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Abstract

The aim of this short paper is two-fold: (i) to construct a TQ-localization functor on algebras
over a spectral operad O, in the case where no connectivity assumptions are made on the O-
algebras, and (ii) more generally, to establish the associated TQ-local homotopy theory as a left
Bousfield localization of the usual model structure on O-algebras, which itself is almost never
left proper, in general. In the resulting TQ-local homotopy theory, the “weak equivalences” are
the TQ-homology equivalences, where “TQ-homology” is short for topological Quillen homol-
ogy, which is also weakly equivalent to stabilization of O-algebras. More generally, we establish
these results for TQ-homology with coefficients in a spectral algebra A. A key observation, that
goes back to the work of Goerss-Hopkins on moduli problems, is that the usual left properness
assumption may be replaced with a strong cofibration condition in the desired subcell lifting
arguments: Our main result is that the TQ-local homotopy theory can be established (e.g., a
semi-model structure in the sense of Goerss-Hopkins and Spitzweck, that is both cofibrantly
generated and simplicial) by localizing with respect to a set of strong cofibrations that are
TQ-equivalences.

2010 Mathematics Subject Classification. 55P43. 55U35, 55P48, 55P60, 18G55
Keywords. symmetric spectra, structured ring spectra, Bousfield localization, operads, topological Quillen homology.

1 Introduction

In this paper we are working in the framework of algebras over an operad in symmetric spectra
[29, 40], and more generally, in R-modules, where O[0] = ∗ (the trivial R-module); such O-algebras
are non-unital. Here, R is any commutative ring spectrum (i.e., any commutative monoid object
in the category (SpΣ,⊗S , S) of symmetric spectra) and we denote by (ModR,∧,R) the closed
symmetric monoidal category of R-modules.

Topological Quillen homology (or TQ-homology) is the precise analog for O-algebras of singular
homology for spaces, and is also weakly equivalent to stabilization of O-algebras [2, 25, 37]. A useful
starting point is [19, 36, 38], together with [1, 2, 3] and [10, 31, 32, 33]; see also [8, 9, 15, 16, 24, 39].

When TQ-homology is iterated, built into a cosimplicial TQ-resolution, and then glued all
together with a homotopy limit, it gives the TQ-completion [25] (analogous to Bousfield-Kan [6]
completion for spaces). It is proved in [10] that TQ-completion recovers the original O-algebra X,
up to weak equivalence, provided that X is 0-connected—in other words, 0-connected O-algebras
are TQ-complete; here, O,R are assumed to be (−1)-connected.

So what about the larger class, for instance, of homotopy pro-nilpotent O-algebras—are they
also TQ-complete? This paper is a first step in attacking this problem; i.e., to construct the
TQ-localization as a “better” model than TQ-completion for “the part of an O-algebra that TQ-
homology sees”. TQ-completion is known to only be “the right model” when the O-algebra X
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is TQ-good (i.e., when the comparison map from X to its TQ-completion is a TQ-equivalence)
analogous to the situation for spaces [6], but perhaps homotopy pro-nilpotent O-algebras are not
TQ-good, in general. So our attack on the problem is to first build (in this paper) TQ-localization by
establishing the TQ-local homotopy theory for O-algebras (without any connectivity assumptions).
Our motivation for constructing the TQ-localization is that it always gives “the right model” for
the part of the O-algebra X that TQ-homology sees (at the expense of a much larger construction);
just like Bousfield’s localization construction [5] for pointed spaces.

We follow closely the arguments in Bousfield [5], Goerss-Jardine [23], and Jardine [30]; see also
Dwyer [11] for a useful introduction to these ideas, along with [6, 13, 27, 35] in the context of
spaces. To make the localization techniques work in the context of O-algebras, we exploit the
cellular ideas in Hirschhorn [28]. A potential wrinkle is the well-known failure (Remark 3.5), in
general, of O-algebras to be left proper (e.g., associative ring spectra are not left proper); we show
that exploiting an observation in Goerss-Hopkins [21, 22] enables the desired topological Quillen
localization to be constructed by localizing with respect to a particular set of strong cofibrations
that are TQ-equivalences; the establishment of this TQ-localization functor and the associated TQ-
local homotopy theory—as a semi-model structure that is cofibrantly generated and simplicial—are
our main results; in other words, in this paper we establish the TQ-local homotopy theory for O-
algebras (Theorem 5.14), essentially by re-examining ideas of Goerss-Hopkins [20, 22] and Bousfield
[5], together with the technical work in Goerss-Jardine [23] and Jardine [30], in light of the cellular
ideas and techniques in Hirschhorn [28].

As an application of the TQ-local homotopy theory established here, together with the com-
pletion results in [9], it is shown in [46] that every homotopy pro-nilpotent O-algebra is TQ-local;
this improves the result in [10] that 0-connected O-algebras are TQ-complete (assuming O,R are
(−1)-connected), to the much larger class of homotopy pro-nilpotent O-algebras, provided that one
replaces “TQ-completion” with “TQ-localization”, and is closely related to (and partially motivated
by) a conjecture of Francis-Gaitsgory [14, 3.4.5]. The TQ-local homotopy theory developed here
may also find potential applications for studying the closely related invariants in [18, 26].

To keep this paper appropriately concise, we freely use notation from [25].
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2 TQ-homology of an O-algebra with coefficients in A
If X is an O-algebra, then we may factor the map ∗ → X

∗ → X̃
'−−→ X

as a cofibration followed by an acyclic fibration; we are using the positive flat stable model structure
(see, for instance, [25]). In particular, X̃ is a cofibrant replacement of X.

Consider the canonical map of operads f : O → τ1O and any map α : O[1]→ A of R-algebras.
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These maps induce adjunctions of the form

AlgO
f∗ // Algτ1O = ModO[1]
f∗
oo

α∗ // ModA
α∗
oo (2.1)

with left adjoints on top, where f∗(X) := τ1O ◦O (X) and f∗ denotes “forgetting along f of the
left τ1O-action”, and similarly, α∗(Y ) := A∧O[1]Y and α∗ denotes “forgetting along α of the left
A-action”; for short, we sometimes refer to f∗ and α∗ as the indicated “forgetful functors”. For
notational convenience purposes, we denote by Q := α∗f∗ the composite of left adjoints in (2.1) and
by U := f∗α∗ the composite of right adjoints in (2.1). It follows that (Q,U) fit into an adjunction
of the form

AlgO
Q // ModA
U
oo (2.2)

with left adjoint on top; here, Q is for indecomposable “quotient” and U is the indicated forgetful
functor.

