLy;1(x) = y;(y) with y =
T>(x) = 2x*> — 1. We introduce the matrices

Ve = (Li(&n1,0))ic s (23)
JE€ I
Vo = (O‘j(fn,i))ieeﬂ@» Vi = (ﬂj(fn,i)){efm Vy = (Vj(fn,i))i_efn' (24)
Jeh JE€I Jeh
LEMMA 2. There holds
Ve DyVp v, D;'V,
Vi, = = ol ). 25
=0 S)=(0 50 )

Proor. The recurrences on the sets of indices .#, and ¢, imply a block
representation (with ./ :=2"*1 —1 — ,) of the form

j’l . 2%! 2/71+1
————
Iy { X] Y]
Tt VL =

n

- J’{ X, Y,
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For ie ., arbitrary, we have i:n,(l‘ll(k) for some 0 <k <2" then we

introduce i’ := nr(llll(Z” +k)e.s,. By (21), there holds &, ;= —&,. 1 and
T5(&pi1,:) = Ta(Epyr,v) = &ni. On the one hand, polynomials L; have the
same parity as k, hence X; = X; and Y, = —Y;. On the other hand, from the
definitions of o, B, 7;, Loj(&us1,1) = %(Sni)s Loju (Enir,i) = 2811,i85(n i) and
28,1 iLojs1(Enp,i) = yj(ém). Therefore, X =V, and Y, =D,Vs= Dn_1 V..

The proof is complete. ]

Matrices Q, and Q, are transition matrices associated with Chebyshev
bases. Indeed, in the new coordinate-permuted system, there holds

(T + Tp1) (Eni))ie s, = (Ti(Eni))ics, X Q- (26)
JE JeS
This can be seen by changing back and forth into 0 < j <2” — 1 and using
that 75.(&, ;) = 0 for all i. Similarly, given the family of polynomials defined
by fy=1/2 and B;+f;_, = T; for j > 1, one has

(/3]-(5;1,5))zjef>j x QnT = (Y}(én,i)){éfz' (27)
Jesn jes
Actually f;(x) = Vj(x)/2 where V; are Chebyshev polynomials of the third
kind, i.e. V;(x) =cos((2j+1)0/2)/cos(0/2) for x = cos(0).

3.3. Coordinate-permuted Chebyshev-Frolov lattices. In the present section,
we denote by V, and V, the 2" x 2" Chebyshev-Vandermonde matrices, for-
mulated in the new coordinate systems, i.e.

Vi = (E(én,i))ie-%’ Vi = (-’1}(5/171‘))!'6-7»1' (28)
JES JE€H

Compared to plain matrices in §2, rows and columns are permuted according
to n,g‘) and n,gf) respectively, i.e. V, = (P,<,|>)71 Vn*P,Sf) and V, = (P,(,D)f1 V;P,Sf)
(* to distinguish plain matrices of §2). This rearrangement is highly relevant
for deriving simple recurrences for such matrices. We note that ¥, = y,.oTj2n
still holds for any n > 0 (since permutation matrices are orthogonal). Also,
since 7, = {0,...}, the first columns of ¥, and of V, are still both equal to
(1,..., 1)T implying that V,, = V,, diag[l,2,...,2] holds. We derive recurrences
for ¥, and recurrences for V,, with the latter being simply implied. We recall
that Q, = diag[2,1,...,1]Q, for any n > 1.

The verifications V= (1) and V) = (1 V2/2

|3 /2) are immediate.

LemMA 3. The following recurrences hold: for n > 0,

v, D7Vv,0, V, D,V,0. "
Vn+1 = ( " l’l_l nQ1 )7 Vn+1 - ! ' an,T . (29)
Vn -D n Vn Qn Vn -D n Vn Qn
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PROOF. One has Ty(x) = T;(2x2 — 1) and 2xTy41(x) = To(x) + Toja(x)
= (T;j + Tj+1)(2x> — 1) for any j. We may apply Lemma 2 with o; = 7; and
y; = (Tj + Tjy1) which in view of (26) implies the first recursion. On the other
hand, if f,,...,fy_; are such that Ty (x) = 2xf,(2x* — 1), then f, =1/2
and B, +p;=1T; for j>1 (derived using T;i(x) + Tojs1(x) = 2xT(x) =
2xT;(2x*> — 1)). We again apply Lemmas 2 (with these B;) which in view of
(27) implies the second recurrence. The proof is complete. O

The verifications ¥y = (1) and V; = (i _‘/\%) are immediate.

