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Abstract. The notion of S-stability of foliations on branched simple polyhedrons is

introduced by R. Benedetti and C. Petronio in the study of characteristic foliations of

contact structures on 3-manifolds. We additionally assume that the 1-form b defining

a foliation on a branched simple polyhedron P satisfies db > 0, which means that the

foliation is possibly a characteristic foliation of a contact form whose Reeb flow is

transverse to P. In this paper, we show that if there exists a 1-form b on P with db > 0

then we can find a 1-form with the same property and additionally being S-stable.

We then prove that the number of simple tangency points of an S-stable foliation on

a positive or negative flow-spine is at least 2 and give a recipe for constructing a

characteristic foliation of a 1-form b with db > 0 on the abalone.

1. Introduction

A flow-spine P is a branched simple spine embedded in an oriented, closed,

smooth 3-manifold M such that there exists a non-singular flow in M that

is transverse to P and ‘‘constant’’ in the complement MnP. This notion was

introduced by I. Ishii in [8]. In that paper, he proved that any non-singular

flow in M has a flow-spine. Therefore, regarding a Reeb flow on a contact

3-manifold as a flow of its flow-spine, we may use it for studying contact

structures on 3-manifolds. This setting is analogous to the setting of the

correspondence between contact 3-manifolds and open book decompositions

in [11, 4]. One of the advantages of this setting is that the contact structure

in the complement of a flow-spine is always tight since the Reeb flow is

‘‘constant’’. Thus the study of contact structures via flow-spines divides into

two parts, one is the study of contact structures in small neighborhoods of

flow-spines and the other is to see what happens when tight 3-balls are glued

to the neighborhoods.
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A characteristic foliation on a branched polyhedron embedded in a contact

3-manifold had been studied by Benedetti and Petronio in [1], following the

work of Giroux on characteristic foliations on surfaces [3]. Setting the

branched polyhedron in a general position, we may assume that the foliation

is non-singular on the singular set SðPÞ of P. We further assume that the

indices of simple tangency points of the foliation to SðPÞ are always þ1 and

away from vertices of SðPÞ. See Figure 1 for the definition of the index of a

simple tangency point. A foliation that satisfies the above conditions is called

an S-stable foliation. In [1], they proved several statements. For instance, it

is proved that if a characteristic foliation on a branched polyhedron P in a

contact 3-manifold M is S-stable then the contact structure with this foliation

is unique in a small neighborhood of P up to contactomorphism. It is also

proved that if that contact structure is tight in a neighborhood of P then

it extends to a tight contact structure on M and the extended contact structure

on M is unique up to contactomorphism. Remark that the Reeb flows of

these contact structures may not be transverse to P. In this paper, we always

assume that a contact structure is positive, that is, its contact form a satisfies

a ^ da > 0.

Suppose that there exists a contact form a on M whose Reeb flow is

transverse to a flow-spine P. We choose the orientations of the regions of P

so that their intersections with the Reeb flow are positive. In this setting, the

form b ¼ ajP on P satisfies db > 0. To advance the study in this setting, we

need to study a 1-form b on P with db > 0 and whose characteristic foliation

on P is S-stable. Note that there are many branched simple polyhedrons that

admit a 1-form b with db > 0, see Remark 1.

The aim of this paper is to understand if there is a 1-form b on P with

db > 0 and whose kernel gives an S-stable foliation on P and if there exists

a constraint for positions of leaves of S-stable foliations on P. The following

theorem answers the first question.

Theorem 1. Let P be a branched simple polyhedron. If there exists a

1-form b on P with db > 0 then there exists a 1-form b 0 on P such that db 0 > 0

and the foliation defined by b 0 ¼ 0 on P is S-stable.

Fig. 1. The index of simple tangency points.
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Note that it is proved in [1] that any characteristic foliation on a branched

simple polyhedron P in a contact 3-manifold M can be made to be S-stable by

C0-perturbation of P in M. In our claim, there is no direct relation between

b and b 0.

Our construction of an S-stable foliation is very e‰cient in the sense that

the number of simple tangency points is very small (at most twice the number

of triple lines). On the other hand, it is di‰cult to find an S-stable folia-

tion defined by a 1-form b with db > 0 and without simple tangency points.

Actually, in Theorem 2 below, we show that such a foliation does not exist if

a branched simple polyhedron is a flow-spine and satisfies a certain condition.

A region of a branched simple polyhedron is called a preferred region if the

orientations of all edges and circles on its boundary are opposite to the one

induced from the orientation of the region defined by the branching of P.

Note that the number of simple tangency points is always even, see Lemma 4.

Theorem 2. If a flow-spine P has a preferred region then any foliation on

P defined by a 1-form b with db > 0 has at least two simple tangency points.

