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Abstract

Let R[n, o, p] be a crossed group ring. An induction theorem is proved for the functor G& (R,
o, p]) and the Swan-Gersten higher algebraic K-functors K;(R[m, o, p]). Using this result, a
theorem on reduction is proved for the discrete normalization ring R with the field of quotients
K: If P and Q are finitely generated R[w, o, p]-projective modules and K Qp P~ K Q, Q as
K|m, o, p]-modules, then P ~ Q. Under some restrictions on n = ( : 1) it is shown that finitely
generated R[m, o, p]-projective modules are decomposed into the direct sum of left ideals of the
ring R[rm, o, p]. More stronger results are proved when o = id.
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1 Introduction

In 1960, R. G. Swan proved [I] that for a Dedekind domain R of characteristic 0 and a finite group
7 any finitely generated projective R[r]-module is the direct sum of left ideals of R[x] if no prime
divider of (7 : 1) is invertible in R. In [I] it was also proved that this direct sum may be replaced
by the direct sum of a free R[r] module and an ideal of R[r], which generalizes the properties
of projective modules over Dedekind domains. Swan’s results were based on two theorems, each
having an independent value: on the induction theorem for the functors G(Rx) and Ko(Rw), and
on the "reduction” theorem.

In 1968, T.Y. Lam [2] proved an induction theorem for K;(Rw) and in 1973 A.I. Nemytov [3]
proved that K,,(Rm), m > 2, functors are Frobenius modules on G§(R[r]) and that the induction
theorem is valid for Swan-Gersten algebraic K-functors ([], [5]) K, (R7), m > 2. Induction theo-
rems for some kinds of algebraic K-functors of group rings were obtained in 1986 by K. Kawakubo
[6] and in 2005 by A. Bartels and W. Luck [7].

In the first section of this paper the induction theorem is generalized for Swan-Gersten algebraic
K-functors K, (R[m,0,p]) (Theorem for a crossed group ring R[m, 0, p]. In the second section,
using the induction theorem for Ko (R, o, p]) the "reduction” theorem is proved for finitely gener-
ated projective R[r, o, p]-modules if R is a discrete valuation ring (Theorem 2.1). In Section 3 we
prove the theorems on the structure of finitely generated projective R, o, p]- and R[r, p]-modules
which generalize Swan’s theorem.

Let R be a commutative ring with identity, 7 a group, o : @ — AutR a group morphism, U(R)
a set of invertible elements of R and p : m x m — U(R) be such a mapping, that

p(z,y)p(xy, 2) = p(y, 2)* p(, yz).
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Then a crossed group ring R[r, o, p] (see [8], [9]) is a free R-module with the set of free generators
7w and with multiplication
rT1reTs = 11y p(x1, T2)T122,

where 7 is the image of € 7 via a mapping m — R[rm,0,p] and 1,72 € R. If o(7) = id and p ~ 1
(i.e. p(z,y) = a(x)a(y)a(ry)~?t for some a : 7 — U(R)), then R[r, 0, p] ~ R[x].

In this paper all modules are left modules, M(A) and P(A) denote respectively the cate-
gories of finitely generated A-modules and finitely generated projective A-modules (A is a ring);
MP%(R[r,0,p]) is the category of finitely generated R-projective R[r, o, p]-modules; G (R[r, o, p])
is a Grothendieck group of the category M R[x, o, p].

Further, m will always be the finite group.

The main results of the paper are Theorems 3.1 and 3.2. These theorems were proved by author
in the particular case when p ~ 1 in [I0], [I1] and [I2]; a general case for any p was announced
in [12] and its proof was the subject of the authors doctoral thesis in 1981. These theorems are
similar to the results of Kawakubo [6] which were obtained later in 1986 for some kinds of algebraic
K-functors of group rings and particular cases of crossed group rings.

2 Inductive theorems

Let G be a category, Rings a category of rings and G : G — Rings a contravariant functor.

Suppose to each morphism i : © — 7 in G there corresponds a morphism i, : G(7') — G(m)
in Rings such that Id, = Id and (ij). = i.j. whenever ¢j makes sense in G . Let us denote
i* = G(i) : G(r) = G(x'). The functor G is called a Frobenius functor [2] if it satisfies the
Frobenius reciprocity formula

1x(1%a - b) = a - i.b.