Definition 2.1. If X is an O-algebra, then its TQ-homology is

TQ(X) := τ1O ◦hO (X) := Rf∗(Lf∗(X)) ' τ1O ◦O (X̃)

the O-algebra defined by the indicated composite of total right and left derived functors, and its
TQ-homology with coefficients in A, is the O-algebra

TQA(X) := RU(LQ(X)) ' Q(X̃) = A∧O[1]

(
τ1O ◦O (X̃)

)
In particular, if the algebra map α = id, then TQO[1](X) ' TQ(X). Here, TQ-homology is short
for “topological Quillen homology” which is weakly equivalent to stabilization of O-algebras.

3 Detecting TQA-local O-algebras

Definition 3.1. A map i : A→ B of O-algebras is a strong cofibration if it is a cofibration between
cofibrant objects in AlgO.

Definition 3.2. Let X be an O-algebra. We say that X is TQA-local if (i) X is fibrant in AlgO
and (ii) every strong cofibration A → B that induces a weak equivalence TQA(A) ' TQA(B) on
TQA-homology, induces a weak equivalence

Hom(A,X)
'←−− Hom(B,X) (3.1)

on mapping spaces in sSet.

Remark 3.3. The intuition here is that the derived space of maps into a TQA-local O-algebra
cannot distinguish between TQA-equivalent O-algebras (Proposition 3.7), up to weak equivalence.

Evaluating the map (3.1) at level 0 gives a surjection

hom(A,X)← hom(B,X)

of sets, since acyclic fibrations in sSet are necessarily levelwise surjections. This suggests that TQA-
local O-algebras X might be detected by a right lifting property and motivates the following classes
of maps (Proposition 3.12); compare with Bousfield [5].
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Definition 3.4 (TQA-local homotopy theory: Classes of maps). A map f : X → Y of O-algebras
is

(i) a TQA-equivalence if it induces a weak equivalence TQA(X) ' TQA(Y )

(ii) a TQA-cofibration if it is a cofibration in AlgO

(iii) a TQA-fibration if it has the right lifting property with respect to every cofibration that is a
TQA-equivalence

(iv) a weak TQA-fibration (or TQA-injective fibration; see Jardine [30]) if it has the right lifting
property with respect to every strong cofibration that is a TQA-equivalence

A cofibration (resp. strong cofibration) is called TQA-acyclic if it is also a TQA-equivalence.
Similarly, a TQA-fibration (resp. weak TQA-fibration) is called TQA-acyclic if it is also a TQA-
equivalence.

Remark 3.5. The additional class of maps (iv) naturally arises in the TQA-local homotopy theory
established below (Theorem 5.14); this is a consequence of the fact that the model structure on
AlgO is almost never left proper, in general (e.g., associative ring spectra are not left proper); see,
for instance, Goerss-Hopkins [21, 2.3]. In the very few special cases where it happens that AlgO is
left proper (e.g., commutative ring spectra are left proper), then the class of weak TQA-fibrations
will be identical to the class of TQA-fibrations.

Proposition 3.6. The following implications are satisfied

strong cofibration =⇒ cofibration

weak equivalence =⇒ TQA-equivalence

TQA-fibration =⇒ weak TQA-fibration =⇒ fibration

for maps of O-algebras.

Proof. The first implication is immediate and the second is because TQA preserves weak equiv-
alences, by construction. The third implication is because the class of TQA-acyclic cofibrations
contains the class of TQA-acyclic strong cofibrations. For the last implication, recall that a map is
a fibration in AlgO if and only if it has the right lifting property with respect to the set of generat-
ing acyclic cofibrations. Since the generating acyclic cofibrations have cofibrant domains [42], they
are contained in the class of strong cofibrations that are weak equivalences, and hence they are
contained in the class of TQA-acyclic strong cofibrations. It follows immediately that every weak
TQA-fibration is a fibration. q.e.d.

Proposition 3.7. Let X be a fibrant O-algebra. Then X is TQA-local if and only if every map
f : A→ B between cofibrant O-algebras that is a TQA-equivalence induces a weak equivalence
(3.1) on mapping spaces.

Proof. It suffices to verify the “only if” direction. Consider any map f : A→ B between cofibrant
O-algebras that is a TQA-equivalence. Factor f as a cofibration i followed by an acyclic fibration
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p in AlgO. Since f is a TQA-equivalence and p is a weak equivalence, it follows that i is a TQA-
equivalence. The left-hand commutative diagram induces

A
f //

i

��

B

B′
p

GG Hom(A,X) Hom(B,X)
(∗)oo

(#)uu
Hom(B′, X)

(∗∗)

OO

the right-hand commutative diagram. Since p is a weak equivalence between cofibrant objects and
X is fibrant, we know that (#) is a weak equivalence, hence (∗) is a weak equivalence if and only
if (∗∗) is a weak equivalence. Since i is a strong cofibration, by construction, this completes the
proof. q.e.d.

Proposition 3.8. Consider any map f : X → Y of O-algebras. Then the following are equivalent:

(i) f is a weak TQA-fibration and TQA-equivalence

(ii) f is a TQA-fibration and TQA-equivalence

(iii) f is a fibration and weak equivalence

Proof. We know that (iii) ⇒ (ii) because weak equivalences are TQA-equivalences (Proposition
3.6) and acyclic fibrations have the right lifting property with respect to cofibrations. Note that
(ii) ⇒ (i) by Proposition 3.6, hence it suffices to verify the implication (i) ⇒ (iii). Suppose f is
a weak TQA-fibration and TQA-equivalence; let’s verify that f is an acyclic fibration. Since every
generating cofibration for AlgO is a strong cofibration, it suffices to verify that f has the right lifting
property with respect to strong cofibrations. Let i : A→ B be a strong cofibration. We want to
verify that the left-hand solid commutative diagram

A
g //

i

��

X

f

��
B

h
// Y

A
g′ //

i

��

X̃
g′′ //

f ′

��

X

f

��
B

h
//

ξ

??

Y

in AlgO has a lift. We factor g as a cofibration followed by an acyclic fibration A
g′−→ X̃

g′′−→ X in
AlgO. It follows easily that the composite f ′ := fg′′ is a weak TQA-fibration and TQA-equivalence
with cofibrant domain. To verify that the desired lift ξ exists, it is enough to check that f ′ is an
acyclic fibration.