A point on a simple polyhedron that has a neighborhood shown in Figure

2 (iii) is called a vertex. A branched simple polyhedron has two kinds of

vertices: the vertex shown on the middle in Figure 3 is called a vertex of l-type

and the one on the right is called of r-type. A flow-spine P is said to be

positive if it has at least one vertex and all vertices are of l-type. In [9] it is

shown that the map sending a positive flow-spine P to the contact structure

whose Reeb flow is a flow of P gives a surjection from the set of positive flow-

spines to the set of contact 3-manifolds up to contactomorphism. It is also

proved that we cannot expect the same result without restricting the source to

the set of positive flow-spines. Thus, the positivity is important when we study

contact 3-manifolds using flow-spines. We say that a flow-spine is negative if it

has at least one vertex and all vertices are of r-type.

If a flow-spine is either positive or negative then it always has a preferred

region. Hence the following corollary holds.

Corollary 1. Let P be a positive or negative flow-spine of a closed,

oriented, smooth 3-manifold M. If the Reeb flow of a contact form a on M is a

flow of P then the characteristic foliation of ker a on P has at least two simple

tangency points.

Remark that if P is a positive flow-spine then there exists a contact form

a on M whose Reeb flow is a flow of P and such a contact structure is unique

up to contactomorphism, which is proved in [9, Theorem 1.1]. On the other

hand, if P is a negative flow-spine, we do not know if there exists such a

contact form or not.
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As we mentioned, our second aim is to understand if there is a constraint

for S-stable characteristic foliations in our setting, and the above corollary gives

some insight into this question. Furthermore, in Section 6.2, we will give

an example of an S-stable foliation given by a 1-form b with db > 0 on the

abalone explicitly, in which we can see that there exists a constraint for the

positions of leaves of S-stable characteristic foliations, see Remark 3. We will

also give a branched standard spine that admits an S-stable foliation defined

by b ¼ 0 with db > 0 and without simple tangency points, see Section 6.3. We

do not know if there exists a flow-spine that admits an S-stable foliation defined

by a 1-form b with db > 0 and without simple tangency points.

This paper is organized as follows. In Section 2, we recall some termi-

nologies of polyhedrons that we use in this paper. Section 3 and Section 4

are devoted to the proofs of Theorems 1 and 2, respectively. In Section 5,

we shortly introduce the DS-diagram of a flow-spine and give the proof of

Corollary 1. In Section 6, after giving a Poincaré-Hopf lemma for flow-spines,

we give an example of an S-stable foliation given by a 1-form b with db > 0 on

the abalone explicitly. We also give an example of a branched standard spine

that admits an S-stable foliation given by a 1-form b with db > 0 and without

simple tangency points.

2. Preliminaries

In this section, we recall terminologies of polyhedrons used in this paper.

2.1. Simple polyhedron. A polyhedron P is said to be simple if every point on

P has a neighborhood represented by one of the models shown in Figure 2.

Each connected component of the set of points with the model (i) is called a

region, that with the model (ii) is called a triple line and that with the model

(iii) is called a true vertex, which we call a vertex for short. Let SðPÞ denote

the union of triple lines and vertices of P, which is called the singular set of P.

A triple line is either an open arc, called an edge, or a circle. A simple poly-

Fig. 2. The local models of a simple polyhedron.
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hedron P is said to be standard1 if every connected component of PnSðPÞ is

homeomorphic to an open disk and every triple line is an open arc.

Let P be a simple polyhedron embedded in an oriented 3-manifold M and

assume that each region of P is orientable. An assignment of orientations to

the regions of P such that for any triple line the three orientations induced from

those of the adjacent regions do not coincide is called a branching. A simple

polyhedron equipped with a branching is called a branched polyhedron. If a

branched polyhedron is standard then it is called a branched standard poly-

hedron. For a branched polyhedron P, we define the orientation of each triple

line of SðPÞ by the orientation induced from the two adjacent regions, see

Figure 3.

A region of a branched simple polyhedron is called a preferred region if the

orientations of all edges on its boundary are opposite to the one induced from

the orientation of the region defined by the branching of P.

2.2. Spine and flow-spine. Let M be a closed, connected, oriented 3-manifold

and P be a simple polyhedron embedded in M. The polyhedron P is called

a spine of M if MnInt B collapses to P, where B is a 3-ball in MnP. If a

spine is standard (resp. branched) then it is called a standard (resp. branched )

spine.

The singular set SðPÞ of a branched simple polyhedron P can be regarded

as the image of an immersion of a finite number of circles. The immersion

has only normal crossings as shown in Figure 3. A flow-spine is defined

from a non-singular flow in a closed, connected, oriented, smooth 3-manifold

and a disk D intersecting all orbits of the flow transversely by floating the

boundary of D smoothly until it arrives in the disk D itself. See [8] for the

precise definition (cf. [9]). By the construction, the flow is positively trans-

verse to the flow-spine. We can easily see that a branched simple poly-

hedron P is a flow-spine if and only if SðPÞ is the image of an immersion of

one circle.

