
Hiroshima Math. J., 51 (2021), 301–334
doi:10.32917/h2020070

Generalized polarized manifolds with low second class
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Abstract. On a smooth complex projective variety X of dimension n, consider an

ample vector bundle E of rank ra n� 2 and an ample line bundle H. A numerical

character m2 ¼ m2ðX ;E;HÞ of the triplet ðX ;E;HÞ is defined, extending the well-known

second class of a polarized manifold ðX ;HÞ, when either n ¼ 2 or H is very ample.

Under some additional assumptions on F :¼ ElHlðn�r�2Þ, triplets ðX ;E;HÞ as above
whose m2 is small with respect to the invariants d :¼ cn�2ðFÞH 2 and g :¼ 1þ 1

2 ðKX þ
c1ðFÞ þHÞ � cn�2ðFÞ �H are studied and classified.

1. Introduction

Let S be a smooth complex projective surface embedded by a very ample

line bundle L. Identify S with its image in PN , N ¼ dim H 0ðS;LÞ � 1, via the

embedding associated with L and think of the linear system jLj corresponding
to the elements of H 0ðS;LÞ as the hyperplane linear system of S. Consider

also the dual variety DðSÞ of S, i.e. the subset of jLj parameterizing the tangent

hyperplanes. If ðS;LÞ0 ðP2;OP2ð1ÞÞ, then DðSÞ is a hypersurface in the dual

projective space PN4 (identified with jLj), and its degree m is usually called the

class of S. More generally, for a projective manifold X � PN one can con-

sider its second class m2, namely the class of its general surface section, which

is always positive, unless X is a linear space, by what we said. Like for the

degree and the sectional genus, the study of m2 contributed to a large literature

on the classification of smooth projective varieties with small invariants. In

particular, it is known that for ma 29, S is a ruled surface and pairs ðS;LÞ
occurring for ma 25 are classified (see [16, p. 195], and [34, Prop. 3.2]).

Moreover, for ma 11 only ðP2;OP2ðeÞÞ, e ¼ 1; 2, and scrolls may occur (e.g.

see Remark 1).
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Due to the fact that m ¼ c2ðJ1ðLÞÞ, the second Chern class of the first

jet bundle of L, in recent years the study of small values of m for embedded

surfaces has been reconsidered and transplanted in the wider setting of ample

line bundles. In particular, Palleschi and Turrini ([30]) started to classify

polarized surfaces ðS;HÞ when H is only assumed to be ample on S by

studying small values of c2ðJ1ðHÞÞ and of c2ðJ1ðHÞÞ � d, where d ¼ H 2, in line

with classical papers by Marchionna [29] and Gallarati [13], [14]. For pairs

ðS;HÞ as above the situation is di¤erent from the classical case because al-

ready for c2ðJ1ðHÞÞ ¼ 5 a nonruled surface occurs. Sometimes, in this con-

text, m :¼ c2ðJ1ðHÞÞ is referred to as the generalized class of the polarized

surface ðS;HÞ.
The aim of this paper is twice. First of all, starting from Table 1, which

combines the list in [30, Theorem 4.3] with results of Fujita [6] and Yokoyama

[35], summarizing what is known for polarized surfaces with m� da 8, we

prove new results concerning the case 2gþ 1am� da 2gþ 2, where g is the

sectional genus (Theorem 1) and the case of polarized nonruled surfaces with

m� 2d < 2g (Proposition 1). Both will play a relevant role in the sequel.

Next we revisit the study of the character m in the framework of ample vector

bundles. We generalize m2 from a projective manifold X polarized by a very

ample line bundle L to triplets ðX ;E;HÞ in an appropriate vector bundle

setting, and we study the objects giving rise to small values of this character.

Roughly speaking, on a smooth complex projective variety X of dimension n,

consider an ample vector bundle E of rank r, 2a ra n� 2, and an ample line

bundle H. By considering the triplet ðX ;E;HÞ and the ample vector bundle

of rank n� 2 on X given by F :¼ ElHlðn�r�2Þ, we define the generalized

class m2 ¼ m2ðX ;E;HÞ of ðX ;E;HÞ as

m2 :¼ ½c2ðWX l det FÞ þ c21 � c2 þH 2� � cn�2 þ 4ðg� 1Þ; ð�Þ

where ci :¼ ciðFÞ for i ¼ 1; 2; . . . ; n� 2, and g :¼ 1þ 1
2 ðKX þ c1 þHÞ �H �

cn�2. From now on we simply write m2 for m2ðX ;E;HÞ.
If F admits a section vanishing on a smooth surface S, it turns out that

m2 ¼ c2ðJ1ðHSÞÞ, the generalized class of the polarized surface ðS;HSÞ. More-

over, for H very ample and E ¼ Hlðn�2Þ, m2 is just the second class of the

projective manifold X embedded in PN via jHj.
This allows us to revisit and extend several classification results for sur-

faces of small class in the setting of ample vector bundles. Actually, under the

above assumption on F, we show that m2 b d, where d :¼ cn�2ðFÞ �H 2,

except for ðX ;E;HÞ ¼ ðPn;OP nð1Þlr;OPnð1ÞÞ, or ðPn;OP nð1Þlðn�2Þ;OP nð2ÞÞ, and
we describe completely the triplets satisfying equality (see Theorem 2).

Then by putting d :¼ m2 � d, in line with the classical case, we study small

positive values of d by proving that db 6, apart from few triplets ðX ;E;HÞ,
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which are precisely described (Theorem 3). As a consequence of these results,

we describe the possible triplets ðX ;E;HÞ with m2 a 6. Moreover, we carry

on our analysis to prove that if m2 > 6, then m2 b 10, provided that S has non-

negative Kodaira dimension. Including the sectional genus g into the picture,

we characterize triplets for which da 2gþ 2 (Proposition 4 and Theorem 4)

and we show that db 2gþ d if S has non-negative Kodaira dimension. More-

over, as expected, the stronger are the properties enjoyed by the line bundle

HS (spannedness by global sections, very ampleness), the larger are the values

of m2 attained by our results. In particular, assuming that HS is spanned

by global sections, we list the triplets with m2 a 11, those with da 2gþ 2,

as well as those with da 2gþ 5 provided that S has non-negative Kodaira

dimension (Proposition 5 and Theorem 7). In connection with this, we have

the opportunity to correct a mistake in [24] (see Remark 7 ii)). On the other

hand, under the assumption that HS is very ample, we revisit the above

results and finally we prove that db 2gþ 11 if S has non-negative Kodaira

dimension.

A great help in our analysis is provided by a number of results on ample

vector bundles having a section which vanishes on a surface of some special

kind ([5], [17], [19], [20], [21], [22]). The strategy is the following: first, looking

at the di¤erence d, which can be expressed in terms of geometric and topo-

logical characters, we show, extending or refining some known results, that

the polarized surface ðS;HSÞ must belong to a precise list of pairs. Next, by

applying the results on ample vector bundles mentioned before we succeed to

reduce (sometimes drastically) these lists to a very short number of cases, for

which we obtain a rather complete description of E and H according to the

admissible structure of X . For example, in some instances S could ‘‘a priori’’

be a minimal elliptic surface, whose elliptic fibration turns out to be endowed

with some multiple fibers, but this possibility is ruled out by [22]. Therefore

these cases do not lift to the vector bundle setting.

The paper is organized as follows. Section 2 contains miscellaneous pre-

liminary results on polarized surfaces ðS;LÞ with special regard to pairs for

which c2ðJ1ðLÞÞ � L2 is small. In particular, in this setting, we prove new

results concerning both ruled and nonruled surfaces. In Section 3 the invariant

m2 is introduced for triplets ðX ;E;HÞ in an appropriate setting and triplets

for which d is small are analyzed. Moreover, lists of triplets with low m2 are

derived from this study. In Section 4 significant bounds for d expressed in

terms of the sectional genus g are discussed. Finally, in Section 5 all the above

matter is reconsidered under the extra assumption that the line bundle HS is

ample and spanned (Subsection 4.1) or even very ample (Subsection 4.2).

We work over the field of complex numbers and we use the standard

notation and terminology from algebraic geometry. In particular,
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Pn : the projective space of dimension n;

Qn : the smooth quadric hypersurface of Pnþ1;

WV : the cotangent bundle of a smooth variety V ;

qðVÞ : the irregularity h1ðOV Þ of V ;

KV : the canonical bundle of V ;

FW : the pull-back of a coherent sheaf F on V via an embedding

W � V ;

ðsÞ0 : the (scheme-theoretic) zero locus of a section s of a vector

bundle on V ;

eðSÞ : the topological Euler characteristic of a surface S;

kðSÞ : the Kodaira dimension of S;

gðS;LÞ : the sectional genus of a polarized surface ðS;LÞ;
1 : the numerical equivalence relation.

With a little abuse, we adopt the additive notation for the tensor product of

line bundles. We say that a smooth surface S is ruled if it is birationally ruled,

i.e. if kðSÞ ¼ �y; S is said to be geometrically ruled if it is a P1-bundle over

a smooth curve. To denote a geometrically ruled surface of invariant e over

a smooth curve of genus q :¼ qðSÞ we use the non-standard symbol Sq; e (in

particular, S0; e is the Segre–Hirzebruch surface of invariant e); however, as

usual (e.g., see [15, Chapter V, § 2]) C0 and f will stand for a section of

minimal self-intersection �e and a fiber, respectively. We recall that eb�q

(Nagata inequality).

2. Polarized surfaces ðS;LÞ with small class

Here are some general facts concerning polarized surfaces ðS;LÞ. Apart

from the interest in connection with the study of pairs for which the dif-

ference m� d is small, they will be useful in the basic setting introduced in

Section 3.

For the convenience of the reader, we sum up in Table 1 known results

concerning polarized surfaces ðS;LÞ whose class m :¼ c2ðJ1ðLÞÞ is small com-

pared to the degree d :¼ L2. We set q :¼ qðSÞ, g ¼ gðS;LÞ, and we denote by

ðS 0;L 0Þ a minimalization of ðS;LÞ, when S is not minimal, as in [30]. Recall

that letting h : S ! S 0 be the corresponding birational morphism, we have L ¼
h�L 0 �

P
niEi, where Ei, i ¼ 1; . . . ; s, are the exceptional curves contracted by h

and ni b 1 for every i.

In particular, note that all pairs ðS;LÞ with ma 9 are included in Table 1.

The basic source for Table 1 is [30, Section 4], taking into account some prog-

ress in the classification of polarized surfaces of sectional genus two, compared

to [4]. Moreover, as to N. 11, we note that the description of L provided in

[4, Theorem 2.7, d)] has been improved by Fujita (see [8, Theorem 15.7] and
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N. m� d d g q kðSÞ eðSÞ ðS;LÞ ðS 0;L 0Þ

1 �1 1, 4 0 0 �y 3 ðP2;OP2 ðeÞÞ, e ¼ 1; 2 –

2 0 b 1 q b 0 �y 4� 4q scroll over a smooth curve of

genus q

–

3 3 9 1 0 �y 3 ðP2;OP2 ð3ÞÞ –

4 4 8 1 0 �y 4 ðP1 � P1;OP1�P1 ð2; 2ÞÞ –

5 4 8 1 0 �y 4 the blow-up at a point of N. 3

6 4 3 2 1 �y 0 ðS1;�1; ½3C0 � f �Þ –

7 4 4 2 1 �y 0 ðS1; e; ½2C0 þ ðeþ 1Þ f �Þ,
e ¼ �1; 0

–

8 4 1 2 1 1 0 S ! P1 is a minimal elliptic

surface with multiple fibers

–

9 4 2 2 2 0 0 S is the Jacobian of a smooth

curve C of genus 2, L1C

embedded in S and h0ðLÞ ¼ 1

–

10 4 2 2 2 0 0 SGC1 � C2, Ci is an elliptic

curve for i ¼ 1; 2, L1C1 þ C2

and h0ðLÞ ¼ 1

–

11 4 2 2 1 0 0 S is a bielliptic surface, jLj ¼
fZ þ Fg, Z a section, F a fiber

of the Albanese fibration

–

12 5 7 1 0 �y 5 the blow-up at two points of N. 3

13 5 1 2 2 0 1 the blow-up at a point of N. 9

14 5 2 2 1 �y 1 the blow-up at a point of N. 6

15 5 3 2 1 �y 1 the blow-up at a point of N. 7

16 6 6 1 0 �y 6 the blow-up at three points of N. 3

17 6 1 2 1 �y 2 the blow-up at two points of N. 6

18 6 2 2 1 �y 2 the blow-up at two points of N. 7

19 7 5 1 0 �y 7 the blow-up at four points of N. 3

20 7 1 2 1 �y 3 the blow-up at three points of N. 7

21 8 4 1 0 �y 8 the blow-up at five points of N. 3

Table 1. (Continued)
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[7, Lemma 2.15]); jLj consists of a single divisor, which is the sum of a section

and a fiber of the Albanese fibration. As a consequence, [35, Remark 2.3 (2)]

implies that no simple blow-up of a pair as in N. 11 can occur. Furthermore,

the results concerning ruled surfaces over an elliptic curve, due to Fujita [6, § 4]

(see also [8, Theorem 15.2, cases 0), and 3)–5)]) and Yokoyama [35, Theorem

4.1 (ii)], lead to a simplification in [30, Theorem 4.3]. For instance, combining

both we see that for g ¼ 2 and S 0 ¼ S1; e, it must be ni ¼ 1 for every i, hence

eðSÞ ¼ s ¼ L 02 � d.