We factor f ′ as a cofibration followed by an acyclic fibration X̃
j−→ Ỹ

p−→ Y in AlgO, and since
f ′, p are TQA-equivalences, it follows that j is a TQA-equivalence. Hence j is a TQA-acyclic strong
cofibration and the left-hand solid commutative diagram

X̃

j

��

X̃

f ′

��
Ỹ

p
//

η

??

Y

X̃

f ′

��

j // Ỹ

p

��

η // X̃

f ′

��
Y Y Y

(3.2)
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has a lift η. It follows that the right-hand diagram commutes with upper horizontal composite the
identity map; in particular, f ′ is a retract of p. Therefore f ′ is an acyclic fibration which completes
the proof. q.e.d.

The following is proved, for instance, in [10, 7.6].

Proposition 3.9. IfA is anO-algebra andK ∈ sSet, then there are isomorphismsQ(A⊗̇K) ∼= Q(A)⊗̇K
in ModA, natural in A,K.

Proposition 3.10. If j : A→ B is a strong cofibration of O-algebras and i : K → L is a cofibration
in sSet, then the pushout corner map

A⊗̇LqA⊗̇K B⊗̇K → B⊗̇L

in AlgO is a strong cofibration that is a TQA-equivalence if j is a TQA-equivalence.

Proof. We know that the pushout corner map is a strong cofibration by the simplicial model struc-
ture on AlgO (see, for instance, [25]), hence it suffices to verify that Q applied to this map is a weak
equivalence. Since Q is a left Quillen functor, it follows that the pushout corner map

Q(A)⊗̇LqQ(A)⊗̇K Q(B)⊗̇K → Q(B)⊗̇L

is a cofibration that is a weak equivalence if Q(A)→ Q(B) is a weak equivalence, and Proposition
3.9 completes the proof. q.e.d.

Proposition 3.11. If j : A→ B is a strong cofibration and p : X → Y is a weak TQA-fibration of
O-algebras, then the pullback corner map

Hom(B,X)→ Hom(A,X)×Hom(A,Y ) Hom(B, Y ) (3.3)

in sSet is a fibration that is an acyclic fibration if either j or p is a TQA-equivalence.

Proof. Suppose j is a TQA-acyclic strong cofibration and p is a weak TQA-fibration. Consider any
cofibration i : K → L in sSet. We want to show that the pullback corner map (3.3) satisfies the
right lifting property with respect to i.

K

��

// Hom(B,X)

��
L //

55

Hom(A,X)×Hom(A,Y ) Hom(B, Y )

A⊗̇LqA⊗̇K B⊗̇K

(∗)
��

// X

��
B⊗̇L //

88

Y

(3.4)

The left-hand solid commutative diagram has a lift if and only if the corresponding right-hand solid
commutative diagram has a lift. Noting that (∗) is a TQA-acyclic strong cofibration (Proposition
3.10) completes the proof of this case. Suppose j is a strong cofibration and p is a weak TQA-
fibration. Consider any acyclic cofibration i : K → L in sSet. We want to show that the pullback
corner map (3.3) satisfies the right lifting property with respect to i. The left-hand solid commu-
tative diagram in (3.4) has a lift if and only if the corresponding right-hand solid commutative
diagram has a lift. Noting that p is a fibration (Proposition 3.6) and (∗) is an acyclic cofibration
(see, for instance, [25, Section 6]) completes the proof of this case. The case where j is a strong
cofibration and p is a TQA-acyclic weak TQA-fibration is similar; this is because p is an acyclic
fibration (Proposition 3.8). q.e.d.
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Proposition 3.12 (Detecting TQA-local O-algebras: Part 1). Let X be a fibrant O-algebra. Then
X is TQA-local if and only if X → ∗ satisfies the right lifting property with respect to every TQA-
acyclic strong cofibration A→ B of O-algebras (i.e., if and only if X → ∗ is a weak TQA-fibration).

Proof. Suppose X is TQA-local and let i : A→ B be a TQA-acyclic strong cofibration. Let’s verify
that X → ∗ satisfies the right lifting property with respect to i. We know that the induced map of
simplicial sets (3.1) is an acyclic fibration, hence evaluating the induced map (3.1) at level 0 gives
a surjection

hom(A,X)← hom(B,X)

of sets, which verifies the desired lift exists. Conversely, consider any TQA-acyclic strong cofibration
A→ B of O-algebras. Let’s verify that the induced map (3.1) is an acyclic fibration. It suffices to
verify the right lifting property with respect to any generating cofibration ∂∆[n] → ∆[n] in sSet.
Consider any left-hand solid commutative diagram of the form

∂∆[n]

��

// Hom(B,X)

��
∆[n] //

88

Hom(A,X)

A⊗̇∆[n]
∐
A⊗̇∂∆[n]B⊗̇∂∆[n]

(∗)
��

// X

��
B⊗̇∆[n] //

66

∗

in sSet. Then the left-hand lift exists in sSet if and only if the corresponding right-hand lift exists in
AlgO. The map (∗) is a TQA-acyclic strong cofibration by Proposition 3.10, hence, by assumption,
the lift in the right-hand diagram exists, which completes the proof. q.e.d.

Remark 3.13. Since the generating acyclic cofibrations in AlgO have cofibrant domains, the fi-
brancy assumption on X in Proposition 3.12 could be dropped; we keep it in, however, to motivate
later closely related statements (Propositions 4.11 and 5.7).

4 Cell O-algebras and the subcell lifting property

Suppose we start with an O-algebra A. It may not be cofibrant, so we can run the small object
argument with respect to the set of generating cofibrations in AlgO for the map ∗ → A. This gives
a factorization in AlgO as ∗ → Ã→ A a cofibration followed by an acyclic fibration. In particular,
this construction builds Ã by attaching cells; we would like to think of Ã as a “cell O-algebra”,
and we will want to work with a useful notion of “subcell O-algebra” obtained by only attaching
a subset of the cells above. Since every O-algebra can be replaced by such a cell O-algebra, up to
weak equivalence, the idea is that this should provide a convenient class of O-algebras to reduce
to when constructing the TQA-localization functor; this reduction strategy—to work with cellular
objects—is one of the main themes in Hirschhorn [28], and it plays a key role in this paper. The
first step is to recall the generating cofibrations for AlgO and to make these cellular ideas more
precise in the particular context of O-algebras needed for this paper.

