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Abstract

In this paper, authors generalize logarithmic mean L, Neuman-Sándor M , two Seiffert means
P and T as an application of generalized trigonometric and hyperbolic functions. Moreover,
several two-sided inequalities involving these generalized means are established.
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1 Introduction

For the definition of new means involved in our formulation we introduce some special functions
and notation. The Gaussian hypergeometric function is defined by

F (a, b; c; z) = 2F1 (a, b; c; z) =

∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1,

where (a, n) denotes the shifted factorial function

(a, n) = a(a+ 1)(a+ 2) . . . (a+ n− 1), n = 1, 2, 3, . . . ,

and (a, 0) = 1 for a 6= 1. For the applications of this function in various fields of the mathematical
and natural sciences, reader is referred to [4].

Special functions, such as classical gamma function Γ, the digamma function ψ and the beta
function B(. , .) have close relation with hypergeometric function. For x, y > 0, these functions are
defined by

Γ(x) =

∫ ∞
0

e−ttx−1 dt, ψ(x) =
Γ

′
(x)

Γ(x)
, B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
,

respectively. The hypergeometric function can be represented in the integral form as follows

F (a, b; c; z) =
Γ(c)

Γ(b)(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt. (1.1)

The eigenfunction sinp of the so-called one-dimensional p-Laplacian problem [18]

−∆pu = −
(
|u′|p−2u′

)′
= λ|u|p−2u, u(0) = u(1) = 0, p > 1,
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is the inverse function of Fp : [0, 1]→
[
0,

πp

2

]
, defined as

Fp(x) = arcsinp(x) =

∫ x

0

(1− tp)−
1
p dt,

where

πp = 2arcsinp(1) =
2

p

∫ 1

0

(1− s)−
1
p s

1
p−1ds =

2

p
B

(
1− 1

p
,

1

p

)
=

2π

p sin
(
π
p

) .
The function arcsinp is called the generalized inverse sine function, and its inverse function sinp :
[0, πp/2]→ [0, 1] is called generalized sine function. For x ∈ [πp/2, πp], one can extends the function
sinp to [0, πp] by defining sinp(x) = sin(πp − x), and further extension cab be achieved on R by
oddness and 2π-periodicity. The range of p is restricted to (1,∞) because only in this case sinp(x)
can be made periodic like usual sine function.

Similarly, the other generalized inverse trigonometric and hyperbolic functions arccosp : (−1, 1)→
(−ap, ap) , arctanp : (−∞,∞) → (−ap, ap), arcsinhp : (−∞,∞) → (−∞,∞), arctanhp : (−1, 1) →
(−∞,∞) are defined as follows

arccosp(x) =

∫ (1−xp)
1
p

0

(1− |t|p)−
1
p dt, arctanp(x) =

∫ x

0

(1 + |t|p)−1dt,

arcsinhp(x) =

∫ x

0

(1 + |t|p)−
1
p dt, arctanhp(x) =

∫ x

0

(1− |t|p)−1dt,

(1.2)

where ap = πp/2. Above inverse generalized trigonometric and hyperbolic functions coincide with
usual trigonometric and hyperbolic functions for p = 2.

2 Generalization of means and main result

For two positive real numbers a and b, we define arithmetic mean A, geometric mean G, logarithmic
mean L, two Seiffert means P and T , and Neuman-Sándor mean M introduced in [24] as follows,

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

L = L(a, b) =
a− b

log(a)− log(b)
, a 6= b,

P = P (a, b) =
a− b

2arcsin
(
a−b
a+b

) ,
T = T (a, b) =

a− b

2arctan
(
a−b
a+b

) ,
M = M(a, b) =

a− b

2arcsinh
(
a−b
a+b

) .
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The arithmetic-geometric mean AG(a, b) of two real numbers a and b is defined as follows: Let
us consider the sequences {an} and {bn} satisfying

an+1 =
an + bn

2
, bn+1 =

√
anbn, n = 0, 1, 2, . . .