Remark 1. If L is very ample, the only surviving cases in Table 1 are

N. 1–5, 12, 16, 19, 21, 25, and 26 with e ¼ �1.

It is useful to recall that for a polarized surface ðS;LÞ we have m ¼
eðSÞ þ 2KSLþ 3L2, hence

m� d ¼ eðSÞ þ 2KSLþ 2d ¼ eðSÞ þ 4ðg� 1Þ: ðaÞ

Lemma 1. Let S be a smooth surface, L an ample line bundle on S, and

let g :¼ gðS;LÞ be the sectional genus of ðS;LÞ. Suppose that s : S ! S0 is

the blow-up of a smooth surface S0 at a single point and let E be the excep-

tional curve. Then there exists an ample line bundle L0 on S0 such that L ¼
s�L0 � rE, where r ¼ LEb 1. Moreover, L2 ¼ L2

0 � r2, LKS ¼ L0KS0
þ r.

In particular,

i) g ¼ gðS0;L0Þ � r
2

� �
(hence g ¼ gðS0;L0Þ if and only if r ¼ 1);

ii) If LKS ¼ 1, then S cannot have Kodaira dimension kðSÞb 1.

22 8 4 3 2 0 0 S is an abelian surface –

23 8 4 3 1 0 0 S is a bielliptic surface –

24 8 a 3 3 b 1 1 0 S is a minimal elliptic surface

with wðOSÞ ¼ 0

–

25 8 12 2 0 �y 4 ðS0; e; ½2C0 þ ð3þ eÞ f �Þ, with

e ¼ 0; 1; 2

–

26 8 8 3 1 �y 0 ðS1; e; ½2C0 þ ð2þ eÞ f �Þ, with

e ¼ �1; 0; 1

–

27 8 6 3 1 �y 0 ðS1; 0; ½3C0 þ f �Þ –

28 8 5 3 1 �y 0 ðS1;�1; ½5C0 � 2f �Þ –

29 8 4 4 2 �y �4 ðS2; e; ½2C0 þ ðeþ 1Þ f �Þ with

�2a ea 0

–

Table 1. Polarized surfaces ðS;LÞ with m� da 8:
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Proof. The Nakai–Moishezon criterion proves the ampleness of L0.

Assertion i) is obvious since KS ¼ s�KS0
þ E. To prove assertion ii) note that

1 ¼ LKS ¼ L0KS0
þ r:

We know that rb 1. If kðSÞb 1, then a suitably high multiple of KS0
is

e¤ective and nontrivial and then also the first summand on the right hand is

positive, due to the ampleness of L0, but this gives a contradiction.

Note that ampleness and spannedness of L imply h0ðLÞb 3 and L2 b 3 up

to well known cases. More precisely, we have also the following

Lemma 2. Let L be an ample and spanned line bundle on a smooth surface

S. Then d ¼ L2 b 3 unless ðS;L; eðSÞ; g;m;m� dÞ is one of the following:

i) ðP2;OP2ð1Þ; 3; 0; 0;�1Þ;
ii) ðQ2;OQ2ð1Þ; 4; 0; 2; 0Þ;
iii) There exists a morphism p : S ! P2 of degree 2, branched along a

smooth curve D A jOP2ð2bÞj for some integer bb 2 (case b ¼ 1 fits into

case ii)); moreover, L ¼ p�OP2ð1Þ, eðSÞ ¼ 2ð2b2 � 3bþ 3Þ, g ¼ b� 1,

m ¼ 2bð2b� 1Þb 12 and m� d ¼ 2ð2b2 � b� 1Þb 10.

Proof. It is enough to consider the morphism defined by jLj and recall

that L2 is the product of its degree and the degree of the image. In case iii)

note that p�jOP2ð1Þj ¼ jLj (since bb 2). Recall that p�OS ¼ OP2 lOP2ð�bÞ.
Since D A jOP2ð2bÞj and KS ¼ p� KP2 þ 1

2D
� �

¼ p�ðOP2ðb� 3ÞÞ, projection for-

mula gives

h0ðKSÞ ¼ h0ðp�KSÞ ¼ h0ðOP2ðb� 3ÞlOP2ð�3ÞÞ ¼ h0ðOP2ðb� 3ÞÞ ¼ b� 1

2

� �
:

Similarly, h1ðKSÞ ¼ 0 and then, since K 2
S ¼ 2ðb� 3Þ2, Noether’s formula allows

us to compute eðSÞ. The value of g is provided by the Riemann–Hurwitz

formula, by restricting p to a general element of p�jOP2ð1Þj.

The following fact will be used often.

Remark 2. Let ðS;LÞ be a smooth polarized surface of sectional genus

gb 2. If S is ruled, but ðS;LÞ is not a scroll, then gb 2q. Actually, due

to the assumptions, KS þ L is nef, hence ðKS þ LÞ2 b 0. Moreover, K 2
S a

8ð1� qÞ. Combining these inequalities we get

0 < L2
aL2 þ ðKS þ LÞ2 ¼ 2ðKS þ LÞLþ K 2

S

a 4ðg� 1Þ þ 8ð1� qÞ ¼ 4ðg� 2qþ 1Þ:

Therefore g > 2q� 1.
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Now, observe that for a polarized surface ðS;LÞ, the inequality m� db 2g

in [30, Proposition 3.2] can be further explored, as the following result shows.

Theorem 1. Let ðS;LÞ be a smooth polarized surface and put m :¼
c2ðJ1ðLÞÞ. Then

(A) m� d ¼ 2gþ 1 if and only if either

ðaÞ ðm� d; gÞ ¼ ð3; 1Þ; ð5; 2Þ and ðS;LÞ is as in Table 1, or

ðbÞ g ¼ 2qb 4, S is the blowing-up s : S ! Sq; e of Sq; e at a point p,

L ¼ s�L 0 � s�1ðpÞ and L 0 1 ½2C0 þ ðeþ 1Þ f �.
(B) m� d ¼ 2gþ 2 if and only if either

ðgÞ ðm� d; gÞ ¼ ð4; 1Þ; ð6; 2Þ; ð8; 3Þ and ðS;LÞ is as in Table 1, or

ðdÞ gb 4 and ðS;LÞ is one of the following polarized surfaces:

ðd1Þ S ¼ Sq; e with qb 2, g ¼ 2qþ 1, L1 ½2C0 þ ðeþ 2Þ f � and
d ¼ 8;

ðd2Þ S ¼ S2;�1, g ¼ 5, L1 ½3C0 � f � and d ¼ 3;

ðd3Þ S is the blowing-up s : S ! Sq; e of Sq; e, qb 2, ea 0,

at two points p1, p2, lying on distinct fibers, g ¼ 2q,

L ¼ s�L 0 � s�1ðp1Þ � s�1ðp2Þ, L 0 1 ½2C0 þ ðeþ 1Þ f � and

d ¼ 2.

For the proof we need the following lemma, consequence of a nefness

result for the relative adjoint bundle on polarized fibrations [10, Sec. 1].

Lemma 3. Let ðS;LÞ be a polarized ruled surface which is not a scroll and

suppose that qb 2. Let p : S ! B be the ruling projection and set a :¼ LF > 1,

where F is a fiber of p. If either g ¼ 2q or g ¼ 2qþ 1, then aa 3, equality

implying q ¼ 2.

Proof. Clearly ab 2. Let KS=B be the relative canonical bundle. Since

ðS;LÞ is not a scroll,

the line bundle KS=B þ L is nef ; ð1Þ

according to [10, Theorem 1.1.2]. Note that

ðKS=B þ LÞL ¼ ðKS þ LÞL� p�KBL ¼ 2g� 2� ð2q� 2Þa: ð2Þ

Then, due to (1) and (2), letting g ¼ 2q we have 0a ðKS=B þ LÞL ¼ 2ðqþ
ðq� 1Þð1� aÞÞ, hence aa 1þ q=ðq� 1Þa 3 since qb 2, and a ¼ 3 implies

q ¼ 2. Next, suppose that g ¼ 2qþ 1 and ab 3. Observe that if ðKS=B þ LÞL
¼ 0, then KS=B þ L1 0 due to the Hodge index theorem combined with (1),

but this is impossible, because ðKS=B þ LÞF ¼ �2þ ab 1. Therefore, in view

of (1) and (2), letting g ¼ 2qþ 1 in (2), we have 0 < ðKS=B þ LÞL ¼ 2ð2qþ 1Þ �
2� ð2q� 2Þa ¼ 2ð2q� aðq� 1ÞÞ. Thus a < 2q=ðq� 1Þ ¼ 2þ 2=ðq� 1Þa 4

since qb 2, and then aa 3, equality implying q ¼ 2.
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Proof (of Theorem 1). Case (A). We can assume gb 4, since otherwise

m� da 7, hence ðS;LÞ is as in Table 1, which leads to ðaÞ. Then ðaÞ implies

0 ¼ eðSÞ þ 2g� 5b eðSÞ þ 3, hence S is a ruled surface. Note that ðS;LÞ is

not a scroll since m� d0 0, hence gb 2q by Remark 2. Let s : S ! S 0 be

the blowing-up of a smooth ruled surface S 0 at a finite set of points B � S 0.

Denote by s the cardinality of B. Thus eðSÞ ¼ 4ð1� qÞ þ s and this gives 0 ¼
2ðg� 2qÞ þ ðs� 1Þ. Observe that necessarily sa 1, and s ¼ 0 cannot occur.

Hence s ¼ 1, i.e. S is the blowing-up of S 0 at a single point, S 0 is a geomet-

rically ruled surface Sq; e over a smooth curve of genus q for some e, and

g ¼ 2q. As a consequence, qb 2. Letting a ¼ LF , where F is a fiber of

S, we can thus apply Lemma 3, obtaining that either (i) a ¼ 2, or (ii) a ¼ 3

and q ¼ 2. Moreover, write L ¼ s�L 0 � nE, where E is the exceptional divisor

contracted by s, L 0 is an ample divisor on S 0 and n is a positive integer. Since

S 0 ¼ Sq; e and F is the proper transform of a fiber f of S 0 via s, we can write

L 0 1 ½aC0 þ bf �. Note that

1a ðs�f � EÞðs�L 0 � nEÞ ¼ ðs�f � EÞðs�ðaC0 þ b f Þ � nEÞ ¼ a� n;

i.e. 1a na a� 1. Thus in case (i) we have n ¼ 1 and since S 0 ¼ Sq; e, by the

genus formula we deduce that

4q� 2 ¼ 2g� 2 ¼ ðKS þ LÞL ¼ ðKS 0 þ L 0ÞL 0 ¼ 4ðq� 1Þ þ ð2b� 2eÞ;

i.e. b ¼ eþ 1. This gives case ðbÞ in the statement.