Recall from [25, 7.10] that the generating cofibrations for the positive flat stable model structure
on R-modules is given by the set of maps of the form

R⊗GHm∂∆[k]+
iH,k
m // R⊗GHm∆[k]+ (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup)
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in R-modules. For ease of notational purposes, it will be convenient to denote this set of maps
using the more concise notation

SH,km

iH,k
m // DH,k

m (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup)

where SH,km and DH,k
m are intended to remind the reader of “sphere” and “disk”, respectively. In

terms of this notation, recall from [25, 7.15] that the generating cofibrations for the positive flat
stable model structure on O-algebras is given by the set of maps of the form

O ◦ (SH,km )
id◦(iH,k

m ) // O ◦ (DH,k
m ) (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup) (4.1)

in O-algebras.
Definitions 4.1–4.4 below appear in Hirschhorn [28, 10.5.8, 10.6] in the more general context of

cellular model categories; we have tailored the definitions to exactly what is needed for this paper;
i.e., in the context of O-algebras.

Definition 4.1. A map α : W → Z in AlgO is a relative cell O-algebra if it can be constructed as
a transfinite composition of maps of the form

W = Z0 → Z1 → Z2 → · · · → Z∞ := colim
n

Zn ∼= Z

such that each map Zn → Zn+1 is built from a pushout diagram of the form

∐
i∈In O ◦ (SHi,ki

mi
)

qi∈In id◦(iHi,ki
mi

)

��

(∗) // Zn

��∐
i∈In O ◦ (DHi,ki

mi
) // Zn+1

(4.2)

in AlgO, for each n ≥ 0. A choice of such a transfinite composition of pushouts is a presentation of
α : W → Z as a relative cell O-algebra. With respect to such a presentation, the set of cells in α
is the set tn≥0In and the number of cells in α is the cardinality of its set of cells; here, t denotes
disjoint union of sets.

Remark 4.2. We often drop explicit mention of the choice of presentation of a relative cell O-
algebra, for ease of reading purposes, when no confusion can result.

Definition 4.3. An O-algebra Z is a cell O-algebra if ∗ → Z is a relative cell O-algebra. The
number of cells in Z, denoted #Z, is the number of cells in ∗ → Z (with respect to a choice of
presentation of ∗ → Z).

Definition 4.4. Let Z be a cell O-algebra. A subcell O-algebra of Z is a cell O-algebra Y built by
a subset of cells in Z (with respect to a choice of presentation of ∗ → Z). More precisely, Y ⊂ Z is
a subcell O-algebra if ∗ → Y can be constructed as a transfinite composition of maps of the form

∗ = Y0 → Y1 → Y2 → · · · → Y∞ := colim
n

Yn ∼= Y
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such that each map Yn → Yn+1 is built from a pushout diagram of the form

∐
j∈Jn O ◦ (S

Hj ,kj
mj )

qj∈Jn id◦(i
Hj,kj
mj

)

��

(∗∗) // Yn

��∐
j∈Jn O ◦ (D

Hj ,kj
mj ) // Yn+1

in AlgO, where Jn ⊂ In and the attaching map (∗∗) is the restriction of the corresponding attaching
map (∗) in (4.2) (taking W = ∗), for each n ≥ 0.

Definition 4.5. Let Z be a cell O-algebra. A subcell O-algebra Y ⊂ Z is finite if #Y is finite
(with respect to a choice of presentation of ∗ → Z); in this case we say that Y has finitely many
cells.

Remark 4.6. Let Z be a cell O-algebra. A subcell O-algebra Y ⊂ Z can be described by giving
a compatible collection of subsets Jn ⊂ In, n ≥ 0, (with respect to a choice of presentation for
∗ → Z); here, compatible means that the corresponding attaching maps are well-defined. It follows
that the resulting subcell O-algebra inclusion Y ⊂ Z can be constructed stage-by-stage

∗ = Y0
// Y1

��

// Y2

��

// . . . // Y∞

��

∼= // Y

��
∗ = Z0

// Z1
// Z2

// . . . // Z∞
∼= // Z

as the indicated colimit.

Proposition 4.7. Let Z be a cell O-algebra. If A ⊂ Z and B ⊂ Z are subcell O-algebras, then
there is a pushout diagram of the form

A ∩B

��

// A

��
B // A ∪B

(4.3)

in AlgO, which is also a pullback diagram, where the indicated arrows are subcell O-algebra inclu-
sions.

Proof. This is proved in Hirschhorn [28, 12.2.2] in a more general context, but here is the basic idea:
Consider ∗ → Z with presentation as in (4.2) (taking W = ∗). Suppose that Sn ⊂ In and Tn ⊂ In,
n ≥ 0, correspond to the subcell O-algebras A ⊂ Z and B ⊂ Z, respectively. Then it follows (by
induction on n) that Sn ∩ Tn ⊂ In and Sn ∪ Tn ⊂ In, n ≥ 0, are compatible collections of subsets
and taking A ∩ B ⊂ Z and A ∪ B ⊂ Z to be the corresponding subcell O-algebras, respectively,
completes the proof. Here, we are using the fact that every cofibration ofO-algebras is, in particular,
a monomorphism of underlying symmetric spectra, and hence an effective monomorphism [28, 12.2]
of O-algebras. q.e.d.
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The following is proved in [7, I.2.4, I.2.5].

Proposition 4.8. Let M be a model category (see, for instance, [12, 3.3]).

(a) Consider any pushout diagram of the form

A

i

��

f // B

��
C

g // D

in M, where A,B,C are cofibrant and i is a cofibration. If f is a weak equivalence, then g is
a weak equivalence.

(b) Consider any commutative diagram of the form

A0

'
��

A1

'
��

//oo A2

'
��

B0 B1
//oo B2

in M, where Ai, Bi are cofibrant for each 0 ≤ i ≤ 2, the vertical maps are weak equivalences,
and A0 ← A1 is a cofibration. If either B0 ← B1 or B1 → B2 is a cofibration, then the
induced map

A0 qA1 A2
'−−→ B0 qB1 B2

is a weak equivalence.

The following proposition, which is an exercise left to the reader, has been exploited, for instance,
in [4, 2.1] and [28, 13.2.1]; it is closely related to the usual induced model structures on over-
categories and under-categories; see, for instance, [12, 3.10].