Let Ab be a category of commutative groups. A contravariant functor K : G — Ab is called a
Frobenius module [2] on the Frobenius functor G if it satisfies the following conditions:
(i) K () is a module over G(7).
(ii) For each morphism of groups i : @ — 7 there exists a morphism iy : K(1') — K(r)
(whenever ij makes sense) such that
(i) % = inis- (2.1)

(iii) 4., 4%, ix and 7 are related to each other by the relations

ig(y-i*(a) = i.(y) - a,
ix(i*(x)-b) = x-iy(b), (2.2)

where i# = K (i), z € G(r), y € G(n), a € K(n), b€ G(r).

Let G(m) denote a category whose objects are all subgroups 7 C 7 and morphisms are monomor-
phisms i : @ — 7 . Then the functors G§ (S[—]) and K,,(R[—,0,p]) (o and p are defined respec-
tively on 7 and 7 x 7 and are fixed for the category G(m)) are contavariant functors from the
category G(m) to the categories Rings and Ab respectively.

It is known [I] that G§(S[n]) is a Frobenius functor.

Let us denote R™ = {r € R|(Vz € m)r* =r}.




On algebraic K-functors of crossed group rings and its applications 3

Theorem 2.1. Let R™ be an algebra over the commutative ring S with identity. Then the functors
GE(R[—,0,p]) and K,,(R[—,0,p]), m = 0,1,..., are Frobenius modules on the Frobenius functor
Gg (S[r)).

Let us remark that in [I0] instead of the functor GE(R[—,0,p]) it is considered a functor
GE (R[—,0,p]) - the Grothendieck group of R™-finitely generated and R™-projective R[r, 0, p]-
modules.

To prove Theorem we need some propositions.

If R™ is an algebra over S, then R is an S-algebra by the action sr = (s-1)r, 1 € R. Let us
construct the morphisms of rings

aq : R[m,0,p] = S[r] ®s R[r,0,p],

ag : R[m, 0,p] = R|m,0,p] ®s S[r]
in this way: a1 (rZ) = TQ®7rZ, az(rZ) = rZ ®Z. Then for any S[r]-module M and R[r, o, p]-module
P the modules M ®g P and P ®s M become R[r, o, p]-modules via the action
rz(m®p) = a1(rz)(m @ p) = Tm Q rTp,

rZ(p @ m) = as(rz)(m Q p) = rip @ Tm.
It is clear that the R[r, o, p]-modules M ®g P and P ®g M are isomorphic.

Proposition 2.2. If a S[r]-module M is S-projective and a R[w,0, p]-module P is R[m, 0o, p]-
projective, then M ®g P is R[r, o, p]-projective.

Proof. If M is a free S-module, then M ®g R[m,0,p| =~ @rexM @ RT as R-modules. But if {e,}
is a S-basis of M, then {Ze,} is also a free S-basis because z induces an automorphism on M.
Therefore {e, ® 1} is a free R[r, 0, p|-basis of M ®g R|[r, 0, p].

Suppose P is a RI[m, o, p]-module,such that P & P’ is a free R[m, 0, p] -module, and M is such
a S-module that M @ M’ is a free S-module. If we define the action of Sw on M as s&(m) = sm,
then (M & M') ®g (P & P') will be a free R[r, o, p]-module and since

(MeM)os(POP)~(MesP)® (M ®sP)®(MesP)d (M @¢P),
(M ®g P) will be R[r, 0, p]-projective. Q.E.D.

Proposition 2.3. Let R™ be an algebra over S, 7 Crma subgroup, M € Sm — Mod, M €
St — Mod, P € R[r,0,p] — Mod and P € R[n ,0,p] — Mod. Then there exist isomorphisms of
R[r, 0, p]-modules

b)R[’ﬂ', a, p] ®R[7rl7z7,p] (Ml ®s P) = (R[Tno-a p] ®R[7r/,¢77p] M/) ®s P. (23)

a)R[Wa g, P] ®R[7r',o,p] (Pl Xs M) =~ (R[’]T,(T, P] ®R[7r',a,p] Pl) ®s M, (24)

The modules on the left side in the brackets and on the right sides are endowed with the structure
of R[m, 0, p]-modules in the case a) by ay and in the case b) by as. The left sides are endowed with
the structure of R, o, p]-modules by multiplication by R[r, o, p].
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Proof. In the case a) the isomorphism is constructed by the inverse mappings
rz@(p ®m) = (ri®p) ®zm,

(rz@p)em—ri® (P ©z 'm).

In the case b) the isomorphism is constructed by the inverse mappings
rz® (m ®@p) = (rz@m’) @ rap,

(sz® m/) QP —=>TT® (m/ ® sz 'p).

Q.E.D.

