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Abstract. A criterion for the existence of a plane model with two non-smooth

Galois points for algebraic curves is presented, which is a generalization of Fukasawa’s

criterion for two smooth Galois points. Multiplicities and order sequences at Galois

points are also described in detail.

1. Introduction

Let k be an algebraically closed field of characteristic pb 0, and let

C � P2 be an irreducible (possibly singular) plane curve of degree db 4 over

k. For points P;Q A P2 with P0Q, the line passing through P, Q is denoted

by PQ. We consider the projection pP : C a P1; Q 7! PQ with the center

P A P2. If the field extension kðCÞ=p�
PkðP1Þ of function fields induced by pP

is Galois, then P is called a Galois point for C. This notion was introduced

in 1996 by Yoshihara (see [3, 13, 16]). For a Galois point P, the associated

Galois group GP ¼ GalðkðCÞ=p�
PkðP1ÞÞ is called a Galois group at P. Fur-

thermore, a Galois point P is called a smooth Galois point (resp. a non-smooth

Galois point, an inner Galois point, an outer Galois point) if P is a smooth

point of C (resp. a singular point of C, a point contained in C, a point not

contained in C), after [11, 12, 15]. Note that the definition of an inner Galois

point in [5] is equivalent to the definition of a smooth Galois point in this

article.

In 2016, Fukasawa [5] presented a criterion for the existence of a birational

embedding of a smooth projective curve into a projective plane with two

smooth Galois points and obtained new examples of plane curves with two

smooth Galois points by using this criterion. On the other hand, there have

been some known examples of plane curves with two or more non-smooth

Galois points. For example, the Ballico-Hefez curve ([4, Theorem 1]), some

self-dual curves ([9, Theorem 17]), the (plane model of ) Giulietti-Korchmáros
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curve ([8, Theorem 2]), the (q3; q2)-Frobenius nonclassical curve ([1, Theorem

1]), and the Artin-Schreier-Mumford curve (proof of [6, Theorem 1]) are such

curves. However, these examples are not intended to actively focus on non-

smooth Galois points. Only few research studies have focused on non-smooth

Galois points. Takahashi [15] studied plane quintic curves with a double point

P and determined defining equations when P is a Galois point. As far as the

author knows, this is the only study that focused on a non-smooth Galois point

so far. In order to study non-smooth Galois points systematically, it is good

to have a criterion for non-smooth Galois points.

In this article, we extend Fukasawa’s criterion [5, Theorem 1] to all cases

with two (possibly non-smooth) Galois points. Let X be a (reduced, irre-

ducible) smooth projective curve over k, and let kðX Þ be its function field.

The full automorphism group of X is denoted by AutðXÞ. For a finite sub-

group G � AutðX Þ and a point P A X , the stabilizer of P in G (resp. the orbit

of P under G) is denoted by GðPÞ (resp. G � P). Furthermore, the quotient

curve of X by G, that is, the smooth projective curve corresponding to the fixed

field of kðX Þ by G, is denoted by X=G. The following are our main theorems.

Theorem 1. Let G1 and G2 be finite subgroups of AutðXÞ and let P1 and

P2 be di¤erent points of X. Then there exists a birational embedding j : X !
P2 such that jðP1Þ and jðP2Þ are di¤erent inner Galois points, that GjðPiÞ ¼ Gi

for i ¼ 1; 2, and that L ¼ jðP1ÞjðP2Þ is not a tangent line at jðP1Þ, if and only

if the following conditions are satisfied:

(a) X=G1 GP1, X=G2 GP1,

(b) G1 \ G2 ¼ f1g, and
(c) one of the following holds:

(c- i ) P1 B G1 � P2, P2 B G2 � P1, G1 � P2 \ G2 � P1 0q, and jG1ðP2Þj
¼ jG2ðP1Þj.

(c- ii ) G1 � P2 \ G2 � P1 ¼ q.

(c-iii) P1 B G1 � P2, G1 � P2 \ G2 � P1 0q and jG1ðP2Þj > jG2ðP1Þj.
Furthermore, for any j as in the above, the following hold:

( i ) L is not a tangent line at jðP2Þ with L \ jðX Þ � fjðP1Þ; jðP2Þg if and

only if condition (c-i) is satisfied.