Finally, in case (ii) from q ¼ 2 we see that g ¼ 4 and 1a na 2. By the

genus formula we thus get the following relation

nðn� 1Þ ¼ 2ð2b� 3eÞ:

According to it, for n ¼ 1 we get b ¼ 3e=2. Therefore the ampleness of L 0

[15, p. 382] leads to a contradiction regardless of the value of e. On the other

hand, for n ¼ 2 we get b ¼ ð3eþ 1Þ=2 and then the ampleness of L 0 combined

with the Nagata inequality eb�q ¼ �2 and the fact that b must be an integer,

implies e ¼ �1, hence S 0 ¼ S2;�1 and L 0 1 ½3C0 � f �; in this case, however,

L2 ¼ L 02 � 4 ¼ 9� 6� 4 < 0, contradicting the ampleness of L. Hence case

(ii) cannot occur.

Case (B). If ga 3, Table 1 leads to ðgÞ. So, as in case (A), we can

suppose that gb 4. Then 0 ¼ eðSÞ þ 2g� 6b eðSÞ þ 2, hence S is a ruled

surface. Moreover, note that ðS;LÞ is not a scroll over a curve. Hence

gb 2q by Remark 2 again and using the same notation as in case (A), we can

write eðSÞ ¼ 4ð1� qÞ þ s for some integer sb 0. This gives 0 ¼ 2ðg� 2qÞ þ
ðs� 2Þ, i.e. 0a sa 2. Thus we have either ( j) s ¼ 0, g ¼ 2qþ 1, or ( jj) s ¼ 2,

g ¼ 2q. In both cases, qb 2.
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In case ( j), S ¼ Sq; e is a geometrically ruled surface over a smooth curve

of genus q. Note that 4a g ¼ 2qþ 1 implies qb 2. We can write L1
½aC0 þ bf � with ab 2, since ðS;LÞ is not a scroll. Then

L2 ¼ að2b� aeÞ:

By Lemma 3 we know that either ( j1) a ¼ 2, or ( j2) a ¼ 3 and q ¼ 2. In

case ( j1) ðS;LÞ is a conic bundle, hence ðKS þ LÞ2 ¼ 0. Thus

d ¼ L2 ¼ 2ðKS þ LÞLþ K 2
S ¼ 4ðg� 1Þ þ 8ð1� qÞ ¼ 4ðg� 2qÞ þ 4 ¼ 8;

which gives L1 ½2C0 þ ðeþ 2Þ f �; moreover, �qa ea 1 in view of the Nagata

inequality and the ampleness conditions [15, p. 382]. This gives case ðd1Þ of

the statement.

In case ( j2), since q ¼ 2 and g ¼ 2qþ 1, recalling the expression of KS and

the ampleness of L, we obtain ðKS þ LÞ2 ¼ 2b� 3eþ 4b 5. Thus

L2
aL2 þ ðKS þ LÞ2 � 5 ¼ 2ðKS þ LÞLþ K 2

S � 5

¼ 4ðg� 1Þ þ 8ð1� qÞ � 5 ¼ 3:

On the other hand, the expression of L2 combined with the ampleness of L

shows that L2 b 3. Therefore d ¼ L2 ¼ 3 and b ¼ 1
2 ð3eþ 1Þ. This implies

that e is odd; moreover the ampleness conditions for L show that it is negative.

Recalling Nagata inequality we thus get e ¼ �1, hence b ¼ �1. This gives

case ðd2Þ in the statement.

In case ( jj), S is obtained by a blowing-up s : S ! S 0 of a geometrically

ruled surface S 0 ¼ Sq; e at two points p1 and p2. Denote by Ei the corre-

sponding exceptional divisor for i ¼ 1; 2. Thus L ¼ s�L 0 � n1E1 � n2E2 for an

ample line bundle L 0 ¼ ½aC0 þ bf � on S 0 with ab 2 and positive integers ni for

i ¼ 1; 2. If a ¼ 2, the ampleness of L implies that p1 and p2 lie on distinct

fibers and ni ¼ 1, i ¼ 1; 2. From

4q� 2 ¼ 2g� 2 ¼ ðKS þ LÞL ¼ ðKS 0 þ L 0ÞL 0 ¼ 4ðq� 1Þ þ 2ðb� eÞ

we get b ¼ eþ 1, hence ea 0 in view of the ampleness conditions. Then

d ¼ L2 ¼ L 02 � 2 ¼ 2. This gives case ðd3Þ in the statement. If a > 2, then

necessarily a ¼ 3 and q ¼ 2 by Lemma 3. If f0 is the fiber containing pi, the

ampleness of L implies 1a ðs�f0 � EiÞL ¼ 3� ni, hence ni a 2, that is, ni ¼
1; 2. Since q ¼ 2, we have g ¼ 4 and by the genus formula we obtain that

6 ¼ 2g� 2 ¼ ðKS þ LÞL ¼ ða� 2Þðb� eaÞ þ aðbþ 2� eÞ � n1ðn1 � 1Þ

� n2ðn2 � 1Þ

¼ b� 3eþ 3ðbþ 2� eÞ � n1ðn1 � 1Þ � n2ðn2 � 1Þ;
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i.e.

ð2b� 3eÞ ¼ 1

2
ðn1ðn1 � 1Þ þ n2ðn2 � 1ÞÞ:

Note that 0 < d ¼ 3ð2b� 3eÞ � n21 � n22 , but this leads to a numerical contra-

diction.

If S is not a ruled surface, a result of Serrano [32] allows us to go further.

Proposition 1. Let ðS;LÞ be a smooth polarized surface and put m :¼
c2ðJ1ðLÞÞ. Suppose that m� d > 0 and assume that S is not a ruled surface.

Then m� db 2gþ d unless one of the following cases occurs:

(1) S is an abelian or a bielliptic surface and m� d ¼ 2gþ d � 2;

(2) S is an elliptic quasi-bundle f : S ! B over a smooth curve B of genus

gðBÞa 1, q ¼ 1, pgðSÞ ¼ 0 and m� d ¼ 2gþ d � 1; moreover, f has

only multiple fibers miFi, i ¼ 1; . . . ; s, as singular fibers, where Fi is a

smooth elliptic curve, and letting F denote the general fiber of f , one of

the following holds:

(a) gðBÞ ¼ 1, s ¼ 1, m1 ¼ 2 and FL ¼ 2 (e.g., see [9]);

(b) gðBÞ ¼ 0 and ðm1; . . . ;msÞ ¼ ð2; 2; 2; 2; 2Þ; ð4; 4; 4Þ; ð2; 6; 6Þ with

FL ¼ 2; 4; 6 respectively (e.g., see [32]).

Proof. Assume that m� 2da 2g� 1. Then

eðSÞ þ 2g� 2þ KSL ¼ m� 2da 2g� 1;

i.e. eðSÞ þ KSLa 1. Note that eðSÞb 0 and KSLb 0 since S is not a ruled

surface. Thus we get the following three cases:

( i ) eðSÞ ¼ KSL ¼ 0 and m� 2d ¼ 2g� 2;

( ii ) eðSÞ ¼ 0, KSL ¼ 1 and m� 2d ¼ 2g� 1;

(iii) eðSÞ ¼ 1, KSL ¼ 0 and m� 2d ¼ 2g� 1.

Case (iii) cannot occur: actually, it follows from KSL ¼ 0 that KS is numer-

ically trivial, since S is not a ruled surface. Therefore S is a minimal surface

with kðSÞ ¼ 0, but this contradicts eðSÞ ¼ 1. In cases (i) and (ii), S is a

minimal surface with kðSÞa 1, since eðSÞ ¼ 0. If kðSÞ ¼ 1 then a multiple

of the canonical bundle is nontrivial and e¤ective, but this contradicts (i) by

the ampleness of L. Moreover, in case (ii), since KS is not numerically trivial,

we see that S is a properly elliptic minimal surface over a smooth curve B,

hence K 2
S ¼ 0. Thus wðOSÞ ¼ 0, by the Noether’s formula. Then, by [33,

Proposition 4.2], the elliptic fibration f : S ! B is a quasi-bundle, i.e. any

singular fiber is a multiple of a smooth elliptic curve [33, Definition 1.1]. By

combining the canonical bundle formula for an elliptic fibration with the con-

dition LKS ¼ 1, it thus follows that f necessarily has some multiple fiber and

311Generalized polarized manifolds



gðBÞa 1. Moreover, 0 < pgðSÞ þ 1 ¼ q ¼ gðBÞ or gðBÞ þ 1 [33, § 4], but the

latter case cannot occur if gðBÞ ¼ 1, due to the Katsura–Ueno property [33,

Proposition 4.3]. Then the assertion follows from [32], taking into account that

this result only depends on the condition LKS ¼ 1 (and not g ¼ 2), as pointed

out in [33, final comment at p. 300].

Remark 3. Let S be a surface of general type. Then, by combining

Noether’s formula with the Bogomolov–Miyaoka–Yau inequality, we have

eðSÞb 3.

3. Triplets ðX ;E;HÞ with low m2

Our basic setting from here on is the following:

ðyÞ

X is a smooth complex projective variety of dimension n, E is an ample vector

bundle of rank r on X with 2a ra n� 2 and H is an ample line bundle on

X . Furthermore, the ample vector bundle of rank n� 2 on X given by F :¼
ElHlðn�r�2Þ has a section vanishing on a smooth surface S � X .

Remark 4. A concrete way to fit into ðyÞ for r < n� 2 is to consider

the following slightly more special setting: X is a smooth complex projective

variety of dimension n, E is an ample vector bundle of rank r on X with 2a

r < n� 2, having a section whose zero locus is a smooth subvariety Z � X of

the expected dimension n� r (which happens, e.g., if E is spanned), and H is

an ample line bundle on X such that TrZjHj (the trace of jHj on Z) is base

point free.

Note that in this setting the line bundle HZ is spanned ‘‘a fortiori’’.

Clearly this fits into ðyÞ simply letting S denote the surface cut out by n� r� 2

general elements of TrZjHj. Actually, if s A GðX ;EÞ defines Z, there are

sections si A GðX ;HÞ whose restrictions to Z define a smooth surface

S :¼
\n�r�2

i¼1

ðsijZÞ0;

which is the zero locus of the section ðs; s1; . . . ; sn�r�2Þ A GðX ;FÞ.

In Subsection 4:1 we will add to ðyÞ the requirement that

HS is spanned: ðSÞ

Clearly, this condition is trivially satisfied in the setting of Remark 4 since, as

noted, HZ is spanned. Furthermore, in Subsection 4:2 we will put the stronger
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requirement that

HS is very ample: ðVAÞ

Assuming that ðX ;E;HÞ is as in ðyÞ, we set

d :¼ H 2
S ¼ H 2 � cn�2 ¼ crðEÞ �Hn�r and g :¼ gðS;HSÞ:

This notation is consistent with that used in Section 2 since d ¼ H 2
S and g are

the degree and the sectional genus of the polarized surface ðS;LÞ :¼ ðS;HSÞ,
respectively. Moreover, we have the following technical result.

Proposition 2. Let ðX ;E;HÞ and S be as in ðyÞ (see Introduction). If

m2 ¼ m2ðX ;E;HÞ is as in ð�Þ, then

m2 ¼ c2ðJ1ðHSÞÞ:

Proof. Consider the dual of the tangent–normal bundle sequence of

S � X

0 ! N4
S=X GF4

S ! ðWX ÞS ! WS ! 0:

It fits into the following diagram:

0 0???y
???y

N4
S=X nHS ���!F

F4
S nHS???y
???y

0 ���! ðWX nHÞS J1ðHÞS ���! HS ���! 0???y
???y

����
0 WS nHS J1ðHSÞ ���! HS ���! 0???y

???y
0 0

:����!