Proof of Theorem [2.1] Let © C 7 bea subgroup and let i : © = 7 be an imbedding. Let us
consider the additive functors

I*# : P(R[r,0,p]) = P(R[x ,0,p]), I*(P)= Respiz.o,P;

’

Ly : P(R[n ,0,p]) = B(R[r,0,p]), L4(P) = Ind(P") = Rlz,0,] @ iz 5, P
For any module M € M® (S[x] assume
Ju(P) =M ®s P, P€P(R[r,0,p]),

Jy(P)=M®s N, NeM"(Rlr,a,p).

From Proposition [2.2]it follows that the functors Ju;(—) and Jy,(—) take the values in the cat-
egories P(R[x, o, p]) and M (R[r, 0, p]), respectively. It is known that Swan-Gersten’s K-functors
K., (R[m,0,p]) and Quillen’s K-functors are isomorphic. Therefore from [13] it follows that the
functors I#, Iy, Jyr and J]/W define the morphisms of abelian groups

i#*

% K(Rlm,0,p]) = Kn(R[7 0, p]),m > 0;

i K(R[7 0, p]) = Km(RIr, 0, p]),m > 0; (2.5)
Jm : G3(S7) ® K (R[7 ,0, p]) = Km(RI[x', 0, p]),m > 0;
do : G§(Sm) @ GE(R[x', 0, p]) = GH(RI[x ', 0, p]),m > 0,

Let us recall that the existence of morphisms 4,, and i} for m > 2 follows also from [2]. Using
the of results from [I3] and [3] it is easy to show that conditions (2.1)) and (2.2) for morphisms (2.5))

are consequences of isomorphisms (2.3]) and (2.4)).
Suppose M is some family of objects from G. Let us denote for m € G

K(r)y =Y {Im(iy: K(x') = K(m))li: 7 — 7 CM}.

Let A C B be abelian groups. A natural number n is called an index of Ain BifnB C A. q.E.D.
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Theorem 2.4. Let c(m) be a set of all cyclic subgroups of the group 7. Then K,,(R[r,a, p])c(r)
and GF(R[r, 0, p])e(x) have the index n? in K, (R[r,0,p]) and GF(R[r, 0, p]), respectively for all
m > 0. If R™ is an algebra over the field, then n? may be replaced by n.

Proof. Tt is known that an index of K (7)ys in K () is equal to an index of G(7)s in G(w) if K is
a Frobenius module over a Frobenius functor G. Therefore by Theorem 1.1 it suffices to prove our
statement for the functor G§(S7). Suppose in Theorem 1.1 we have S = Z. Then the first part of
our statement follows from the fact that an index of G§ (Z7)c(r) in G§ (Z7m) isn? [I]. If S=kis a
field, in [I] it was proved that an index of Go(k™)(x) in Go(k) is n. Q.E.D.

3 Reduction theorem

Let R be an integral domain with quotient field K and R[r, o, p] be the crossed group ring. It is
clear that we may construct the crossed group ring K|r, o, p] where o : 7 — Aut(K) is induced
from o :m — Aut(R) and p: 7w x 7™ — U(R) C K.

Theorem 3.1. Let R be a discrete valued ring with quotient field K and P,Q € P(R]m, 0, p]).
Suppose K ® g P ~ K ®r Q as K[, o, p]-modules. Then P ~ Q as R|r, o, p]-modules.

Remark. K{m,0,p] acts on K @g P as T(a ® p) = o® @ xp.

This theorem was proved by Swan [I] in the case o = id, p = id, i.e. for group rings.

Let us first prove several necessary assertions.

Let us remark that if m is a maximal ideal in R, then it is possible to construct in a natural
way the ring R/m][7, o, p] from the ring R[r, o, p] because from the uniqueness of the maximal ideal
it follows that o(m) C m for any o € Aut(R).

Proposition 3.2. Let R be a discrete valued ring with a field of quotients K and M, My €
M(R[m,0,p]). Suppose K®QprM; ~ K®prMs as K[, o, p]-modules. Then [M;/mM;] = [Ms/mMy]
in GF(R/m]r, o, p]).

Proof. Let t be a generator of the ideal m. Then for any x € 7 there is t* = tu for some invertible
u € R. Therefore if M € M(R[m,0,p]), then tM € M(R[r,0,p]) and K @r M ~ K ®p tM as
Km0, p]-modules. Indeed, if m = tm/ € tM, then m = ztm = t*zm’ = t(uzm') = tm" € tM.
Similarly, if t"M; C M, C My, then M, = {m € Mi|t""'m € M, is again a finitely generated
Rlr, 0, pl-module and K @x My ~ K @ M, as K[r, 0, p]-modules.