1 It is also called a special polyhedron.

Fig. 3. The orientation of a triple line induced from the branching.
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2.3. Admissibility condition. Let P be a branched simple polyhedron. To

have a 1-form b on P with db > 0, P needs to satisfy the following admis-

sibility condition. Let R1; . . . ;Rn be the regions of P. Regions and triple

lines of P are oriented by the branching. Let Ri be the metric completion

of Ri with the path metric inherited from a Riemannian metric on Ri. Let

ki : Ri ! P be the natural extension of the inclusion Ri ! P.

Definition 1. A branched simple polyhedron P is said to be admissible

if there exists an assignment of real numbers x1; . . . ; xm to the triple lines

e1; . . . ; em, respectively, of P such that for any i A f1; . . . ; ng
X
~eej�qRi

eijxj > 0; ð1Þ

where ~eej is an open arc or a circle on qRi such that kij~eej : ~eej ! ej is a

homeomorphism, and eij ¼ 1 if the orientation of ej coincides with that of kið~eejÞ
induced from the orientation of Ri and eij ¼ �1 otherwise.

We set

CðPÞ ¼ ðx1; . . . ; xmÞ A Rm

�����
X
~eej�qRi

eijxj > 0; i ¼ 1; . . . ; n

8<
:

9=
;:

By the definition, P is admissible if and only if CðPÞ is non-empty.

3. Proof of Theorem 1

Theorem 1 will follow from the following proposition.

Proposition 1. Let P be a branched simple polyhedron. Then, there

exists a 1-form b on P with db > 0 such that the foliation on P defined by b ¼ 0

is S-stable if and only if P is admissible.

Remark 1. It is known that many flow-spines satisfy the admissibility

condition, see [9, Section 4.1]. For instance, a branched standard spine of a

rational homology 3-sphere is admissible. Such branched simple polyhedrons

always satisfy the condition in Theorem 1.

Let P be a branched simple polyhedron, Q be a small compact neigh-

borhood of SðPÞ in P, R 0
1; . . . ;R

0
n be connected components of PnInt Q and

e1; . . . ; em be triple lines of P. The orientation of R 0
i is defined from the

branching of P and that of ej is defined as explained in Section 2.1.

Lemma 1. Suppose that P is admissible. Then there exists a 1-form b0
on Q such that
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(1) the foliation on Q defined by b0 ¼ 0 is S-stable,

(2)
Ð
qR 0

i
b0 > 0 for i ¼ 1; . . . ; n, and

(3) db0 > 0 on Q.

Proof. Let v1; . . . ; vnv be the vertices of P and Nvj be a small compact

neighborhood of vj in P. For each j ¼ 1; . . . ; nv, we define a projection prvj
from Nvj to R2 such that

( i ) the orientation of each region defined by the branching coincides

with that of R2,

( ii ) the image is included in a small open disk centered at the point

cos 2pj
nv
; sin 2pj

nv

� �
, and

(iii) the orientations of the images of the triple lines in Nvj are counter-

clockwise.

See Figure 4. The arrowed edges in the figure are the images of triple

lines of P, which are oriented according to the branching of P as shown in

Figure 3.

Let ðr; yÞ be the polar coordinates of R2, set a 1-form on R2 as r2 dy

and define the 1-form b0 on Nvj by pr�vj ðr
2 dyÞ. Note that db0 > 0 on Nvi since

dðr2 dyÞ ¼ 2r dr ^ dy > 0.

Next, we define the 1-form b0 on a neighborhood of each triple line of

P. Let e1; . . . ; em be the triple lines of P and Nej , j ¼ 1; . . . ;m, be a small

Fig. 4. The images of Nv1 ; . . . ;Nvnv on R2.
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compact neighborhood of ej in P and set N 0
ej
¼ NejnIntðNvðejÞ [Nv 0ðejÞÞ, where

vðejÞ and v 0ðejÞ are the two vertices at the endpoints of ej. Since P is assumed

to be admissible, we can choose an m-tuple of real numbers ðE1; . . . ;EmÞ in

CðPÞ.
Suppose that ej is an edge. If Ej > 0, we choose a projection prej from

N 0
ej
to R2 as shown on the left in Figure 5 and define the 1-form b0 on N 0

ej
by

pr�ej ðr
2 dyÞ as before. Set e 0j ¼ ej \N 0

ej
. Let aj and a 0

j be the endpoints of

prej ðe 0j Þ and let lej and l 0
ej
be the line segments on R2 connecting the origin and

aj and the origin and a 0
j , respectively. Since these segments are in the kernel of

r2 dy, the integrations of r2y along lej and l 0
ej
are 0. By Stokes’ theorem, the

absolute value of the integration of b0 along e 0j coincides with the area of the

region bounded by prej ðe 0j Þ, lej and l 0
ej
. We may choose prej so that the area

becomes the given real number Ej > 0, which means that the integration of b0
along e 0j coincides with Ej. Note that the foliation defined by b0 ¼ 0 has no

simple tangency point on N 0
ej
.