����! �����!

Then, recalling ð�Þ we get

m2 ¼ m2ðX ;E;HÞ ¼ ½c2ðWX l c1Þ þ c21 � c2 þH 2�S þ 4ðg� 1Þ

¼ ½c2ðWXSÞ þ c1ðWXSÞc1ðFSÞ þ c1ðFSÞ2 � c2ðFSÞ�

þH 2
S þ 4ðgðS;HSÞ � 1Þ
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¼ ½c2ðWXSÞ � c1ðWSÞc1ðF4
S Þ � c2ðF4

S Þ� þH 2
S

þ 4ðgðS;HSÞ � 1Þ

¼ c2ðWSÞ þH 2
S þ 2ðKS þHSÞHS

¼ ½c2ðWSÞ þ c1ðWSÞHS þH 2
S � þ ½ðKS þ 2HSÞHS�

¼ c2ðWS nHSÞ þ c1ðWS nHSÞHS

¼ c2ðJ1ðHSÞÞ:

Lemma 4. Suppose that there exists an e¤ective divisor EGPn�1 on X

such that

ðE;FE ;EEÞG ðPn�1;OP n�1ð1Þlðn�2Þ;OP n�1ð�1ÞÞ:

If q > 0, then S is not ruled.

Proof. Suppose that kðSÞ ¼ �y and note that S0P2. Let f : X ! X 0

be the contraction of E. Then by [20, Lemma 5.1] and [17, Lemma 2.2] we

know that there exist an ample vector bundle F 0 of rank n� 2 on X 0 and

a section s 0 A GðF 0Þ such that FG f �F 0 nOX ð�EÞ, S 0 :¼ ðs 0Þ0 is a smooth

surface and f jS : S ! S 0 is a birational morphism which contracts the ð�1Þ-
curve EjS. Since KS 0 ¼ ½KX 0 þ det F 0�S 0 is not nef, S 0 being ruled, and

qðS 0Þ > 0, [28, Theorem] implies one of the following possibilities:

( i ) there exists an e¤ective divisor E 0 on X 0 such that

ðE 0;F 0
E 0 ;E 0

E 0 ÞG ðPn�1;OP n�1ð1Þlðn�2Þ;OP n�1ð�1ÞÞ;

(ii) there is a surjective morphism j : X 0 ! W expressing X 0 either (a) as

a P t-bundle over a smooth variety W of dimension dim W a 2, or

(b) as a quadric fibration over a smooth curve W .

We show that case (ii) does not occur. If (ii) holds, then X 0 is covered by

lines. Note that any line of X 0 is contained in a fiber of j since qðX 0Þ ¼
qðS 0Þ ¼ q > 0. Suppose that p 0 ¼ f ðEÞ lies on a smooth fiber F 0 of j, so that

F 0 is either P t with t ¼ n� 1; n� 2, or Qn�1; take a line l 0 passing through p 0

and consider its proper transform l via f . Then

Fl G ð f �F 0 nOX ð�EÞÞl G f �ðF 0
l 0 ÞnOlð�1ÞG f �ðF 0

F 0 Þl 0 nOlð�1Þ:

From [28, Theorem, cases (10)–(13)] we see that ðn� 3Þ summands at least

of ðF 0
F 0 Þ are OF 0 ð1Þ. Since nb 4, it thus follows that Fl has a summand

which is Ol , but this contradicts the ampleness of F. On the other hand, if

F 0 is a singular fiber of j, i.e. a quadric cone with vertex a point, then we have

deg F 0
l 0 ¼ deg F 0

l 0 ¼ n� 2 for some line l 0 contained in a smooth fiber [28,
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Theorem, case (12)]. By the ampleness of F 0 we get F 0
l 0 ¼ Ol 0 ð1Þlðn�2Þ. Thus

the same argument as above applies and we conclude that this case cannot

occur as well. Finally, if we are in case (i), by a recursive argument we get a

contradiction.

Lemma 5. Let ðX ;E;HÞ be as in ðyÞ, let F ¼ ElHlðn�r�2Þ, and suppose

that S is a P1-bundle over a smooth curve B of positive genus. Then X is a

Pn�1-bundle over B, with the projection p : X ! B inducing the ruling of S, and

FF ¼ OP n�1ð1Þlðn�2Þ
for every fiber F GPn�1 of p. In particular, either r <

n� 2 and ðS;HSÞ is a scroll, or r ¼ n� 2 and HF ¼ OP n�1ðtÞ with t ¼ HS f ,

f being any fiber of S. Conversely, if ðX ;FÞ satisfies the above conditions, then

S is a P1-bundle over B; moreover, ðS;HSÞ is a scroll if either r < n� 2 or

HF ¼ OP n�1ð1Þ.

Proof. The description of ðX ;FÞ, including the fibration p : X ! B, fol-

lows from [20, Theorem]. If r < n� 2, then HF ¼ OP n�1ð1Þ, being a summand

of FF , and then ðS;HSÞ is a scroll. On the other hand, if r ¼ n� 2 then

F ¼ E, so we have no information on H. We can write HF ¼ OP n�1ðtÞ for

some positive integer t. Since the ruling of S is induced by p : X ! B any

fiber f of S is a line, being the zero locus of a section of EF ¼ OP n�1ð1Þlðn�2Þ,

where F ¼ Pn�1 is the corresponding fiber of X . Thus the assertion follows

from the equality

HS f ¼ HF � ðOP n�1ð1ÞÞn�2 ¼ t:

The converse is obvious.

Recall the notation d :¼ m2 � d. As a first thing, let us characterize the

inequality d < 0.

Theorem 2. Let ðX ;E;HÞ be as in ðyÞ. Then db 0 unless ðX ;E;HÞ is

either ðPn;OP nð1Þlr;OP nð1ÞÞ ðm2 ¼ 0Þ, or ðPn;OP nð1Þlðn�2Þ;OP nð2ÞÞ ðm2 ¼ 3Þ.
Moreover, equality holds if and only if ðX ;E;HÞ is one of the following:

(1) ðPn;OP nð2ÞlOP nð1Þlðr�1Þ;OP nð1ÞÞ; ðm2 ¼ 2Þ
(2) ðQn;OQ nð1Þlr;OQ nð1ÞÞ; ðm2 ¼ 2Þ
(3) X is a Pn�1-bundle over a smooth curve B, EF ¼ OP n�1ð1Þlr

and HF ¼
OP n�1ð1Þ, for every fiber F ¼ Pn�1 of the bundle projection p : X ! B

and ðS;HSÞ is a scroll over B via pjS : S ! B. ðm2 ¼ d :¼ H 2
SÞ

Proof. Since ðyÞ holds, by Proposition 2 and [25, Proposition (A.1)]

we see that d ¼ c2ðJ1ðHjSÞÞ � db 0 except for (a) ðS;HSÞ ¼ ðP2;OðeÞÞ with

e ¼ 1; 2, and d ¼ 0 holds if and only if (b) ðS;HSÞ is a scroll over a smooth

curve.
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In (a), by [19, Theorem A] we know that X ¼ Pn and F ¼ Oð1Þlðn�2Þ,

which gives rise to the first two triplets in the statement.

In (b), by [21, Theorem 2] we see that ðX ;FÞ is one of the following pairs:

( i ) ðPn;Oð1Þlðn�3Þ lOð2ÞÞ;
( ii ) ðQn;Oð1Þlðn�2ÞÞ;
(iii) X is a Pn�1-bundle over a smooth curve B and FF ¼ OP n�1ð1Þlðn�2Þ

for every fiber F ¼ Pn�1 of the bundle projection.

Since in this situation S0P2, cases (i) and (ii) give (1) and (2) of the statement

with E ¼ Oð1Þlðr�1Þ lOð2Þ and E ¼ Oð1Þlr respectively and H ¼ Oð1Þ in both

cases. Finally, (iii) leads easily to case (3) of the statement.

The following result characterizes the low positive values of d.

Theorem 3. Let ðX ;E;HÞ be as in ðyÞ, and suppose that d is positive.

Then

db 3

with equality if and only if ðX ;E;HÞ ¼ ðPn;OPnð1Þlðn�2Þ;OPnð3ÞÞ ðm2 ¼ 12Þ:
Moreover, if d ¼ 4 then ðX ;E;HÞ is one of the following triplets:

(1) ðPn;OP nð2ÞlOP nð1Þlðn�3Þ;OP nð2ÞÞ; ðm2 ¼ 12Þ
(2) ðQn;OQ nð1Þlðn�2Þ;OQ nð2ÞÞ; ðm2 ¼ 12Þ
(3) r ¼ n� 2, X is a Pn�1-bundle over a smooth curve B of genus 1,

EF ¼ OP n�1ð1Þlðn�2Þ
and HF ¼ OP n�1ðtÞ, with t ¼ 2 or 3, for every

fiber F ¼ Pn�1 of the bundle projection X ! B; moreover, ðS;HSÞ is,

up to numerical equivalence, either ðS1;�1; ½3C0 � f �Þ ðm2 ¼ 7Þ or ðS1; e;

½2C0 þ ðeþ 1Þ f �Þ with e A f�1; 0g ðm2 ¼ 8Þ.
Finally, if d ¼ 5 then ðX ;E;HÞ is one of the following triplets:

(4) there is a vector bundle T on a smooth curve C of genus one such

that X GPCðTÞ, HF ¼ OF ð1Þ and EF GOF ð2ÞlOF ð1Þlðr�1Þ
for any

fiber F GPn�1 of X ! C; moreover, S is the blowing-up s : S ! S1; e

of S1; e ! C with e A f�1; 0g at a point p and HS 1 ½s�ð2C0 þ
ðeþ 1Þ f Þ � s�1ðpÞ�; ðm2 ¼ 8Þ

(5) there is a surjective morphism q : X ! G onto a smooth curve G of

genus one such that any general fiber F of q is a smooth quadric

hypersurface of Pn with HF ¼ OF ð1Þ and EF GOF ð1Þlr
; moreover, S is

the blowing-up s : S ! S1; e of S1; e ! C with e A f�1; 0g at a point p

and HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ � s�1ðpÞ�; ðm2 ¼ 8Þ
(6) X ¼ PSðUÞ, where S is the Jacobian of a smooth curve g of genus

2, U is an ample vector bundle of rank n� 1 over S and E ¼
p�Gn x, where x is the tautological line bundle on X, G is a vector

bundle of rank r on S and p : X ! S is the bundle projection;
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moreover, HF ¼ OF ðtÞ for any fiber F GPn�2 of p with tb 1 and

t ¼ 1 if r < n� 2, pjS : S ! S is the blowing-up of S at a point p

and HS ¼ pj�Sg� pj�1
S ðpÞ, looking at the curve g as embedded in its

Jacobian. ðm2 ¼ 6Þ

Proof. It follows from Table 1 that d ¼ m2 � db 3, with equality if and

only if ðS;HSÞ ¼ ðP2;OP2ð3ÞÞ. By [21, Theorem 4 and Remark in Sec. 2], this

pair leads to the first assertion in the statement.