Let mM; C My C M; (note that mM; = tRM; = tM;). Denote T = My/M;, M; = M;/mM,;.
It is clear that T is also the R/m[r, o, p]-module. Let us construct a sequence

0T -5y T -0, T -5 T -0,

where ¥(mq + M) = tmy + tMs, a(es +tMy) = e + tMy, ¢(e1 + tM;) = e; + My. This sequence
is exact, therefore [M;] = [Mz] in Go(R/m]r, o, p]). In particular [M] = [tM] in Go(R/m][r, o, p]),
because tM C tM C M. Taking this into account, because all modules are finitely generated, we
may conclude that M C M; and there exists an integer n > 0, such that " M; C Ms. Indeed, let us
identify M7 and Mj and the corresponding R[w, o, p]-modules in K ® g M} ~ K ® g My. Then there
exists k > 0 such that My C t*M;. There is: [tKM,] = [tk~1M,] = ... = [tM;] = M;. Therefore,
without loss of generality, we may assume that My C M;. Analogously we proceed with respect to
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the second assumption. Hence t"M; C My C M. Let us denote Ml/ ={m € My|[t"'m € M,}.
There is tM; C M; C My, t"’lM1 C My C M. The induction on n proves our statement because

we have already proved that [M;] = [M;]. QE.D.

Corollary 3.3. There exists a homomorphism
GO(K[T(a g, p]) - GO (R/m[ﬂ-v g, p])

Suppose E € M(K|[r,o0,p]) and E ~ K®pr M, where M € M(R[r, 0, p]). Then from Proposition
follows that the mapping [E] — [M/mM] is well defined.

Proposition 3.4. Suppose that the conditions of Theorem are satisfied and the Cartan map-
ping

X : Ko(R/mlm, 0, p]) = Go(R/m][r, o, pl),
which is induced by the embedding P(R/m|m, o, p]) = M(R/m[r, 0, p]) is a monomorphism. Then
the conclusion of Theorem B.1]is true.

Proof. Let us consider the R/ml|m, o, p| as R[r,o,p]-module by the epimorphism R[r,0, p) ELZN

R/mir,0,p|. Since P/mP ~ R/mir,0, p| ®g[r.0,0 P and P is projective over R[r, o, p|, we have
that P/mP is projective over R/ml|r, o, p]. Similarly, Q/m@ € P(R/m]|r, o, p]). Cosequently,

[P/mP],[Q/mQ] € Ko(R/ml[r,0,p]).
Proposition 2.2 implies [P/mP] = [Q/mQ)]) in Go(R/m[r, 0, p]). This means that x([P]) = x([Q]).

The mapping X is monomorphic, and therefore [P] = [Q] in Ko(R/m[r,c,p]). Therefore P &
F ~ Q @ F for some free finitely generated R/m(r, 0, p]-module F. R/m is a field, therefore
R/m[w o,p] is an Artinian ring and the Krull-Schmidt theorem holds for it and consequently

~ @ as R/m[r, 0, pl- modules. Let f" P — @ be any R/m|r, 0, pl-isomorphism of R/mlr, , p]-
modules We may consider f as an isomorphism of R[r,o,p]-modules by the epimorphism ¢.

Consider the diagram in M (R[r, g, p])

P - P/mP — 0
Lf Lf
Q — Q/m@Q — O
Since P is R|[m, o, p]-projective and is mapped on Q/m@), there exists a R[r, o, p]-morphism f
such that diagramm (6) is commutative. Then we have f(P) + m@ = Q. But m = rad(R) and
by the lemma of Nakayama f(P) = @, i.e. f is an epimorphism. Since @ is projective and f is
epimorphic, therefore P ~ (Q ® Kerf. Hence Kerf = Q/ is projective and finitely generated. From
it follows that Q//mQ' C Kerf. From Kerf = 0 it follows that Q'/mQ/ = 0 and again
from the lemma of Nakayama it follows that Ql = 0, i.e. f is an isomorphism. The theorem is
proved. Q.E.D.

