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Generalized polarized manifolds with low second class
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ABSTRACT. On a smooth complex projective variety X of dimension n, consider an
ample vector bundle & of rank r <n —2 and an ample line bundle #. A numerical
character my = my(X, &, H) of the triplet (X, &, H) is defined, extending the well-known
second class of a polarized manifold (X, H), when either n =2 or H is very ample.
Under some additional assumptions on .7 := & @ H®""=2) triplets (X, &, H) as above
whose m, is small with respect to the invariants d := ¢, »(#)H?* and g := 1 +%(KX +
(F)+ H) - c,2(F) - H are studied and classified.

1. Introduction

Let S be a smooth complex projective surface embedded by a very ample
line bundle L. Identify S with its image in P, N = dim H°(S,L) — 1, via the
embedding associated with L and think of the linear system |L| corresponding
to the elements of H°(S,L) as the hyperplane linear system of S. Consider
also the dual variety 2(S) of S, i.e. the subset of |L| parameterizing the tangent
hyperplanes. If (S, L) # (IP?, Up2(1)), then Z(S) is a hypersurface in the dual
projective space PV (identified with |L|), and its degree m is usually called the
class of S. More generally, for a projective manifold X c IPY one can con-
sider its second class m,, namely the class of its general surface section, which
is always positive, unless X is a linear space, by what we said. Like for the
degree and the sectional genus, the study of m, contributed to a large literature
on the classification of smooth projective varieties with small invariants. In
particular, it is known that for m <29, S is a ruled surface and pairs (S,L)
occurring for m < 25 are classified (see [16, p. 195], and [34, Prop. 3.2]).
Moreover, for m < 11 only (IP?, Up2(e)), e = 1,2, and scrolls may occur (e.g.
see Remark 1).
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Due to the fact that m = ¢;(J;(L)), the second Chern class of the first
jet bundle of L, in recent years the study of small values of m for embedded
surfaces has been reconsidered and transplanted in the wider setting of ample
line bundles. In particular, Palleschi and Turrini ([30]) started to classify
polarized surfaces (S,H) when H is only assumed to be ample on S by
studying small values of ¢;(J;(H)) and of ¢;(Ji(H)) — d, where d = H?, in line
with classical papers by Marchionna [29] and Gallarati [13], [14]. For pairs
(S,H) as above the situation is different from the classical case because al-
ready for ¢;(J1(H)) =5 a nonruled surface occurs. Sometimes, in this con-
text, m:= cy(J1(H)) is referred to as the generalized class of the polarized
surface (S, H).

The aim of this paper is twice. First of all, starting from Table 1, which
combines the list in [30, Theorem 4.3] with results of Fujita [6] and Yokoyama
[35], summarizing what is known for polarized surfaces with m —d <8, we
prove new results concerning the case 2g +1 <m —d < 2g + 2, where ¢ is the
sectional genus (Theorem 1) and the case of polarized nonruled surfaces with
m —2d < 2g (Proposition 1). Both will play a relevant role in the sequel.
Next we revisit the study of the character m in the framework of ample vector
bundles. We generalize m, from a projective manifold X polarized by a very
ample line bundle L to triplets (X,&, H) in an appropriate vector bundle
setting, and we study the objects giving rise to small values of this character.
Roughly speaking, on a smooth complex projective variety X of dimension 7,
consider an ample vector bundle & of rank r, 2 <r <n— 2, and an ample line
bundle H. By considering the triplet (X, &, H) and the ample vector bundle
of rank n—2 on X given by 7 :=& @ H®" -2 we define the generalized
class m, =my(X,&,H) of (X,6,H) as

my = [Cz(QX@dety)+C%_CZ+H2]'cn72+4(g_1)’ (*)

where ¢ :=c¢i(#) for i=1,2,...,n—2, and g:=1+3(Kx+c1+H) H-
¢y—2. From now on we simply write m, for my(X, &, H).

If # admits a section vanishing on a smooth surface S, it turns out that
my = ¢2(J1(Hs)), the generalized class of the polarized surface (S, Hg). More-
over, for H very ample and & = H®"2 m, is just the second class of the
projective manifold X embedded in PV via |H|.

This allows us to revisit and extend several classification results for sur-
faces of small class in the setting of ample vector bundles. Actually, under the
above assumption on %, we show that my >d, where d :=c, »(F) - H?,
except for (X, &, H) = (P", Ops(1)®", Ops (1)), or (P", Ops (12" Opa(2)), and
we describe completely the triplets satisfying equality (see Theorem 2).

Then by putting ¢ := my — d, in line with the classical case, we study small
positive values of ¢ by proving that 6 > 6, apart from few triplets (X,&, H),
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which are precisely described (Theorem 3). As a consequence of these results,
we describe the possible triplets (X, &, H) with m, < 6. Moreover, we carry
on our analysis to prove that if m, > 6, then m, > 10, provided that S has non-
negative Kodaira dimension. Including the sectional genus ¢ into the picture,
we characterize triplets for which ¢ < 2g+ 2 (Proposition 4 and Theorem 4)
and we show that 6 > 2¢g + d if S has non-negative Kodaira dimension. More-
over, as expected, the stronger are the properties enjoyed by the line bundle
Hyg (spannedness by global sections, very ampleness), the larger are the values
of m, attained by our results. In particular, assuming that Hg is spanned
by global sections, we list the triplets with my < 11, those with ¢ < 2g + 2,
as well as those with d <2g+ 5 provided that S has non-negative Kodaira
dimension (Proposition 5 and Theorem 7). In connection with this, we have
the opportunity to correct a mistake in [24] (see Remark 7 ii)). On the other
hand, under the assumption that Hg is very ample, we revisit the above
results and finally we prove that 0 > 2¢g + 11 if S has non-negative Kodaira
dimension.

A great help in our analysis is provided by a number of results on ample
vector bundles having a section which vanishes on a surface of some special
kind ([5], [17], [19], [20], [21], [22]). The strategy is the following: first, looking
at the difference J, which can be expressed in terms of geometric and topo-
logical characters, we show, extending or refining some known results, that
the polarized surface (S, Hg) must belong to a precise list of pairs. Next, by
applying the results on ample vector bundles mentioned before we succeed to
reduce (sometimes drastically) these lists to a very short number of cases, for
which we obtain a rather complete description of & and H according to the
admissible structure of X. For example, in some instances S could “a priori”
be a minimal elliptic surface, whose elliptic fibration turns out to be endowed
with some multiple fibers, but this possibility is ruled out by [22]. Therefore
these cases do not lift to the vector bundle setting.

The paper is organized as follows. Section 2 contains miscellaneous pre-
liminary results on polarized surfaces (S,L) with special regard to pairs for
which ¢;(J1(L)) — L? is small. In particular, in this setting, we prove new
results concerning both ruled and nonruled surfaces. In Section 3 the invariant
my is introduced for triplets (X, &, H) in an appropriate setting and triplets
for which ¢ is small are analyzed. Moreover, lists of triplets with low m;, are
derived from this study. In Section 4 significant bounds for J expressed in
terms of the sectional genus ¢ are discussed. Finally, in Section 5 all the above
matter is reconsidered under the extra assumption that the line bundle Hg is
ample and spanned (Subsection 4.1) or even very ample (Subsection 4.2).

We work over the field of complex numbers and we use the standard
notation and terminology from algebraic geometry. In particular,
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P” . the projective space of dimension #;

Q" . the smooth quadric hypersurface of P"*';

Qp . the cotangent bundle of a smooth variety V;

q(V) . the irregularity h'(Oy) of V;

Ky : the canonical bundle of V;

Fw . the pull-back of a coherent sheaf % on V' via an embedding
w cV,

(8)o . the (scheme-theoretic) zero locus of a section s of a vector
bundle on V;

e(S) the topological Euler characteristic of a surface S;

K(S) the Kodaira dimension of S;

g(S, %) : the sectional genus of a polarized surface (S,.%);

the numerical equivalence relation.

With a little abuse we adopt the additive notation for the tensor product of
line bundles. We say that a smooth surface S is ruled if it is birationally ruled,
ie. if K(S) = —oo; S is said to be geometrically ruled if it is a IP'-bundle over
a smooth curve. To denote a geometrically ruled surface of invariant e over
a smooth curve of genus ¢ := ¢(S) we use the non-standard symbol S, . (in
particular, Sy . is the Segre—Hirzebruch surface of invariant e); however, as
usual (e.g., see [15, Chapter V, §2]) Cyp and f will stand for a section of
minimal self-intersection —e and a fiber, respectively. We recall that ¢ > —¢
(Nagata inequality).

2. Polarized surfaces (S,L) with small class

Here are some general facts concerning polarized surfaces (S,L). Apart
from the interest in connection with the study of pairs for which the dif-
ference m — d is small, they will be useful in the basic setting introduced in
Section 3.

For the convenience of the reader, we sum up in Table 1 known results
concerning polarized surfaces (S,L) whose class m := ¢;(J;(L)) is small com-
pared to the degree d := L>. We set ¢ := ¢(S), g = g(S, L), and we denote by
(S, L") a minimalization of (S, L), when S is not minimal, as in [30]. Recall
that letting # : S — S’ be the corresponding birational morphism, we have L =

— > vE;, where E;, i = 1,...,s, are the exceptional curves contracted by 7
and v; > 1 for every i.