LemMmA 4. The following recurrences hold: for n > 0,

~ 17,1 D! Vn ~n - I;Yn D, I;'n ol
Vi1 = ~ n71 ~Q~ ) Vi1 = ( - ~Qnr)- (30)
Vn _Dn VnQn Vn _Dn VnQn

In summary, the computation of the direct/transpose/inverse actions V,x,
Vix, V.'x, V. "x and V,x, V,'x, V"'x, ¥V, Tx, for x e R*" can all be com-
puted very efficiently. Actually, they are all related and can be implied from
x — V,x. In particular, such actions will mainly involve recursive applications
of matrices Q; which can be done in constant time, see Remark 3. As for Fast
Fourier Transform (FFT), all the above listed actions can be optimized to have
complexity O(d log(d)).

It is possible to derive recurrences along the same lines of (29) and (30)
with matrices resulting from plugging in Chebyshev polynomials of second kind
in the Vandermonde systems. These polynomials are defined by Uj(cos(6)) =
sin((k 4 1)0)/sin(0) (if scaled according to Uj(x) = Ux(x/2) they belong to
Z[X] and have leading coefficient 1). However, such recurrences are not ad-
vantageous over the already identified recurrences.

Recurrences (29) and (30) can already be ‘“laboriously” used for fast
enumerations of lattices V,Z and V,Z within axis-parallel boxes. For instance
using the techniques introduced in [14]. In the mentioned paper, the analysis
is carried out on simpler recurrences (where basically Q, is eliminated in
(30)), which we derive shortly. In the next section, we exhibit the polynomial
sequence which when plugged in the Vandermonde systems, yields directly such
recurrences.

We let S, S, be the 2" x 2" matrices defined recursively by So =Sy = (1)
and for n >0

S, 0 . S, 0
n = ) n = = . 31
sm=(7 gis) S (o Q,Ts,,) Gl

These matrices are unimodular, S,, S, € SLy» (in fact S, = S ") for any n > 0.
Moreover, A, :=V,S,, B, :=V,S, satisfy 49 =By = (1) and for n >0
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Aﬂ DnAn Bﬂ DilB}’l
Ay = , B, = " ) 32
i (An _DnAn> ! (Bn _Dnan) ( )
The matrix A, generate the CF-lattice V,Z*" while B, generate the dual CF-
lattice V,Z*". We note in view of Vn’T = V,/2", that A;T = B,/2".

3.4. A new polynomial sequence. We let (Hk)jzo be the sequence of poly-
nomials defined by Hy = 1, then

He= ][] To(x), k=) a2/, ae{0,1}. (33)
Jj=0 j=0
a,;éO

These polynomials have integer coefficients, have leading coefficients 1 and
every Hy has degree exactly k. In particular, the family Hy, Hy,... is a hier-
archical basis for Z[X]. This family can be used in the generation of CF-
lattices. In addition, we observe that every polynomial Hj; have the same
parity as k. More precisely, in view of T} (x) = x and T m(X) = Tm(x2 —2) for
any m >0, a recurrence holds: Hj = 1,

f{zk(x) = I;Tk(xz — 2)

- =, , k>0. (34)
Hopi1(x) = xHy(x= = 2)

The polynomial H; considered on the domain [-2,2] is uniformly bounded
by 27%) where (k) is the number of ones in the binary expansion of k. In
particular sup_,_ . _,|Hi(x)| < (k + 1) for any k > 0.

We let 4, be the Vandermonde matrices associated with the introduced
polynomials H and the Chebyshev abscissas Em,-, on the coordinate-permuted
systems described in the previous section, i.e.

Ay = (Hi(&n0))ics,, n>0. (35)

JES

The verifications Ay = (1), 4; = i _‘{%) are immediate. Then, by a

direct application of (34) and the arguments leading to Lemma 2.