Since R/m is the field, by Proposition to prove Theorem it suffices to prove
Theorem 3.5. Let k be the field. Then the Cartan homomorphism

X : Ko(k|m,0,p]) = Go(k[r, 0, p]).

is injective.
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Proof. Since by Theorem 1.1 Ky(k[r, o, p]) and Go([r, o, p]) are Frobenius modules over the Frobe-
nius functor Go (k™ [n]), the Kerx functor will also be a Frobenius module over Go(k™[r]). Therefore
an index of (Kery)q(r) in Kery is equal to an index of Go(k™[7])s(x) in Go(E™[n]), namely it is
n = (m : 1). This means that nKery C (Kerx)c.r). The ring k[r, 0, p] is Artinian and therefore
Ko(k[r, o, p]) and its subgroup Kery are finitely generated free commutative groups. If we proved
that x is monomorphic for cyclic groups, then we would have that (Kerx)c) = 0 and nKery = 0.
From the freeness of the group Kery it would follow that Kery = 0. But if 7 is cyclic with a
generator a, then k[m, o, p] ~ k[z, o]/(z™ — ), there k[z, o] is a ring of skew polynomials of x and
o is the automorphism o(a) € Aut(k), n = (v : 1) and o € k™. The ring k[z, 0] is a principal (non-
commutative) ideal domain, o has a finite index and any ideal in k[z, o] is bounded [8]. Therefore
from the next theorem it follows that x is monomorphic for a cyclic group m Q.E.D.

Theorem 3.6. Let A be a (noncommutative) principal ideal domain, in which each ideal is
bounded. If I C A is a two sided ideal, Ko(A/I) and Go(A/I) are Grothendieck groups of the
categories P(A/I) and M (A/I) respectively, then the Cartan homomorphism

X : Ko(A/I) = Go(A/T)
is injective.

Proof. So A is a noncommutative integral domain in which any right and left ideal is principal. We
say that two elements a; and as are similar if A/a; ~ A/ay as A-modules. An ideal is bounded if
it contains a nonzero two sided ideal, and such a maximal ideal is called a boundary of A.

We recall that since A/I is Artinian, Go(A/I) is well defined.

We will carry out the proof in several steps.

Step 1. I = Aa* splits into the product of coprime maximal two sided ideals (the asterisk over
the letter indicates that we deal with the generator of the ideal):

I = A = (Ap})" (Ap3)..(Apl)°r.

Step 2. It is clear that
Ko(A/T) = &i_ Ko(A/(Ap;)™),

Go(A/T) ~ &i=1Go(A/(Ap;)*)

and these isomorphisms and x commute with each other. Therefore it suffices to prove that y is
monomorphic if I = A/(Apx*)°.

Step 3. J = Ap*/(Ap*)¢ is a radical of the ring A = A/(Ap*)® and A/J ~ A/Ap*.

Step 4. Since the radical of the ring A = A/(Ap*)¢ acts trivially on simple modules, simple
A = A/(Ap*)¢-modules will be simple as modules over A = A/(Ap*). But because A = A/(Ap*) is
a simple ring, simple modules are direct summands of the ring A = A/(Ap*).

Step 5. Using Zorn’s lemma it is easy to prove that Ap* is contained in some maximal ideal Ap.
If Ap D Ag* O Ap*, then Ap* = Aq* since Ap* is maximal, i.e. Ap is the boundary of the ideal Ap.
Since Ap is the maximal left ideal, A/Ap is a simple A-module. From Theorem 3.20, [8] it follows
that A/Ap* splits as an A-module into the direct sum of simple A-modules, which are isomorphic
to A/Ap:

AJAP* ~ @;Aq;i/Ap*, Aqi/Ap* ~ A/Ap.
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Therefore the direct summand Ag;/Ap* is indecomposable as an A-module and, consequently, as
an A/(AP*)¢-module. Since A/AP* is a simple ring, it has a single simple module, i.e. all Ag;/Ap*
are isomorphic as A/AP*-modules. Let ¢ be one of ¢;. We may conclude that Ag;/(Ap*)¢ has the
single simple module Aq/Ap* which is A-isomorphic to A/Ap.

Step 6. Let us find all indecomposable projective Ag;/(Ap*)¢-modules. Since Ag;/(Ap*)© is
Artinian, such a modules are exhausted by the direct summands of Ag;/(Ap*)¢. Further, as follows
from the proof of Theorem 3.21, [§], Ag;/(Ap*)¢ splits as a A-module into the direct sum of
indecomposable A-modules, which is isomorphic to the A-module A/p1ps...pe:

Aq;/(Ap*)°© £ DAr; [(Ap*)°, Ar;/(Ap*)¢ =~ A/p1p2...De.

Therefore if r is one of r; then A/(Ap*)¢ has a single indecomposable projective module Ar/(Ap*)e,
which is isomorphic to A/p1ps...pe-

Step 7. From steps 5 and 6 it follows that Go(A/(Ap*)¢) and Ko(A/(Ap*)¢) are free commutative
groups with one generator; the generator for Go(A/(Ap*)¢) is [Ag/Ap*], and the generator for
Ko(A/(Ap*)©) is [Ar/Ap*]. Tt is clear that (Ap*)¢ = A(p*)°. Since A(p*)® C Ar, we have (p*)¢ =
r'r. Therefore, as A-modules

Ar/Ap* = Ar/Ar'r ~ AJAr .