with a0 = a and b0 = b.
In [8], Bhatia and Li generalized the logarithmic mean L and arithmetic-geometric mean

AG(a, b) by introducing an interpolating family of means Mp(a, b), defined by

1

Mp(a, b)
= np

∫ ∞
0

dt

((tp + ap)(tp + bp))1/p
, p ∈ (0,∞),

where np =
∫∞

0
dt

(1+tp)2/p
. Moreover,

M0(a, b) = lim
p→0

Mp(a, b) =
√
ab,

M1(a, b) = L(a, b) and M2(a, b) = AG(a, b).

In [26, 27], Neuman generalized the logarithmic mean L, two Seiffert means P and T , and the
Neuman-Sándor mean M by introducing the the p-version of the Schwab-Borchardt mean SBp as
follows

Lp = Lp(a, b) = SBp(Ap/2, G) =
Ap/2vp

arctanhp(vp)
,

Pp = Pp(a, b) = SBp(G,Ap/2) =
Ap/2vp

arcsinp(vp)
,

Tp = Tp(a, b) = SBp(Ap/2, Ap) =
Ap/2vp

arctanp(vp)
,

Mp = Mp(a, b) = SBp(Ap, Ap/2) =
Ap/2vp

arcsinhp(vp)
,

where

SBp(a, b) = b F

(
1

p
,

1

p
; 1 +

1

p
, 1−

(a
b

)p)−1

,

vp =
|xp/2 − yp/2|
xp/2 + yp/2

,

and Ap = Ap(a, b) is a power mean of order p.
Motivated by the work of Neuman [26, 27], Bhatia and Li [8], here we give a natural and

new generalization of L, P, T and M by utilizing the generalized trigonometric and generalized
hyperbolic functions as follows.
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Generalization of means. For p ≥ 2 and a > b > 0, we define

P̃p = P̃p(a, b) =
a− b

2arcsinp

(
a−b
a+b

) =
x

arcsinp(x)
A,

T̃p = T̃p(a, b) =
a− b

2arctanp

(
a−b
a+b

) =
x

arctanp(x)
A,

L̃p = L̃p(a, b) =
a− b

2artanhp

(
a−b
a+b

) =
x

artanhp(x)
A,

M̃p = M̃p(a, b) =
a− b

2arsinhp

(
a−b
a+b

) =
x

arsinhp(x)
A,

(2.1)

where x = (a− b)/(a+ b). By utilizing [5, Lemma 1], the above functions can be expressed in terms
of hypergeometric functions as follows,

P̃p =
A

F
(

1
p ,

1
p ; 1 + 1

p ;xp
) ,

T̃p =
A · (1 + xp)1/p

F
(

1
p ,

1
p ; 1 + 1

p ; xp

1+xp

) ,
L̃p =

A

F
(

1, 1
p ; 1 + 1

p ;xp
) ,

M̃p =
A · (1 + xp)1/p

F
(

1, 1
p ; 1 + 1

p ; xp

1+xp

) .
where x = (a− b)/(a+ b) and a > b > 0. Now we are in the position to state our main result. Our
main result reads as follows.

Theorem 2.1. For p ≥ 2 and a > b > 0, the functions P̃p, T̃p, L̃p and M̃p define a mean of two
variables a and b.

Theorem 2.2. For x ∈ (0, 1) and 1 < p < q,

1. the function f1(x) = arcsinp(x)/ arcsinq(x) is strictly increasing,

2. the function f2(x) = arcsinhp(x)/arcsinhq(x) is strictly decreasing,

3. the function f3(x) = arctanhp(x)/arctanhq(x) is strictly increasing,

4. the function f4(x) = arctanp(x)/ arctanq(x) is strictly decreasing (increasing) for x ∈ (x, x0)
(x ∈ (x0, 1)), where x0 is the unique solution in (0, 1) to the equation qxq−p+(q−p)xq−p = 0.