LemMA 5. The following recurrences hold: for n >0,

A, DA,
ana= (G Ot ), (36)

It is immediate to derive similar recurrences for the matrices 4, ', 4, .
LEMMA 6. The following recurrence holds, Ay " = (1) and for n >0

P N P e (37)
n+1 2 A;T —D;lA;T :
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Recurrences (36) and (37) are similar up the factor 1/2 and the change of
D, into D' which is also diagonal with D! = diag[(1/&,,1,1);c,]- In light of
this observation, we have the following lemma

LEMMA 7. Matrices A, " satisfy

1 1

A;T:— ——— s n>0. (38)

2n H/(én,i) iegy
€M

Proor. Let 4, be the matrix in the right side of (38). We easily

verify that 4g = 4y " and 4y = A7 " using Hy =1, H; =x and {&,&,,} =

{v2,—v2}. In general, using (34) and the arguments leading to Lemma 2,

-1 . .
one has for any n>0, 4, :%(j” _Dl;j'j ) Matrices 4, satisfy the same
recurrence as A, ', thus the equality. O

The identification (A*T)TA,, = I)» provides the following identities

n

2”—11:1 £
M = 2”516717 0 < kvl < 271 - 1 (39)

Visibly, these identities can be easily verified for kK =/ and for k and [ of
different parities. The Veriﬁcatign for k and / having the same parity uses the
recursions (21) formulated for &, and recursions (34) for Hy.

Matrices B, :=2"4, " satisfy By = (1), By = G _11//\/32) and

B D 'B
B\ < o D O ) n=0. (40)
B, -D, B,

It goes without saying, matrices 4, and B, are as in the previous section, i.e.
A, = V,S,, B, ="V,S,. In particular, the matrix S, is the transition matrix
from the basis {f_",}je 4, into the basis {Iflj}je 4~ The analysis made so far can
be summarized on the following diagram

W

Vn—n>An

V,/2" — B,/2".
S, "

We conclude this section with few practical remarks.

REMARK 4. We note in view of (31) that S; = S1 =5 and for any n > 1,
the leading two columns/rows of matrices S, and S, are the Kronecker vectors
e and ey (by induction). Matrices A, and B, are “almost” orthogonal in the
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sense AnTAn and BnT B, are block diagonal. The blocks are (2") (of size 1 x 1)
and blocks of size 2/ x 2/ for j=0,...,n—1 in this order (by induction).

4. Sequential enumeration of Chebyshev-Frolov lattices

In this section, the notation z = (z; z2) € R?*? stands for z;,z> € R and z
being the vertical concatenation of z; and z;. For n >0, d = 2", we introduce
the functions p, : R* — R? and ¢,,p, : R? x R* x R* — R? by

p(z) =2 T2 $,(z,b,¢) = D' max(h; — z,—(¢c2 — )
n 2 ’ W}1(z7b7 C) — D;l rnin(cl -z, —(b2 _ Z))

N C)

where z = (z1 z») in the definition of p, while b = (b; by), ¢ = (¢; ¢) in the
definitions of ¢, and y, and max and min are meant coordinate-wise. One
has

LEMMA 8. For x = (x1 x2), b= (b1 b2), c=(¢c] &) € R??,

b < A,x; <

b<dmx=e b < Apxy <"’ (42)
where b' = p,(b), ¢’ =p,(c), b" = $,(A,x1,b,¢) and " = y,(A,x1,b,c).
PrOOF. Since y = A,.1x = (y, y_) with y, = 4,x; + D,4,x> e RY,
We then use the definitions of p,, ¢,, v, and D, > 0 entry-wise. O

Enumeration of lattices 4,,Z>" in axis-parallel boxes is well disposed to
recursion. For instance, by introducing 2,(b,c) := {ke Z*" : b < A,k < ¢},

xeZ.1(bc) <= x1e2b, ) x2e2,(b" c"). (43)

The dependence of »” and ¢” in x; can be alleviated by considering the
recursion

x1 e 2,(b',¢"), x2€ 2,(b", ")
xePi(be) — by <y, +Dyy, < ¢ , (44)
by<y,—Dwy; <2

where now b" =D;'P5 2 " =D 19" and y, = A,x;, i=1,2. This is
easily checked as the above proof. The enumeration in d =1 is imme-
diate since %y(b,c) = {[b],...,|c|} for b,ce R. In view of the above, there
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holds 2,,(b,¢) C 2} (b,¢), the latter being the tensor-product grid (in Z*")
defined recursively by 2;(b,c) ={[b],...,[c]} and 2} (b,c)=2,(b",¢)®
2(b",c¢"). However, such grids can still be relatively sizable.