( ii ) L is not a tangent line at jðP2Þ with L \ jðXÞ ¼ fjðP1Þ; jðP2Þg if and

only if condition (c-ii) is satisfied.

(iii) L is a tangent line at jðP2Þ if and only if condition (c-iii) is satisfied.

For the birational embedding j in Theorem 1, we have the following.

Theorem 2. Let j be as in Theorem 1, and let L be the linear system

on X corresponding to the morphism j. Let ð0; aP; bPÞ denote the ðL;PÞ-order
sequence at a point P A X. Then the following hold.
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(1) The multiplicity mjðP1Þ of jðX Þ at jðP1Þ is equal to

jG2ðP1Þj � jG2 � P1nðG1 � P2 \ G2 � P1Þj:

(2) The divisor
P

P A j�1ðjðP1ÞÞ aPP is equal to

X
Q AG2�P1nðG1�P2\G2�P1Þ

jG2ðP1ÞjQ:

(3) The multiplicity mjðP2Þ of jðX Þ at jðP2Þ is equal to

jG1ðP2Þj � jG1 � P2nðG1 � P2 \ G2 � P1Þj þ ðjG1ðP2Þj � jG2ðP1ÞjÞ � jG1 � P2 \ G2 � P1j:

(4) The divisor
P

P A j�1ðjðP2ÞÞ aPP is equal to

X
R AG1�P2nðG1�P2\G2�P1Þ

jG1ðP2ÞjRþ
X

S AG1�P2\G2�P1

ðjG1ðP2Þj � jG2ðP1ÞjÞS:

(5) In the case (iii) of Theorem 1, the equality bP ¼ jG1ðP2Þj holds at each
point P A G1 � P2 \ G2 � P1.

(6) The divisor j�L is equal to

X
Q AG2�P1nðG1�P2\G2�P1Þ

jG2ðP1ÞjQþ
X

R AG1�P2

jG1ðP2ÞjR:

To explain the usefulness of Theorems 1 and 2, we apply our criterion to

rational curves.

Theorem 3. There exist the following birational embeddings j : P1 ! P2.

(1) p ¼ 3, degðjðP1ÞÞ ¼ 14 and there exist two non-smooth Galois points

jðP1Þ and jðP2Þ A jðP1Þ such that mjðP1Þ ¼ 4, mjðP2Þ ¼ 8, GjðP1Þ GD5,

GjðP2Þ GAGLð1;F3Þ, and L ¼ jðP1ÞjðP2Þ is not a tangent line at jðP1Þ
and jðP2Þ. The second order is equal to 2 at each point contained in

suppðj�LÞ.
(2) p0 2; 5, degðjðP1ÞÞ ¼ 16 and there exist two non-smooth Galois points

jðP1Þ and jðP2Þ A jðP1Þ such that mjðP1Þ ¼ 4, mjðP2Þ ¼ 11, GjðP1Þ GA4,

GjðP2Þ GZ=5Z, L ¼ jðP1ÞjðP2Þ is not a tangent line at jðP1Þ, and L

is a tangent line at jðP2Þ. The second order is equal to 2 (resp. 1) at

each point Q A GjðP1Þ � P2nfP2g (resp. Q A GjðP2Þ � P1), and the third

order is equal to 2 at P2.

(3) p0 2; 5, degðjðP1ÞÞ ¼ 28 and there exist two non-smooth Galois points

jðP1Þ and jðP2Þ A jðP1Þ such that mjðP1Þ ¼ 4, mjðP2Þ ¼ 23, GjðP1Þ GS4,

GjðP2Þ GZ=5Z, L ¼ jðP1ÞjðP2Þ is not a tangent line at jðP1Þ, and L

is a tangent line at jðP2Þ. The second order is equal to 4 (resp. 3, 1)
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at each point Q A GjðP1Þ � P2nfP2g (resp. at P2, at each point Q A
GjðP2Þ � P1nfP2g), and the third order is equal to 4 at P2.