In particular, for 2 ≤ p < q one has
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1.
πq
πp

<
P̃p

P̃q
< 1,

2. 1 <
M̃p

M̃q

<
cq
cp

,

3. 1 <
L̃p

L̃q
<
q

p
,

4.
T̃p

T̃q
< (>)

bq
bp

for x ∈ (0, x0)(x ∈ (x0, 1)), where x = (a − b)/(a + b), (a > b > 0), a, b are the

arguments of means, i.e. T̃r = T̃r(a, b), and

bp = arctanp(1) =
1

2p

(
ψ

(
1 + p

2p

)
− ψ

(
1

2p

))
= 2−

1
pF

(
1

p
,

1

p
; 1 +

1

p
;

1

2

)
, (2.2)

cp = arcsinhp(1) =

(
1

2

) 1
p

F

(
1,

1

p
; 1 +

1

p
,

1

2

)
.

Theorem 2.3. For a > b > 0 and x = (a− b)/(a+ b), the following inequalities hold true,

P̃pM̃p ≤ (P̃2p)
2 ≤ k(x, p)P̃pM̃p, (2.3)

where

k(x, p) =
((1 + xp)2/p + (1− xp)2/p)2

4(1− x2p)1/p
.

Theorem 2.4. For a > b > 0 and x = (a− b)/(a+ b), the following inequalities

1

P̃p
+

r

M̃p

≤ r + 1

P̃2p

, (2.4)

and

(P̃2p)
2p

(
1

(P̃p)p
+

1

(M̃p)p

)
≤ R(x, p), (2.5)

hold true, where

r = r(p, x) =
(1 + xp)

(1− xp)

1/(2p)

,

R = R(x, p) = [(1− x2p)1/(2p) + (1− x2p)−1/(2p)]1/(2p)/22p−1.

Theorem 2.5. For a > b > 0 and x = (a− b)/(a+ b), one has,

AL̃2p ≥ T̃pL̃p, (2.6)

A2

T̃pL̃p
− A

L̃2p

≤ x2p

4(1− x2p)
. (2.7)
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Theorem 2.6. For a > b > 0 and x = (a− b)/(a+ b), one has,

4(1 + xp)(1 + xp/(p+ 1))

(xp + 2)2
≤ T̃p

A
≤ 1 +

xp

1 + p
, (2.8)

and
4(1− xp)(1− xp/(1 + p))

(2− xp)2
≤ L̃p

A
≤ 1− xp

1 + p
. (2.9)

Theorem 2.7. For a > b > 0 and x = (a− b)/(a+ b), one has,

p x

B (1/p, 1 + 1/p)
≤ A

P̃p
≤ p xB(1/p, 1 + 1/p)(2− xp)2]

4(1− xp)B(1/p, 1 + 1/p)]
(2.10)

and
x

j(x, p)
≤ A

M̃p

≤ x(1 + (1 + xp)1/p)

4j(x, p)(1 + xp)1/p
, (2.11)

where j(x, p) =
∫ x

0
(1 + tp)1/pdt.

The paper is organized as follows. In section 1, we give the definition of the special functions
involved in our formulation. Section 2 is dedicated to the definition of new means and the statement
of the main result. Section 3 consists of preliminary earlier and related results, which will be used
in the proving procedures sequel. Section 4 gives the proof of the main result.

3 Preliminaries and lemmas

Lemma 3.1. [3, Theorem 2] For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous on [a, b],
and be differentiable on (a, b). Let g

′
(x) 6= 0 on (a, b). If f

′
(x)/g

′
(x) is increasing (decreasing) on

(a, b), then so are
f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f
′
(x)/g

′
(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

For the proof of the following lemma, see [6, Theorem 2.1].