If Ej < 0, we choose a projection prej from N 0
ej
to R as shown on the right

in Figure 5 and define the 1-form b0 on N 0
ej
by pr�ej ðr

2 dyÞ as before. By the

same observation as in the case Ej > 0, we may choose prej so that the in-

tegration of b0 along e 0j coincides with Ei. For each edge ej with Ej < 0, the

foliation defined by b0 ¼ 0 has exactly two simple tangency points and their

indices are þ1.

If Ej ¼ 0, we choose the projection prej as shown in Figure 6. In the

figure, prej is chosen in such a way that the area of the region Dþ
ej

bounded by

prej ðe 0j Þ, lej and l 0
ej
is equal to the area of the region D�

ej
bounded by prej ðe 0j Þ.

Then we have

Ej ¼
ð
prej ðe

0
j
Þ
r2 dy ¼

ð
Dþ

ej

2r dr ^ dy�
ð
D�

ej

2r dr ^ dy ¼ 0:

Two simple tangency points of index þ1 appear in this case.

Fig. 5. The images of N 0
ej

on R2 in the case Ej > 0 and Ej < 0.
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If ej is a circle and Ej 0 0 then we embed Nej into R2 along a circle

centered at the origin and define b0 by pr�ej ðr
2 dyÞ as before. We choose

the embedding such that the orientation of the triple line in the image is

counter-clockwise if Ej > 0 and clockwise if Ej < 0. Choosing the radius of

the circle suitably, we have
Ð
ej
pr�ej ðr

2 dyÞ ¼ Ej. It has no simple tangency

point.

If ej is a circle and Ej ¼ 0 then we embed Nej into R2 along an ‘‘8’’-shaped

immersed curve so that the origin is in the middle of the region whose bound-

ary is oriented counter-clockwise. Using the same trick as in Figure 6, we may

have an embedding of Nej such that
Ð
ej
pr�ej ðr

2 dyÞ ¼ 0. Note that the foliation

defined by r2 dy ¼ 0 has two simple tangency points of index þ1.

Finally, we check if the 1-form b0 obtained above satisfies the required

conditions. It satisfies the condition (1) by the construction. The condition

(2) is satisfied by choosing Q to be su‰ciently narrow so that
Ð
qR 0

i
b0 is suf-

ficiently close to
Pm

j¼1 eijEj, where eij is the coe‰cient in inequality (1). Since

ðE1; . . . ;EmÞ A CðPÞ, the sum
Pm

j¼1 eijEj is positive. Hence
Ð
qR 0

i
b0 is also

positive. The condition (3) is obviously satisfied since dðr2 dyÞ > 0. This

completes the proof. r

Now we extend the 1-form b0 on Q to P by applying the following lemma

used in the paper of Thurston and Winkelnkemper [11]. For a compact

surface S with boundary qS, let NbdðqS;SÞ denote a small compact neigh-

borhood of qS in S.

Lemma 2 (Thurston-Winkelnkemper). Let S be a compact, oriented sur-

face with boundary and b0 be a 1-form on NbdðqS;SÞ such that
Ð
qS

b0 > 0 and

db0 > 0. Then there exists a 1-form b on S such that

Fig. 6. The image of N 0
ej

on R2 in the case Ej ¼ 0.
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� b ¼ b0 on NbdðqS;SÞ, and
� db > 0 on S.

Proof (Proof of Proposition 1). Suppose that a branched simple poly-

hedron P is admissible. The conditions (2) and (3) for b0 in Lemma 1 allow

us to use Lemma 2 for each region Ri of P. Then the 1-form b obtained by

this lemma satisfies the required conditions in the assertion.

Conversely, if there exists a 1-form b that satisfies the required conditions

then the m-tuple ð
Ð
e1
b; . . . ;

Ð
em
bÞ is an element in CðPÞ by Stokes’ theorem.

Therefore P is admissible. This completes the proof. r

Proof (Proof of Theorem 1). As mentioned in the end of the above

proof, if there exists a 1-form b on P with db > 0 then P is admissible. Thus

Theorem 1 follows from Proposition 1. r

Remark 2. The number of simple tangency points of the foliation defined

by b constructed in the above proof is at most 2m, where m is the number of

triple lines of P.

4. Proof of Theorem 2

In this section, we prove Theorem 2.

Lemma 3. Let P be a branched simple polyhedron. If P has a preferred

region then

fðx1; . . . ; xmÞ A CðPÞ j xi > 0; i ¼ 1; . . . ;mg

is empty.

Proof. Let R be the metric completion of a preferred region R and

k : R ! P be the natural extension of the inclusion R ! P. Let fl1; . . . ; lsg be

the set of edges and circles on the boundary qR of R such that kðlkÞ is a triple

line of P.