In particular, note that all pairs (S, L) with m <9 are included in Table 1.
The basic source for Table 1 is [30, Section 4], taking into account some prog-
ress in the classification of polarized surfaces of sectional genus two, compared
to [4]. Moreover, as to N. 11, we note that the description of L provided in
[4, Theorem 2.7, d)] has been improved by Fujita (see [8, Theorem 15.7] and
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N. | m—d d g | x(S) | e(S) (S,L) (S',L")
1 -1 1, 4 0 —00 3 (P2, Op2(e)), e=1,2 -
2 0 >1 >0 | —0 | 4—4q scroll over a smooth curve of -
genus ¢
3 3 9 0 —00 3 (P2, Op>(3)) -
4 4 8 0 | —o 4 (P! x P!, Op1, p1(2,2)) -
5 4 8 0 —0 4 the blow-up at a point of N. 3
6 4 3 1 — 0 0 (Sl‘_l,[?)C()*f]) -
7 4 4 1 -0 0 (S1,e,[2Co + (e + 1) f]), -
e=-1,0
8 4 1 1 1 0 S — P! is a minimal elliptic -
surface with multiple fibers
9 4 2 2 0 0 S is the Jacobian of a smooth -
curve C of genus 2, L=C

embedded in S and A°(L) =1
10 4 2 2 0 0 S = C) x C,, C;is an elliptic -

curve for i=1,2, L=C + G,

and h%(L) =1

11 4 2 1 0 0 S is a bielliptic surface, |L| = -

{Z+F}, Z a section, F a fiber

of the Albanese fibration

12 5 7 0 —0 5 the blow-up at two points of N. 3
13 5 1 2 0 1 the blow-up at a point of N. 9
14 5 2 1 —0 1 the blow-up at a point of N. 6
15 5 3 1 —0 1 the blow-up at a point of N. 7
16 6 6 0 -0 6 the blow-up at three points of N. 3
17 6 1 1 -0 2 the blow-up at two points of N. 6
18 6 2 1 —0 2 the blow-up at two points of N. 7
19 7 5 0 —o0 7 the blow-up at four points of N. 3
20 7 1 1 —0 3 the blow-up at three points of N. 7
21 8 4 0 —0 8 the blow-up at five points of N. 3

Table 1. (Continued)
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22 8 4 3 2 0 0 S is an abelian surface -
23 8 4 3 1 0 0 S is a bielliptic surface -
24 8 <3 |3 | =1 1 0 S is a minimal elliptic surface -

with x(0s) =0

25 8 12 |2] 0 | - 4 (So.e,[2Co + (3 +€)f]), with -
e=0,1,2

26 8 8 [3| 1 | —w 0 (St.e,[2Co + (2+ €)f]), with -
e=—-1,0,1

27 8 6 3] 1 | - 0 (S1.0,13Co + f1) -

28 8 5 3] 1 | —w 0 (S1.-1,[5C — 2f)) -

29 8 4 (4] 2 | —0 | -4 (85,0, 2Co + (e + 1) f]) with -
—-2<ex<0

Table 1. Polarized surfaces (S,L) with m —d < 8.

[7, Lemma 2.15]); |L| consists of a single divisor, which is the sum of a section
and a fiber of the Albanese fibration. As a consequence, [35, Remark 2.3 (2)]
implies that no simple blow-up of a pair as in N. 11 can occur. Furthermore,
the results concerning ruled surfaces over an elliptic curve, due to Fujita [6, §4]
(see also [8, Theorem 15.2, cases 0), and 3)-5)]) and Yokoyama [35, Theorem
4.1 (ii)], lead to a simplification in [30, Theorem 4.3]. For instance, combining
both we see that for g =2 and S’ = S|, it must be v; =1 for every i, hence
e(S)=s=L"%—d.

RemMARK 1. If L is very ample, the only surviving cases in Table 1 are
N. 1-5, 12, 16, 19, 21, 25, and 26 with e = —1.

It is useful to recall that for a polarized surface (S,L) we have m =
e(S) +2KsL + 312, hence

m—d=e(S)+2KsL+2d =e(S)+4(g—1). (#)

LemMmA 1. Let S be a smooth surface, L an ample line bundle on S, and
let g:=g(S,L) be the sectional genus of (S,L). Suppose that o:S — Sy is
the blow-up of a smooth surface Sy at a single point and let E be the excep-
tional curve. Then there exists an ample line bundle Ly on Sy such that L =
"Ly —rE, where r=LE >1. Moreover, L*=L}—r? LKs= LoKs, +r.
In particular,

i) 9=9(So,Lo) = (3) (hence g = g(So,Lo) if and only if r=1);

i) If LKs =1, then S cannot have Kodaira dimension x(S) > 1.
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Proor. The Nakai—Moishezon criterion proves the ampleness of L.
Assertion i) is obvious since Ks = 6*Kg, + E. To prove assertion ii) note that

| = LKy = LK, + .

We know that r>1. If x(S) > 1, then a suitably high multiple of Kg, is
effective and nontrivial and then also the first summand on the right hand is
positive, due to the ampleness of Ly, but this gives a contradiction.

Note that ampleness and spannedness of L imply 4°(L) > 3 and L?> > 3 up
to well known cases. More precisely, we have also the following

LeEMMA 2. Let L be an ample and spanned line bundle on a smooth surface
S. Then d =L? >3 unless (S,L,e(S),g,m,m—d) is one of the following:

i) (P? 0p2(1),3,0,0,—1);

i) (Q% 0y(1),4,0,2,0),

i) There exists a morphism ©:S — P2 of degree 2, branched along a
smooth curve A € |Op2(2b)| for some integer b > 2 (case b =1 fits into
case ii)); moreover, L = n*Op:(1), e(S) =2(2b> =3b+3), g=b— 1,
m=2b(2b—1) =12 and m —d = 2(2b> — b — 1) > 10.

Proor. It is enough to consider the morphism defined by |L| and recall
that L? is the product of its degree and the degree of the image. In case iii)
note that 7*|CUp:(1)| =|L| (since b > 2). Recall that 7,05 = Op: @ Op2(—b).
Since 4 € |Op2(2b)| and Ks = 1" (Kp2 +54) = n*(Op2(b — 3)), projection for-
mula gives

/’lO(KS) _ /’lo(ﬂ.’*Kg) _ hO((Q[PZ(b _ 3) ® @[Pz(_3)) = ho(@ﬂ)z(b — 3)) — (b; 1)

Similarly, h'(Ks) = 0 and then, since K2 = 2(h — 3)*, Noether’s formula allows
us to compute e(S). The value of g is provided by the Riemann-Hurwitz
formula, by restricting 7 to a general element of 7*|Up:(1)].

The following fact will be used often.

ReEmMARK 2. Let (S,L) be a smooth polarized surface of sectional genus
g=>2. If S is ruled, but (S,L) is not a scroll, then g > 2q. Actually, due
to the assumptions, Kg+ L is nef, hence (Kg—i—L)2 > 0. Moreover, K§ <
8(1 —g). Combining these inequalities we get

0<L><L?+(Ks+L)>=2(Ks+L)L+K?
<4(g—1)+8(l —q)=4(9 —2g+1).

Therefore g > 2 — 1.
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Now, observe that for a polarized surface (S, L), the inequality m — d > 2g
in [30, Proposition 3.2] can be further explored, as the following result shows.

THEOREM 1. Let (S,L) be a smooth polarized surface and put m:=
ca(Ji(L)). Then
(A) m—d=2g+1 if and only if either
() (m—d,g)=(3,1),(52) and (S,L) is as in Table 1, or
(B) g=2q=>4,S is the blowing-up o : S — S, . of Sy . at a point p,
L=c¢"L' —a7'(p) and L' = 2Cy + (e + 1)f].
(B) m—d=2g+2 if and only if either
(y) (m—d,g)=(4,1),(6,2),(8,3) and (S,L) is as in Table 1, or
(0) g=4 and (S,L) is one of the following polarized surfaces:
(01) S=S8ewithq>=2,9g=29+1, L=2Cy+ (e+2)f] and
d=38;
((52) S = Szj,l, g = 5, L= [3C() —f] and d = 3,‘
(03) S is the blowing-up :S — Sy. of Sge, =2, e<0,
at two points pi, p2, lying on distinct fibers, g = 12q,
L=0o"L'—a Y (p))—o ' (p2), L' =2Co+ (e + 1)f] and
d=2

For the proof we need the following lemma, consequence of a nefness
result for the relative adjoint bundle on polarized fibrations [10, Sec. 1].

LemMA 3. Let (S,L) be a polarized ruled surface which is not a scroll and
suppose that ¢ > 2. Let n:S — B be the ruling projection and set a := LF > 1,
where F is a fiber of m. If either g =2q or g =2q+ 1, then a <3, equality
implying q = 2.

Proor. Clearly a > 2. Let Kg/p be the relative canonical bundle. Since
(S,L) is not a scroll,

the line bundle Kg/p + L is nef, (1)
according to [10, Theorem 1.1.2]. Note that
(Ks/s+ L)L = (Ks + L)L — n°KpL = 2g — 2 — (2 — 2)a. 2)

Then, due to (1) and (2), letting g =2¢g we have 0 < (Kg/p+ L)L = 2(q +
(g—1)(1 —a)), hence a<1+¢q/(q—1)<3 since ¢ >2, and a =3 implies
g = 2. Next, suppose that g =2¢g + 1 and a > 3. Observe that if (Kg/p + L)L
=0, then Kg/p+ L =0 due to the Hodge index theorem combined with (1),
but this is impossible, because (Ks/p 4+ L)F = —2+a > 1. Therefore, in view
of (1) and (2), letting g = 2¢ + 1 in (2), we have 0 < (Kg/p+ L)L =2(2q + 1) —
2—-(29—2)a=212qg—a(g—1)). Thus a<2q/(¢g—1)=2+2/(q—1)<4
since ¢ > 2, and then a < 3, equality implying g = 2.
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PrOOF (of Theorem 1). Case (A). We can assume g > 4, since otherwise
m—d <7, hence (S, L) is as in Table 1, which leads to («). Then (#) implies
0=1¢e(S)+29—5=¢(S)+3, hence S is a ruled surface. Note that (S,L) is
not a scroll since m —d # 0, hence g > 2g by Remark 2. Let ¢: S — S’ be
the blowing-up of a smooth ruled surface S’ at a finite set of points B C .
Denote by s the cardinality of B. Thus e(S) = 4(1 — ¢) + s and this gives 0 =
2(g —2q) + (s—1). Observe that necessarily s < 1, and s =0 cannot occur.
Hence s =1, i.e. S is the blowing-up of S’ at a single point, S’ is a geomet-
rically ruled surface S, . over a smooth curve of genus ¢ for some e, and
g =2q. As a consequence, ¢ > 2. Letting « = LF, where F is a fiber of
S, we can thus apply Lemma 3, obtaining that either (i) ¢ =2, or (ii) a =3
and ¢ = 2. Moreover, write L = ¢*L’ — vE, where E is the exceptional divisor
contracted by g, L’ is an ample divisor on S’ and v is a positive integer. Since
S"=8,. and F is the proper transform of a fiber /* of S’ via g, we can write
L' = [aCy + bf]. Note that

1 < (¢*f —E)(c*L' —vE) = (¢*f — E)(¢"(aCy + bf) —VE) =a — v,

ie. 1 <v<a—1. Thus in case (i) we have v=1 and since S’ = S, ., by the
genus formula we deduce that

4g—-2=29-2= (Ks+ L)L = (Kg/+ L)L =4(q— 1)+ (2b — 2e),

i.e. b=e+ 1. This gives case (ff) in the statement.
Finally, in case (ii) from ¢ =2 we see that g =4 and 1 <v <2. By the
genus formula we thus get the following relation

v(iv—1) =2(2b — 3e).