Lemma 3.2. For x ∈ (0, 1),

1. the function p 7→ arcsinp(x) and p 7→ arctanhp(x) are strictly decreasing and log-convex on
(1,∞). Moreover, p 7→ arcsinp(x) is strictly geometrically convex on (1,∞).

2. The function p 7→ arctanp(x) is strictly increasing and concave on (1,∞).

It is easy to observe that the function p 7→ arcsinhp(x) is strictly decreasing on (1,∞).

Lemma 3.3. We have

1. The function f(t) = (1 + tp)−1 is strictly decreasing for t ∈ (0, 1),

2. The function g(t) = (1− tp)1 is strictly increasing on (0, 1),
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3. The function h(t) = (1− tp)−1/p is strictly increasing on (0, 1),

4. The function s(t) = (1 + tp)−1/p is strictly decreasing on (0, 1).

Proof. These are immediate consequences of definitions. q.e.d.

For easy reference we recall some well-known inequalities from the literature as follows.

Cauchy-Bouniakowski inequality. If f, g : [a, b]→ R are integrable, then(∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

f(x)2dx

∫ b

a

g(x)2dx. (3.1)

Pólya-Szegő inequality. If f, g : [a, b]→ R are integrable, and for all x ∈ [a, b]

0 < α < f(x) < A, 0 < β < g(x) < B,

then ∫ b
a
f(x)2dx

∫ b
a
g(x)2dx(∫ b

a
f(x)g(x)dx

)2 ≤ K(α,A, β,B), (3.2)

where

K = K(α,A, β,B) =
1

4

(√
AB

αβ
+

√
αβ

AB

)2

.

Chebyshev’s inequality. Let f, g : [a, b] → R be integrable. If f and g have same type of
monotonicity, then ∫ b

a

f(x)dx ·
∫ b

a

g(x)dx ≤ (b− a)

∫ b

a

f(x)g(x)dx. (3.3)

If f and g have distinct type of monotonicity, then∫ b

a

f(x)dx ·
∫ b

a

g(x)dx ≥ (b− a)

∫ b

a

f(x)g(x)dx. (3.4)

Grüss inequality. If f, g : [a, b]→ R are integrable, and for all x ∈ [a, b]

0 < α < f(x) < A, 0 < β < g(x) < B,

then ∣∣∣∣∣(b− a)

∫ b

a

f(x)g(x)dx−
∫ b

a

f(x)dx ·
∫ b

a

g(x)dx

∣∣∣∣∣ ≤ (b− a)2

4
· (A− α)(B − β). (3.5)

Minkowski’s inequality. Let f, g : [a, b]→ R be integrable and f, g > 0. Write
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ht(f) =

(∫ b

a

f(x)tdx

)1/t

.

Then one has
ht(f + g) ≤ ht(f) + ht(g), for t ≥ 1, (3.6)

ht(f + g) ≥ ht(f) + ht(g), for t ≤ 1. (3.7)

Diaz-Metcalf inequality. Let f, g : [a, b]→ R be integrable and suppose that there exist constants
m and M such that

m ≤ g(x)/f(x) ≤M.

Then one has ∫ b

a

g2dx+m ·M ·
∫ b

a

f2dx ≤ (m+M) ·
∫ b

a

fgdx. (3.8)

4 Proof of main result and corollaries

Proof of Theorem 2.1. It is enough to prove that for p ≥ 2 the following inequalities

L ≤ L̃p < P̃p < A < M̃p < T̃p ≤ Q (4.1)

hold true, where Q = Q(a, b) =
√

(a2 + b2)/2 is root square mean. For p > 1 and x ∈ (0, 1), the
following inequalities

arctanp(x) < arcsinhp(x) < arcsinp(x) < arctanhp(x)

(see [13, Lemma 9]) imply that
L̃p < P̃p < M̃p < T̃p. (4.2)

It is sufficient to prove that L̃p and T̃p are means. Since P̃p < A, and from the monotonicity of
x/arcsinhp(x) we get Mp > A, so (4.2) can be completed as:

L̃p < P̃p < A < M̃p < T̃p, p > 1.