Assume that there exists a point ðE1; . . . ;EmÞ in CðPÞ with Ei > 0 for

i ¼ 1; . . . ;m. For k ¼ 1; . . . ; s, let Lk be the real number Ejk assigned to the

triple line ejk of P with kðlkÞ ¼ ejk . Since the orientation of lk is opposite to

the orientation induced from that of R, the sum of the assigned real numbers

along qR becomes �L1 � � � � � Ls < 0. This contradicts the assumption that

ðE1; . . . ;EmÞ A CðPÞ. r

Let F be an S-stable foliation on a branched simple polyhedron P defined

by a 1-form b on P. Since F is S-stable, it is transverse to SðPÞ in a small

neighborhood of a vertex of P.
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Lemma 4. Let P be a branched simple polyhedron and F be an S-stable

foliation on P defined by a 1-form b. Then the number of simple tangency

points of F is even.

Proof. The assertion follows from the fact that SðPÞ consists of the

image of an immersion of a finite number of circles and F is co-oriented.

r

Since F is transverse to SðPÞ in small neighborhoods of vertices, there are

four kinds of projections as shown in Figure 7. In the figure, type 1 is the case

where both of the oriented edges of SðPÞ intersect the leaves of F in the same

direction and type 2 is the case where they intersect the leaves in opposite

directions. The arrows with symbol b represent the direction along which the

integration of b becomes positive. The sign of type is þ if the direction of the

arrow coincides with the orientation of the edge passing from the left-bottom

to the right-top and the sign is � otherwise. Each sign þ or � written near

the endpoints of the edges of SðPÞ represents the sign of the value obtained

by inserting a vector tangent to the edge whose direction is consistent with the

orientation of the edge into the 1-form b. In each figure, only the painted

region can be a part of a preferred region in both of l-type and r-type vertex

cases. We call the small neighborhoods of vertices in Figure 7 with labels 1þ,

1�, 2þ and 2� the H-pieces of type 1þ, 1�, 2þ and 2�, respectively.

Lemma 5. Let P be a flow-spine of a closed, oriented, smooth 3-manifold

and F be an S-stable foliation on P defined by a 1-form. If there exists a

vertex of P whose H-piece is of type 2 then F has a simple tangency point.

Recall that SðPÞ consists of the image of an immersion of a finite number

of circles. In the following proofs, a circuit means the image of an immersion

of one of these circles. If a circuit passes all triple lines then it is called an

Euler circuit. A branched simple spine is a flow-spine if and only if it has an

Euler circuit.

Proof. Assume that there exists a vertex of P whose H-piece is of type 2

and F has no tangency point. The latter condition implies that if two edges

Fig. 7. H-pieces.
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of SðPÞ are connected in a circuit then the integrations of b along these edges

are either both positive or both negative. Since there is an H-piece of type 2,

SðPÞ has at least two circuits. This contradicts the assumption that P is a

flow-spine. r

Proof (Proof of Theorem 2). Assume that there exists an S-stable

foliation F defined by a 1-form b with db > 0 and without simple tangency

points. If P has no vertex then it does not admit such a 1-form b. Suppose

P has at least one vertex. By Lemma 5, the H-pieces of all the vertices are

of type 1. Furthermore, all vertices must have the same sign, otherwise there

exists an edge of P which connects two vertices with opposite signs. If all

vertices are of type 1þ then
Ð
ej
b > 0 for all edges e1; . . . ; em. Since P has a

preferred region, this is impossible by Lemma 3. If all vertices are of type

1� then
Ð
ej
b < 0 for all edges e1; . . . ; em. Now we take the sum of the inte-

grations of b along the boundaries of all the regions of P. In this calcula-

tion,
Ð
ej
b appears twice and

Ð
�ej

b once for each j ¼ 1; . . . ;m. Since we haveÐ
ej
b < 0 for all j ¼ 1; . . . ;m, the sum of the integrations is negative. This

contradicts the assumption that db > 0 on P. r

5. DS-diagram and Proof of Corollary 1

To explain the proof of Corollary 1, we first shortly introduce the DS-

diagram of a flow-spine, see [10, 9] for details (cf. [6]). Let P be a flow-

spine of a closed, oriented, smooth 3-manifold M. The complement MnP is

an open ball. The singular set SðPÞ of P induces a trivalent graph on the

boundary of the closed ball B3 obtained as the geometric completion of MnP,
which is called the DS-diagram of P. The flow of P induces a flow on B3,

and the set of points on the boundary qB3 at which the flow is tangent to

qB3 constitutes a simple closed curve. This curve is called the E-cycle. The

E-cycle separates qB3 into two open disks Sþ and S�, where the flow is posi-

tively transverse to Sþ and negatively transverse to S�. Here the orientation

of qB3 is induced from that of B3, and those of Sþ and S� are induced by the

inclusions Sþ;S� � qB. The E-cycle is oriented as the boundary of Sþ.

Observing the geometric completion of B3 in M, we may see that each region

of P corresponds to a region on Sþ bounded by the DS-diagram and each

triple line of P corresponds to an edge or circle in Sþ. The same is true for

S�. Each triple line of P also corresponds to an edge or circle in the E-cycle.