So we continue supposing that m2 � db 4. Now, assume that equality

holds. Taking into account the pairs ðS;HSÞ in Table 1, we see that condition

ga 1 forces ðS;HSÞ to be either ðP1 � P1;Oð2; 2ÞÞ or ðS0;1;�KS0; 1
Þ. In both

cases ðS;HSÞ is a del Pezzo pair, but [21, Theorem 4 and Remark at the end

of § 2] shows that only the former case lifts to the vector bundle setting giving

rise to (1) and (2) in the statement. Next assume gb 2. If S is not ruled,

according to ðaÞ and the interpretation of m2 (see Proposition 2), the equality

m2 � d ¼ 4 implies g ¼ 2 and eðSÞ ¼ 0. In this case, by [30, Theorem 4.2], S

is a minimal surface, which is either i) an elliptic fibration over P1 with some

multiple fibers (see [32]), or ii) an abelian or a bielliptic surface. By [22,

Theorem] case i) cannot occur: actually, the fact that S is minimal contradicts

[22, Theorem (a)] while the existence of multiple fibers is in contrast with [22,

Theorem (b)]. Similarly, case ii) cannot occur since the only minimal surface

of Kodaira dimension zero occurring as zero locus of an ample vector bundle is

a K3 surface [17, Theorem]. Therefore S is a ruled surface, and then, accord-

ing to [30, Theorem 4.3] S is a P1-bundle over an elliptic curve; moreover, g ¼ 2

and one of the following cases holds:

(a) S :¼ S1;�1 and HS 1 ½3C0 � f �;
(b) S :¼ S1; e with e A f�1; 0g and HS 1 ½2C0 þ ðeþ 1Þ f �.

Since S is an irrational P1-bundle, we can use [20, Theorem] to conclude that

X is a Pn�1-bundle over a smooth curve B and FF ¼ OP n�1ð1Þlðn�2Þ for every

fiber F of the bundle projection p : X ! B. This implies that pjS is the bundle

projection of S, f being a line in F , hence B is the elliptic base curve of S.

Moreover, we see that if r < n� 2, then HF ¼ OP n�1ð1Þ, as a summand of FF ,

but this is in contradiction with the fact that 1 ¼ Hf ¼ HS f ¼ 2 or 3, accord-

ing to cases (a) and (b). Thus r ¼ n� 2 and HF ¼ OP n�1ðtÞ, with t ¼ 2 or 3.

This gives (3) in the statement.

Finally, assume that m2 � d ¼ 5. If ga 1, then equality holds and S is

the blowing-up of P2 at two points with HS ¼ �KS, q ¼ pg ¼ 0 and eðSÞ ¼ 5.

Since ðS;HSÞ is a del Pezzo surface, this situation cannot lift to the ample

vector bundle setting by [21, Theorem 4 and Remark at the end of § 2]. Thus

gb 2. From Table 1 we know that g ¼ 2 and ðS;HSÞ is one of the following

pairs:
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( i ) kðSÞb 0, H 2
S ¼ 1 and S is the blowing-up at a single point of the

Jacobian of a smooth curve C of genus 2;

(ii) S is ruled, q ¼ 1 and S is the blowing-up s : S ! S 0 at a point p of

a P1-bundle S 0 over a smooth curve B of genus 1 and one of the

following conditions holds:

(c) S 0 ¼ S1;�1 and HS 1 ½s�ð3C0 � f Þ � s�1ðpÞ�;
(d) S 0 ¼ S1; e, e ¼ 0;�1 and HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ � s�1ðpÞ�.

In case (i), since S is birationally equivalent to an abelian surface, by [17,

Theorem] we obtain case (6) in the statement. In case (ii), since S is a non-

minimal ruled surface, it follows from [28, Theorem] and Lemmas 4 and 5 that

ðX ;F;HÞ is one of the following triplets:

( j ) there is a vector bundle V on a smooth curve C such that X G
PCðVÞ and FF GOF ð2ÞlOF ð1Þlðn�3Þ for any fiber F GPn�1 of

X ! C;

( jj ) there is a surjective morphism X ! C onto a smooth curve C such

that any general fiber F of X ! C is a smooth quadric hypersurface

of Pn with FF GOF ð1Þlðn�2Þ;

( jjj) there is a vector bundle U on a smooth surface S such that X G
PSðUÞ and FF GOF ð1Þlðn�2Þ for any fiber F GPn�2 of p : X ! S.

Write HF ¼ OF ðtÞ for some positive integer t. In cases ( j) and ( jj), note that

the fibration X ! C restricted to S is the ruling projection S ! B, hence

CGB. Moreover, we have FS ¼ s�f for a general fiber F , since FS � s�f ¼ 0

for any general fiber f of S 0, gðFSÞ ¼ 0 and F 2
S ¼ 0. Since

HS � s�f ¼ HS � FS ¼ HF � SF ¼ HF � cn�2ðFÞF ¼ HF � cn�2ðFF Þ ¼ 2t

is even for any fiber f of S 0 and

HS � s�f ¼ 2 in case ðdÞ
3 in case ðcÞ;

�

we conclude that only case (d) can occur with t ¼ 1. This leads to cases (4)

and (5) in the statement.

In ( jjj), note that case (d) cannot occur by [5, Theorem]. Moreover, in

case (c) we have

½KX þ detðFlHÞ�S ¼ KS þHS 1 ½s�ðC0Þ�:

Therefore, KX þ detðFlHÞ is not ample. So, by [1, Theorem C)] we know

that there exist a morphism s : X ! W expressing X as a smooth projective

n-fold W blown-up at a finite set G 0q and an ample vector bundle F 0 on

W such that FlH ¼ s�F 0 n ½�s�1ðGÞ� and KW þ det F 0 is ample. Con-

sider an exceptional divisor EGPn�1 of s. Since n� 1b 3, we see that pðEÞ
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is a point of S 0, but this is impossible since any fiber of p is a linear Pn�2.

Therefore, case (c) cannot occur.

Remark 5. From Theorem 3 we deduce that 1 and 2 are gap values

for d. Thus apart from a short list of triplets ðX ;E;HÞ as in Theorem 3, we

have db 6.

Remark 6. Let us note here that case (6) in Theorem 3 is e¤ective.

Recall that this case comes from case (13) of [28, Theorem]. Let ðC; oÞ be a

pointed smooth curve of genus 2, and on the Jacobian JðCÞ of C consider the

Jacobian bundle ErðC; oÞ of rank r, as in [7, (2.18)]. Set X :¼ PðEn�1ðC; oÞÞ;
then X is a Pn�2-bundle over the smooth surface JðCÞ. Recall that X can be

identified with C ðnÞ, the n-fold symmetric product of C, the bundle projection

p : C ðnÞ ! JðCÞ being given by the mapping ðx1; . . . ; xnÞ 7! ½x1 þ � � � þ xn � no�.
Let H be the tautological line bundle on X ; H is ample. Moreover, as shown

in [7, (2.18)] there is a section of H whose zero locus is PðEn�2ðC; oÞÞ, which
can be identified with C ðn�1Þ. By induction, we thus see that S :¼ C ð2Þ is the

zero locus of a section of the ample vector bundle Hlðn�2Þ. Thus the triplet

ðX ;E :¼ Hlðn�2Þ;HÞ provides an example as in case (6) of Theorem 3. Note

also that pjS : S ! JðCÞ is just the contraction of the unique ð�1Þ-line of

ðS;HSÞ corresponding to the canonical g12 of C.

To avoid long lists repeating several triplets we already met, in the next

statement, as well as in Section 5, we simply denote by

A: the class consisting of the five triplets appearing in Theorem 2;

B: the class consisting of the first three triplets occurring in Theorem

3, namely, ðPn;OPnð1Þlðn�2Þ;OP nð3ÞÞ, ðPn;OP nð2ÞlOP nð1Þlðn�3Þ;

OP nð2ÞÞ, and ðQn;OQ nð1Þlðn�2Þ;OQnð2ÞÞ.
Thus by Theorems 2 and 3, combined with Table 1 and the fact that m2 ¼
dþ db dþ 1, we have the following consequence.

Corollary 1. Let ðX ;E;HÞ be as in ðyÞ. Then

m2 a 6

if and only if either ðX ;E;HÞ A A ðm2 ¼ 0; 3; 2; 2; da 6Þ, or ðX ;E;HÞ is as in

case (6) of Theorem 3 ðm2 ¼ 6Þ.

As a consequence of Corollary 1, we have m2 b 7 apart from a short list

of triplets ðX ;E;HÞ.
Finally, in line with Corollary 1, we further show that also 7–9 are gap

values for m2, provided that S is not ruled.

Proposition 3. Let ðX ;E;HÞ be as in ðyÞ and suppose that S is not a

ruled surface. If m2 b 7, then m2 b 10:
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Proof. Since m2 b 7 and S is not ruled, we see from Table 1 (where

m is now our m2) that m2 b 9 and equality implies that S is a minimal elliptic

surface, wðOSÞ ¼ 0, g ¼ 3 and H 2
S ¼ 1. In this case, it follows from [22,

Theorem(b)] that X is endowed with a morphism j : X ! B onto a smooth

curve B inducing on S the elliptic fibration and f :¼ jjS : S ! B has no mul-

tiple fibres. Thus by [2, (12.1) and (12.2) in Chapter V, pp. 161–162] we

deduce that KS ¼ f �ðKBÞ1 ð2gðBÞ � 2ÞF since deg f�1ðOSÞ4¼ wðOSÞ ¼ 0, where

F is a fiber of f , but this gives the numerical contradiction

2ðgðBÞ � 1ÞFHS ¼ KSHS ¼ 2g� 2�H 2
S ¼ 4� 1 ¼ 3:

As a consequence of Corollary 1 and Proposition 3, when S is not a

ruled surface, we conclude that m2 b 10 apart from a short list of triplets.

As to case m2 ¼ 10, one can show that if kðSÞ ¼ 0, then r ¼ n� 2, X ¼
PSðUÞ, for an ample vector bundle U of rank n� 1 on a smooth minimal

surface S, and E ¼ p�Gn x, where x is the tautological line bundle on X , G

is a vector bundle of rank n� 2 on S and p : X ! S is the bundle projec-

tion; furthermore, HF ¼ OF ð3Þ for any fiber F GPn�2 of p, pjS : S ! S is the

blowing-up of S at a point p, eðSÞ ¼ 1 and S is either an abelian or a biel-

liptic surface with HS ¼ pj�SL0 � 3pj�1
S ðpÞ and L2

0 ¼ 10. We omit the proof

for shortness.

4. Lower bounds for d in terms of g

In this section, we will compare d ¼ m2 � d with the sectional genus g of

the polarized surface ðS;HSÞ. A first result is given by the following

Proposition 4. Let ðX ;E;HÞ be as in ðyÞ. Assume that d > 0 and gb 2.

Then

db 2g

and equality holds if and only if r ¼ n� 2, X is a Pn�1-bundle over a smooth

curve B and EF GOF ð1Þlðn�2Þ
for every fiber F GPn�1 of the bundle projection

p : X ! B. In particular, S ¼ Sq; e is a P1-bundle over B via pjS. Moreover,

either

( i ) HF ¼ OF ð3Þ, q ¼ 1, e ¼ �1, g ¼ 2 and HS 1 ½3C0 � f �, or
(ii) HF ¼ OF ð2Þ, g ¼ 2q > 0, ea 0 and HS 1 ½2C0 þ ðeþ 1Þ f �.

Proof. By [30, Proposition 3.2], we know that db 2g, equality holding if

and only if one of the following cases occurs:

(1) S ¼ S1;�1, g ¼ 2 and HS 1 ½3C0 � f �;
(2) S ¼ Sq; e with ea 0, g ¼ 2q > 0 and HS 1 ½2C0 þ ðeþ 1Þ f �;
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(3) S is a minimal surface endowed with an elliptic fibration S ! P1,

q ¼ 1, pg ¼ 0, g ¼ 2 and H 2
S ¼ 1;

(4) S is a minimal nonruled surface with g ¼ 2.

Note that in case (3), from [4, Theorem 1.5] it follows that S has multiple

fibers, but this contradicts [22, Theorem]. Moreover, also case (4) cannot

occur by [17, Theorem] since S is minimal and not a K3 surface. Finally, by

[20, Theorem] in cases (1) and (2) we conclude that X is a Pn�1-bundle over a

smooth curve B and FF GOF ð1Þlðn�2Þ for every fiber F GPn�1 of the bundle

projection p : X ! B. Note that FS ¼ f for any fiber F of p and that the

restriction pjS : S ! B of p to S gives the bundle projection on S. Moreover,

we have HF ¼ OF ðbÞ with b ¼ 3; 2 according to cases (1) and (2) respectively.

This shows that necessarily r ¼ n� 2.