According to it, for v=1 we get b =3¢/2. Therefore the ampleness of L’
[15, p. 382] leads to a contradiction regardless of the value of e. On the other
hand, for v =2 we get b = (3¢ + 1)/2 and then the ampleness of L’ combined
with the Nagata inequality e > —g = —2 and the fact that » must be an integer,
implies e = —1, hence S’ =S, | and L' =[3Cy — f]; in this case, however,
LP=L"—-4=9-6-4< 0, contradicting the ampleness of L. Hence case
(ii) cannot occur.

Case (B). If g <3, Table 1 leads to (y). So, as in case (A), we can
suppose that g >4. Then 0=¢e(S)+2g —6>e(S)+2, hence S is a ruled
surface. Moreover, note that (S,L) is not a scroll over a curve. Hence
g = 2¢q by Remark 2 again and using the same notation as in case (A), we can
write e(S) =4(1 — ¢g) + s for some integer s > 0. This gives 0 = 2(g9 — 2q) +
(s—2),1e. 0 <s <2 Thus we have either (j) s=0, g=2¢g+ 1, or (jj) s=2,
g =2¢q. In both cases, ¢ > 2.
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In case (j), S=S,. is a geometrically ruled surface over a smooth curve
of genus ¢. Note that 4 <g=2¢+ 1 implies ¢ >2. We can write L=
[aCy + bf] with a > 2, since (S,L) is not a scroll. Then

L* = a(2b — ae).

By Lemma 3 we know that either (j;) a =2, or (j) a=3 and ¢=2. In
case (ji) (S,L) is a conic bundle, hence (Ks+ L)*> =0. Thus

d=L>=2Ks+L)L+K:=4(g—1)+8(1 —q)=4(g —2q) +4 =38,

which gives L = [2Cy + (e + 2) f]; moreover, —¢ < e < 1 in view of the Nagata
inequality and the ampleness conditions [15, p. 382]. This gives case (J;) of
the statement.

In case (j2), since ¢ =2 and g = 2¢ + 1, recalling the expression of K and
the ampleness of L, we obtain (Ks+ L) =2b—3¢+4>5. Thus

L><L*+ (Ks+L)>—5=2(Ks+L)L+K2—5
—4(g—1)+8(1—¢q)—5=23.

On the other hand, the expression of L?> combined with the ampleness of L
shows that L?>3. Therefore d = L*>=3 and b=1(3e+1). This implies
that e is odd; moreover the ampleness conditions for L show that it is negative.
Recalling Nagata inequality we thus get e = —1, hence b= —1. This gives
case (d) in the statement.

In case (jj), S is obtained by a blowing-up ¢:S — S’ of a geometrically
ruled surface S’ =S, . at two points p; and p,. Denote by E; the corre-
sponding exceptional divisor for i = 1,2. Thus L = ¢*L’ — viE} — »E; for an
ample line bundle L' = [aCy + bf] on S’ with a > 2 and positive integers v; for
i=1,2. If a=2, the ampleness of L implies that p; and p, lie on distinct
fibers and v;=1, i=1,2. From

4g—-2=29-2=(Ks+L)L=(Ks + L)L =4(g—1)+2(b—e)

we get b=e+ 1, hence e <0 in view of the ampleness conditions. Then
d=L>=L%-2=2. This gives case (J3) in the statement. If a > 2, then
necessarily a = 3 and ¢ =2 by Lemma 3. If f; is the fiber containing p;, the
ampleness of L implies 1 < (6*fy — E;)L =3 — v;, hence v; <2, that is, v; =
1,2. Since ¢ =2, we have g =4 and by the genus formula we obtain that

6=29—-2=(Ks+L)L=(a—2)(b—ea)+alb+2—¢e)—vi(vi—1)
—Vz(Vz—l)

=b—-3e+3b+2—e)—vi(vi—1)=(vy—1),
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(2b—3e) ==(ni(vi = 1) +na(va — 1)).

N =

Note that 0 < d = 3(2b — 3e) — v} — v3, but this leads to a numerical contra-
diction.

If S is not a ruled surface, a result of Serrano [32] allows us to go further.

PropoSITION 1. Let (S,L) be a smooth polarized surface and put m :=
c2(Ji(L)). Suppose that m —d > 0 and assume that S is not a ruled surface.
Then m —d > 2g + d unless one of the following cases occurs:

(1) S is an abelian or a bielliptic surface and m —d =2g+d —2;

(2) S is an elliptic quasi-bundle f : S — B over a smooth curve B of genus

gB) <1, g=1, py(S)=0 and m —d =2g+d — 1, moreover, f has

only multiple fibers m;F;, i =1,...,s, as singular fibers, where F; is a

smooth elliptic curve, and letting F denote the general fiber of f, one of

the following holds:

(@) gB)=1,5s=1 m =2 and FL=2 (e.g., see [9]);

(b) ¢g(B)=0 and (my,...,mg) =(2,2,2,2,2),(4,4,4),(2,6,6) with
FL =2,4,6 respectively (e.g., see [32]).

PrOOF. Assume that m —2d <2g — 1. Then
e(S)+29g—2+KsL=m—2d <2g—1,

ie. e(S)+ KsL <1. Note that ¢(S) >0 and KsL >0 since S is not a ruled
surface. Thus we get the following three cases:

(1) e(S)=KsL=0 and m—2d =2g—2;

(ii) e(S)=0, KsL=1 and m —2d =2g— 1,

(iii) e(S)=1, KsL=0 and m —2d =2g— 1.
Case (iii) cannot occur: actually, it follows from KgL =0 that Kg is numer-
ically trivial, since S is not a ruled surface. Therefore S is a minimal surface
with x(S) =0, but this contradicts e(S)=1. In cases (i) and (i), S is a
minimal surface with x(S) < I, since ¢(S) =0. If x(S) =1 then a multiple
of the canonical bundle is nontrivial and effective, but this contradicts (i) by
the ampleness of L. Moreover, in case (ii), since Ky is not numerically trivial,
we see that S is a properly elliptic minimal surface over a smooth curve B,
hence K2 =0. Thus y(Cs) =0, by the Noether’s formula. Then, by [33,
Proposition 4.2], the elliptic fibration f:S — B is a quasi-bundle, i.e. any
singular fiber is a multiple of a smooth elliptic curve [33, Definition 1.1]. By
combining the canonical bundle formula for an elliptic fibration with the con-
dition LKg = 1, it thus follows that f necessarily has some multiple fiber and
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g(B) < 1. Moreover, 0 < py(S)+1=¢g=g(B) or g(B)+1 [33, §4], but the
latter case cannot occur if g(B) =1, due to the Katsura—Ueno property [33,
Proposition 4.3]. Then the assertion follows from [32], taking into account that
this result only depends on the condition LKs =1 (and not g = 2), as pointed
out in [33, final comment at p. 300].

REMARK 3. Let S be a surface of general type. Then, by combining
Noether’s formula with the Bogomolov—Miyaoka—Yau inequality, we have
e(S) = 3.

3. Triplets (X,&,H) with low m,
Our basic setting from here on is the following:

(©)

X is a smooth complex projective variety of dimension 7, & is an ample vector
bundle of rank » on X with 2 <r<n—2 and H is an ample line bundle on
X. Furthermore, the ample vector bundle of rank n —2 on X given by & :=
& @ H®"-2) has a section vanishing on a smooth surface S C X.

REMARK 4. A concrete way to fit into () for r <n —2 is to consider
the following slightly more special setting: X is a smooth complex projective
variety of dimension n, & is an ample vector bundle of rank r on X with 2 <
r < n—2, having a section whose zero locus is a smooth subvariety Z C X of
the expected dimension n — r (which happens, e.g., if & is spanned), and H is
an ample line bundle on X such that Trz|H| (the trace of |H| on Z) is base
point free.

Note that in this setting the line bundle H; is spanned ‘““a fortiori”.
Clearly this fits into () simply letting S denote the surface cut out by n — r — 2
general elements of Trz|H|. Actually, if 6e I'(X,&) defines Z, there are
sections s; € I'(X, H) whose restrictions to Z define a smooth surface

n—r—2
S:= m (sil2)o
i-1
which is the zero locus of the section (a,sy,...,8,—r—2) € ['(X,F).
In Subsection 4.1 we will add to () the requirement that
Hyg is spanned. (S)

Clearly, this condition is trivially satisfied in the setting of Remark 4 since, as
noted, H; is spanned. Furthermore, in Subsection 4.2 we will put the stronger
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requirement that
Hg is very ample. (VA)
Assuming that (X,&, H) is as in (), we set
d:=H}=H?-c,,=c(6)-H"" and  ¢g:=g(S, Hs).

This notation is consistent with that used in Section 2 since d = HZ and g are
the degree and the sectional genus of the polarized surface (S, L) := (S, Hs),
respectively. Moreover, we have the following technical result.

PROPOSITION 2. Let (X,8,H) and S be as in () (see Introduction). If
my =my(X,&,H) is as in (x), then

myp = C2(J1 (HS))

Proor. Consider the dual of the tangent-normal bundle sequence of
SCcX

0— Ng)y =Fd — (Qx)s — 2s — 0.