Proposition 4.9 (Factorization category of a map). Let M be a model category and z : A→ Y a
map in M. Denote by M(z) the category with objects the factorizations X : A→ X → Y of z in M
and morphisms ξ : X→ X′ the commutative diagrams of the form

X :

ξ

��

A // X

ξ

��

// Y

X′ : A // X ′ // Y

in M. Define a map ξ : X→ X′ to be a weak equivalence (resp. fibration, resp. cofibration) if
ξ : X → X ′ is a weak equivalence (resp. fibration, resp. cofibration) in M. With these three classes
of maps, M(z) inherits a naturally occurring model structure from M. Since the initial object (resp.

terminal object) in M(z) has the form A = A
z−→ Y (resp. A

z−→ Y = Y ), it follows that X is
cofibrant (resp. fibrant) if and only if A→ X is a cofibration (resp. X → Y is a fibration) in M.
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Proof. This appears in [4, 2.1] and is closely related to [12, 3.10] and [38, II.2.8]. q.e.d.

The following subcell lifting property can be thought of as an O-algebra analog of Hirschhorn
[28, 13.2.1] as a key step in establishing localizations in left proper cellular model categories. One
technical difficulty with Proposition 3.12 for detecting TQA-local O-algebras is that it involves
a lifting condition with respect to a collection of maps, instead of a set of maps. Proposition
4.10 provides our first reduction towards eventually refining the lifting criterion for TQA-local O-
algebras to a set of maps. Even though the left properness assumption in [28, 13.2.1] is almost never
satisfied by O-algebras, in general, a key observation, that goes back to the work of Goerss-Hopkins
[22, 1.5] on moduli problems, is that the subcell lifting argument only requires an appropriate
pushout diagram to be a homotopy pushout diagram—this is ensured (Proposition 4.8) by the
strong cofibration condition in Proposition 4.10.

Proposition 4.10 (Subcell lifting property). Let p : X → Y be a fibration of O-algebras. Then
the following are equivalent:

(a) The map p has the right lifting property with respect to every strong cofibration A → B of
O-algebras that is a TQA-equivalence.

(b) The map p has the right lifting property with respect to every subcell O-algebra inclusion
A ⊂ B that is a TQA-equivalence.

Proof. Since every subcell O-algebra inclusion A ⊂ B is a strong cofibration, the implication
(a)⇒ (b) is immediate. Conversely, suppose p has the right lifting property with respect to every
subcell O-algebra inclusion that is a TQA-equivalence. Let i : A→ B be a strong cofibration of
O-algebras that is a TQA-equivalence and consider any solid commutative diagram of the form

A

i

��

g // X

p

��
B

h
//

ξ
>>

Y

in AlgO. We want to verify that a lift ξ exists. The first step is to get subcell O-algebras into the
picture. Running the small object argument with respect to the generating cofibrations in AlgO, we

first functorially factor the map ∗ → A as a cofibration followed by an acyclic fibration ∗ → A′
a−→ A,

and then we functorially factor the composite map A′ → A → B as a cofibration followed by an

acyclic fibration A′
i′−→ B′

b−→ B. Putting it all together, we get a commutative diagram of the form

A′

i′

��

a // A

i

��

g // X

p

��
B′

b // B
h // Y

where i′ is a subcell O-algebra inclusion, by construction. Furthermore, since i is a TQA-equivalence
and a, b are weak equivalences, it follows that i′ is a TQA-equivalence. Denote by M the pushout
of the upper left-hand corner maps i′ and a, and consider the induced maps c, d, α of the form



80 J.E. Harper, Y. Zhang

A′

i′

��

a // A

i

��

g //

d

yy

X

p

��

M

α

  

ξ′

77

B′

c

DD

b // B
h //

ξ

DD

Y

Since B′, A′, A are cofibrant and i′ is a cofibration, we know that M is a homotopy pushout
(Proposition 4.8); in particular, since a is a weak equivalence, it follows that c is a weak equivalence.
Since c, b are weak equivalences, we know that α is a weak equivalence. By assumption, p has the
right lifting property with respect to i′, and hence with respect to its pushout d. In particular, a
lift ξ′ exists such that ξ′d = g and pξ′ = hα. It turns out this is enough to conclude that a lift
ξ exists such that ξi = g and pξ = h. Here is why: Consider the factorization category AlgO(pg)
(Proposition 4.9) of the map pg, together with the objects

B : A
i−→ B

h−→ Y, X : A
g−→ X

p−→ Y, M : A
d−→M

hα−−→ Y

Note that giving the desired lift ξ is the same as giving a map of the form

X : A // X // Y

B :

ξ

OO

A // B

ξ

OO

// Y

in AlgO(pg). Also, we know from above that a lift ξ′ exists; i.e., we have shown there is a map of
the form

X : A // X // Y

M :

ξ′

OO

A // M

ξ′

OO

// Y

in AlgO(pg). We also know from above that the map α is a weak equivalence, and hence we have
a weak equivalence of the form

M :

α'
��

A // M

α'
��

// Y

B : A // B // Y

in AlgO(pg). Since i, d are cofibrations, we know that B,M are cofibrant in AlgO(pg), and since p
is a fibration, we know that X is fibrant in AlgO(pg) (Proposition 4.9). It follows that the weak
equivalence α : M→ B induces an isomorphism

[M,X]
∼=←−− [B,X]
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on homotopy classes of maps in AlgO(pg), and since the left-hand side is non-empty, it follows that
the right-hand side is also non-empty; in other words, there exists a map [ξ] ∈ [B,X]. Hence we
have verified there exists a map of the form ξ : B→ X in AlgO(pg); in other words, we have shown
that the desired lift ξ exists. This completes the proof of the implication (b)⇒ (a). q.e.d.

Proposition 4.11 (Detecting TQA-local O-algebras: Part 2). Let X be a fibrant O-algebra. Then
X is TQA-local if and only if X → ∗ satisfies the right lifting property with respect to every subcell
O-algebra inclusion A ⊂ B that is a TQA-equivalence.

Proof. This follows immediately from Proposition 4.10. q.e.d.

5 TQA-local homotopy theory

The purpose of this section is to establish a version of Proposition 4.10 (see Proposition 5.6), and
hence a corresponding version of Proposition 4.11 (see Proposition 5.7), that includes a bound on
how many cells B has. Once this is accomplished, we can run the small object argument to prove
the key factorization property (Proposition 5.12) needed to establish the associated TQA-local
homotopy theory on O-algebras (Theorem 5.14) and to construct the associated TQA-localization
functor on cofibrant O-algebras as a weak TQA-fibrant (Definition 5.15) replacement functor. Our
argument can be thought of as an O-algebra analog of the bounded cofibration property in Bousfield
[5, 11.2], Goerss-Jardine [23, X.2.13], and Jardine [30, 5.2], mixed together with the subcell inclusion
ideas in Hirschhorn [28, 2.3.7].