Now, we lift the results of Theorem 1 and Proposition 1 to the ample

vector bundle setting.

As a consequence of Theorem 1, we can obtain the following

Theorem 4. Let ðX ;E;HÞ be as in ðyÞ.
(A) If d ¼ 2gþ 1, then either ðd; gÞ ¼ ð3; 1Þ; ð5; 2Þ and the triplets ðX ;E;HÞ

fit into all the possibilities of Theorem 3 for d ¼ 3 and 5, or ðX ;E;HÞ
is one of the following triplets:

( i ) X GPCðVÞ, where V is a vector bundle of rank n on a smooth

curve C, EF GOF ð2ÞlOF ð1Þlðr�1Þ
and HF ¼ OF ð1Þ, for any fiber

F GPn�1 of the bundle projection X ! C;

(ii) there is a surjective morphism X ! G onto a smooth curve G

whose general fiber F is a smooth quadric hypersurface of Pn

such that EF GOF ð1Þlr
and HF ¼ OF ð1Þ.

Moreover, in both cases, S is the blowing-up s : S ! Sq; e of a sur-

face Sq; e at a point p, HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ � s�1ðpÞ� and g ¼
2qb 4.

(B) If d ¼ 2gþ 2 and gb 4, then we have the following possibilities:

(B1) r ¼ n� 2, X is a Pn�1-bundle over a smooth curve B and EF G
OF ð1Þlðn�2Þ

for every fiber F GPn�1 of the bundle projection

p : X ! B. Moreover, either

( j ) HF ¼ OF ð3Þ, S ¼ S2;�1, g ¼ 5, and HS 1 ½3C0 � f �, or
( jj) HF ¼ OF ð2Þ, S ¼ Sq; e with qb 2, ea 0, g ¼ 2qþ 1 and

HS 1 ½2C0 þ ðeþ 2Þ f �;
(B2) ðX ;E;HÞ is as in (i) and (ii) of (A), and in both cases, S is the

blowing-up s : S ! Sq; e of a surface Sq; e at two points p1, p2,

lying on distinct fibers, HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ � s�1ðp1Þ �
s�1ðp2Þ� and g ¼ 2q.
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Proof. (A) If ga 3 then d ¼ 2gþ 1a 7 and from Table 1 we conclude

that only ðd; gÞ ¼ ð3; 1Þ; ð5; 2Þ satisfy the current assumption, i.e. the triplets

ðX ;E;HÞ fit into all the possibilities of Theorem 3 for d ¼ 3 and 5. So we can

assume gb 4. By Theorem 1 we deduce that g ¼ 2qb 4, S is the blowing-

up s : S ! Sq; e of a surface Sq; e at a point p and HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ �
s�1ðpÞ�. Having in mind [5, Theorem] and by arguing as in the proof of

Theorem 3, we can easily deduce cases (i) and (ii) of the statement.

(B) Since d ¼ 2gþ 2, from Theorem 1 it follows that ðS;HSÞ is one of

the following three polarized surfaces:

(a) S ¼ S2;�1, g ¼ 5, HS 1 ½3C0 � f � and H 2
S ¼ 3;

(b) S ¼ Sq; e with qb 2, g ¼ 2qþ 1, HS 1 ½2C0 þ ðeþ 2Þ f � and H 2
S ¼ 8;

(c) S is the blowing-up s : S ! Sq; e of Sq; e at two points p1, p2, lying on

distinct fibers, HS 1 ½s�ð2C0 þ ðeþ 1Þ f Þ � s�1ðp1Þ � s�1ðp2Þ�, g ¼
2qb 4 and H 2

S ¼ 2.

If ðS;HSÞ is as in (a) and (b), then by arguing as in cases (1) and (2) of the

proof of Proposition 4, we obtain (B1) in the statement. In case (c), recalling

[5, Theorem] and reasoning as in the proof of Theorem 3, we get (B2) in the

statement.

Theorem 5. Let ðX ;E;HÞ be as in ðyÞ and suppose that S is not a ruled

surface. Then db 2gþ d.

Proof. Simply note that cases (1) and (2) of Proposition 1 cannot ascend

to the ample vector bundle setting due to [17, Theorem] and [22, Theorem].

Actually, in the former case S is a minimal surface of Kodaira dimension zero,

while in the latter S is an elliptic surface with multiple fibers.

5. When HS is ample and spanned or very ample

In this Section, we revisit all the above results in the ample and spanned

(Subsection 4:1) or very ample (Subsection 4:2) settings and we improve some

of them.

5.1. HS is an ample and spanned line bundle. First of all, note that if da 3,

then the triplets ðX ;E;HÞ are as in Theorems 2 and 3. Thus, assume that

d > 3.

Theorem 6. Let ðX ;E;HÞ be as in ðyÞ, suppose that condition (S) holds,

and let db 4. Then

db 9;

except in the following cases:
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(1) d ¼ 4 and ðX ;E;HÞ is either as in cases ð1Þ and ð2Þ of Theorem

3 ðm2 ¼ 12Þ, or r ¼ n� 2, X is a Pn�1-bundle over a smooth curve

B of genus 1, EF ¼ OP n�1ð1Þlðn�2Þ
and HF ¼ OPn�1ð2Þ for every fiber

F ¼ Pn�1 of the bundle projection X ! B and ðS;HSÞG ðS1;�1; ½2C0�Þ
ðm2 ¼ 8Þ;

(2) d ¼ 6 and ðX ;E;HÞG ðP2 � P2;OP2�P2ð1; 1Þl2;OP2�P2ð1; 1ÞÞ;
ðm2 ¼ 12Þ

(3) d ¼ 7 and we have either ðX ;E;HÞG ðQ4;SnOQ4ð2Þ;OQ4ð1ÞÞ, where
S is a spinor bundle on Q4, or X is a linear section of the Grass-

mannian variety Gð1; 4Þ � P9 and ðE;HÞG ðLlr;LÞ, where L is the

ample generator of PicðX Þ; ðm2 ¼ 12Þ
(4) d ¼ 8 and ðX ;E;HÞ is one of the following triplets:

ðaÞ ðPn;OPnð2Þl2 lOPnð1Þlðr�2Þ;OP nð1ÞÞ; ðm2 ¼ 12Þ
ðbÞ ðQn;OQnð2ÞlOQnð1Þlðr�1Þ;OQnð1ÞÞ; ðm2 ¼ 12Þ
ðcÞ X is a complete intersection of two quadric hypersurfaces of Pnþ2

and ðE;HÞG ðLlr;LÞ, where L is the ample generator of PicðX Þ;
ðm2 ¼ 12Þ

ðdÞ r ¼ n� 2 and there is a vector bundle V on a smooth curve C

of genus qa 2 such that X GPCðVÞ, HF ¼ OF ð2Þ and EF G
OF ð1Þlðn�2Þ

for any fiber F GPn�1 of X ! C; moreover, ðS;HSÞ
is, up to numerical equivalence, one of the following pairs:

ðd1Þ ðS0; e; ½2C0 þ ðeþ 3Þ f �Þ, with ea 2; ðm2 ¼ 20Þ
ðd2Þ ðS1; e; ½2C0 þ ðeþ 2Þ f �Þ, with ea 0; ðm2 ¼ 16Þ
ðd3Þ ðS2; e; ½2C0 þ ðeþ 1Þ f �Þ, with ea�1. ðm2 ¼ 12Þ

Proof. If d ¼ 4, then from Theorem 3 it follows case (1) of the statement.

Actually, by [23, Theorem (3.1)] the remaining possibilities in Theorem 3 (3)

cannot occur, HS being spanned. If d ¼ 5, then by Lemma 2 and Table 1 we

deduce that the only possible cases for ðS;HSÞ are N. 12 and 15 of Table 1.

The former case does not lift to the vector bundle setting by [21, Theorem 4

and Remark in § 2] and the latest one cannot occur since g ¼ 2 and HS is

required to be ample and spanned (see [23, Theorem (3.1)]). This shows that

d ¼ 5 cannot occur. If d ¼ 6; 7 we have g ¼ 1 or 2, by Table 1. If g ¼ 1,

from Lemma 2 and [21, Theorem 4 and Remark in § 2] we obtain immediately

cases (2) and (3) of the statement. On the other hand it cannot be g ¼ 2

because HS is ample and spanned: actually, in cases N. 17, 18 and 20 of Table

1, S is not a minimal surface and this is not compatible with [23, Theorem

(3.1)] again. Suppose now that d ¼ 8. First of all, assume that kðSÞb 0.

Then ðS;HSÞ is as in cases N. 22, 23 and 24 of Table 1. Since HS is ample

and spanned and g ¼ 3 in all cases, by [18, Table I, p. 268] we see that N. 22

and 23 cannot occur and that in N. 24 the surface S is a minimal elliptic
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fibration with multiple fibers, but this situation does not lift to the vector

bundle setting by [22, Theorem]. Finally, suppose that kðSÞ ¼ �y, i.e. S is a

ruled surface. From Table 1 we deduce that either

( i ) H 2
S ¼ 4; g ¼ 1; eðSÞ ¼ 8,

or ðS;HSÞ is, up to numerical equivalence, one of the following pairs:

( ii ) ðS0; e; ½2C0 þ ð3þ eÞ f �Þ with e ¼ 0; 1; 2, H 2
S ¼ 12, g ¼ 2, eðSÞ ¼ 4;

(iii) ðS1; e; ½2C0 þ ð2þ eÞ f �Þ with e ¼ �1; 0; 1, H 2
S ¼ 8, g ¼ 3, eðSÞ ¼ 0;

(iv) ðS1;0; ½3C0 þ f �Þ with H 2
S ¼ 6, g ¼ 3, eðSÞ ¼ 0;

( v ) ðS1;�1; ½5C0 � 2f �Þ with H 2
S ¼ 5, g ¼ 3, eðSÞ ¼ 0;

(vi) ðS2; e; ½2C0 þ ðeþ 1Þ f �Þ with �2a ea 0, H 2
S ¼ 4, g ¼ 4, eðSÞ ¼ �4.

Note that (iv) cannot occur since in this case HS � C0 ¼ 1 with gðC0Þ ¼ 1

implies that HS is not spanned. Moreover, from [18, Table II, p. 268] it

follows that also case (v) is not possible since 0 ¼ eðSÞ ¼ 12ð1� qÞ � K 2
S . In

case (i), by [21, Theorem 4 and Remark in § 2] we get cases ðaÞ, ðbÞ and ðcÞ
of the statement. Finally, having in mind that HS is ample and spanned,

cases (ii), (iii) and (vi) lead to cases ðd1Þ, ðd2Þ and ðd3Þ of the statement by

[20].

Corollary 2. Let ðX ;E;HÞ be as in ðyÞ and suppose that condition (S)

holds. Then

m2 a 11

if and only if either ðX ;E;HÞ A A ðm2 ¼ 0; 3; 2; 2; da 11Þ, or r ¼ n� 2, X is

a Pn�1-bundle over a smooth curve B of genus 1, EF ¼ OP n�1ð1Þlðn�2Þ
and HF ¼

OP n�1ð2Þ for every fiber F ¼ Pn�1 of the bundle projection X ! B and ðS;HSÞG
ðS1;�1; ½2C0�Þ ðm2 ¼ 8Þ.

Proof. Since m2 ¼ dþH 2
S and H 2

S b 3 unless a few exceptions for the

pairs ðS;HSÞ described in Lemma 2, the result follows from Theorems 2, 3

and 6.

Corollary 3. Let ðX ;E;HÞ be as in ðyÞ and suppose that (S) holds.