2. Preliminaries

We recall some notation and facts. Let j : X ! P2 be a morphism,

which is birational onto its image. Such a morphism j is called a birational

embedding of X to P2. Assume that jðXÞ is not a line. First, we recall

the notion of order sequences (see [10, Chapter 7]). For a line L � P2, the

intersection divisor of jðX Þ and L on X is denoted by j�L. Note that

L ¼ fj�L jL is a line contained in P2g

is the linear system on X corresponding to the morphism j. The support of

the divisor j�L is denoted by suppðj�LÞ. For a point P A X , the order of j�L

at P is denoted by ordPðj�LÞ. We put

aP ¼ minfordPðj�LÞ j j�L A L;P A suppðj�LÞg:

Then there exists a unique line ~LL such that bP ¼ ordPðj�~LLÞ > aP. We call the

line ~LL the osculating line at P, and we call the sequence ð0; aP; bPÞ the ðL;PÞ-
order sequence at P. A line ~LL passing through jðPÞ is called a tangent line

at jðPÞ if ~LL is the osculating line at a point contained in j�1ðjðPÞÞ. Note that

a line ~LL is a tangent line at jðPÞ if and only if mjðPÞ < IjðPÞðjðX Þ; ~LLÞ, where
IjðPÞðjðX Þ; ~LLÞ is the intersection multiplicity of jðXÞ and ~LL at jðPÞ.

Next, we consider the projection pjðPÞ, and we put p̂pjðPÞ ¼ pjðPÞ � j : X !
P1. We recall some properties of a ramification index of p̂pjðPÞ. We put

j�1ðjðPÞÞ ¼ fP1; . . . ;Png. Let ð0; aPi
; bPi

Þ be the ðL;PiÞ-order sequence for

i ¼ 1; . . . ; n. The ramification index of p̂pjðPÞ at a point Q A X is denoted by

eQðp̂pjðPÞÞ. Then the following fact is well-known.

Fact 4. Let Q A XnfP1; . . . ;Png.
(1) The equality eQðp̂pjðPÞÞ ¼ ordQðj�jðPÞjðQÞÞ holds.

(2) The equality ePi
ðp̂pjðPÞÞ ¼ bPi

� aPi
holds for i ¼ 1; . . . ; n.

Finally, we recall some properties of a Galois covering for the proof of

our main theorems (see [14, III. 7.1, 7.2 and 8.2]).

Fact 5. Let y : X ! Y be a surjective morphism of smooth projective

curves, and assume that the field extension kðXÞ=y�kðY Þ is a Galois extension

with the Galois group G. Then the following hold.

(1) If P;Q A X and yðPÞ ¼ yðQÞ, then there exists an element s A G such

that sðPÞ ¼ Q.
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(2) If P;Q A X and yðPÞ ¼ yðQÞ, then ePðyÞ ¼ eQðyÞ.
(3) For each point P A X, the order jGðPÞj is equal to ePðyÞ.

3. Proofs of Theorems 1 and 2

The same notation is used as in the previous section. The following

lemma shows that Theorem 1 describes all cases with two inner Galois points.

Lemma 6. Let P1;P2 A X, and assume that jðP1Þ and jðP2Þ are dif-

ferent inner Galois points. We put L ¼ jðP1ÞjðP2Þ. Then either mjðP1Þ ¼
IjðP1ÞðjðX Þ;LÞ or mjðP2Þ ¼ IjðP2ÞðjðXÞ;LÞ holds.

Proof. We put

j�1ðjðP1ÞÞ ¼ fP11 ¼ P1;P12; . . . ;P1n1g;

j�1ðjðP2ÞÞ ¼ fP21 ¼ P2;P22; . . . ;P2n2g:

Let ð0; aPij
; bPij

Þ be the ðL;PijÞ-order sequence for i, j. Assume by contradic-

tion that

mjðP1Þ < IjðP1ÞðjðXÞ;LÞ and mjðP2Þ < IjðP2ÞðjðXÞ;LÞ

hold. By Fact 5, the ramification index of p̂pjðP1Þ (resp. p̂pjðP2Þ) at each point

contained in j�1ðjðP2ÞÞ (resp. j�1ðjðP1ÞÞ) coincides with jGjðP1ÞðP2Þj (resp.