It fits into the following diagram:

Then, recalling (x) we get
my=my(X,6,H) = [c2(Qx ®c1) +cf —cr+ HYg+4(g—1)
= [&2(Qxs) + c1(Qys)e1(Fs) + 1(Fs)® — e2(Fs))

+ Hg +4(g(S, Hs) - 1)
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= [2(Qxs) — e1(Qs)e1(Fy) — ea( F)] + Hj
+4(g(S, Hg) — 1)

= ¢2(Qs) + H: + 2(Ks + Hs)Hs

= [2(Qs) + ¢1(Qs)Hs + Hg] + [(Ks + 2Hs) Hs]

= (s @ Hs) + ¢1(2s ® Hs)Hs

= (1 (Hs)).

LEMMA 4. Suppose that there exists an effective divisor E ~P"' on X
such that

(E, Fg, Eg) = (P", Oput (1)2"2 Opui (—1)).
If ¢ >0, then S is not ruled.

PrOOF. Suppose that x(S) = —oo and note that S # P, Let /: X — X’
be the contraction of £. Then by [20, Lemma 5.1] and [17, Lemma 2.2] we
know that there exist an ample vector bundle %' of rank n—2 on X’ and
a section s’ € I'(#') such that # = f*F' ® Ox(—E), S":=(s'), is a smooth
surface and f|g:S — S’ is a birational morphism which contracts the (—1)-
curve Elg. Since Kg = [Ky +det #']g, is not nef, S’ being ruled, and
q(S”) > 0, [28, Theorem] implies one of the following possibilities:

(i) there exists an effective divisor £/ on X’ such that

(E', 7} Ep) = (P Ot (1)) 0pi(—1));

(ii) there is a surjective morphism ¢ : X' — W expressing X' either (a) as
a IP’-bundle over a smooth variety W of dimension dim W <2, or
(b) as a quadric fibration over a smooth curve W.
We show that case (ii) does not occur. If (ii) holds, then X’ is covered by
lines. Note that any line of X’ is contained in a fiber of ¢ since ¢(X') =
q(S’) = ¢ > 0. Suppose that p’ = f(E) lies on a smooth fiber F’ of ¢, so that
F' is either P! with r=n—1,n— 2, or Q"'; take a line /' passing through p’
and consider its proper transform / via f. Then

T = (f*F ® Ox(~E)), = f*(F)) @ O—1) = f*(F}), ® O(—1).

From [28, Theorem, cases (10)—(13)] we see that (n —3) summands at least
of (#4,) are Op/(1). Since n >4, it thus follows that %, has a summand
which is @, but this contradicts the ampleness of %#. On the other hand, if
F' is a singular fiber of ¢, i.e. a quadric cone with vertex a point, then we have
deg 7/, = deg # |, =n—2 for some line A" contained in a smooth fiber [28,
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Theorem, case (12)]. By the ampleness of 7' we get 7, = ¢;(1)®"? . Thus
the same argument as above applies and we conclude that this case cannot
occur as well. Finally, if we are in case (i), by a recursive argument we get a
contradiction.

LemMa 5. Let (X,&,H) be as in (), let F = & @ HO""-2) and suppose
that S is a P'-bundle over a smooth curve B of positive genus. Then X is a
P -bundle over B, with the projection p : X — B inducing the ruling of S, and
Fr = (gﬂ)n—l(l)®<n72) for every fiber F ="' of p. In particular, either r <
n—2 and (S,Hs) is a scroll, or r =n—2 and Hp = Opu1(t) with t = Hsf,
f being any fiber of S.  Conversely, if (X, F) satisfies the above conditions, then
S is a P'-bundle over B; moreover, (S,Hs) is a scroll if either r <n—2 or
Hp = Opii(1).

Proor. The description of (X, %), including the fibration p : X — B, fol-
lows from [20, Theorem|]. If r <n —2, then Hr = Op.-1(1), being a summand
of Zp, and then (S,Hs) is a scroll. On the other hand, if » =n —2 then
F =&, so we have no information on H. We can write Hr = Op.1(t) for
some positive integer z. Since the ruling of S is induced by p: X — B any
fiber f of S is a line, being the zero locus of a section of &r = Opu- (1)®("72>,
where F =IP"! is the corresponding fiber of X. Thus the assertion follows

from the equality
Hsf = Hp - (Opii (1)) 2 =1.
The converse is obvious.

Recall the notation d :=mp —d. As a first thing, let us characterize the
inequality ¢ < 0.

THEOREM 2. Let (X,8,H) be as in (). Then 6 >0 unless (X,&,H) is
either (P", Ops(1)®" Opr(1)) (my =0), or (P", Ops(1)®"D Opn(2)) (my = 3).
Moreover, equality holds if and only if (X,8,H) is one of the following:

(1) (P, Cpr(2) ® Opr (1), Opi(1)); (m2 =2)

(2) (@, (1), Cr(1)); (m2 =2)

(3) X is a P"-bundle over a smooth curve B, & = Opr1(1)®" and Hp =

Opn1 (1), for every fiber F =1P""" of the bundle projection n: X — B
and (S,Hs) is a scroll over B via n|g:S — B. (my =d := H2)

Proor. Since () holds, by Proposition 2 and [25, Proposition (A.1)]
we see that § = ¢(J1(H|g)) —d =0 except for (a) (S,Hs) = (P, 0(e)) with
e=1,2, and 6 =0 holds if and only if (b) (S, Hs) is a scroll over a smooth
curve.
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In (a), by [19, Theorem A] we know that X =IP” and # = 0(1)®"?,
which gives rise to the first two triplets in the statement.
In (b), by [21, Theorem 2] we see that (X, %) is one of the following pairs:
(i) (P, 0(1)°" Y @ 0(2);
(i) (@",0(1)®");
(iii) X is a IP""'-bundle over a smooth curve B and F = Op 1 (1)@("_2)
for every fiber F = P"! of the bundle projection.
Since in this situation S # IP?, cases (i) and (ii) give (1) and (2) of the statement
with & = 0(1)®"Y @ ¢(2) and & = ©(1)®" respectively and H = ¢(1) in both
cases. Finally, (iii) leads easily to case (3) of the statement.

The following result characterizes the low positive values of J.

THEOREM 3. Let (X,&,H) be as in (), and suppose that J is positive.
Then

0>3

with equality if and only if (X,&,H) = (]Pn,(9]])*'(1)(9(}172)7(0]])"(3)) (my = 12).

Moreover, if 6 =4 then (X,8,H) is one of the following triplets:

(1) (P, Ops(2) ® Opr (1) 0pn(2)); (m2 = 12)

Q) (Q", Cr(1)®"), O (2)); (my = 12)

(3) r=n—2, X is a P" '-bundle over a smooth curve B of genus 1,
& = Opur (NP2 and Hp = Opai (1), with 1 =2 or 3, for every
fiber F =TP""' of the bundle projection X — B; moreover, (S,Hs) is,
up to numerical equivalence, either (S1 _1,[3Cy — f]) (m2=7) or (Si.e,
2Cy + (e+ 1) f]) with ee {—1,0} (my=28).

Finally, if 6 =5 then (X,&,H) is one of the following triplets:

(4) there is a vector bundle I on a smooth curve C of genus one such
that X ~Pc(7), Hp = Op(1) and & = Op(2) @ O(1)®"Y for any
fiber F ~P"! of X — C; moreover, S is the blowing-up o : S — Sie
of Si,e— C with ec{-1,0} at a point p and Hs = [c*(2Cy+
(e+1)f)—a () (my = 8)

(5) there is a surjective morphism q: X — I' onto a smooth curve I' of
genus one such that any general fiber F of q is a smooth quadric
hypersurface of P" with Hr = Op(1) and & = Op(1)®"; moreover, S is
the blowing-up o : S — Si. of Si,. — C with e € {—1,0} at a point p
and Hg = [c*(2Cy+ (e + 1) f) — a1 (p)); (my = 8)

(6) X =Px(%), where X is the Jacobian of a smooth curve y of genus
2, U is an ample vector bundle of rank n—1 over X and & =
G ® &, where & is the tautological line bundle on X, 9 is a vector
bundle of rank r on X and nw:X — X is the bundle projection;
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moreover, Hr = Op(t) for any fiber F =~WP"% of n with t>1 and
t=11ifr<n—2, nalg:S— 2 is the blowing-up of X at a point p
and Hg = n|§y—n|§1(p), looking at the curve y as embedded in its
Jacobian. (my = 6)

Proor. It follows from Table 1 that 6 = m, — d > 3, with equality if and
only if (S, Hs) = (IP?, Up2(3)). By [21, Theorem 4 and Remark in Sec. 2], this
pair leads to the first assertion in the statement.

So we continue supposing that my; —d > 4. Now, assume that equality
holds. Taking into account the pairs (S, Hg) in Table 1, we see that condition
g <1 forces (S, Hs) to be either (P! x IP! (¢(2,2)) or (Sp1,—Ks,,). In both
cases (S, Hg) is a del Pezzo pair, but [21, Theorem 4 and Remark at the end
of §2] shows that only the former case lifts to the vector bundle setting giving
rise to (1) and (2) in the statement. Next assume g >2. If S is not ruled,
according to (#) and the interpretation of m, (see Proposition 2), the equality
my —d =4 implies g =2 and ¢(S) = 0. In this case, by [30, Theorem 4.2], S
is a minimal surface, which is either i) an elliptic fibration over P! with some
multiple fibers (see [32]), or ii) an abelian or a bielliptic surface. By [22,
Theorem| case i) cannot occur: actually, the fact that S is minimal contradicts
[22, Theorem (a)] while the existence of multiple fibers is in contrast with [22,
Theorem (b)]. Similarly, case ii) cannot occur since the only minimal surface
of Kodaira dimension zero occurring as zero locus of an ample vector bundle is
a K3 surface [17, Theorem]. Therefore S is a ruled surface, and then, accord-
ing to [30, Theorem 4.3] S is a IP'-bundle over an elliptic curve; moreover, g = 2
and one of the following cases holds:

(@) S:=81-1 and Hs =[3Cy — f];

(b) S:=S8. with ee {-1,0} and Hs = [2Cy + (e + 1)f].