For more insights on the previous, we expound the analysis for “dilated”
symmetric hypercubes, i.e. enumerating Z,(v) := {ke Z*" : —v < A,k < +v}.
To this end, we introduce the new functions p, : R?* — RY by

Py (@) =52 (43)

Using that 2 max(x,y) = (x+ ») +|x — y| and 2 min(x, y) = (x+ y) — |x — ¥
for any x, y e R, we derive the following convenient formulas,

Dy (2, —0,0) = —p,(v) + [z + p,, (V)]

e RY, 46
Dawin(z, —0,8) = +p,(0) — |z — py (0) (46)

where || is meant coordinate-wise. The boxes [¢,(z, —v,v),w,(z, —v,v)] are
uniformly contained within [—v”, +v"] with v := D, '’ and v’ := p,(v). For a
vector v = (v; v7) € R*, the recursion (44) is reformulated as

x1 € 2,(v'), x, € Z,(v")
XeEP(v) = v <y +Dyy, < . (47)
=<y —Dyyy <0

In the particular settings v = ol € R* which are of interest, there holds
po(1) =al e R? and p; (21) =0 RY. Formulas (46) become

Dn¢n(z7 7“15 +OC1) = 7(061 - |Z|)

e R?". 48
Doy (2.~ +01) = +(o1 — 2] (48)

The boxes [¢,(z, —ol,al),w,(z, —ol,ol)] are symmetric with respect to 0 and
are uniformly contained within [¢,(0, —o1,al),y,(0,—ol,01)]. The idea here
is that the section {x;: (0 x2) € Z,.1(ce1)} = #,(aD; '1) contains all the other
sections {x, : (x; x3) € Z,,1(e1)}. If one enumerates k in #,(aD,'1) and
have associated A4,k, then by simple lookup one can enumerate any other such
section.

Despite the potential simplifications on recursive enumerations, in practice
numerical overheads (memory usage, table lookup, etc) may slow down these
procedures. A better alternative, developed in [14], consists in breaking down
the enumeration process into a nested loop. As a matter of fact, inspection of
Lemma 8 shows that the condition on x; the i’ coordinate of x will only depend
on the preceding coordinates xo,...,x;_;. We describe in a nutshell this enu-
meration procedure.
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For z = (zo,...,zzn,l)T e]Rz’l, we introduce the ‘“slicing” notation
O0<m<n
B zm <m<
mp = (22”‘1); sy Zam(pal)— ) eR 0< p< on—m’ (49)

We note that zo , = z, for any p and z, 0 =2. AlS0, Zmp = (Zm-1,2p Tm—1,2p+1)-
Given x,b,ce R?" fixed, we introduce the sets of vectors in IR?":

X={xO . x"  B={p . p"} C:{c<°>,...,c<">}. (50)

o x =x, xI is the concatenation of 4;x; , for 0 < p < 2"~ x@ is the
concatenation of 4,x, , for 0 < p < 2"~ 2 etc. In other Words x,(n,), Amxmvp
for m=0,....,nand p=0,...,2"" —1. We note that x) = 4,x.

o H™ =b, ¢ =¢, then for m=n—1,...,0, the vectors b and ¢(m
are computed by backward recursion according to

(m) (m+1) m (m+l) (m+1)

bm 29 T m(bm+1 q) m 2g+1 ¢m( m 2q’ m+1 9 cm+1 q) (51)
(m) (m+1) (m) . (m) (m+1)  (m+1)

cm‘2q - m(cn1+1,q) cm,2q+1 - ‘llm(xqu’ bm+lﬁq7 m+l,q)

for 0 <gq <27 ("D Applying backward induction with Lemma 8, one
shows

LEMMA 9. There holds b" < x < ¢ = ... = bV < x(O < (O

We are mainly interested in ) = (béo), . ,bég)_l), 0 = (c(()o), . cég) -

The identities in (51) yield the following: first, b\ = pyo---0p, ,(h) and
(0> =pgo opn,l(c) are simply the arithmetic means of b and ¢ respec-
tlvely, ie. b 0 — =(bo+---+by_1)/2" and Co =(co+ -+ cam_1)/2". Then,
for j=2"p w1th p=2q+1 odd the numbers b ©) and c,-(o) are computed via
B = pyo--0p, 1 (8)) and ¢ = pyo---op, (el with

r r+1 r+1 r r r+1 r+1
b’(i’l)) = ¢r<xr(,;q7b£+t,()]7 cr(q:,;)’ cr(,l)z = ¢r(xr(,;q7b£+t,n)]7 cr(—;,;)' (52)

Computing x, ) (x](r)zr,...,x;i)l) only requires x,», = (Xj_or,...,Xj_1) since
xr( %q Apx, 0. One can show by induction on (51) that Computlng b<m[)) and

) 1
c,(n, 1), only requires b, ¢ and Xx,...,xsm,_1. Thus, computing b,fl , and crfl;

only require Xo,...,Xj_2r_1. The set of inequalities b < A4,x < ¢ reduces to 2"
simultaneous 1nequaht1es b ) < x, < c] for 0<j<2"—1 with béo) and C(()())
independent on x, otherw1se b and cj depend on Xxo,...,Xj_1.