Proposition 5.1. Let i : A→ B be a strong cofibration and consider the pushout diagram of the
form

A

��

i // B

��
∗ // B//A

(5.1)

in AlgO. Then there is an associated cofibration sequence of the form

TQA(A)→ TQA(B)→ TQA(B//A)

in ModA and corresponding long exact sequence of abelian groups of the form

· · ·TQAs+1(B//A)→ TQAs (A)→ TQAs (B)→ TQAs (B//A)→ TQAs−1(A)→ · · · (5.2)

where TQAs (X) := πsTQ
A(X) denotes the s-th TQA-homology group of an O-algebra X and π∗

denotes the derived (or true) homotopy groups of a symmetric spectrum [40, 41].

Proof. This is because Q is a left Quillen functor and hence preserves cofibrations and pushout
diagrams. q.e.d.

Definition 5.2. Let κ be a large enough (infinite) regular cardinal such that

κ >
∣∣⊕s,m,k ⊕H TQAs

(
O ◦ (DH,k

m /SH,km )
)∣∣

where the first direct sum is indexed over all s ∈ Z, m ≥ 1, k ≥ 0 and the second direct sum is
indexed over all subgroups H ⊂ Σm.
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Remark 5.3. The significance of this choice of regular cardinal κ arises from the cofiber sequence
of the form

TQA(Zn)→ TQA(Zn+1)→
∐
i∈In

TQA
(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)

in ModA associated to the pushout diagram (4.2).

Proposition 5.4. Let Z be a cell O-algebra with less than κ cells (with respect to a choice of
presentation ∗ → Z). Then ∣∣⊕sTQAs (Z)

∣∣ < κ

where the direct sum is indexed over all s ∈ Z.

Proof. Using the presentation notation in (4.2) (taking W = ∗), this follows from Remark 5.3,
together with Proposition 5.1, by induction on n. In more detail: Since Z0 = ∗ we know that
| ⊕s TQAs (Z0)| < κ. Let n ≥ 0 and assume that∣∣⊕sTQAs (Zn)

∣∣ < κ (5.3)

We want to show that
∣∣⊕sTQAs (Zn+1)

∣∣ < κ. Consider the long exact sequence in TQA-homology
groups of the form

· · · → TQAs (Zn)→ TQAs (Zn+1)→
⊕
i∈In

TQAs
(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)
→ . . . (5.4)

associated to the cofiber sequence in Remark 5.3. It follows easily that∣∣TQAs (Zn+1)
∣∣ ≤ ∣∣TQAs (Zn)⊕

⊕
i∈In

TQAs
(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)∣∣ < κ

and hence
∣∣⊕sTQAs (Zn+1)

∣∣ < κ. Hence we have verified, by induction on n, that (5.3) is true for
every n ≥ 0; noting that Z ∼= Z∞ = colimn Zn (by definition) completes the proof. q.e.d.

Proposition 5.5 (Bounded subcell property). Let M be a cell O-algebra and L ⊂ M a subcell
O-algebra. If L 6= M and L ⊂M is a TQA-equivalence, then there exists A ⊂M subcell O-algebra
such that

(i) A has less than κ cells

(ii) A 6⊂ L

(iii) L ⊂ L ∪A is a TQA-equivalence

Proof. The main idea is to develop a TQA-homology analog for O-algebras of the closely related
argument in Bousfield’s localization of spaces work [5]; we have benefitted from the subsequent
elaboration in Goerss-Jardine [23, X.3]. We are effectively replacing arguments in terms of adding
on non-degenerate simplices with arguments in terms of adding on subcell O-algebras; this idea
to work with cellular structures appears in Hirschhorn [28] assuming left properness; however, the
techniques can be made to work without the left properness assumption as indicated below.

To start, choose any A0 ⊂M subcell O-algebra such that
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(i) A0 has less than κ cells

(ii) A0 6⊂ L

Here is the main idea, which is essentially a small object argument idea: We would like L ⊂ L∪A0

to be a TQA-equivalence (i.e., we would like TQA∗ (L ∪ A0//L) = 0), but it might not be. So we do
the next best thing. We build A1 ⊃ A0 such that when we consider the following pushout diagrams
in AlgO

L

��

// L ∪A0

��

// L ∪A1

��
∗ // L ∪A0//L

(#) // L ∪A1//L

which are also homotopy pushout diagrams in AlgO, the map (#) induces

TQA∗ (L ∪A0//L)→ TQA∗ (L ∪A1//L) (5.5)

the zero map; in other words, we construct A1 by killing off elements in the TQA-homology groups
TQA∗ (L∪A0//L) by attaching subcell O-algebras to A0, but in a controlled manner. Since L∪A0 ⊂
M is a subcell O-algebra, it follows that M is weakly equivalent to the filtered homotopy colimit

M ∼= colim
Fi⊂M

(L ∪A0 ∪ Fi) ' hocolim
Fi⊂M

(L ∪A0 ∪ Fi)

indexed over all finite Fi ⊂M subcell O-algebras and hence

0 = TQA∗ (M//L) ∼= colim
Fi⊂M

TQA∗ (L ∪A0 ∪ Fi//L)

where the left-hand side is trivial by assumption. Hence for each 0 6= x ∈ TQA∗ (L ∪ A0//L) there
exists a finite Fx ⊂M subcell O-algebra such that the induced map

TQA∗ (L ∪A0//L)→ TQA∗ (L ∪A0 ∪ Fx//L)

sends x to zero. Define A1 := (A0 ∪∪x 6=0Fx) ⊂M subcell O-algebra. By construction the induced

map (5.5) on TQA-homology groups is the zero map. Furthermore, the pushout diagram in AlgO

L ∩A0

��

// L

��
A0

// L ∪A0

implies that L ∪A0//L ∼= A0//L ∩A0, hence from the cofiber sequence of the form

L ∩A0 → A0 → L ∪A0//L

in AlgO and its associated long exact sequence in TQA∗ it follows that A1 ⊂ M subcell O-algebra
satisfies
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(i) A1 has less than κ cells