Since S is an irrational P'-bundle, we can use [20, Theorem] to conclude that
X is a P""'-bundle over a smooth curve B and Fr = @Pn—l(1)®(’172) for every
fiber F of the bundle projection 7 : X — B. This implies that 7| is the bundle
projection of S, f being a line in F, hence B is the elliptic base curve of S.
Moreover, we see that if r < n — 2, then Hr = Ops-i(1), as a summand of Zp,
but this is in contradiction with the fact that 1 = Hf = Hsf = 2 or 3, accord-
ing to cases (a) and (b). Thus r=n—2 and Hr = Op1(t), with t =2 or 3.
This gives (3) in the statement.

Finally, assume that my —d =5. If g <1, then equality holds and S is
the blowing-up of IP? at two points with Hy = —Ks, ¢ = p, = 0 and ¢(S) = 5.
Since (S,Hs) is a del Pezzo surface, this situation cannot lift to the ample
vector bundle setting by [21, Theorem 4 and Remark at the end of §2]. Thus
g = 2. From Table 1 we know that g =2 and (S, Hy) is one of the following
pairs:
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(i) x(S)>0, H:=1 and S is the blowing-up at a single point of the
Jacobian of a smooth curve C of genus 2;
(i) S is ruled, g =1 and S is the blowing-up ¢: S — S’ at a point p of
a IP'-bundle S’ over a smooth curve B of genus 1 and one of the
following conditions holds:
) S'=S, 1 and Hs=[c*(3Co—f) —a ' (p)):
d) S'=S1e e=0,—-1and Hs=[0"2Co+ (e +1)f) —a ' (p)].
In case (i), since S is birationally equivalent to an abelian surface, by [17,
Theorem| we obtain case (6) in the statement. In case (ii), since S is a non-
minimal ruled surface, it follows from [28, Theorem] and Lemmas 4 and 5 that
(X,7,H) is one of the following triplets:

(j) there is a vector bundle ¥~ on a smooth curve C such that X =
Pe(7) and Fr = 0p(2) @ Ox(1)®"? for any fiber F ~P"" of
X — C;

(jj) there is a surjective morphism X — C onto a smooth curve C such
that any general fiber F of X — C is a smooth quadric hypersurface
of P with Zp =~ 0p(1)®"?;

(jjj) there is a vector bundle % on a smooth surface 2 such that X =~
Py (%) and Ffp = @F(I)GB(H) for any fiber F ~P" 2 of n: X — X.

Write Hr = Of(f) for some positive integer . In cases (j) and (jj), note that
the fibration X — C restricted to S is the ruling projection S — B, hence
C =~ B. Moreover, we have Fs = ¢*f for a general fiber F, since Fs-o*f =0
for any general fiber f of S’, g(Fs) =0 and F2=0. Since

HS . O'*f = HS ‘FS = HF . SF = HF . Cn_z(Q%)F = HF . Cn_z(efp) =2t
is even for any fiber f of S’ and

2 in case (d)
3 in case (c),

HS~0*f:{

we conclude that only case (d) can occur with # =1. This leads to cases (4)
and (5) in the statement.

In (jjj), note that case (d) cannot occur by [5, Theorem]. Moreover, in
case (c) we have

Ky + det(# @ H)| = Ks + Hs = [0*(Co)].

Therefore, Ky + det(# @ H) is not ample. So, by [1, Theorem C)] we know
that there exist a morphism s: X — W expressing X as a smooth projective
n-fold W blown-up at a finite set I # & and an ample vector bundle &' on
W such that # @ H = s*7' ® [-s~!(I')] and Ky +det #' is ample. Con-
sider an exceptional divisor E =~ P"~! of 5. Since n — 1 > 3, we see that n(E)
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is a point of S’, but this is impossible since any fiber of 7 is a linear P"~2.
Therefore, case (c) cannot occur.

REMARK 5. From Theorem 3 we deduce that 1 and 2 are gap values
for . Thus apart from a short list of triplets (X, &, H) as in Theorem 3, we
have 0 > 6.

REMARK 6. Let us note here that case (6) in Theorem 3 is effective.
Recall that this case comes from case (13) of [28, Theorem|. Let (C,0) be a
pointed smooth curve of genus 2, and on the Jacobian J(C) of C consider the
Jacobian bundle &,(C,0) of rank r, as in [7, (2.18)]. Set X :=1P(&,-1(C,0));
then X is a P"2-bundle over the smooth surface J(C). Recall that X can be
identified with C™, the n-fold symmetric product of C, the bundle projection
n: C" — J(C) being given by the mapping (xi,...,X,) — [x] + -+ + x, — nol.
Let H be the tautological line bundle on X; H is ample. Moreover, as shown
in [7, (2.18)] there is a section of H whose zero locus is IP(&,-2(C,0)), which
can be identified with C"~1). By induction, we thus see that S := C? is the
zero locus of a section of the ample vector bundle H®"~2, Thus the triplet
(X, & := H®"=2) H) provides an example as in case (6) of Theorem 3. Note
also that z|g:S — J(C) is just the contraction of the unique (—1)-line of
(S, Hs) corresponding to the canonical g} of C.

To avoid long lists repeating several triplets we already met, in the next
statement, as well as in Section 5, we simply denote by
of: the class consisting of the five triplets appearing in Theorem 2;
2. the class consisting of the first three triplets occurring in Theorem
3, namely, (P",0p(1)®"72 0pi(3)), (P",0pr(2) @ Opn(1)®"7,
Opr(2)), and (", Ogr (1)), Ogr(2)).
Thus by Theorems 2 and 3, combined with Table 1 and the fact that m, =
0+d=0+1, we have the following consequence.

CoROLLARY 1. Let (X,6,H) be as in (). Then
m; <6
if and only if either (X,6,H) e o/ (my=0,3,2,2.d <6), or (X,6,H) is as in
case (6) of Theorem 3 (my = 6).

As a consequence of Corollary 1, we have m, > 7 apart from a short list
of triplets (X, &, H).

Finally, in line with Corollary 1, we further show that also 7-9 are gap
values for m, provided that S is not ruled.

ProproSITION 3. Let (X,&,H) be as in () and suppose that S is not a
ruled surface. 1If my > 17, then my > 10.
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ProoF. Since m, > 7 and S is not ruled, we see from Table 1 (where
m is now our my) that m; > 9 and equality implies that .S is a minimal elliptic
surface, x(0s) =0, g=3 and HZ=1. In this case, it follows from [22,
Theorem(b)] that X is endowed with a morphism ¢: X — B onto a smooth
curve B inducing on S the elliptic fibration and f := ¢|g: S — B has no mul-
tiple fibres. Thus by [2, (12.1) and (12.2) in Chapter V, pp. 161-162] we
deduce that Ks = f*(Kp) = (2g(B) — 2)F since deg f.1(CUs)” = y(Os) = 0, where
F is a fiber of f, but this gives the numerical contradiction

2(g(B) — 1)FHs = KsHs =29 -2 — H} =4 —1=3.

As a consequence of Corollary 1 and Proposition 3, when S is not a
ruled surface, we conclude that m, > 10 apart from a short list of triplets.
As to case mp =10, one can show that if x(S)=0, then r=n-2, X =
Py(%), for an ample vector bundle # of rank n— 1 on a smooth minimal
surface 2, and & = n*9 ® £, where ¢ is the tautological line bundle on X, ¥
is a vector bundle of rank n —2 on 2 and n: X — 2 is the bundle projec-
tion; furthermore, Hr = Op(3) for any fiber F = P"? of 7, n|s: S — X is the
blowing-up of X at a point p, e¢(S) =1 and X is either an abelian or a biel-
liptic surface with Hs = n|cLo — 3n|§1(p) and L} =10. We omit the proof
for shortness.

4. Lower bounds for ¢ in terms of g

In this section, we will compare é = my — d with the sectional genus g of
the polarized surface (S, Hs). A first result is given by the following

PrOPOSITION 4. Let (X, &, H) be as in ().  Assume that 6 > 0 and g > 2.
Then

0=>2g

and equality holds if and only if r =n—2, X is a P" '-bundle over a smooth
curve B and 6f = 6’p(1)®("_2) for every fiber F ="' of the bundle projection
n:X — B. In particular, S = S, , is a P'-bundle over B via n|g. Moreover,
either

(1) Hr=0p3), gq=1, e=-1, g=2 and Hs = [3Cy — f], or

(i) Hr=0p2), g=2¢>0, e<0 and Hs =[2Cy+ (e + 1)f].

Proor. By [30, Proposition 3.2], we know that § > 2¢, equality holding if
and only if one of the following cases occurs:

(1) S = Sl,—l, g = 2 and HS = [3C() —f};

(2) S§S=S8,. with e<0, g=2¢>0 and Hg = 2Cy + (e+1)f];



Generalized polarized manifolds 321

(3) S is a minimal surface endowed with an elliptic fibration S — IP!,
g=1,p;=0,9g=2and H2=1;

(4) S is a minimal nonruled surface with g = 2.
Note that in case (3), from [4, Theorem 1.5] it follows that S has multiple
fibers, but this contradicts [22, Theorem]. Moreover, also case (4) cannot
occur by [17, Theorem] since S is minimal and not a K3 surface. Finally, by
[20, Theorem] in cases (1) and (2) we conclude that X is a IP"~!-bundle over a
smooth curve B and Zr = Op(1)®"? for every fiber F = IP"~" of the bundle
projection 7 : X — B. Note that Fg = f for any fiber F of = and that the
restriction 7|g : S — B of = to .S gives the bundle projection on S. Moreover,
we have Hp = Op(b) with b = 3,2 according to cases (1) and (2) respectively.
This shows that necessarily r =n — 2.

Now, we lift the results of Theorem 1 and Proposition 1 to the ample
vector bundle setting.
As a consequence of Theorem 1, we can obtain the following

THEOREM 4. Let (X,8,H) be as in ().