So A/Ar/ ~ A/Ap1ps...pe, therefore r o= pllp'z...pll, p; ~p.
For Ar/(Ap*)¢ there exists a composition row of A/(Ap*)¢-modules

Ar[(Ap*)® = Ar/pi1py..p.r D Ap.r/D1Po- Pl 2 oo 2 Ao /P1Ds-.-DeT 2 0

whose factors are A-isomorphic to an A-module A/Ap. Tt is clear that all these factors are A/(Ap*)°-
isomorphic to the simple module Aq/Ap*. Therefore

X([Ar/(Ap*)°]) = [Ar/(Ap®)] = e[Aq/Ap]
and x is monomorphic. Q.E.D.

4 Projective modules

Let w be a subgroup of @ which contains just an elements of m which acts trivially on R, i.e.
w=Ker(o:m— Aut(R)). If o(7) = id, then we denote R[r, 0o, p] := R|[m, p].

Theorem 4.1. Let R be a Dedekind domain of characteristic zero. Suppose that no one divider
of n = (7 : 1) is invertible in R, and o : 7 — Aut(R) is a morphism such that (i) R is projective
over R™;

(i) if p € spec(R), pl(n), then o(r)(p) C p;

(iii) ¢of p is a prime divider of (n), p € p € spec(R) and 7y, is a Sylov p-subgroup of w, then m,
acts trivially on R/p;

(iv) p(m x m) € R™. Then any finitely generated projective R[m,o, p]-module splits into the
direct sum of left ideals of the ring R, g, p].

For the particular case o(7w) = id, we may prove a stronger result.
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Theorem 4.2. Let R be the Dedekind domain of characteristic zero. Suppose that no one divider
of n = (m : 1) is invertible in R. Then any finitely generated projective R[m, p]-module is the direct
sum of the free R[m, p]-module and left ideal I C R[m,p]. For any nonzero ideal j C R we may
choose an ideal I in such a way that I and j would be coprime ideals.

Let us denote RNI = (I : R[x,p]) = {r € R|rR[r,p] C I}.
First, we must prove some useful propositions.
Let us denote (w: 1) = h. It is clear that n = hm and o(z)™ = id for any = € 7.

Lemma 4.3. Suppose k is a field, char(k) = p, 7 is a cyclic group, (p,h) = 1, and p(w x w) C k™.
Then any simple k[r, o, p]-module splits as a k™ [w, p] module into the direct sum isomorphic simple
k™[w, p] modules: M = N® N ®N @ ...® N. The relation M — N induces a bijection between
the isomorphism classes of simple k[r, o, p] and simple k™ [w, p] modules.

Proof. Tt is clear that k[r, o, p] ~ k[z,o]/(z™ — a), where m = (7 : w), a € k™\0. It is known
that two-side ideals of k[z, o] are generated by elements of the form x'p(z™7), where ¢(z) € k™ (z),
v € k. Since a # 0, two-sided maximal ideals which divide the two-sided ideal k[z,o]/(z™" — )
must have the form p(z™)k[z, o], where p(z) € k™[] and () is indecomposable in k7 [x]. Le.

(™" — @) = (@1 (z™)" ... (or(z™)77),

where if ¢ # j, then ¢;(z™) % ¢;(z™). Since (p,h) = 1, the rings k[r,o,p] and k™|w,p] are
semisimple [§]. Thus i1 = ... = i,, = 1. Therefore

klz, 0]/ (2™ — ) = k[z, 0]/ (p1(2™)) © ... ® K[z, 0]/ (pr(2™)).

Since k[x,0]/(p;i(x™)) is a simple ring, it has a single simple module M; and M; # M, for different
¢ and j. On the other hand,

K [w, p] = k™[, 0]/ (2™ — @) = k"[x,0]/(¢1(2)) & ... ® k" [z, 0]/ (¢r ().
The fields N; = k™[z]/(¢(z)) are simple k™ [w, p]-modules. From the embedding

k(2] /(p(2)) = K[z, 0]/ (pi(z™), [f(2)] = [f(«™)]

it follows that k[x,o]/(p(z™) is a free k™[z]/(p;(z))-module with a basis [a;z*], j = 1,2,...,m,
k=0,1,..,m — 1, where ai, ..., a, is a k™-basis of the field k. Therefore k[z,o]/(p;(x™)) splits
as a k™|w, p]-module into the direct sum of k™ [w, p]-modules which are isomorphic to the k™|w, p]-
module N;. Since M; is the direct summand of k[z, o]/(p;(z™)), by the Krull-Schmidt theorem M;
splits too as a k™[w, p]-module into the direct sum of k™[w, p]-modules which are isomorphic to a
simple k™ [w, p]-module N;. The correspondence M; — N; proves the lemma. Q.E.D.