jGjðP2ÞðP1Þj). By Fact 4 (1) and Fact 5, jGjðP1ÞðP2Þj (resp. jGjðP2ÞðP1Þj) coin-

cides with ordP2j
ðj�LÞ for each j (resp. ordP1i

ðj�LÞ for each i). Since L is a

tangent line at jðP1Þ (resp. jðP2Þ), there exists i0 (resp. j0) such that

bP1i0
¼ ordP1i0

ðj�LÞ ðresp: bP2j0
¼ ordP2j0

ðj�LÞÞ:

By Fact 4 (2) and Fact 5,

jGjðP1ÞðP2Þj ¼ bP1i0
� aP1i0

ðresp: jGjðP2ÞðP1Þj ¼ bP2j0
� aP2j0

Þ

holds. Therefore, we have a contradiction as follows:

jGjðP2ÞðP1Þj < jGjðP2ÞðP1Þj þ aP2j0
¼ bP2j0

¼ ordP2j0
ðj�LÞ ¼ jGjðP1ÞðP2Þj

< jGjðP1ÞðP2Þj þ aP1i0
¼ bP1i0

¼ ordP1i0
ðj�LÞ ¼ jGjðP2ÞðP1Þj:

Proof (Proof of Theorem 1). We consider the ‘if ’ part. Assume that

conditions (a), (b), and (c) in Theorem 1 are satisfied. Let f ; g A kðX Þ be the

generators of kðX ÞG1 and kðX ÞG2 such that

ð f Þy ¼
X
s AG1

sðP2Þ; ðgÞy ¼
X
t AG2

tðP1Þ;
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which exist by condition (a), where ð f Þy (resp. ðgÞy) is the pole divisor of f

(resp. g). We consider the morphism j ¼ ð f : g : 1Þ : X ! P2. First, we show

that the equality jðP1Þ ¼ ð0 : 1 : 0Þ holds. We put ng ¼ ordP1
ððgÞyÞ. Note

that ng is equal to jG2ðP1Þj. Let tP1
be a local parameter at P1. Since

P1 B G1 � P2 ¼ suppðð f ÞyÞ by condition (c),

ordP1
ðtngP1

f Þ ¼ ng þ ordP1
ð f Þb ng > 0

hold. Therefore, we have the equality jðP1Þ ¼ ð0 : 1 : 0Þ. We also show that

the equality jðP2Þ ¼ ð1 : 0 : 0Þ holds. We put nf ¼ ordP2
ðð f ÞyÞ. Note that

nf is equal to jG1ðP2Þj. Let tP2
be a local parameter at P2. If P2 B G2 � P1 ¼

suppððgÞyÞ, we have

ordP2
ðtnfP2

gÞ ¼ nf þ ordP2
ðgÞb nf > 0:

If P2 A G2 � P1, then condition (c-iii) is satisfied, and we have

ordP2
ðtnfP2

gÞ ¼ nf þ ordP2
ðgÞ ¼ jG1ðP2Þj � jG2ðP1Þj > 0:

Therefore, the equality jðP2Þ ¼ ð1 : 0 : 0Þ holds. By a method similar to the

proof of [5, Proposition 1], by condition (b), we can show that the morphism

j is birational onto its image. The morphism ð f : 1Þ (resp. ðg : 1Þ) coincides

with the projection from the point

jðP1Þ ¼ ð0 : 1 : 0Þ ðresp: jðP2Þ ¼ ð1 : 0 : 0ÞÞ:

Therefore jðP1Þ and jðP2Þ are di¤erent inner Galois points, and GjðPiÞ ¼ Gi

for i ¼ 1; 2. We show that L ¼ jðP1ÞjðP2Þ is not a tangent line at jðP1Þ.
Assume by contradiction that L is a tangent line at jðP1Þ. Then there exists

a point Q A j�1ðjðP1ÞÞ such that Q A G1 � P2. Let L be the linear system on

X corresponding to the morphism j, and let ð0; aQ; bQÞ be the ðL;QÞ-order
sequence at Q. Since L is the osculating line at Q, we have