(A) Ifo =29+ 1, then either (3,9) = (3,1),(5,2) and the triplets (X, &, H)
fit into all the possibilities of Theorem 3 for 6 =3 and 5, or (X, 6, H)
is one of the following triplets:

(1) X = Pe(?"), where V" is a vector bundle of rank n on a smooth
curve C, & = Op(2) @ Op(1)®"V and Hp = 0x(1), for any fiber
F =~ P"! of the bundle projection X — C;

(i) there is a surjective morphism X — I' onto a smooth curve I'
whose general fiber F is a smooth quadric hypersurface of P"
such that & = Op(1)®" and Hp = Op(1).

Moreover, in both cases, S is the blowing-up o:S — S, . of a sur-

face S, . at a point p, Hs = [6*(2Cy + (e + 1)f) — o~ (p)] and g =

2q > 4.

(B) If6=2g+2 and g >4, then we have the following possibilities:
(Bl) r=n—2, X is a P" "-bundle over a smooth curve B and &r =

Or(1)®"2 for every fiber F =~P"" of the bundle projection

n:X — B.  Moreover, either

(j) Hp=0r3), S=S82_1, g=5, and Hs = [3Cy — f], or

(7i) Hr=0r(2), S=S8y. with g =2, e<0, g=2q+1 and
Hs =[2C+ (e+2)f);

(B2) (X,é&,H) is as in (i) and (ii) of (A), and in both cases, S is the
blowing-up o : S — S, . of a surface S, . at two points pi, pa,
lying on distinct fibers, Hs = [6*(2Co + (e +1)f) — o (p1) —
o' (p2)] and g =2q.
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ProoF. (A) If g <3 then 0 =29+ 1 <7 and from Table 1 we conclude
that only (d,¢9) = (3,1),(5,2) satisfy the current assumption, i.e. the triplets
(X, &, H) fit into all the possibilities of Theorem 3 for =3 and 5. So we can
assume g > 4. By Theorem 1 we deduce that g =2¢g >4, S is the blowing-
up 6: S — S, of a surface S, . at a point p and Hg = [6"(2Cy+ (e +1)f) —
o '(p)]. Having in mind [5, Theorem] and by arguing as in the proof of
Theorem 3, we can easily deduce cases (i) and (ii) of the statement.

(B) Since 0 =2¢g + 2, from Theorem 1 it follows that (S, Hs) is one of
the following three polarized surfaces:

(a) S=S%_1,9=5 Hs=[3C — f] and H2 =3;

(b) S=S8,, with g>2, g=2g+1, Hs =[2Cy + (e +2)f] and HZ = 38;

(c) S is the blowing-up o : S — S, . of S, . at two points p;, p, lying on

distinct fibers, Hg = [0"(2Co+ (e+1)f) —a(p1) — a7 pa)], g=
2g >4 and HZ =2.
If (S, Hs) is as in (a) and (b), then by arguing as in cases (1) and (2) of the
proof of Proposition 4, we obtain (B1) in the statement. In case (c), recalling
[5, Theorem] and reasoning as in the proof of Theorem 3, we get (B2) in the
statement.

THEOREM 5. Let (X,&,H) be as in () and suppose that S is not a ruled
surface. Then 0 >2g+d.

Proor. Simply note that cases (1) and (2) of Proposition 1 cannot ascend
to the ample vector bundle setting due to [17, Theorem] and [22, Theorem].
Actually, in the former case S is a minimal surface of Kodaira dimension zero,
while in the latter S is an elliptic surface with multiple fibers.

5. When Hg is ample and spanned or very ample

In this Section, we revisit all the above results in the ample and spanned
(Subsection 4.1) or very ample (Subsection 4.2) settings and we improve some
of them.

5.1. Hg is an ample and spanned line bundle. First of all, note that if J < 3,
then the triplets (X, &, H) are as in Theorems 2 and 3. Thus, assume that
0> 3.

THEOREM 6. Let (X,8,H) be as in (), suppose that condition (S) holds,
and let 6 > 4. Then

0>9,

except in the following cases:
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(1) 6=4 and (X,8,H) is either as in cases (1) and (2) of Theorem
3 (my=12), or r=n—2, X is a P"'-bundle over a smooth curve
B of genus 1, &r = Cﬂﬂ,nfl(l)@("*z) and Hp = Opn1(2) for every fiber
F =" of the bundle projection X — B and (S, Hs) = (S1._1,[2Co])

(my = 8);
2) 6=6 and  (X,& H) = (P> x P2 Opr, p2(1,1)2, Op2, p2(1,1));
(MQ = 12)

(3) 0 =17 and we have either (X,&,H) = (Q*, 7 ® Og+(2), Ugs(1)), where
S is a spinor bundle on Q% or X is a linear section of the Grass-
mannian variety G(1,4) C P° and (&§,H) = (L®" L), where L is the

ample generator of Pic(X); (my = 12)
(4) 0=8 and (X,8,H) is one of the following triplets:

(@) (P, 0pr(2)%* @ Opr(1)2"2) Opi (1)), (my = 12)

(b) (Q", g (2) ® Uy (1)®™), U (1)), (my = 12)

(¢) X is a complete intersection of two quadric hypersurfaces of P"+?

and (&, H) = (L®", L), where L is the ample generator of Pic(X);
(I’nz = 12)
(d) r=n—2 and there is a vector bundle ¥~ on a smooth curve C
of genus q <2 such that X xPc(v"), Hp = Op(2) and ér =
(Qp(l)@("fz) for any fiber F ~P""! of X — C; moreover, (S, Hs)

is, up to numerical equivalence, one of the following pairs:

(d1)  (So.e, [2Co + (e + 3)f]), with e <2; (my = 20)
(d2)  (Si.e, [2Co + (e +2)f]), with e <O0; (my = 16)
(d3)  (S2.¢,[2Co + (e + 1) f]), with e < —1. (my = 12)

ProoF. If 0 =4, then from Theorem 3 it follows case (1) of the statement.
Actually, by [23, Theorem (3.1)] the remaining possibilities in Theorem 3 (3)
cannot occur, Hg being spanned. If 6 =5, then by Lemma 2 and Table 1 we
deduce that the only possible cases for (S, Hs) are N. 12 and 15 of Table 1.
The former case does not lift to the vector bundle setting by [21, Theorem 4
and Remark in §2] and the latest one cannot occur since g =2 and Hy is
required to be ample and spanned (see [23, Theorem (3.1)]). This shows that
0 =15 cannot occur. If 6 =6,7 we have g=1 or 2, by Table 1. If g=1,
from Lemma 2 and [21, Theorem 4 and Remark in §2] we obtain immediately
cases (2) and (3) of the statement. On the other hand it cannot be g =2
because Hg is ample and spanned: actually, in cases N. 17, 18 and 20 of Table
1, S is not a minimal surface and this is not compatible with [23, Theorem
(3.1)] again. Suppose now that § =8. First of all, assume that «(S) > 0.
Then (S, Hy) is as in cases N. 22, 23 and 24 of Table 1. Since Hg is ample
and spanned and g = 3 in all cases, by [18, Table I, p. 268] we see that N. 22
and 23 cannot occur and that in N. 24 the surface S is a minimal elliptic
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fibration with multiple fibers, but this situation does not lift to the vector
bundle setting by [22, Theorem]. Finally, suppose that x(S) = —co, i.e. Sis a
ruled surface. From Table 1 we deduce that either
(i) H2=4,9=1,e(S) =38,
or (S, Hs) is, up to numerical equivalence, one of the following pairs:
i)

i) (Soe[2Co+ (3 +e)f]) with e=0,1,2, H3 =12, g=2, e(S) =4;

St.e,[2Co + (2 +¢)f]) with e =—1,0,1, H2 =8, g =3, ¢(S) = 0;

(
i) (
(S1.0,[3Co + f]) with H: =6, g =3, ¢(S)=0;
(
(

(

(
(iv
(v) (S1.-1,[5Co —2f]) with H2 =15, g =3, e(S) = 0;

(Vi) ($2.6,2C0+ (e+1)f]) with —2<e<0, H2=4, g=4, ¢(S) = —4.
Note that (iv) cannot occur since in this case Hs-Cy=1 with g(Cy) =1
implies that Hg is not spanned. Moreover, from [18, Table II, p. 268] it
follows that also case (v) is not possible since 0 = e(S) = 12(1 —¢) — K2. In
case (i), by [21, Theorem 4 and Remark in §2] we get cases (), (b) and (c)
of the statement. Finally, having in mind that Hg is ample and spanned,
cases (ii), (iii) and (vi) lead to cases (d;), (d2) and (d3) of the statement by

20].

)
)
)
)

COROLLARY 2. Let (X,8,H) be as in () and suppose that condition (S)
holds.  Then

my <11

if and only if either (X,6,H) e of (my=0,3,2,2,d <11), or r=n—-2, X is
a P"'-bundle over a smooth curve B of genus 1, & = Opn (1)®<"72) and Hp
Opn1(2) for every fiber F =P""" of the bundle projection X — B and (S, Hs)
(S1771, [ZC()]) (le = 8)‘

lle 1l

PROOF. Since my =J + H2 and H2 >3 unless a few exceptions for the
pairs (S, Hs) described in Lemma 2, the result follows from Theorems 2, 3
and 6.

COROLLARY 3. Let (X,8,H) be as in () and suppose that (S) holds.
Then

0=29+73

unless either g > 4 and (X, &, H) is as in Proposition 4 and Theorem 4, or g < 3
and one of the following cases occurs:

(1) (X,6,H)edUSRB (my=0,3,22,d,12,12,12);

2) r=n—-2,Xisa P~ -bundle over a smooth curve B of genus 1, & =

@]P,,fl(l)@(”_z), Hp = Opn1(2) for every fiber F ="' of the bundle

projection X — B and (S, Hs) = (S1.-1,[2C)) (my = 8);
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(3) r=n—2 and there is a vector bundle ¥ on a smooth curve C of genus
q=1 such that X ~Pc(7"), Hr = Op(2), & = Op(1)®" ) for any
fiber F ="' of X — C and (S, Hs) is, up to numerical equivalence,
(Si.e,[2Co + (e +2)f]) with ee{-1,0}. (my = 16)

ProoF. Let 6 <2g+2. If g <3, then 6 <8 and the assertion follows
from Theorems 2, 3 and 6. If g > 4, then Proposition 4 and Theorem 4 apply.