The orientation of Sþ (resp. S�) is consistent with (resp. opposite to) the

orientations of the regions of P. We assign orientations to the edges and

circles of the DS-diagram so that they coincide with the orientations of the

triple lines of P.
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We call a region on Sþ not adjacent to the E-cycle an internal region. If

a DS-diagram has a circle component then the DS-diagram consists of three

parallel circles one of which is the E-cycle, one is in Sþ and the last one is in

S�. The 3-manifold of the flow-spine given by this DS-diagram is S1 � S2.

See [2, Remark 1.2] (cf. [9, Example 3]).

Lemma 6. The DS-diagram of a flow-spine has an internal region on Sþ

homeomorphic to a disk.

Proof. Let nv be the number of vertices of P. Observing the geometric

completion of MnP, we can verify that the DS-diagram has nv vertices on Sþ

and 2nv vertices on the E-cycle. If the DS-diagram has a circle component

then the assertion follows. We assume that it has no circle component. Let

G be the subgraph of the DS-diagram consisting of edges lying in Sþ and

vertices adjacent to these edges. Note that the edges on the E-cycle are not

contained in G. We denote by G the union of G and the regions on Sþ

bounded by G. Let eðGÞ and f ðGÞ be the numbers of edges and regions of G,

respectively. Since G has nv univalent vertices and nv trivalent vertices, we

have nv þ 3nv ¼ 2eðGÞ. On the other hand, the Euler characteristic wðGÞ of G

is given as

wðGÞ ¼ 2nv � eðGÞ þ f ðGÞ:

These equalities imply that f ðGÞ ¼ wðGÞ. Since wðGÞ > 0, we have f ðGÞ > 0.

Hence there exists an internal region homeomorphic to a disk. r

Proof (Proof of Corollary 1). By Lemma 6, the DS-diagram of a flow-

spine has an internal region homeomorphic to a disk. It is proved in [9,

Lemma 4.6] that if a flow-spine is positive then an internal region is always

a preferred region, and the proof written there works for negative flow-spines

also. Thus, the assertion follows from Theorem 2. r

6. Examples

In this section, we give an S-stable characteristic foliation given by a

1-form b with db > 0 on the abalone explicitly. We also give an example of a

branched standard spine that has an S-stable foliation without simple tangency

points.

6.1. Poincaré-Hopf. We introduce a lemma that is useful for determining

singularities of foliations on flow-spines. Let P be a flow-spine of a closed,

oriented, smooth 3-manifold M and F be a foliation on P with only elliptic

and hyperbolic singularities. Assume that F is tangent to SðPÞ at a finite
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number of points in the interior of triple lines and the singularities of F do not

lie on SðPÞ. Let e be the number of elliptic singularities, h be the number of

hyperbolic singularities and tþ and t� be the numbers of simple tangency points

of F with index þ1 and �1, respectively.

Lemma 7. Suppose that the foliation F is in the above setting. Then the

following equality holds:

e� h ¼ 1þ tþ � t�
2

:

Note that if F is S-stable then t� ¼ 0.

Proof. According to the definition of DS-diagram, the regions and triple

lines of P can be described on the boundary of the closed 3-ball B3 obtained

as the geometric completion of the complement MnP. Thus, we may describe

F on the boundary qB3 of B3, which has 2e elliptic singularities and 2h

hyperbolic singularities. Each simple tangency point of index þ1 becomes as

shown on the top-middle in Figure 8 and it can be regarded as a hyperbolic

singularity as shown on the right. Each simple tangency point of index �1

becomes as shown on the bottom in the figure and it can be regarded as an

elliptic singularity. By the Poincaré-Hopf formula on the sphere qB3, we have

ð2eþ t�Þ � ð2hþ tþÞ ¼ 2. Thus the assertion follows. r

6.2. Foliation on the abalone. The branched polyhedron A obtained from the

neighborhood of the singular set shown in Figure 9 by attaching two disks D1

and D2 is called the abalone. This is a flow-spine of S3. We can easily see

Fig. 8. Simple tangency points and corresponding singularities on qB3.
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that ðE1;E2Þ A CðAÞ if and only if

�E1 > 0

2E1 þ E2 > 0:

�

This system of inequalities has a solution, for example ð�1; 13Þ A R2. Hence

A is admissible.

We give an S-stable foliation on A defined by a 1-form b with db > 0

explicitly. Set ðE1;E2Þ ¼ ð�1; 13Þ A CðAÞ. According to the construction

in the proof of Theorem 1, one can construct an S-stable foliation on

NbdðSðAÞ;AÞ defined by a 1-form b0 with db0 > 0 as the left figures in

Figure 10. Let R1 and R2 be the regions of A containing D1 and D2,

respectively. We describe four leaves on R2 as shown on the right in Figure

10. We denote these leaves by l1; . . . ; l4. For each li, we can find a 1-form

bli on Nbdðli;R2Þ so that bli ¼ b0 on Nbdðli;R2Þ \NbdðqR2;R2Þ and li is a

leaf of the foliation defined by bli ¼ 0.