(ii) A1 6⊂ L

Now we repeat the main idea above, but replacing A0 with A1: We would like L ⊂ L ∪ A1 to
be a TQA-equivalence (i.e., we would like TQA∗ (L∪A1//L) = 0), but it might not be. So we do the
next best thing. We build A2 ⊃ A1 such that the induced map TQA∗ (L∪A1//L)→ TQA∗ (L∪A2//L)
is zero by attaching subcell O-algebras to A1, but in a controlled manner, . . . , and so on: By
induction we construct, exactly as above, a sequence of subcell O-algebras

A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ An+1 ⊂ . . . (5.6)

satisfying (n ≥ 0)

(i) An has less than κ cells

(ii) An 6⊂ L

(iii) TQA∗ (L ∪An//L)→ TQA∗ (L ∪An+1//L) is the zero map

Define A := ∪nAn. Let’s verify that L ⊂ L ∪A is a TQA-equivalence; this is the same as checking
that TQA∗ (L ∪ A//L) = 0. Since (5.6) is a sequence of subcell O-algebras, it follows that L ∪ A is
weakly equivalent to the filtered homotopy colimit

L ∪A ∼= colim
n

(L ∪An) ' hocolim
n

(L ∪An)

and hence

TQA∗ (L ∪A//L) ∼= colim
n

TQA∗ (L ∪An//L)

In particular, each x ∈ TQA∗ (L ∪ A//L) is represented by an element in TQA∗ (L ∪ An//L) for some
n, and hence it is in the image of the composite map

TQA∗ (L ∪An//L)→ TQA∗ (L ∪An+1//L)→ TQA∗ (L ∪A//L)

Since the left-hand map is the zero map by construction, this verifies that x = 0. Hence we have
verified L ⊂ L ∪A is a TQA-equivalence, which completes the proof. q.e.d.

The following is closely related to [5, 11.3], [23, X.2.14], and [30, 5.4], together with the subcell
ideas in [28, 2.3.8].

Proposition 5.6 (Bounded subcell lifting property). Let p : X → Y be a fibration of O-algebras.
Then the following are equivalent:

(a) the map p has the right lifting property with respect to every strong cofibration A → B of
O-algebras that is a TQA-equivalence.

(b) the map p has the right lifting property with respect to every subcell O-algebra inclusion
A ⊂ B that is a TQA-equivalence and such that B has less than κ cells (Definition 5.2).
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Proof. The implication (a)⇒ (b) is immediate. Conversely, suppose p has the right lifting property
with respect to every subcell O-algebra inclusion A ⊂ B that is a TQA-equivalence and such that
B has less than κ cells. We want to verify that p satisfies the lifting conditions in (a); by the subcell
lifting property, it suffices to verify that p satisfies the lifting conditions in Proposition 4.10(b). Let
A ⊂ B be a subcell O-algebra inclusion that is a TQA-equivalence and consider any left-hand solid
commutative diagram of the form

A

⊂
��

g // X

p

��
B

h
//

ξ
>>

Y

A

⊂
��

g // X

p

��
As ⊂

//

ξs

77

B
h
// Y

(5.7)

in AlgO. We want to verify that a lift ξ exists. The idea is to use a Zorn’s lemma argument on
an appropriate poset Ω of partial lifts, together with Proposition 5.5, following closely [23, X.2.14]
and [28, 2.3.8]. Denote by Ω the poset of all pairs (As, ξs) such that (i) As ⊂ B is a subcell O-
algebra inclusion that is a TQA-equivalence and (ii) ξs : As → X is a map in AlgO that makes the
right-hand diagram in (5.7) commute (i.e., ξs|A = g and pξs = h|As), where Ω is ordered by the
following relation: (As, ξs) ≤ (At, ξt) if As ⊂ At is a subcell O-algebra inclusion and ξt|As = ξs.
Then by Zorn’s lemma, this set Ω has a maximal element (Am, ξm).

We want to show that Am = B. Suppose not. Then Am 6= B and Am ⊂ B is a TQA-equivalence,
hence by the bounded subcell property (Proposition 5.5) there exists K ⊂ B subcell O-algebra such
that

(i) K has less than κ cells

(ii) K 6⊂ Am

(iii) Am ⊂ Am ∪K is a TQA-equivalence

We have a pushout diagram of the left-hand form

Am ∩K

��

// Am

��
K // Am ∪K

Am ∩K

��

// Am
ξm // X

p

��
K //

ξ

55

B
h
// Y

in AlgO where the indicated maps are inclusions, and by assumption on p, the right-hand solid
commutative diagram in AlgO has a lift ξ. It follows that the induced map ξm ∪ ξ makes the
following diagram

A

��

g // X

p

��
Am //

ξm

33

Am ∪K //

ξm∪ξ

::

B
h
// Y
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in AlgO commute, where the unlabeled arrows are the natural inclusions. In particular, since
K 6⊂ Am, then Am 6= Am ∪ K, and hence we have constructed an element (Am ∪ K, ξm ∪ ξ) of
the set Ω that is strictly greater than the maximal element (Am, ξm), which is a contradiction.
Therefore Am = B and the desired lift ξ = ξm exists, which completes the proof. q.e.d.

Proposition 5.7 (Detecting TQA-local O-algebras: Part 3). Let X be a fibrant O-algebra. Then
X is TQA-local if and only if X → ∗ satisfies the right lifting property with respect to every
subcell O-algebra inclusion A ⊂ B that is a TQA-equivalence and such that B has less than κ cells
(Definition 5.2).

Proof. This follows immediately from Proposition 5.6. q.e.d.

Proposition 5.8. If f is a retract of g and g is a TQA-acyclic strong cofibration, then so is f .

Proof. This is because strong cofibrations and weak equivalences are closed under retracts and Q
is a left Quillen functor. q.e.d.

Proposition 5.9. Consider any pushout diagram of the form

A

i

��

// X

j

��
B // Y

(5.8)

in AlgO. If X is cofibrant and i is a TQA-acyclic strong cofibration, then j is a TQA-acyclic strong
cofibration.

Proof. Applying Q to the diagram (5.8) gives a pushout diagram of the form

Q(A)

(∗)
��

// Q(X)

(∗∗)
��

Q(B) // Q(Y )

in AlgO. Since (∗) is an acyclic cofibration by assumption, it follows that (∗∗) is an acyclic cofibra-
tion, which completes the proof. q.e.d.

Proposition 5.10. The class of TQA-acyclic strong cofibrations is (i) closed under all small co-
products and (ii) closed under all (possibly transfinite) compositions.