Clearly, arctanhp(x) ≤ arctanh(x). Thus x/arctanhp(x) ≥ x/arctanh(x) for x ∈ (0, 1), implying

that L̃p/A ≥ L/A, so L̃p ≥ L. Let x = (a − b)/(a + b), then it is easy to see that one has the
following identity

Q

A
=
√

1 + x2.

The last inequality T̃p/A < Q/A =
√

1 + x2 in (4.1) can be written as x/arctanp(x) <
√

1 + x2, or
equivalently, ∫ x

0

1

1 + tp
dt >

x√
1 + x2

.

Since 1+tp ≤ 1+t2 (by p ≥ 2 and t ∈ (0, 1)), we get 1/(1+tp) ≥ 1/(1+t2), so actanp(x) ≥ arctan(x).
Thus

x

arctanp
(x) ≤ x

arctan(x)
=
T

A
<
Q

A
,
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by the known inequality T < Q. Therefore, T̃p < Q, since we have also T̃p ≥ T , one has T ≤ T̃p < Q,
with equality only for p = 2. This completes the proof of (4.1). �

Corollary 4.1. For p ≥ 2, x, y > 0 with x 6= y, we have

x+ y

2
(

1− α log
(

1−
(
x−y
x+y

)p)) < L̃p(x, y) <
x+ y

2
(

1− β log
(

1−
(
x−y
x+y

)p))
and

x+ y

2
(

1 + α log
(

1 +
(
x−y
x+y

)p))u < M̃p(x, y) <
x+ y

2
(

1 + β log
(

1 +
(
x−y
x+y

)p))u
where

α = 1/p, β = 1/(1 + p), u =

(
1 +

(
x− y
x+ y

)p)−1/p

Proof. Proof follows easily from [13, Theorem 2]. q.e.d.

The proof of following three corollaries follow easily from [5, Theorem 1], Lemma 3.2, and [6,
Corollary 2.2], respectively.

Corollary 4.2. For p ≥ 2, x, y > 0 with x 6= y, we have

p

√
1−

(
x− y
x+ y

)p
P̃p(x, y) < L̃p(x, y) <

P̃p(x, y)

A(x, y)p−1
.

Corollary 4.3. For p ≥ 3, we have the following Turán type inequalities for the means P̃p, L̃p, T̃p,

P̃ 2
p > P̃p−1P̃p+1,

L̃2
p > L̃p−1L̃p+1,

T̃ 2
p < T̃p−1T̃p+1.

It also follows from Lemma 3.2 that for p, q ≥ 2, we have

P̃√pq ≥
√
P̃pP̃q,

where equality holds for p = q.

Corollary 4.4. One has
P < P̃ 2

3 /P̃4 < P̃ 2
3 /L̃4,

L < L̃2
3/L̃4 < L̃2

3/L,

T > T̃ 2
3 /T̃4 > T̃ 2

3 /T.
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Corollary 4.5. For p ≥ 2 and a > b > 0, we have

(2/πp)A < P̃p < P2p < A.

Proof. It follows from Lemma 3.1 that the function t/arcsinp(t) is decreasing in t ∈ (0, 1). By using
l’Hôpital rule, we get limt→0(t/arcsinp(t)) = 1 and limt→1(t/arcsinp(t)) = (p sin(π/p)/π). This
implies the first inequality, the second inequality follows from Lemma 3.2, and the proof of third
inequality follows from first one. q.e.d.

Theorem 4.6. For p ≥ and a > b > 0, we have

1.
bp
cp
T̃p < M̃p < T̃p,

2.
cp
ap
M̃p < P̃p < M̃p,

3.
bp
ap
T̃p < P̃p < T̃p,

where ap = π/2, and bp and cp are as defined in Theorem 2.2.