We decompose qR2 into 15 arcs by the endpoints of the leaves l1; . . . ; l4,

the tangent points of these leaves with qR2 and the vertices on qR2. We label

these arcs as a1; . . . ; a15 as shown on the right in Figure 10. For the arcs

a1; . . . ; a15, we assign real numbers A1; . . . ;A15 so that

A1 þ A2 þ A3 ¼ E2; A4 þ A5 þ A6 ¼ E1; A7 þ A8 þ A9 ¼ �E2;

A10 þ A11 þ A12 ¼ E1; A13 þ A14 þ A15 ¼ E2

and

A15 þ A1 þ A8 > 0; A2 þ A5 > 0; A3 > 0; A4 > 0; A6 þ A7 > 0;

A9 þ A10 > 0; A11 þ A14 > 0; A12 > 0; A13 > 0;

Fig. 9. The abalone A.
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and ðA4;A5;A6Þ ¼ ðA10;A11;A12Þ. The five equalities mean that the assign-

ment of real numbers to a1; . . . ; a15 is a refinement of the assignment of those

to e1 and e2. The nine inequalities mean that, for each region bounded by

qR2 [
S4

i¼1 li, the sum of the real numbers along its boundary is positive, which

is necessary for applying Lemma 2. Note that we set the real number assigned

to li to be 0 since li will be a leaf of the foliation obtained by a 1-form. The

last equality is needed since, for each i ¼ 4; 5; 6, the two edges ai and aiþ6

correspond to the same arc on the edge e1 divided by the two simple tangency

points. This system of equalities and inequalities has a solution, for example

as

ðA1; . . . ;A15Þ ¼ ð6; 6; 1; 2;�5; 2;�1;�11;�1; 2;�5; 2; 1; 6; 6Þ:

Let b 0 be a 1-form defined on a small neighborhood N of SðPÞ [ ð
S4

i¼1 liÞ in P

so that
� db 0 > 0 on N,
� the characteristic foliation on N has leaves shown on the right in Figure

10,
�

Ð
aj
b 0 ¼ Aj for j ¼ 1; . . . ; 15.

Fig. 10. An S-stable foliation on NbdðSðAÞ;AÞ (left) and the leaves l1; . . . ; l4 on R2 (right).
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Such a 1-form can be easily constructed as in the proof of Theorem 1 (cf. [9,

the proof of Lemma 6.3]). We may extend b 0 to the whole P by applying

Lemma 2.

Remark 3. The arcs l1; . . . ; l4 are Legendrian if we consider a contact

form a on NbdðA;MÞ whose characteristic foliation coincides with the foliation

defined by b 0 ¼ 0. When we describe a characteristic foliation of a flow-spine

with a transverse Reeb flow, we need to choose the positions of these leaves so

that the integration of b 0 along the boundary of each region separated by these

leaves is positive. This gives a strong restriction for positions of leaves, which is

di¤erent from the case of characteristic foliations on surfaces.

Consider a foliation on A shown in Figure 11, which coincides with the

one defined by b 0 on N. It has two elliptic singularities with positive diver-

gence and no hyperbolic singularities (cf. Lemma 7). It is not di‰cult to find

a 1-form b on P with db > 0 that defines the foliation in the figure. For

example, let R be the region on R2 bounded by the leaves l3 and l4 and the

edges a11 and a14 and regard R as a rectangle with coordinates ðx; yÞ so that

the foliation is parallel to the x-axis. On NbdðqR;RÞ, b is given in the form

jðx; yÞdy, where jðx; yÞ is a smooth function on NbdðqR;RÞ with qj
qx
ðx; yÞ > 0.

Remark that
Ð
a11

jðx; yÞdy ¼ A11,
Ð
a14

jðx; yÞdy ¼ A14 and A11 þ A14 > 0. We

observe the graph of the function jðx; yÞ on NbdðqR;RÞ, and extend it to the

whole R so that qj
qx
ðx; yÞ > 0. The 1-form jðx; yÞdy defines the foliation on R

and satisfies dðjðx; yÞdyÞ > 0.

The region R 0 bounded by the leaf l4 and the edges a12 and a13 has one

elliptic singularity with positive divergence. For any region T bounded by an

arc on a12 [ a13 and two leaves connecting the elliptic singularity and the

endpoints of the arc, the 1-form b that we are going to make should satisfyÐ
T
db > 0. Therefore, the assignment to the edges a12 and a13 must satisfy the

inequalities A12 > 0 and A13 > 0. Under this setting, the 1-form on R 0 with

required property can be found by the same way as before.

Applying the same construction for other regions bounded by the E-cycles

and the leaves l1; . . . ; l4, we can obtain a 1-form b on A that defines the

foliation in Figure 11 and satisfies db > 0. The DS-diagram with this S-stable

foliation is described in Figure 12.

The foliation in Figure 11 has two simple tangency points on e1. Since

R1 is a preferred region, due to Theorem 2, we can conclude that there is no

S-stable foliation defined by a 1-form b with db > 0 and with less simple

tangency points.