jG2ðP1Þj ¼ ordQðj�LÞ ¼ bQ

by Fact 4 (1) and Fact 5. On the other hand, by Fact 4 (2) and Fact 5, the

equality

jG1ðP2Þj ¼ bQ � aQ

holds. Therefore, we have G1 � P2 \ G2 � P1 0q and jG1ðP2Þj < jG2ðP1Þj.
This is a contradiction to condition (c). Therefore, L is not a tangent line

at jðP1Þ.
We consider the ‘only if ’ part. Assume that there exists a birational

embedding j : X ! P2 such that jðP1Þ and jðP2Þ are di¤erent inner Galois
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points, GjðPiÞ ¼ Gi for i ¼ 1; 2, and L ¼ jðP1ÞjðP2Þ is not a tangent line

at jðP1Þ. Since

kðXÞGi ¼ ðp̂pjðPiÞÞ
�ðkðP1ÞÞG kðP1Þ

for i ¼ 1; 2, condition (a) is satisfied. By a method similar to the proof of [5,

Theorem 1], condition (b) is satisfied. Since L is not a tangent line at jðP1Þ,
we have P1 B G1 � P2. We show condition (c) by dividing into the following

three cases (I), (II), and (III).

(I) Assume that L is not a tangent line at jðP2Þ and

L \ jðX Þ � fjðP1Þ; jðP2Þg:

We show that condition (c-i) is satisfied. Since L is not a tangent line at jðP2Þ
and ðL \ jðX ÞÞnfjðP1Þ; jðP2Þg0q, we have P2 B G2 � P1 and G1 � P2 \ G2 � P1

0q. We take a point

Q A j�1ððL \ jðX ÞÞnfjðP1Þ; jðP2ÞgÞ:

By Fact 4 (1) and Fact 5, we have the equalities

jG1ðP2Þj ¼ ordQðj�LÞ ¼ jG2ðP1Þj:

Therefore, condition (c-i) is satisfied.

(II) Assume that L is not a tangent line at jðP2Þ and

L \ jðXÞ ¼ fjðP1Þ; jðP2Þg:

Then G1 � P2 ¼ j�1ðjðP2ÞÞ and G2 � P1 ¼ j�1ðjðP1ÞÞ hold, and we have

G1 � P2 \ G2 � P1 ¼ q:

Therefore, condition (c-ii) is satisfied.

(III) Assume that L is a tangent line at jðP2Þ. We show that condi-

tion (c-iii) is satisfied. Since L is a tangent line at jðP2Þ, there exists a point

Q A j�1ðjðP2ÞÞ such that Q A G2 � P1. Since G1 � P2 � j�1ðjðP2ÞÞ, we have

G1 � P2 \ G2 � P1 0q. Let L be the linear system on X corresponding to the

morphism j, and let ð0; aQ; bQÞ be the ðL;QÞ-order sequence at Q. Since L is

the osculating line at Q, we have

jG1ðP2Þj ¼ ordQðj�LÞ ¼ bQ

by Fact 4 (1) and Fact 5. On the other hand, by Fact 4 (2) and Fact 5, the

equality

jG2ðP1Þj ¼ bQ � aQ
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holds, and we have jG1ðP2Þj > jG2ðP1Þj. Therefore, condition (c-iii) is sat-

isfied.

Finally, we show (i), (ii), and (iii) in Theorem 1. Let j be as in Theorem

1. Then condition (c-i), (c-ii), or (c-iii) is satisfied. Since these conditions

are mutually exclusive, it is enough to show ‘only if ’ part of (i), (ii), and (iii)

in Theorem 1. This task has been already done above.

Proof (Proof of Theorem 2). Let j be as in Theorem 1, and let L be the

linear system on X corresponding to the morphism j. We put

j�1ðjðP1ÞÞ ¼ fP11 ¼ P1;P12; . . . ;P1n1g;

j�1ðjðP2ÞÞ ¼ fP21 ¼ P2;P22; . . . ;P2n2g:

Let ð0; aPij
; bPij

Þ be the ðL;PijÞ-order sequence for i, j.