Proof. It is easy to see from the definition (1.2) and (2.1) that the following ratios of the means
can be simplified as below:

f1(z) =

∫ z
0

(1 + tp)−1dt∫ z
0

(1 + tp)−1/pdt
=
M̃p

T̃p
, f2(z) =

∫ z
0

(1 + tp)−1/pdt∫ z
0

(1− tp)−1/pdt
=

P̃p

M̃p

,

f3(z) =

∫ z
0

(1 + tp)−1dt∫ z
0

(1− tp)−1/pdt
=
P̃p

T̃p
.

For the monotonicity of the functions fi, i = 1, 2, 3, we use the result given by Cheeger et. al [15,
p.42] that if h1, h2 : R → [0,∞) are the integrable functions, and h1/h2 is decreasing then the
function

x 7→
∫ x

0
h1(t)dt∫ x

0
h2(t)dt

is also decreasing. Clearly, the functions fi, i = 1, 2, 3 are decreasing, and the limiting values follows
easily from the definitions. This completes the proof. q.e.d.

Proof of Theorem 2.2. Let f1(x) = f(x)/g(x), where f(x) = arcsinp(x), g(x) = arcsinq(x),
x ∈ (0, 1), and 1 < p < q. Applying Lemma 3.1, for a = 0, one has that f1(x) = (f(x) −
f(0))/(g(x)− g(0)). Now, after simple computations, we get

f ′(x)

g′(x)
=

(1− xq)1/q

(1− xp)1/p
= h1(x).

Since

h′1(x) =
(xp − xq)

x(1− xq)(1− xp)
· h1(x) > 0,
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we get that h1(x) is strictly increasing in (0, 1). This implies that f1(x) is strictly increasing, too.
This fact implies the proof of part (1).

For the proof of (2), write f2(x) = f(x)/g(x) = (f(x) − f(0))/(g(x) − g(0)), where f(x) =
arcsinhp(x) and g(x) = arcsinhq(x). One has

f ′(x)

g′(x)
=

(1 + xq)1/q

(1 + xp)1/p
= h2(x).

After simple computations, we obtain

(1 + xp)(1 + xq) · h′2(x) = (xq−1 − xp−1)h2(x) < 0,

as q− 1 > 0, p− 1 > 0, q− 1 > p− 1 and x ∈ (0, 1). This means that h′2(x) < 0, so h2(x) is strictly
decreasing; implying that f2(x) is strictly decreasing.

For (3), let f3(x) = f(x)/g(x) = arctanhp(x)/arctanhq(x). One has f ′(x)/g′(x) = (1−xq)/(1−
xp) = h3(x). After simple computations, we see that

(1− xp)2 · h′3(x) = xp−1 · u1(x),

where u1(x) = (q − p)xq − qxq−p + p, here u1(0) = p > 0 and u1(1) = 0. On the other hand,
u′1(x) = q(q − p)xq−1(1− x−p). Since 1− x−p = (xp − 1)/xp < 0 (by p > 0, x ∈ (0, 1)), we get that
u′1(x) < 0. Thus u1(x) > u1(1) = 0. Therefore, h′3(x) > 0, so h3(x) is strictly increasing. This
implies that f3(x) is strictly increasing, too.

For the proof of part (4), let f4(x) = f(x)/g(x) = arctanp(x)/ arctanq(x). One has f ′(x)/g′(x) =
(1 + xq)/(1 + xp) = h4(x). After simple computations, we conclude that

(1 + xp)2h′4(x) = xp−1u2(x),

where
u2(x) = qxq−p + (q − p)xq − p.