When S is not a ruled surface, we have the following two results.

PrROPOSITION 5. Let (X,&,H) be as in () and suppose that (S) holds. If
S is not a ruled surface, then 6 > 2g + 5.

Proor. Recall that 6 =my; —d and assume, by contradiction, that ¢ <
2g+4. If d <2, then from Lemma 2 it follows that d =2, g=5b—1 and
e(S) = 2(2b* — 3b + 3) for some integer b >3, S being not a ruled surface.
Then

d=e(S)+4(g—1)=2g+[2b—6+2(2b* —3b+3)] =29 + 24,

which is impossible. Moreover, if g < 2 then g = 2 and by [23, Theorem (3.1)]
the only possibility for S is to be a K3 surface, in which case however, ¢ =
e(S)+4(g—1)=2g+e(S)+2g9g—4=2g+24. So we can assume that d > 3
and g > 3. Note that by Theorem 5 cases 6 =2¢g + 1,2g +2 do not occur.
Therefore, it is enough to show that also cases 0 = 2¢g + 3,2¢g + 4 cannot occur.

First suppose that 0 = 2g 4+ 3. Then from (#) we deduce that e(S) 4+ 2g =
7 and then (e(S),g) = (1,3) since e(S) >0, S being not a ruled surface, and
g=>3. Thus 4=2g—-2=d+ HsKs >3+ HsKs, hence HsKs <1. It can-
not be HsKg =0, otherwise, Kg¢ would be numerically trivial, due to the
ampleness of H, but in this case, S could not satisfy ¢(S) = 1, in view of the
classification. Therefore HsKs =1, H? =3 and by Lemma 1 we see that
k(S) =0. Moreover, (S, Hs) has (So,Lo) as simple reduction, where Sy is a
minimal surface of Kodaira dimension zero with ¢(Sy) =0. So Sp is either
abelian or bielliptic, and therefore y((s,) =0. On the other hand, with the
same notation as in Lemma 1, Hg=0*Ly — E, 0 : S — Sy being the reduction
morphism contracting the exceptional curve E at pe S;. We have h°(Hg) =
h°(Lo) — & where ¢ = 0 or 1 according to whether p is a base point of |Lg| or
not. Then, due to the spannedness of Hg, by the Riemann—Roch theorem and
the Kodaira vanishing theorem we get

1
3 <h(Hs) =h"(Lo) — & = x(Us,) +§L3 —e=y(0s,) +2 —e.

This gives 0 = y(0Us,) > 1 +¢> 1, a contradiction.
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Finally, suppose that 6 = 2g +4. By arguing as in case ¢ = 2g + 3, we get
only two possibilities for (e(S),g), namely,

a) (2,3), or

b) (0,4).
In case a), by using (#) again, we see that e(S)+2(g—3) =2, hence
(H?,HsKs) is either (3,1) or (4,0), by genus formula. Both possibilities
rule out. Actually, in the latter case Kg would be numerically trivial, but
this cannot occur for ¢(S) =2. In the former case, S could be minimal with
k(S) =1, but then KZ =0, which contradicts condition ¢(S) =2 in view of
Noether’s formula. So .S is not minimal. Thus Lemma 1 implies that x(S) =
0 and then e(S) =2 says that S is an abelian or a bielliptic surface blown-up
at two points. Then Kg = E where E consists of two irreducible curves, hence
1 = HsKs = HgE > 2, a contradiction.

Now consider case b). By using the facts that d >3 and HgKs >0,
we get for (d, HsKs) the following list of possible values: (6,0), (5,1), (4,2),
(3,3). If HsKg =0 (first case), recalling that e(S) = 0 we conclude that S is
either an abelian or a bielliptic surface. Both cases do not ascend the ample
vector bundle setting due to [17, Theorem]. If HsKs =1 (second case), then
Lemma 1 ii) implies that x(S) = 0 and then ¢(.S) = 0 allows us to conclude that
S is an abelian or a bielliptic surface; but then we get 0 = HsKs =1, a
contradiction. Next let us deal with the third and the fourth cases at the same
time. Since ¢(S) =0 we have that either i) S is an abelian or a bielliptic
surface, or ii) S is a minimal elliptic fibration. In subcase i) Kg is numerically
trivial, hence 0 = HgKs =2 or 3, a contradiction. In subcase ii) we have
K2=0. This combined with the fact that e(S) =0 implies x(Us) =0, by
Noether’s formula. Now use [24, table in Proposition 4.4 and Proposition 1.4].
For d = 3, since S is a minimal elliptic surface, [24, Proposition 1.4, case (1.4.2),
(1)] shows that y(0Us) = 3, a contradiction. On the other hand, for d = 4, since
x(0s) =0, [24, table in Proposition 4.4] shows that necessarily the elliptic
fibration of S has some multiple fibers. Therefore this case does not ascend to
the ample vector bundle setting in view of [22, Theorem].

THEOREM 7. Let (X,&,H) be as in () and suppose that (S) holds. If' S
is not a ruled surface and 6 =2g+ 5, then X = Pg, ("), where V" is a vector
bundle of rank (n — 1) over a smooth minimal surface Sy, which is either abelian
or bielliptic; moreover, r =n—2 and & = n*9 ® &, where & is the tautological
line bundle on X, ¥ is a vector bundle of rank n—2 on Sy and n : X — Sy is the
bundle projection; furthermore, n|g : S — Sy is a birational morphism expressing
S as Sy blown-up at a single point, say p. Finally, H =2¢ + n*(4 — 2(det ¥~ +
det 9)), where A is an ample and spanned line bundle on Sy with A> =8 and p
belongs to its second jumping set #,(Sp, A).
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For the definition of the jumping sets of an ample and spanned line bundle
we refer to [25].

ProOF. In view of (#), the relation 0 =my —d = 2g + 5 converts into
e(S) +2(g—3)=3. (3)

We have ¢(S) > 0 by the Castelnuovo—de Franchis Theorem [3, Theorem X.4],
hence g < 4. Clearly it cannot be g < 1, since S is not a ruled surface. More-
over, for g =2, the only pair (S,Hs) with S a nonruled surface is the K3
double plane, according to the classification in [23, Theorem 3.1], but in this
case e(S) =24, which contradicts (3).

Suppose that g = 3; then ¢(S) = 3 by (3). Clearly H2 > 2 and taking into
account Lemma 2 we see that e(S) = 3 is not compatible with H =2. Thus
the genus formula, combined with the fact that S is not a ruled surface, implies
(H?, HsKs) = (4,0), or (3,1). In the former case Ks is numerically trivial,
hence S is a minimal surface with Kodaira dimension x(S) = 0, but this con-
tradicts e(S) =3. In the latter case the Hodge index theorem shows that
K% <0. Suppose that S is minimal. Thus KZ = 0, since x(S) > 0, but then
Noether’s formula contradicts ¢(S) = 3 again. Therefore S is not minimal.
Let #:S — Sy be a birational morphism to the minimal model. We know
that Kg = n*Ks, + E, where E is an effective divisor contracted by # to a finite
set. Consider the equality 1 = HsKg = Hsn*Ks, + HsE: the second summand
on the right hand is greater than or equal to the number of blowing-ups 7
factors through; on the other hand, the first one is non-negative and it is zero
if and only if K, is numerically trivial. It follows that S is Sy blown-up at
a single point, E being the corresponding exceptional curve, and x(S) = 0.
But then e(S) =e(Sp) + 1 # 3, a contradiction. Thus g =3 cannot occur as
well.

It remains to consider the case (e(S),g) = (1,4). Clearly HZ > 2 and by
Lemma 2 we see that condition e(S) =1 is not compatible with HZ =2, as
before. Thus the genus formula, combined with the fact that S is not a ruled
surface, implies 3 < HZ < 6. A close inspection of [24] shows that it cannot
be ¢(S) =1 if H§ =3,5 or 6. Actually, as observed before, S cannot be of
general type, hence it has Kodaira dimension x(S) =0 or 1. According to
[24, Proposition 1.4, Lemma 2.1 combined with Proposition 2.3, and Proposi-
tion 3.1], we see that condition e(S) = 1 would be contradicted. So, H2 = 4.
Now, from [24, Proposition 1.6] we easily see that e(S) =1 can occur only
when S is a 4-tuple cover of P? via |Hs|, i.e. h°(Hs) = 3. Clearly condition
e(S) =1 prevents S from being a minimal surface. Thus, if x(S)=1 [24,
Proposition 4.3] would imply that (S, Hy) is obtained by blowing-up a single
point on a minimal elliptic surface with ¢ = 0. Thus y(0s) > 1. By Noether’s
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formula we have K2+ 1= KZ+e(S)>12, hence K2 > 11. But this is not
compatible with #(S) =1. This check settles all possibilities, except when
k(S) =0 and HZ = 4, in which case HsKs = 2 by genus formula. Lety:S —
So be a birational morphism from S to its minimal model Sy. Since e(S) = 1,
n is simply the blowing-up at a point p € Sy; in particular, we get e(Sp) = 0,
hence the surface Sy is either abelian or bielliptic. From 2= K¢Hg =
(n*Ks, + E)Hs, where E =n"'(p) is the exceptional curve, we see that
HgE =2, K, being numerically trivial; hence Hg =#*4 —2E, where A is
an ample line bundle on Sy, and 4 = HZ = 4> —4, ie. A>=8. Thus

BO(A) = 1(Cs) +5 (4> AKs) = 4,

by the Riemann—Roch and the Kodaira vanishing theorems. Moreover, since
A% =8 it follows from Reider’s Theorem [31, Theorem 1] that either 4 is a
spanned line bundle, or there exists an effective divisor I” on Sy such that
AI'=1and I'> = 0. But in the latest case I is an elliptic curve, since Sy can-
not contain rational curves. Thus its proper transform on S, I = *I" — ¢E
(where ¢ = 0 or 1) is also an elliptic curve, and then HgI = (3*A — 2E)(n*I" —
¢E) < AT’ = 1, contradicting the spannedness of Hg. Therefore 4 is an ample
and spanned line bundle on S). According to the above, |Hg| is in bijection
with the linear system |4 — 2p| of divisors in |A4| having a double point at p.
Recalling that 4°(Hg) = 3, this shows that