First, we show Theorem 2 (1) and (2). Since the linear system corre-

sponding to the morphism p̂pjðP1Þ is

E �
Xn1
i¼1

aP1i
P1i

�����E A L;Eb
Xn1
i¼1

aP1i
P1i

( )

and p̂pjðP1Þ is a Galois covering, the following equalities of divisors hold:

j�L�
Xn1
i¼1

aP1i
P1i ¼ ðp̂pjðP1ÞÞ

�ð½L�Þ ¼
X
s AG1

sðP2Þ;

where ½L� represents the divisor of the point ½L� A P1 corresponding to the line

L. By Fact 4 (1) and Fact 5, the equality jG2ðP1Þj ¼ ordP1i
ðj�LÞ holds for

all i. Since L is not a tangent line at jðP1Þ, the equality aP1i
¼ jG2ðP1Þj holds

for all i. It is not di‰cult to check that

ðj�1ðjðP1ÞÞÞ [ ðG1 � P2Þ ¼ suppðj�LÞ ¼ ðG2 � P1Þ [ ðG1 � P2Þ

hold. Since the intersection of the two sets j�1ðjðP1ÞÞ and G1 � P2 is the

empty set, we have

j�1ðjðP1ÞÞ ¼ ððj�1ðjðP1ÞÞÞ [ ðG1 � P2ÞÞnðG1 � P2Þ

¼ G2 � P1nðG1 � P2 \ G2 � P1Þ:

Therefore, the equality

Xn1
i¼1

aP1i
P1i ¼

X
Q AG2�P1nðG1�P2\G2�P1Þ

jG2ðP1ÞjQ
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of divisors holds, and we have Theorem 2 (2). Since

mjðP1Þ ¼
Xn1
i¼1

aP1i
;

we have Theorem 2 (1).

Next, we show Theorem 2 (6). By the above, the equality

j�L ¼
X

Q AG2�P1nðG1�P2\G2�P1Þ
jG2ðP1ÞjQþ

X
s AG1

sðP2Þ

holds. Since X
s AG1

sðP2Þ ¼
X

R AG1�P2

jG1ðP2ÞjR;

we have Theorem 2 (6).

Finally, we show Theorem 2 (3), (4), and (5). Since

X
t AG2

tðP1Þ ¼
X

S AG1�P2\G2�P1

jG2ðP1ÞjS þ
X

Q AG2�P1nðG1�P2\G2�P1Þ
jG2ðP1ÞjQ;

the following equalities of divisors hold:X
R AG1�P2nðG1�P2\G2�P1Þ

jG1ðP2ÞjR

þ
X

S AG1�P2\G2�P1

ðjG1ðP2Þj � jG2ðP1ÞjÞS þ
X
t AG2

tðP1Þ

¼
X

R AG1�P2nðG1�P2\G2�P1Þ
jG1ðP2ÞjRþ

X
S AG1�P2\G2�P1

jG1ðP2ÞjS

0
@

1
A

þ
X

Q AG2�P1nðG1�P2\G2�P1Þ
jG2ðP1ÞjQ

¼
X

Q AG2�P1nðG1�P2\G2�P1Þ
jG2ðP1ÞjQþ

X
R AG1�P2

jG1ðP2ÞjR

¼ j�L;

where the last equality comes from Theorem 2 (6). Therefore, the equality

j�L�
X
t AG2

tðP1Þ ¼
X

R AG1�P2nðG1�P2\G2�P1Þ
jG1ðP2ÞjR

þ
X

S AG1�P2\G2�P1

ðjG1ðP2Þj � jG2ðP1ÞjÞS
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of divisors holds. On the other hand, since the linear system corresponding to

the morphism p̂pjðP2Þ is

E �
Xn2
j¼1

aP2j
P2j

�����E A L;Eb
Xn2
j¼1

aP2j
P2j

( )

and p̂pjðP2Þ is a Galois covering, the following equalities of divisors hold:

j�L�
Xn2
j¼1

aP2j
P2j ¼ ðp̂pjðP2ÞÞ

�ð½L�Þ ¼
X
t AG2

tðP1Þ:

Therefore, the equalities

Xn2
j¼1

aP2j
P2j ¼ j�L�

X
t AG2

tðP1Þ

¼
X

R AG1�P2nðG1�P2\G2�P1Þ
jG1ðP2ÞjR

þ
X

S AG1�P2\G2�P1

ðjG1ðP2Þj � jG2ðP1ÞjÞS

of divisors hold, and we have Theorem 2 (4). Since

mjðP2Þ ¼
Xn2
j¼1

aP2j
;

we have Theorem 2 (3). Assume that the condition (c-iii) in Theorem 1 is

satisfied. Then

0 < jG1ðP2Þj � jG2ðP1Þj < jG1ðP2Þj

hold. By Theorem 2 (6), the equality jG1ðP2Þj ¼ ordPðj�LÞ holds at each

point P A G1 � P2. By Theorem 2 (4), the second ðL;PÞ-order coincides with

jG1ðP2Þj � jG2ðP1Þj at each point P A G1 � P2 \ G2 � P1. Therefore, the third

ðL;PÞ-order coincides with jG1ðP2Þj at each point P A G1 � P2 \ G2 � P1, and

Theorem 2 (5) holds.

Remark 7. In [7], Fukasawa presented a criterion for the existence of

a birational embedding with a pair of Galois points consisting of a smooth

Galois point and an outer Galois point. By a method similar to the proof of

Theorems 1 and 2, we can extend the criterion to non-smooth and outer Galois

points. The necessary and su‰cient conditions for the existence of a birational

embedding with inner and outer Galois points are that X=Gi GP1 for i ¼ 1; 2,
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G1 \ G2 ¼ f1g, and there exist h A G2 and P A X such that

jG2ðPÞj
X

Q A ðG2�PÞ�ðG1�hðPÞÞ
Qþ ðjG2ðPÞj � jG1ðhðPÞÞjÞ

X
R AG1�hðPÞ

RbP:

4. Proof of Theorem 3

We apply Theorems 1 and 2 to rational curves. In this case, condition (a)

in Theorem 1 is always satisfied, by Lüroth’s theorem. We identify AutðP1Þ
with the projective linear group PGLð2; kÞ. We put Qy ¼ ð1 : 0Þ and Qa ¼
ða : 1Þ A P1 for any a A k.

Proof (Proof of Theorem 3). Let p0 2; 5, let i A k be a root of the

polynomial T 2 þ 1 A k½T �, and let x be a primitive fifth root of unity.

(1) Let p ¼ 3, and let P1 ¼ Q0 and P2 ¼ Qx. We consider two sets:

G1 ¼
x 0

0 1

� �� �
0 1

1 0

� �� �
and G2 ¼

1 1

0 1

� �� �
1 0

0 �1

� �� �
:

It is known that

G1 ¼
x 0

0 1

� �� �
z

0 1

1 0

� �� �
GD5;

where D5 is the dihedral group of degree 5 (see [2, Theorem C]). It is not

di‰cult to check that

G2 ¼
1 1

0 1

� �� �
z

1 0

0 �1

� �� �
GAGLð1;F3Þ;

where AGLð1;F3Þ is the general a‰ne group of degree 1 over F3. By direct

computations, we have the equalities

G1 \ G2 ¼ f1g;

G1 � P2 ¼ fQ1;Qx;Qx2 ;Qx3 ;Qx4g;

G2 � P1 ¼ fQ�1;Q0;Q1g;

G1 � P2 \ G2 � P1 ¼ fQ1g;

G1ðP2Þ ¼
1 0

0 1

� �
;

0 x2

1 0

� �� �
; and

G2ðP1Þ ¼
1 0

0 1

� �
;

�1 0

0 1

� �� �
:
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Therefore, conditions (b) and (c-i) in Theorem 1 are satisfied, and there exists a

birational embedding j : P1 ! P2 such that jðP1Þ and jðP2Þ are di¤erent inner

Galois points, GjðP1Þ GD5, GjðP2Þ GAGLð1;F3Þ, and L ¼ jðP1ÞjðP2Þ is not

a tangent line at jðP1Þ, jðP2Þ. By Theorem 2 (1), (3) and (6), mjðP1Þ ¼ 4,

mjðP2Þ ¼ 8 and degðjðP1ÞÞ ¼ 14. By Theorem 2 (6), the second order is equal

to 2 at each point contained in suppðj�LÞ.
(2) Let P1 ¼ Qx and P2 ¼ Q1. We consider

G1 ¼
1 0

0 �1

� �
;

0 1

1 0

� �� �
1 i

1 �i

� �� �
and G2 ¼

x 0

0 1

� �� �
:

Obviously, G2 GZ=5Z, and the following fact is known.