Then

db 2gþ 3

unless either gb 4 and ðX ;E;HÞ is as in Proposition 4 and Theorem 4, or ga 3

and one of the following cases occurs:

(1) ðX ;E;HÞ A A [B ðm2 ¼ 0; 3; 2; 2; d; 12; 12; 12Þ;
(2) r ¼ n� 2, X is a Pn�1-bundle over a smooth curve B of genus 1, EF ¼

OP n�1ð1Þlðn�2Þ
, HF ¼ OPn�1ð2Þ for every fiber F ¼ Pn�1 of the bundle

projection X ! B and ðS;HSÞG ðS1;�1; ½2C0�Þ ðm2 ¼ 8Þ;
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(3) r ¼ n� 2 and there is a vector bundle V on a smooth curve C of genus

q ¼ 1 such that X GPCðVÞ, HF ¼ OF ð2Þ, EF GOF ð1Þlðn�2Þ
for any

fiber F GPn�1 of X ! C and ðS;HSÞ is, up to numerical equivalence,

ðS1; e; ½2C0 þ ðeþ 2Þ f �Þ with e A f�1; 0g. ðm2 ¼ 16Þ

Proof. Let da 2gþ 2. If ga 3, then da 8 and the assertion follows

from Theorems 2, 3 and 6. If gb 4, then Proposition 4 and Theorem 4 apply.

When S is not a ruled surface, we have the following two results.

Proposition 5. Let ðX ;E;HÞ be as in ðyÞ and suppose that (S) holds. If

S is not a ruled surface, then db 2gþ 5.

Proof. Recall that d ¼ m2 � d and assume, by contradiction, that da

2gþ 4. If da 2, then from Lemma 2 it follows that d ¼ 2, g ¼ b� 1 and

eðSÞ ¼ 2ð2b2 � 3bþ 3Þ for some integer bb 3, S being not a ruled surface.

Then

d ¼ eðSÞ þ 4ðg� 1Þ ¼ 2gþ ½2b� 6þ 2ð2b2 � 3bþ 3Þ�b 2gþ 24;

which is impossible. Moreover, if ga 2 then g ¼ 2 and by [23, Theorem (3.1)]

the only possibility for S is to be a K3 surface, in which case however, d ¼
eðSÞ þ 4ðg� 1Þ ¼ 2gþ eðSÞ þ 2g� 4 ¼ 2gþ 24. So we can assume that db 3

and gb 3. Note that by Theorem 5 cases d ¼ 2gþ 1; 2gþ 2 do not occur.

Therefore, it is enough to show that also cases d ¼ 2gþ 3; 2gþ 4 cannot occur.

First suppose that d ¼ 2gþ 3. Then from ðaÞ we deduce that eðSÞ þ 2g ¼
7 and then ðeðSÞ; gÞ ¼ ð1; 3Þ since eðSÞb 0, S being not a ruled surface, and

gb 3. Thus 4 ¼ 2g� 2 ¼ d þHSKS b 3þHSKS, hence HSKS a 1. It can-

not be HSKS ¼ 0, otherwise, KS would be numerically trivial, due to the

ampleness of H, but in this case, S could not satisfy eðSÞ ¼ 1, in view of the

classification. Therefore HSKS ¼ 1, H 2
S ¼ 3 and by Lemma 1 we see that

kðSÞ ¼ 0. Moreover, ðS;HSÞ has ðS0;L0Þ as simple reduction, where S0 is a

minimal surface of Kodaira dimension zero with eðS0Þ ¼ 0. So S0 is either

abelian or bielliptic, and therefore wðOS0
Þ ¼ 0. On the other hand, with the

same notation as in Lemma 1, HS ¼ s�L0 � E, s : S ! S0 being the reduction

morphism contracting the exceptional curve E at p A S0. We have h0ðHSÞ ¼
h0ðL0Þ � e where e ¼ 0 or 1 according to whether p is a base point of jL0j or
not. Then, due to the spannedness of HS, by the Riemann–Roch theorem and

the Kodaira vanishing theorem we get

3a h0ðHSÞ ¼ h0ðL0Þ � e ¼ wðOS0
Þ þ 1

2
L2
0 � e ¼ wðOS0

Þ þ 2� e:

This gives 0 ¼ wðOS0
Þb 1þ eb 1, a contradiction.
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Finally, suppose that d ¼ 2gþ 4. By arguing as in case d ¼ 2gþ 3, we get

only two possibilities for ðeðSÞ; gÞ, namely,

a) ð2; 3Þ, or

b) ð0; 4Þ.
In case a), by using ðaÞ again, we see that eðSÞ þ 2ðg� 3Þ ¼ 2, hence

ðH 2
S ;HSKSÞ is either ð3; 1Þ or ð4; 0Þ, by genus formula. Both possibilities

rule out. Actually, in the latter case KS would be numerically trivial, but

this cannot occur for eðSÞ ¼ 2. In the former case, S could be minimal with

kðSÞ ¼ 1, but then K 2
S ¼ 0, which contradicts condition eðSÞ ¼ 2 in view of

Noether’s formula. So S is not minimal. Thus Lemma 1 implies that kðSÞ ¼
0 and then eðSÞ ¼ 2 says that S is an abelian or a bielliptic surface blown-up

at two points. Then KS 1E where E consists of two irreducible curves, hence

1 ¼ HSKS ¼ HSEb 2, a contradiction.

Now consider case b). By using the facts that db 3 and HSKS b 0,

we get for ðd;HSKSÞ the following list of possible values: ð6; 0Þ, ð5; 1Þ, ð4; 2Þ,
ð3; 3Þ. If HSKS ¼ 0 (first case), recalling that eðSÞ ¼ 0 we conclude that S is

either an abelian or a bielliptic surface. Both cases do not ascend the ample

vector bundle setting due to [17, Theorem]. If HSKS ¼ 1 (second case), then

Lemma 1 ii) implies that kðSÞ ¼ 0 and then eðSÞ ¼ 0 allows us to conclude that

S is an abelian or a bielliptic surface; but then we get 0 ¼ HSKS ¼ 1, a

contradiction. Next let us deal with the third and the fourth cases at the same

time. Since eðSÞ ¼ 0 we have that either i) S is an abelian or a bielliptic

surface, or ii) S is a minimal elliptic fibration. In subcase i) KS is numerically

trivial, hence 0 ¼ HSKS ¼ 2 or 3, a contradiction. In subcase ii) we have

K 2
S ¼ 0. This combined with the fact that eðSÞ ¼ 0 implies wðOSÞ ¼ 0, by

Noether’s formula. Now use [24, table in Proposition 4.4 and Proposition 1.4].

For d ¼ 3, since S is a minimal elliptic surface, [24, Proposition 1.4, case (1.4.2),

(i)] shows that wðOSÞ ¼ 3, a contradiction. On the other hand, for d ¼ 4, since

wðOSÞ ¼ 0, [24, table in Proposition 4.4] shows that necessarily the elliptic

fibration of S has some multiple fibers. Therefore this case does not ascend to

the ample vector bundle setting in view of [22, Theorem].

Theorem 7. Let ðX ;E;HÞ be as in ðyÞ and suppose that (S) holds. If S

is not a ruled surface and d ¼ 2gþ 5, then X ¼ PS0
ðVÞ, where V is a vector

bundle of rank ðn� 1Þ over a smooth minimal surface S0, which is either abelian

or bielliptic; moreover, r ¼ n� 2 and E ¼ p�Gn x, where x is the tautological

line bundle on X, G is a vector bundle of rank n� 2 on S0 and p : X ! S0 is the

bundle projection; furthermore, pjS : S ! S0 is a birational morphism expressing

S as S0 blown-up at a single point, say p. Finally, H ¼ 2xþ p�ðA� 2ðdet Vþ
det GÞÞ, where A is an ample and spanned line bundle on S0 with A2 ¼ 8 and p

belongs to its second jumping set J2ðS0;AÞ.
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For the definition of the jumping sets of an ample and spanned line bundle

we refer to [25].

Proof. In view of ðaÞ, the relation d ¼ m2 � d ¼ 2gþ 5 converts into

eðSÞ þ 2ðg� 3Þ ¼ 3: ð3Þ

We have eðSÞb 0 by the Castelnuovo–de Franchis Theorem [3, Theorem X.4],

hence ga 4. Clearly it cannot be ga 1, since S is not a ruled surface. More-

over, for g ¼ 2, the only pair ðS;HSÞ with S a nonruled surface is the K3

double plane, according to the classification in [23, Theorem 3.1], but in this

case eðSÞ ¼ 24, which contradicts (3).

Suppose that g ¼ 3; then eðSÞ ¼ 3 by (3). Clearly H 2
S b 2 and taking into

account Lemma 2 we see that eðSÞ ¼ 3 is not compatible with H 2
S ¼ 2. Thus

the genus formula, combined with the fact that S is not a ruled surface, implies

ðH 2
S ;HSKSÞ ¼ ð4; 0Þ, or ð3; 1Þ. In the former case KS is numerically trivial,

hence S is a minimal surface with Kodaira dimension kðSÞ ¼ 0, but this con-

tradicts eðSÞ ¼ 3. In the latter case the Hodge index theorem shows that

K 2
S a 0. Suppose that S is minimal. Thus K 2

S ¼ 0, since kðSÞb 0, but then

Noether’s formula contradicts eðSÞ ¼ 3 again. Therefore S is not minimal.

Let h : S ! S0 be a birational morphism to the minimal model. We know

that KS ¼ h�KS0
þ E, where E is an e¤ective divisor contracted by h to a finite

set. Consider the equality 1 ¼ HSKS ¼ HSh
�KS0

þHSE: the second summand

on the right hand is greater than or equal to the number of blowing-ups h

factors through; on the other hand, the first one is non-negative and it is zero

if and only if KS0
is numerically trivial. It follows that S is S0 blown-up at

a single point, E being the corresponding exceptional curve, and kðSÞ ¼ 0.

But then eðSÞ ¼ eðS0Þ þ 10 3, a contradiction. Thus g ¼ 3 cannot occur as

well.

It remains to consider the case ðeðSÞ; gÞ ¼ ð1; 4Þ. Clearly H 2
S b 2 and by

Lemma 2 we see that condition eðSÞ ¼ 1 is not compatible with H 2
S ¼ 2, as

before. Thus the genus formula, combined with the fact that S is not a ruled

surface, implies 3aH 2
S a 6. A close inspection of [24] shows that it cannot

be eðSÞ ¼ 1 if H 2
S ¼ 3; 5 or 6. Actually, as observed before, S cannot be of

general type, hence it has Kodaira dimension kðSÞ ¼ 0 or 1. According to

[24, Proposition 1.4, Lemma 2.1 combined with Proposition 2.3, and Proposi-

tion 3.1], we see that condition eðSÞ ¼ 1 would be contradicted. So, H 2
S ¼ 4.

Now, from [24, Proposition 1.6] we easily see that eðSÞ ¼ 1 can occur only

when S is a 4-tuple cover of P2 via jHSj, i.e. h0ðHSÞ ¼ 3. Clearly condition

eðSÞ ¼ 1 prevents S from being a minimal surface. Thus, if kðSÞ ¼ 1 [24,

Proposition 4.3] would imply that ðS;HSÞ is obtained by blowing-up a single

point on a minimal elliptic surface with q ¼ 0. Thus wðOSÞb 1. By Noether’s
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formula we have K 2
S þ 1 ¼ K 2

S þ eðSÞb 12, hence K 2
S b 11. But this is not

compatible with kðSÞ ¼ 1. This check settles all possibilities, except when

kðSÞ ¼ 0 and H 2
S ¼ 4, in which case HSKS ¼ 2 by genus formula. Let h : S !