3= W(Hs) = h(A) ~ =41,

where f stands for the number of linearly independent linear conditions to be
imposed on the elements of |4| in order to have a double point at p. There-
fore § = 1. This says that codim, (|4 —2p|) = 1. Thus, the spannedness of
A implies that |4 — 2p| = |4 — p|, i.e. the point p is in the second jumping set
F>(So0,4). Now come back to the ample vector bundle setting. By using [17,
Theorem], we conclude that X is as in the statement with & = 7n*% ® &, where
¢ is the tautological line bundle on X, ¢ is a vector bundle of rank » — 2 on
So and 7 : X — Sp is the bundle projection; moreover, z|g: S — Sy is just the
birational morphism # expressing S as Sy blown-up at the single point p. Now
consider H. If r <n—2, then Hr is a summand of ZF, hence Hr = Opi2(1).
Since E is contained in a fiber F of 7 and is a line with respect to &g, we
get the contradiction 1 =deg(Hr); = HsE =2. Therefore r =n— 2, hence
F =¢&. Since H is ample we have Hp = t&p = Opn2(t) for some positive
integer ¢, and then we see from the equality ¢ = deg(Hr), = HsE =2 that
Hp =2¢p. So, H=2¢+ n*.# for some line bundle .# on Sy, which we have
to determine. Recall that Hs = n|g4 — 2E, where A is the ample and spanned
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line bundle on S, with 42> =8 we met before. Now, by adjunction Kg =
(Ky +det )¢ and then by the canonical bundle formula we get

Ks = (—(n— 1)+ n"(Ks, +det 7°) + (n — 2)¢ +n* det 9)
= —&5 + n|g(Ks, +det 7"+ det ).
On the other hand, K5 = n|¢Ks, + E, which provides the expression of E; hence
Hs=n|;A—2E
= n54 — 2(~Es + n|y(det ¥ + det 9))
= 2,5+ 7|g(A — 2(det ¥~ + det 9)).

Finally, from the injectivity of the restriction homomorphism Pic(X) — Pic(S)
(Lefschetz—Sommese Theorem), we get the expression of H as in the statement.

REMARK 7. i) We want to stress that Theorem 7 is effective. To see this
it is enough to modify the example produced in Remark 6, as follows. Let X
be the Jacobian bundle 7 : IP(&,-1(C,0)) — Sy = J(C) on the Jacobian of a
smooth curve C of genus 2 again, and call ¢ the tautological line bundle.
Letting & = E90=2) and taking H = 2¢&, we see that H is ample and spanned
[12, Example 5.1], and the triplet (X, &, H) is as in Theorem 7: here S = C?
again, but 4 is the line bundle corresponding to the double of the curve C itself
embedded in its Jacobian. Unfortunately, we have no examples with Sy a
bielliptic surface.

ii) According to the discussion in the first part of the proof we have to
stress a gap affecting the proof of [24, Proposition 4.5]. Actually, the equality
in the first case of (4.5.1) of [24, p. 101] holds provided that the point p does
not belong to the first jumping set of L’ (see [25, §1]): to wit, set 7 :=
J(X', L"), for i =0,1,2, where #, = X\ #; using the same notation as there,
if L' is spanned then the mentioned equality has to be amended as follows:
WLy = h%(L) +3 —i, where pe #. As a consequence, pairs (X', L') with
X' an abelian or a bielliptic surface when p e #, and with X’ an Enriques
surface when p € ¢\ #, are not ruled out.

5.2. Revisiting the classical setting. As a consequence of Remark 1, revisiting
Theorem 6 and Corollary 2, we obtain the following two results.

COROLLARY 4. Let (X,&,H) be as in (), suppose that condition (VA)
holds, and let 6 > 4. Then

0>9,

except in the following cases:
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(1) 6=4and (X,8,H) is as in cases (1) and (2) of Theorem 3 (m, = 12);

(2) 6=06,7and (X,8,H) is as in cases (2) and (3) of Theorem 6, respec-
tively (my = 12);

(3) 0=8 and (X,&,H) is as in cases (4)(a),(h),(c) (my=12) and
cases (4)(dy) (mp =20) and (4)(d2) with e=—1 of Theorem 6
(WZ2 = 16).

COROLLARY 5. Let (X,&,H) be as in () and suppose that condition (VA)
holds.  Then

my <11
if and only if (X,&6,H)e o/ (my=0,3,2,2,d <11).

Recently, Fukuma [11] improved a result of the first author, showing the
following

PrROPOSITION 6. Let S be a smooth surface endowed with a very ample
line bundle L, and let d, g, m be the degree, the sectional genus and the class
of (S,L). Suppose that m >d and g >2. Then m > d + 29+ 2 and equality
holds if and only if (S,L) = (S1,-1,[2Co + f]) (in which case d =8, g=3).

Note that the above pair (S, L) corresponds to N. 26 with e = —1 in Table
1. In particular, it fits into case (B)(y) with (m —d,g) = (8,3) of Theorem 1.
Coming back to triplets as in (), observe that for g := ¢g(S, Hs) < 1, condition
0 < 2g+ 2 simply means 6 < 4. Then taking into account Theorems 2, 3 and
6, the very ampleness of Hyg implies that (X,&,H) e .o/ U%. Thus we can
assume that g > 2 and so Proposition 6 can be easily lifted to the ample vector
bundle setting, as follows.

PropPOSITION 7. Let (X,&,H) be as in () and suppose that (VA) holds.
Assume g :=¢g(S,Hs) >2 and 6 >0. Then

0=2g+2

and equality holds if and only if r=n—2, X is a P" '-bundle over an elliptic
curve B, ép = @En—l(l)®(n72), Hp = Opi1(2) for every fiber F=P""' of the
projection X — B, and (S, Hgs) is the pair (S,L) described in Proposition 6.

Proor. Note that (S, Hs) satisfies all the assumptions of Proposition 6
with L = Hg. This implies the claimed inequality. Now suppose that equal-
ity holds; then (S, Hy) is the pair (S, L) described in Proposition 6. Set # =
@ H®"=2_ Since S is a P'-bundle over an elliptic curve, say B, we can
conclude by [20] that X is a IP""!-bundle over B, the projection p: X — B



Generalized polarized manifolds 331

inducing the ruling of S, and 7 = Op.1(1)®"? for every fiber F. It cannot
be r < n— 2, since (S, Hs) is not a scroll. Therefore r = n — 2, and then Hp =
Opn-1(2), since Hsf = (2Cy + f)f =2. The converse is obvious and this con-
cludes the proof.

REMARK 8. Proposition 6 is effective, since (S, L) is a very well known
elliptic conic bundle in P°. We want to stress that Proposition 7 is effective
as well. Arguing as in [26, Section 3] we can produce an example. Let 7,
be an indecomposable vector bundle of rank n and degree 1 over the elliptic
curve B, and set X :=IP(7,). We note that any two such bundles 7,, 7,
are related by 7, = 7, ® 7, where 7 is a line bundle of degree 0 on B. Thus
X 1is the same for all choices of ¥,. We also note that any such vector
bundle 7, can be constructed inductively from a non-—split exact sequence 0 —
Op — ¥, — Vy_1 — 0, starting from a line bundle 77 of degree 1. We have
h°(#;) =1 for all n > 1, hence the tautological line bundle ¢ on X has a single
section (up to a nonzero constant factor). Since the section of ¥, vanishes
nowhere on B, it follows that the corresponding section of ¢ vanishes exactly
on P(7;,-1). Note also that 7, is ample for any n > 1. Hence ¢ is ample.
Now let &;,...,¢&,., be & twisted by the pullbacks on X of n—2 distinct
degree 0 line bundles on B and let § = (—Bl":_lz &, Then & is an ample vector
bundle on X. Consider its section s = (s1,...,s,2) where {s;> = H°(&;) and
let Z be its zero locus. Then Z =~ IP(73) [26, Claim B], i.e., Z is the P!-
bundle of invariant —1 over B, and &7 = [Cy], C) being the tautological section.
Now, letting H := 2¢ + F we have that H is an ample line bundle, since & is
ample and F is nef, Moreover Hz = [2Cy + f] is very ample, due to Reider’s
theorem [31, Theorem 1].

Assuming that S is not a ruled surface, assumption (VA) allows us to
improve Proposition 5, probably roughly, as follows.

COROLLARY 6. Let (X,8,H) be as in () and suppose that (VA) holds.
If S is not a ruled surface, then 6 > 2g + 11.

Proor. Since S is not ruled, (VA) implies g > 3, as the Enriques ruled-
ness criterion, combined with the genus formula, immediately shows. Assume
that 6 <2g+ 10. Then by Theorem 5 we see that d < 10. Furthermore, we
have also

29+10=20=m—d=e(S)+4(g—1)=4(g - 1),
i.e. g <7. This allows us to use [27, Table in (4.0)]. We can write

0=2g+ (e(S)+29g—4) =29+ D,
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where D :=e(S) +2g —4 =12y(0s) — K2+2g—4 by Noether’s formula.
Table in [27, (4.0)] shows that S is birational to a K3 surface for 3 <g <
5, but in this case D > 24 — K2 + 2 > 26, a contradiction. On the other hand,
if g=06 and S is of general type, then D = 63, while in the remaining cases
D > 12 — K2 + 8 > 20, except when S is either an abelian or a bielliptic surface
(Cases 8) and 9) in the Table), but in these two cases S is minimal and this
possibility is ruled out by [17, Theorem]. Finally, for g = 7 condition d < 10
prevents S from being birational to an abelian or a bielliptic surface (Cases 23)
and 25) in the Table) and in the remaining cases we have D > 12 — K2 + 10 >
21, a contradiction.
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