For integers m > 1, we denote by z,, the linear applications defined over
R%" by 7,(z) = (21 + Dp_122 21 — Dp_122) for z=(z1 z2). We have in par-
ticular A4,z =t ((Am-121 Am— 1z2)). Also, using introduced notation, x,Sﬁ",), =

- (x,(’;”llzp) for any m=1,...,n and any p=0,...,2""™ —1,
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An implementation of the main enumeration algorithm in [14] can
now be outlined. It consist on an outer loop “loop 0 and 2”-nested inner
loops (innermost loop is indexed 2") as follows; we first compute b(()o), cé()),
then

* Loop 0: we iterate x( in {(bf)o)],..., Lc(()())j}.

* Loop j: we have known Xxo,...,xj_; and write j=2"p with p odd
number. Then we perform the following
“Forward” pass: we update x,%),m = ApXp,p, for m=0,...,r and

Ppm =1i/2™ — 1 (using applications 7,,).

—  “Backward” pass: we update bf’; and c(,"[), (using (52)), then update

br(n@,,n,p and cif%wl, for m=r—1,...,0 (using applications p,,).
— we iterate x; in {[b;O)L..., LC;O)J} and go to iteration j+ I.
e Loop 2": we have known Xxg,...,x:_;. We update x,(,T,);,,, = ApXm p,
for m=0,...,n and p, =2"" —1. We store the node x" (x) =
A,x9 € [b,¢] with x© = (xq,...,x1)).

Although not structurally relevant, we may think of X as a 2" x (n+1)
matrix, X = [x@|...|x"] (and the same for B and C). In the inner loops
numbered j=1,...,2" — 1, the forward pass propagates changes in a
2" x (r+1) sub-matrix of X (rows numbered 2"(p —1),...,2"p — 1 and col-
umns numbered 0,...,r) while the backward pass propagates change in sub-

matrices of B and C associated with the same rows and columns.

The detailed implementation of the algorithm is given in [14]. We note
in particular that nested loops can be implemented as recursive functions.
The algorithm is optimal, in the sense exactly the nodes belonging to #,(b,c)
are touched in the course of the enumeration. Since action x — A,x has
complexity O(d log(d)), it is safe to say the algorithm has complexity
O(d log(d)#(Z,(b,c)). We must also draw attention on the optimality in
memory usage. One only alters the fixed ‘“‘data-structures” encoding X, B, C
during the execution of the algorithm.

Enumerations of dual CF-lattices V,Z>" in axis-parallel boxes is equally
disposed to sequential enumeration. Indeed, the discussed algorithm can be
applied with matrices B,. The sole difference is changing D,, by D,! in the
functions ¢,,, w,, and t,. Otherwise, we can simply use the same algorithm.
Indeed, in view of Remark 1, enumerating ¥,k in [b, ¢] amounts to enumerating
V,k (keY) in [2b,2¢] then normalizing by 2, where Y = diag[2,1,...,1]Z¢.
Since ¥, = 4, and the leading column/row of S, is (1,0,...,0)" € R?", then
S]Y =Y and V,Y = 4,Y for any n>1. One can simply implement the
discussed algorithm for 2b and 2¢ with two minor modifications (i) in loop O,
one iterates over even integers (ii) in loop 2”, one stores nodes x)/2.
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5. Conclusion

We have discussed CF-lattices and dual CF-lattices. Given the families of
permutations a, 7{7) as in (12) and (13), the Chebyshev abscissas &, ; as in (6)
and the polynomials H; as in (34), we have shown that matrices

Ay = @ ocyjeonrs Bu=(1/a o e s (53)
with af"}) = I-NIHH (j)(énin(‘)(j)) generate CF-lattices VnZd(: AnZd) and dual CF-
lattices VnZd(: B,IZd). Sequential enumeration of these lattices in axis-
parallel boxes is computationally optimal. The analysis is founded on a ge-

neric algebraic construction, however it also motivates its bypassing for the
benefit of direct construction of generating matrices via recurrence.
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