An S-stable foliation of the flow-spine of the Poincaré homology 3-sphere

whose DS-diagram is the dodecahedron is observed by the first author in [5]

by the same manner. It is shown that the flow-spine admits an S-stable
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Fig. 11. An S-stable foliation on A with db > 0 and with minimal number of simple tangency

points.

Fig. 12. The DS-diagram with the S-stable foliation in Figure 11.
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foliation defined by a 1-form b with db > 0 and having two simple tangency

points.

6.3. An example without simple tangency point. Let P be the branched simple

polyhedron obtained from the branched polyhedron with boundary described

in Figure 13 by attaching four disks along the four connected components

of the boundary of P. It has three vertices, six edges and four disk regions.

The orientations of the edges e1; . . . ; e6 in the figure are those induced from

the adjacent regions by the rule in Figure 3. The Euler characteristic of P

is 3� 6þ 4 ¼ 1, and hence the Euler characteristic of the boundary of a

thickening of P is 2. We may easily verify that the boundary of a thickening

of P is connected and hence it is S2. This means that P is a branched

standard spine of a closed, oriented 3-manifold. We can check that the DS-

diagram of this spine, with forgetting the branching, is the diagram (1–10) in

[7] and conclude that the 3-manifold is S3.

The region containing the disk D0 in the figure is a preferred region. The

defining inequalities of CðPÞ are E6 > 0, �E2 � E3 > 0, E1 þ E2 � E6 > 0 and

E2 þ 2E3 þ E4 þ E5 þ E6 > 0. This system of inequalities has a solution, for

example as ð6; 1;�2;�1;�1; 6Þ A R6. Hence P is admissible. To have an

S-stable foliation without simple tangency points, the signs of the real numbers

assigned to the edges on each of three circuits e1 [ e2, e3 [ e4 [ e5 and e6 must

be the same and the assignment ð6; 1;�2;�1;�1; 6Þ A R6 satisfies this con-

dition. Referring to these signs, we choose the projection prvi for each of

vertices v1, v2 and v3 so that their H-pieces become as shown in Figure 14.

Under this setting, we can obtain an S-stable foliation defined by a 1-form b

with db > 0 and without simple tangency points.

Fig. 13. A branched standard spine that admits an S-stable foliation defined by a 1-form b with

db > 0 and without simple tangency points.
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We here give an S-stable foliation on P defined by a 1-form b with db > 0

and without simple tangency points on P explicitly. Set

ðE1;E2;E3;E4;E5;E6Þ ¼ ð6; 1;�2;�1;�1; 6Þ A CðPÞ:

Let R1, R2, R3, R4 be the regions of P bounded by the sequences of edges fe6g,
f�e2;�e3g, fe1; e2;�e5;�e6; e5g and fe1; e4; e5; e3;�e1; e3; e4; e6;�e4; e2g, respec-
tively, see Figure 15. Draw four leaves l1, l2, l3 and l4 as shown in the

Fig. 14. The H-pieces of v1, v2 and v3.

Fig. 15. An S-stable foliation on P with db > 0 and without simple tangency points.
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figure. The edge e1 on the boundary of R3 divides into two oriented arcs

by an endpoint of l1, named a1 and a2 as in the figure. Similarly, we name a3,

a4, a5, a6, a7 and a8 as in the figure. For these arcs a1; . . . ; a8, we assign real

numbers A1; . . . ;A8 as

ðA1;A2;A3;A4;A5;A6;A7;A8Þ ¼ ð1:6; 4:4; 0:8; 5:2; 1:5; 4:5; 3:2; 2:8Þ;

so that they satisfy A1 þ A2 ¼ A5 þ A6 ¼ E1, A3 þ A4 ¼ A7 þ A8 ¼ E6 and

E5 þ A1 > 0; A2 þ E2 � A4 > 0; �E5 � A3 > 0;

E1 þ E4 þ E5 þ E3 � A5 > 0; �A6 þ A8 � E4 þ E2 > 0; E3 þ E4 þ A7 > 0:

Thus, this assignment satisfies the required conditions for obtaining a 1-form

b with db > 0 on P. We may draw a foliation in the regions R1; . . . ;R4

Fig. 16. The DS-diagram with the S-stable foliation in Figure 15.
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described in Figure 15 so that R1 has only one elliptic singularity in the middle

and the other regions have no singularity, and there exists a 1-form b with

db > 0 on P which gives this foliation as in the case of abalone. There are

two ‘‘tangency points’’ on the boundary of R3 described in Figure 15, one is

at the intersection of the edges e5 and e1 and the other is of the edges e5 and

e6, and the boundary of R4 also has two ‘‘tangency points’’. The ‘‘tangency

point’’ at the intersection of e5 and e1 appears in a neighborhood of the vertex

v1 shown on the left in Figure 14, where the leaves of the foliation given by

b ¼ 0 is horizontal. The other three ‘‘tangency points’’ appear by the same

reason. Therefore, these leaves are transverse to the singular set of P and the

foliation given in Figure 15 has no simple tangency points. The DS-diagram

with this S-stable foliation is described in Figure 16.
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