S0 be a birational morphism from S to its minimal model S0. Since eðSÞ ¼ 1,

h is simply the blowing-up at a point p A S0; in particular, we get eðS0Þ ¼ 0,

hence the surface S0 is either abelian or bielliptic. From 2 ¼ KSHS ¼
ðh�KS0

þ EÞHS, where E ¼ h�1ðpÞ is the exceptional curve, we see that

HSE ¼ 2, KS0
being numerically trivial; hence HS ¼ h�A� 2E, where A is

an ample line bundle on S0, and 4 ¼ H 2
S ¼ A2 � 4, i.e. A2 ¼ 8. Thus

h0ðAÞ ¼ wðOS0
Þ þ 1

2
ðA2 � AKS0

Þ ¼ 4;

by the Riemann–Roch and the Kodaira vanishing theorems. Moreover, since

A2 ¼ 8 it follows from Reider’s Theorem [31, Theorem 1] that either A is a

spanned line bundle, or there exists an e¤ective divisor G on S0 such that

AG ¼ 1 and G 2 ¼ 0. But in the latest case G is an elliptic curve, since S0 can-

not contain rational curves. Thus its proper transform on S, ~GG ¼ h�G � eE

(where e ¼ 0 or 1) is also an elliptic curve, and then HS
~GG ¼ ðh�A� 2EÞðh�G �

eEÞaAG ¼ 1, contradicting the spannedness of HS. Therefore A is an ample

and spanned line bundle on S0. According to the above, jHSj is in bijection

with the linear system jA� 2pj of divisors in jAj having a double point at p.

Recalling that h0ðHSÞ ¼ 3, this shows that

3 ¼ h0ðHSÞ ¼ h0ðAÞ � ] ¼ 4� ];

where ] stands for the number of linearly independent linear conditions to be

imposed on the elements of jAj in order to have a double point at p. There-

fore ] ¼ 1. This says that codimjAjðjA� 2pjÞ ¼ 1. Thus, the spannedness of

A implies that jA� 2pj ¼ jA� pj, i.e. the point p is in the second jumping set

J2ðS0;AÞ. Now come back to the ample vector bundle setting. By using [17,

Theorem], we conclude that X is as in the statement with F ¼ p�Gn x, where

x is the tautological line bundle on X , G is a vector bundle of rank n� 2 on

S0 and p : X ! S0 is the bundle projection; moreover, pjS : S ! S0 is just the

birational morphism h expressing S as S0 blown-up at the single point p. Now

consider H. If r < n� 2, then HF is a summand of FF , hence HF ¼ OPn�2ð1Þ.
Since E is contained in a fiber F of p and is a line with respect to xF , we

get the contradiction 1 ¼ degðHF ÞE ¼ HSE ¼ 2. Therefore r ¼ n� 2, hence

F ¼ E. Since H is ample we have HF ¼ txF ¼ OP n�2ðtÞ for some positive

integer t, and then we see from the equality t ¼ degðHF ÞE ¼ HSE ¼ 2 that

HF ¼ 2xF . So, H ¼ 2xþ p�M for some line bundle M on S0, which we have

to determine. Recall that HS ¼ pj�SA� 2E, where A is the ample and spanned
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line bundle on S0 with A2 ¼ 8 we met before. Now, by adjunction KS ¼
ðKX þ det FÞS and then by the canonical bundle formula we get

KS ¼ ð�ðn� 1Þxþ p�ðKS0
þ det VÞ þ ðn� 2Þxþ p� det GÞS

¼ �xS þ pj�SðKS0
þ det Vþ det GÞ:

On the other hand, KS ¼ pj�SKS0
þ E, which provides the expression of E; hence

HS ¼ pj�SA� 2E

¼ pj�SA� 2ð�xS þ pj�Sðdet Vþ det GÞÞ

¼ 2xS þ pj�SðA� 2ðdet Vþ det GÞÞ:

Finally, from the injectivity of the restriction homomorphism PicðXÞ ! PicðSÞ
(Lefschetz–Sommese Theorem), we get the expression of H as in the statement.

Remark 7. i) We want to stress that Theorem 7 is e¤ective. To see this

it is enough to modify the example produced in Remark 6, as follows. Let X

be the Jacobian bundle p : PðEn�1ðC; oÞÞ ! S0 ¼ JðCÞ on the Jacobian of a

smooth curve C of genus 2 again, and call x the tautological line bundle.

Letting E ¼ xlðn�2Þ and taking H ¼ 2x, we see that H is ample and spanned

[12, Example 5.1], and the triplet ðX ;E;HÞ is as in Theorem 7: here S ¼ C ð2Þ

again, but A is the line bundle corresponding to the double of the curve C itself

embedded in its Jacobian. Unfortunately, we have no examples with S0 a

bielliptic surface.

ii) According to the discussion in the first part of the proof we have to

stress a gap a¤ecting the proof of [24, Proposition 4.5]. Actually, the equality

in the first case of (4.5.1) of [24, p. 101] holds provided that the point p does

not belong to the first jumping set of L 0 (see [25, § 1]): to wit, set Ji :¼
JiðX 0;L 0Þ, for i ¼ 0; 1; 2, where J0 ¼ XnJ1; using the same notation as there,

if L 0 is spanned then the mentioned equality has to be amended as follows:

h0ðL 0Þ ¼ h0ðLÞ þ 3� i, where p A Ji. As a consequence, pairs ðX 0;L 0Þ with

X 0 an abelian or a bielliptic surface when p A J2 and with X 0 an Enriques

surface when p A J1nJ2 are not ruled out.

5.2. Revisiting the classical setting. As a consequence of Remark 1, revisiting

Theorem 6 and Corollary 2, we obtain the following two results.

Corollary 4. Let ðX ;E;HÞ be as in ðyÞ, suppose that condition (VA)

holds, and let db 4. Then

db 9;

except in the following cases:
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(1) d ¼ 4 and ðX ;E;HÞ is as in cases ð1Þ and ð2Þ of Theorem 3 ðm2 ¼ 12Þ;
(2) d ¼ 6; 7 and ðX ;E;HÞ is as in cases ð2Þ and ð3Þ of Theorem 6, respec-

tively ðm2 ¼ 12Þ;
(3) d ¼ 8 and ðX ;E;HÞ is as in cases ð4ÞðaÞ; ðbÞ; ðcÞ ðm2 ¼ 12Þ and

cases ð4Þðd1Þ ðm2 ¼ 20Þ and ð4Þðd2Þ with e ¼ �1 of Theorem 6

ðm2 ¼ 16Þ.

Corollary 5. Let ðX ;E;HÞ be as in ðyÞ and suppose that condition (VA)

holds. Then

m2 a 11

if and only if ðX ;E;HÞ A A ðm2 ¼ 0; 3; 2; 2; da 11Þ.

Recently, Fukuma [11] improved a result of the first author, showing the

following

Proposition 6. Let S be a smooth surface endowed with a very ample

line bundle L, and let d, g, m be the degree, the sectional genus and the class

of ðS;LÞ. Suppose that m > d and gb 2. Then mb d þ 2gþ 2 and equality

holds if and only if ðS;LÞ ¼ ðS1;�1; ½2C0 þ f �Þ (in which case d ¼ 8, g ¼ 3).

Note that the above pair ðS;LÞ corresponds to N. 26 with e ¼ �1 in Table

1. In particular, it fits into case (B)ðgÞ with ðm� d; gÞ ¼ ð8; 3Þ of Theorem 1.

Coming back to triplets as in ðyÞ, observe that for g :¼ gðS;HSÞa 1, condition

da 2gþ 2 simply means da 4. Then taking into account Theorems 2, 3 and

6, the very ampleness of HS implies that ðX ;E;HÞ A A [B. Thus we can

assume that gb 2 and so Proposition 6 can be easily lifted to the ample vector

bundle setting, as follows.

Proposition 7. Let ðX ;E;HÞ be as in ðyÞ and suppose that (VA) holds.

Assume g :¼ gðS;HSÞb 2 and d > 0. Then

db 2gþ 2

and equality holds if and only if r ¼ n� 2, X is a Pn�1-bundle over an elliptic

curve B, EF ¼ OP n�1ð1Þlðn�2Þ
, HF ¼ OP n�1ð2Þ for every fiber F GPn�1 of the

projection X ! B, and ðS;HSÞ is the pair ðS;LÞ described in Proposition 6.

Proof. Note that ðS;HSÞ satisfies all the assumptions of Proposition 6

with L ¼ HS. This implies the claimed inequality. Now suppose that equal-

ity holds; then ðS;HSÞ is the pair ðS;LÞ described in Proposition 6. Set F ¼
ElHlðn�r�2Þ. Since S is a P1-bundle over an elliptic curve, say B, we can

conclude by [20] that X is a Pn�1-bundle over B, the projection p : X ! B
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inducing the ruling of S, and FF ¼ OPn�1ð1Þlðn�2Þ for every fiber F . It cannot

be r < n� 2, since ðS;HSÞ is not a scroll. Therefore r ¼ n� 2, and then HF ¼
OP n�1ð2Þ, since HS f ¼ ð2C0 þ f Þ f ¼ 2. The converse is obvious and this con-

cludes the proof.

Remark 8. Proposition 6 is e¤ective, since ðS;LÞ is a very well known

elliptic conic bundle in P5. We want to stress that Proposition 7 is e¤ective

as well. Arguing as in [26, Section 3] we can produce an example. Let Vn

be an indecomposable vector bundle of rank n and degree 1 over the elliptic

curve B, and set X :¼ PðVnÞ. We note that any two such bundles Vn, V 0
n

are related by Vn ¼ V 0
n n t, where t is a line bundle of degree 0 on B. Thus

X is the same for all choices of Vn. We also note that any such vector

bundle Vn can be constructed inductively from a non–split exact sequence 0 !
OB ! Vn ! Vn�1 ! 0, starting from a line bundle V1 of degree 1. We have

h0ðVnÞ ¼ 1 for all nb 1, hence the tautological line bundle x on X has a single

section (up to a nonzero constant factor). Since the section of Vn vanishes

nowhere on B, it follows that the corresponding section of x vanishes exactly

on PðVn�1Þ. Note also that Vn is ample for any nb 1. Hence x is ample.

Now let x1; . . . ; xn�2 be x twisted by the pullbacks on X of n� 2 distinct

degree 0 line bundles on B and let E ¼ 0n�2

i¼1
xi. Then E is an ample vector

bundle on X . Consider its section s ¼ ðs1; . . . ; sn�2Þ where hsii ¼ H 0ðxiÞ and

let Z be its zero locus. Then ZGPðV2Þ [26, Claim B], i.e., Z is the P1-

bundle of invariant �1 over B, and xZ ¼ ½C0�, C0 being the tautological section.

Now, letting H :¼ 2xþ F we have that H is an ample line bundle, since x is

ample and F is nef; Moreover HZ ¼ ½2C0 þ f � is very ample, due to Reider’s

theorem [31, Theorem 1].

Assuming that S is not a ruled surface, assumption (VA) allows us to

improve Proposition 5, probably roughly, as follows.

Corollary 6. Let ðX ;E;HÞ be as in ðyÞ and suppose that (VA) holds.

If S is not a ruled surface, then db 2gþ 11.

Proof. Since S is not ruled, (VA) implies gb 3, as the Enriques ruled-

ness criterion, combined with the genus formula, immediately shows. Assume

that da 2gþ 10. Then by Theorem 5 we see that da 10. Furthermore, we

have also

2gþ 10b d ¼ m2 � d ¼ eðSÞ þ 4ðg� 1Þb 4ðg� 1Þ;

i.e. ga 7. This allows us to use [27, Table in (4.0)]. We can write

d ¼ 2gþ ðeðSÞ þ 2g� 4Þ ¼ 2gþD;
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where D :¼ eðSÞ þ 2g� 4 ¼ 12wðOSÞ � K 2
S þ 2g� 4 by Noether’s formula.

Table in [27, (4.0)] shows that S is birational to a K3 surface for 3a ga

5, but in this case Db 24� K 2
S þ 2b 26, a contradiction. On the other hand,

if g ¼ 6 and S is of general type, then D ¼ 63, while in the remaining cases

Db 12� K 2
S þ 8b 20, except when S is either an abelian or a bielliptic surface

(Cases 8) and 9) in the Table), but in these two cases S is minimal and this

possibility is ruled out by [17, Theorem]. Finally, for g ¼ 7 condition da 10

prevents S from being birational to an abelian or a bielliptic surface (Cases 23)

and 25) in the Table) and in the remaining cases we have Db 12� K 2
S þ 10b

21, a contradiction.
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