Proof. Part (i) is because strong cofibrations are closed under all small coproducts and Q is a left
Quillen functor, and part (ii) is because strong cofibrations are closed under all (possibly transfinite)
compositions and Q is a left Quillen functor. q.e.d.

Definition 5.11. Denote by ITQA the set of generating cofibrations in AlgO and by JTQA the set of

generating acyclic cofibrations in AlgO union the set of TQA-acyclic strong cofibrations consisting
of one representative of each isomorphism class of subcell O-algebra inclusions A ⊂ B that are
TQA-equivalences and such that B has less than κ cells (Definition 5.2).
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Proposition 5.12. Any map X → Y of O-algebras with X cofibrant can be factored as X →
X ′ → Y a TQA-acyclic strong cofibration followed by a weak TQA-fibration.

Proof. We know by [28, 12.4] that the set JTQA permits the small object argument [28, 10.5.15], and
running the small object argument for the map X → Y with respect to JTQA produces a functorial
factorization of the form

X
j−→ X ′

p−→ Y

in AlgO. We know that j is a TQA-acyclic strong cofibration by Propositions 5.9 and 5.10. Since
JTQA contains the set of generating acyclic cofibrations for AlgO, we know that p is a fibration

of O-algebras, and hence it follows from Proposition 5.6 that p is a weak TQA-fibration, which
completes the proof. q.e.d.

Proposition 5.13. Suppose p : X → Y is a map of O-algebras.

(a) The map p is a weak TQA-fibration if and only if it satisfies the right lifting property with
respect to the set of maps JTQA (Definition 5.11).

(b) The map p is a TQA-acyclic weak TQA-fibration if and only if it satisfies the right lifting
property with respect to the set of maps ITQA (Definition 5.11).

Proof. Part (a) was verified in the proof of Proposition 5.12 and part (b) is because p is an acyclic
fibration (Proposition 3.8). q.e.d.

Our main result, Theorem 5.14, is that the TQA-local homotopy theory for O-algebras (associ-
ated to the classes of maps in Definition 3.4) can be established (e.g., as a semi-model structure in
the sense of Goerss-Hopkins [20] and Spitzweck [43], that is both cofibrantly generated and simpli-
cial) by localizing with respect to a set of strong cofibrations that are TQA-equivalences; see, for
instance, Mandell [34], White [44], and White-Yau [45] where semi-model structures naturally arise
in some interesting applications. A closely related (but different) notion of semi-model structure is
explored in Fresse [17].

Theorem 5.14 (TQA-local homotopy theory: Semi-model structure). The category AlgO with
the three distinguished classes of maps (i) TQA-equivalences, (ii) weak TQA-fibrations, and (iii)
cofibrations, each closed under composition and containing all isomorphisms, has the structure of
a semi-model category in the sense of Goerss-Hopkins [22, 1.1.6]; in more detail:

(a) The category AlgO has all small limits and colimits.

(b) TQA-equivalences, weak TQA-fibrations, and cofibrations are each closed under retracts; weak
TQA-fibrations and TQA-acyclic weak TQA-fibrations are each closed under pullbacks.

(c) If f and g are maps in AlgO such that gf is defined and if two of the three maps f, g, gf are
TQA-equivalences, then so is the third.

(d) Cofibrations have the left lifting property with respect to TQA-acyclic weak TQA-fibrations,
and TQA-acyclic cofibrations with cofibrant domains have the left lifting property with
respect to weak TQA-fibrations.
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(e) Every map can be functorially factored as a cofibration followed by a TQA-acyclic weak TQA-
fibration and every map with cofibrant domain can be functorially factored as a TQA-acyclic
cofibration followed by a weak TQA-fibration.

Furthermore, this semi-model structure is cofibrantly generated in the sense of Goerss-Hopkins [22,
1.1.7] with generating cofibrations the set ITQA and generating TQA-acyclic cofibrations the set
JTQA (Definition 5.11), and it is simplicial in the sense of [22, 1.1.8].

Proof. Part (a) follows from the usual model structure on O-algebras (see, for instance, [25]).
Consider part (b). It is immediate that TQA-equivalences are closed under retracts (since weak
equivalences are). We know that cofibrations are closed under retracts (e.g., by the usual model
structure on O-algebras). Noting that any right lifting property is closed under retracts and pull-
backs, together with Proposition 5.13, verifies part (b). Part (c) is because weak equivalences satisfy
the two-out-of-three property. Part (d) follows from Proposition 3.8 and Definition 3.4. The first
factorization in part (e) follows from Proposition 3.8 by running the small object argument with
respect to the set ITQA and the second factorization in part (e) is Proposition 5.12 (obtained by
running the small object argument with respect to the set JTQA). This semi-model structure is
cofibrantly generated in the sense of [22, 1.1.7] by Proposition 5.13 and is simplicial in the sense of
[22, 1.1.8] by Proposition 3.11. q.e.d.

Definition 5.15. An O-algebra X is called TQA-fibrant (resp. weak TQA-fibrant) if X → ∗ is a
TQA-fibration (resp. weak TQA-fibration).

Proposition 5.16. An O-algebra X is TQA-local if and only if it is weak TQA-fibrant.

Proof. This follows from Proposition 3.12 and Remark 3.13. q.e.d.

Let X be an O-algebra and run the small object argument with respect to the set ITQA for
the map ∗ → X; this gives a functorial factorization in AlgO as a cofibration followed by an

acyclic fibration ∗ → X̃
'−−→ X; in particular, X̃ is cofibrant. Now run the small object argument

with respect to the set JTQA for the map X̃ → ∗; this gives a functorial factorization in AlgO as

X̃ → L(X̃)→ ∗ a TQA-acyclic strong cofibration followed by a weak TQA-fibration; in particular,
L(X̃) is TQA-local and the natural zigzag X ' X̃ → L(X̃) is a TQA-equivalence. Hence we have
verified the following theorem.

Theorem 5.17. If X is an O-algebra, then (i) there is a natural zigzag of TQA-equivalences of the
form X ' X̃ → LTQA(X̃) with TQA-local codomain, and if furthermore X is cofibrant, then (ii)

there is a natural TQA-equivalence of the form X → LTQA(X) with TQA-local codomain.

Proof. Taking LTQA(X̃) := L(X̃) for part (i) and LTQA(X) := L(X) for part (ii) completes the
proof. q.e.d.
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(186):169, 1990.
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