Proposition 4.4. Let R be an integral domain with quotient field K, such that char(k) = p,
(p,h) =1, p(w x w) C U(R™), R is projective and finitely generated over R™ and the following
condition holds: (*) For any cyclic subgroup wy C w and any Q1, Q2 € P(R™|w, p|) from rkx~Q1 =
rki=Q2 it follows that K™ Qpr Q1 ~ K™ Qg Q2 as K™[wo, p]-modules. Then for any P, Py €
P(R[m,0,p]) from rkg (P1) = rkx(Pz) it follows that K @ g P ~ K Qg P» as K|, 0, p]-modules.
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Proof. R™ C R is an integral extension of rings and K ~ K™ ®p~ R. Therefore K ®p P ~
K™ @pr R®Qr P ~ K™ ®p~ P. Consequently, rkx(P1) = rkx(Ps) =~ rkg~(P1) = rkg~(P2). Let
mo C m be a cyclic subgroup. Let us denote wy = Ker(c : mg — Aut(R)). Since R|wo,p] =~
R™[wo, p] ®r= R as R|wp, p]| modules, Rlwy, p] is projective as a R™[wy, p]-module. Since R[r, o, p)
is free over R|wo,p|, R[m,0,p] is also projective over R|wg,p]. Therefore Py, P, € P(R]m,0,pl),
we have Pi, P, € P(R™[wp, p]). By the condition rkx(P1) = rkx(P2). As we have already noted
rkg=(Py) = rkg=(P2). Then by the condition (*) we have K™ Qp- Py ~ K™ Qg~ Ps as K™ [wg, p]-
modules or, what is the same, K ® g P, ~ K @ P> as K™ [wy, p])-modules. If we suppose in Lemma
4.3 that m = 7y, w = wo, it follows that K ®r P; and K ®g P> contain N; as a direct summand
the same number of times (recall that K[, o, p], K™|w, p], K[, 0, p] and K™ |wy, p] are semisimole
rings). By Lemma 4.3 N; is contained as a direct summand only in M;, and M; does not contain
other summands. Therefore K ® g P; and K ® g P, must contain M; as a direct summand the same
number of times. Therefore K ® g Py ~ K ®pr P5 as K|, 0, p]-modules. Suppose y; is a character
of K[r,0,p]-modules K ®r P, i=1,2,a= ) . 7 and 7, C 7 is the cyclic subgroup generated
by z. Then K @ P, ~ K ®p P, as K[r, 0, p])-modules and therefore x1(a,Z) = x2(a,Z). Hence
x1(a) = x2(a). From the equality of characters it follows that K ®p Py ~ K ®p P2 as K|m, 0, p]-
modules. Q.E.D.

Lemma 4.5. Under the conditions of Theorem 3.1 the rank rkg (P) is divided into n.

Proof. Let n = [[p*». Then (m, : 1) = pt*». p is not convertible in R, therefore there exists p €
spec(R) such that p € p. The group m, acts trivially on R,. Therefore R/p[r,,5,p] = R/p[mp, p|.
R/p is a field of characteristic p > 0 and , is the finite p-group, thus R/p[m,, p] is a local ring [14].
Consequently, the module P/pP is not only projective, but also free over R/p[mp, p|. Therefore
pi|(P/pP : R/p). Since R is the Dedekind domain, we have p4|rkg (P). Since that is true for all
p|n, we have n|rkg (P). Q.E.D.

Theorem 4.6. Under the conditions of Theorem 3.1 the module K ®p P is free over K|r, o, p).

Proof. Let us first prove the theorem for the cyclic group w. More precisely, we must prove that if
7 is a finite cyclic group, o(r) = id, R is the Dedekind domain of characteristic 0, prime dividers
of n are not invertible in R and P € P(R|[r, p]), then the module K ®p P is a free R[m, p]-module.

Step 1. Let M be any simple R[m, p]-module. From char(K) = 0 it follows that K|[m,p] is a
semisimple K-algebra. Suppose that K ®g P contains M n-times as a direct summand. Then
Homgr (M, K ®g P) is isomorphic to the direct sum of r summands, which are isomorphic to
Hompg (M, K). The consideration of bases and comparison of dimensions show that the mapping
o(f @ v)(m) := f(m)(v), where v € K ®p P, is an isomorphism of K-modules

0: M*®kg (K®grP)~ Homg(M,K ®g P).