G1 ¼
1 0

0 �1

� �
;

0 1

1 0

� �� �
z

1 i

1 �i

� �� �
GA4;

where A4 is the alternating group of degree 4 (see [2, Theorem C]). Since 5

and 12 are coprime, condition (b) in Theorem 1 is satisfied. By direct compu-

tations, we have the following equalities:

G1 � P2 ¼ fQ�i;Q�1;Q0;Q1;Qi;Qyg;

G2 � P1 ¼ fQ1;Qx;Qx2 ;Qx3 ;Qx4g;

G1 � P2 \ G2 � P1 ¼ fQ1 ¼ P2g;

G1ðP2Þ ¼
1 0

0 1

� �
;

0 1

1 0

� �� �
; and

G2ðP1Þ ¼
1 0

0 1

� �� �
:

Therefore, condition (c-iii) in Theorem 1 is satisfied, and there exists a bira-

tional embedding j : P1 ! P2 such that jðP1Þ and jðP2Þ are di¤erent inner

Galois points, GjðP1Þ GA4, GjðP2Þ GZ=5Z, L ¼ jðP1ÞjðP2Þ is not a tangent line

at jðP1Þ, and L is a tangent line at jðP2Þ. By Theorem 2 (1), (3) and (6),

mjðP1Þ ¼ 4, mjðP2Þ ¼ 11 and degðjðP1ÞÞ ¼ 16. By Theorem 2 (2), (4), and (5),

the second order is equal to 2 (resp. 1) at each point Q A G1 � P2nfP2g (resp.

Q A G2 � P1), and the third order is equal to 2 at P2.

(3) Let P1 ¼ Qx and P2 ¼ Q1. We consider two groups:

G1 ¼
1 0

0 �1

� �
;

0 1

1 0

� �� �
z

1 i

1 �i

� �� �
;

i 0

0 1

� �� �� �
;

G2 ¼
x 0

0 1

� �� �
:
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Obviously, G2 GZ=5Z, and the following fact is known:

1 0

0 �1

� �
;

0 1

1 0

� �� �
z

1 i

1 �i

� �� �
/ G1 GS4;

where S4 is the symmetric group of degree 4 (see [2, Theorem C]). Since 5 and

24 are coprime, condition (b) in Theorem 1 is satisfied. By direct computa-

tions, we have the following equalities:

G1 � P2 ¼ fQ�i;Q�1;Q0;Q1;Qi;Qyg;

G2 � P1 ¼ fQ1;Qx;Qx2 ;Qx3 ;Qx4g;

G1 � P2 \ G2 � P1 ¼ fQ1 ¼ P2g;

G1ðP2Þ ¼
1 0

0 1

� �
;

0 1

1 0

� �
;

i 1

1 i

� �
;

1 i

i 1

� �� �
; and

G2ðP1Þ ¼
1 0

0 1

� �� �
:

Therefore, condition (c-iii) in Theorem 1 is satisfied, and there exists a bira-

tional embedding j : P1 ! P2 such that jðP1Þ and jðP2Þ are di¤erent inner

Galois points, GjðP1Þ GS4, GjðP2Þ GZ=5Z, L ¼ jðP1ÞjðP2Þ is not a tangent line

at jðP1Þ, and L is a tangent line at jðP2Þ. By Theorem 2 (1), (3) and (6),

mjðP1Þ ¼ 4, mjðP2Þ ¼ 23 and degðjðP1ÞÞ ¼ 28. By Theorem 2 (2), (4), and (5)

the second order is equal to 4 (resp. 3, 1) at each point Q A G1 � P2nfP2g (resp.

at P2, at each point Q A G2 � P1nfP2g), and the third order is equal to 4

at P2.
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