Here u2(0) = −p, and u2(1) = 2(q − p) > 0, so u2(x) has at least a zero in (0, 1). We will show
that, there is a single such zero. Indeed, one has

u′2(x) = q(q − p)xq−p−1 + q(q − p)xq−1 > 0,

so u2(x) is strictly increasing in (0, 1). Let x0 be the single zero of u2(x) = 0. As u2(0) = −p,
clearly u2(x) < 0 for x ∈ (0, x0) and similarly, u2(x) > 0 for x ∈ (x0, 1). As h′4(x) < 0, resp.
h′4(x) > 0 in these intervals, the proof of (4) follows from the monotonicity of h4(x) and Lemma
3.1. �

Proof of Theorem 2.3. Let f(t) =
√
F (t) and g(t) =

√
G(t) in Cauchy-Bouniakowski inequality

(3.1), where F (t), G(t) > 0. Put [a, b] = [0, x], Then one gets the inequality:(∫ x

0

√
FGdt

)2

≤
∫ x

0

Fdt ·
∫ x

0

Gdt. (4.3)
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With the same notations, from the Pólya-Szegö inequality (3.2) one gets:

k(x, p)

(∫ x

0

√
FGdt

)2

≥
∫ x

0

Fdt ·
∫ x

0

Gdt, (4.4)

here k(x, p) is as defined in Theorem 2.3. Let now f(t) = (1 − tp)−1/p and g(t) = (1 + tp)−1/p.
From (4.3) and (4.4) one obtains

arcsin2p(x)2 ≤ arcsinp(x) arcsinhp(x), (4.5)

and
arcsinp(x) arcsinhp(x) ≤ k(x, p)arcsin2p(x)2, (4.6)

respectively. By definition, inequality (4.5) and (4.6) imply the proof of left hand-side and right-
hand side of (2.3), respectively. �

Proof of Theorem 2.4. Apply the Diaz-Metcalf inequality (3.8) for f(t) =
√
F (t), g(t) =√

G(t), [a, b] = [0, x], yielding∫ x

0

Gdt+M ·m ·
∫ x

0

Fdt ≤ (M +m) ·
∫ x

0

√
FGdt.

Let F (t) = (1 + tp)−1/p, G(t) = (1 − tp)−1/p. Here G(t)/F (t) = ((1 + tp)/(1 − tp))1/p, which is
strictly increasing. Thus

m = 1 ≤
√
F/G ≤ ((1 + xp)/(1− xp))1/(2p) = M.

One obtains
arcsinp(x) +M · arcsinhp(x) ≤ (M + 1)arcsin2p(x), (4.7)

this implies the proof of (2.4).
Let [a, b] = [0, x] and f(t) = (1 + tp)−1 and g(t) = (1 − tp)−1. As f(t) + g(t) = 2/(1 − t2p),

applying the Minkowski inequality (3.7) for t = 1/p, p > 1, we get

arcsinp(x)p + arcsinhp(x)p ≤ 2

(∫ x

0

A2dt

)p
, (4.8)

where A(t) = 1/(1 − t2p)1/(2p). Clearly,
∫ x

0
A(t)dt = arcsin2p(x), so for obtaining an upper bound

for
∫ x

0
A(t)2dt, we apply the Pólya-Szegő inequality for f(t) = 1/(1− t2p)1/p and g(t) = 1. Since in

this case one has 1 ≤ f(t) ≤ 1/(1− x2p)1/p, we get from (3.2)∫ x

0

A(t)2dt ≤ arcsin2p(x)2R(x, p),

By using (4.8), finally we get

xp(arcsinp(x)p + arcsinhp(x)p)

arcsin2p(x)2p
≤ R(x, p), (4.9)
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this implies inequality (2.5). �

Proof of Theorem 2.5. Apply the Chebyshev inequality (3.4) for the functions (1) and (2) of
Lemma 3.3, which are of different type of monotonicity. One obtains the following inequality

x · arctanh2p(x) ≥ arctanp(x)arctanhp(x). (4.10)

This implies (2.6). The proof of (2.7) follows if we apply the Grüss inequality for the same functions
as above and utilize relation (4.10). �

Proof of Theorem 2.6. Applying Cauchy-Bouniakowski inequality (3.1) for f(t) =
√
F (t), and

g(t) = 1/
√
F (t), we get the following inequality∫ b

a

Fdt ·
∫ b

a

1/Fdt ≥ (b− a)2. (4.11)

Applying the same notations as above for the Pólya-Szegő inequality (3.2), one obtains the inequal-
ity (called also as Schweizer inequality). Suppose that 0 < α < F (t) < A. Then∫ b

a

Fdt ·
∫ b

a

1/Fdt ≥ (b− a)2(α+A)2

4αA
. (4.12)

Let now F (t) = 1 + tp, with t ∈ [a, b] = [0, x] in (4.11) and (4.12). As α = 1, A = 1 + xp, one
obtains the following double inequality

4(1 + xp)(1 + xp/(p+ 1)

(xp + 2)2
≤ x

arctanp(x)
≤ 1 +

xp

1 + p
(4.13)

and
4(1− xp)(1− xp/(1 + p)

(2− xp)2
≤ x

arctanhp(x)
≤ 1− xp

1 + p
. (4.14)

The right side of (4.13) and (4.14) are obtained from (4.11), while the left side of (4.13) and (4.14)
are obtained from (4.12). This completes the proof of Theorem 2.6. �

Proof of Theorem 2.7. Letting tp = u one has dt = (1/p)u1/p−1du, and applying inequality
(4.11) and (4.12) for F (t) = (1− tp)1/p we get∫ x

0

Fdt = (1/p)

∫ xp

0

u1/p−1(1− u)1/pdu.

As ∫ b

a

ua−1(1− u)b−1du = B(a, b)B(a, b : x),

where B(a, b) is the beta function, and B(a, b : x) is the incomplete beta function, we get∫ x

0

(1− tp)1/pdt = (1/p) ·B(1/p, 1 + 1/p)B(1/p, 1 + 1/p : xp) (4.15)
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Applying (4.15), and utilizing (4.11) and (4.12), we get the following double inequality

p x2

B (1/p, 1 + 1/p)
≤ arcsinp(x) ≤ p x2B(1/p, 1 + 1/p)(2− xp)2]

4(1− xp)B(1/p, 1 + 1/p)]
.

This implies (2.10). For the proof of (2.11), we apply (4.11) and (4.12) for F (t) = (1 + tp)1/p and
get the following double inequality

x2

j(x, p)
≤ arcsinhp(x) ≤ x2(1 + (1 + xp)1/p)

4j(x, p)(1 + xp)1/p
.

This completes the proof of Theorem 2.7. �

We finish this paper by giving the following remark.

Remark 4.7. In [26], Neuman studied the p-version of Schwab-Borchardt mean Sp, p > 1, which
was expressed in terms of hypergeometric function as follows,

y

Sp(x, y)
= F

(
1

p
,

1

p
, 1 +

1

p
, 1−

(
x

y

)p)
, (4.16)

([27, (9)]). Here we give a proof, which leads us to formula [26, (22)]. For x > y > 0, p > 1, (4.16)
can be written as

y

Sp(x, y)
= F

(
1

p
,

1

p
, 1 +

1

p
,−wp

)
where w =

(
xp−yp
yp

)1/p

. By applying the following transformation formula (see [1, 15.3.5])

F (a, b; c; z) = (1− z)−bF
(
b, c− a; c;− z

1− z

)
,

[5, Lemma 1] and the identity arcsinhp(
p
√
tp − 1) = arccoshp(t) we get

y

Sp(x, y)
=

w

w(1 + wp)1/p
F

(
1

p
,

1

p
, 1 +

1

p
,

wp

1 + wp

)

=
arcsinhp(w)

w
=

arcsinhp

(
xp−yp
yp

)1/p

(
xp−yp
yp

)1/p

=
y arcsinhp

p
√

(x/y)p − 1

(xp − yp)1/p
=
y arccoshp(x/y)

p
√

(xp − yp
.

The case when 0 < x < y follows similarly.
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