Step 2. It is clear that M* @k (K ®g P) is a K[r]-module if we suppose z(f ®@v) = f2~' ® v,
where z € K[r] and z,z~! € K|[r, p|. Similarly, Homg (M, K ®g P) is a left K[r]-module via the
action (zf)(m) = zf(z~1m) and

Homg(M,K @p P)" :={f € Homg(M,K ®g P)|(Vz € m)zf =z} =

= HOTnK[W,p](M,K(@R p).
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Let us prove that ¢ from Step 1 is an isomorphism of left K [r]-modules:
p(z(f@v))(m) = p(fr~ @ zv)(m) = f(z~'m)iv =

= zf(z7'm)v = [z¢(f ® v)](m).
Therefore
HomK[ﬂ)p](M,KQ@R P) ~ [M* RK (K XRr P)]W

Step 3. In our conditions there exists a finitely generated R][m,p]-module @ such that Q is
projective, i.e. it is torsion-free over R and M ~ K ®p Q. Indeed, suppose 0 # m € M. Let
Q = R[m,plm C M; it is clear that M ~ K ®g @ because M is a semisimple R[m, p]-module. If
g€ Qand rq=0,r € R, then r~1(rq) = ¢, i.e. Q is torsion-free over R. Since R is a Noetherian
ring and @ is a finitely generated R-module, then M* ~ (K®rQ)* ~ K®@rQ*, Q* = Homg(Q, R).
Therefore by Lemma 8.2 [, from step 2 it follows that

HomR[,T,p}(M,KQ@R P) ~ (K ®R Q* ®R P)ﬂ' ~ K®R (Q* ®R P)ﬂ-,

where R[r] acts on Q* @ P as z(f ® p) = f7~! @ Zp.
Step 4. Q* ®g P is a R[rn]-projective module. Then by Lemma 8.3, from [I] we have

1 1
Q" @ P)T = ~rh(@" @n P) = ~rk(Q)rk(P)
where rk(M) = dimg (K @ M), M € R — Mod. Consequently,
1
ﬁrkz(Q)rk’(P) = dimg(Homgr ) (M, K ®g P)),

i.e. 7 depends only on rk(P). From Lemma 3.5 it follows that there exists a free R[r, p]-module F'
such that rk(F) = rk(P). Therefore M is contained in K ®p F and K ®p P the same number of
times, and, consequently, K g P ~ K Qg F, i.e. K ®g P is a free K[, p]-module.

Let us prove the theorem in the general case. It is well known that R™ is a Dedekind domain
and R is finitely generated over R™. Thus P is projective and finitely generated over R™|w, p]. As
we have already proved K ®pg P is a free R™[wq, p]-module for all cyclic subgroups wg C w. By
Proposition 3.4 K ®pg P is uniquely determined as a K[r, 0, p]-module by rk(P). By Lemma 3.5
there exists a free R[m, o, p]-module F' such that rk(P) = rk(F), therefore K g P ~ K Qr F, i.e.
K ®pg P is a free K[, 0, p]-module. Q.E.D.

Theorem 4.7. Let R be a Dedekind domain, m C R be a nonzero ideal, m = [[, p}*, p; € spec(R)
and 7(p;) C p, for alli. If P € P(R[r,0,p]) and K®Qpg P is a free K|[m, 0, p]-module, then P contains
a free module F' such that w and F' are coprime ideals.

Proof. If w = R then we may suppose that F' is equal to any free submodule of P. Let us now
suppose that w # R. Let first w = p € spec(R). By the condition K ®r P ~ K ®p, Rp, ®p P ~
K ®g, Pp is free over K[m,0,pl, i.e. K ®p, P, ~ K ®g, Fy for some free Ry[m, 0, p]-module Fy.
Ry, is a discrete valued ring. Consequently, by Theorem 3.1 P is a free Rp[m, o]-module. Since
Rp/p = R/p,

Py /(pPp) ~ Rp/p ®r, /Py ~ Rp/P @R, Ry @r P~ R, ® P ~ P/(pP).
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Therefore P/(pP) is a free (R/p)|[m, 7, p]-module.

Let us consider the general case. As we already have proved P/(p,P) are free (R/p;)[r, 7, p]-
modules for all 7. Let d(lz), ...,d,(;) be a free basis of P/(p,;P). Since rkx(P) = (P/(p,;P) : R/p;),
k1 = ko = ... = k. By the Chinese remainder theorem there exist elements r; € R such that

r; = 0i5 (modpj). Let agi) be a coimages of the elements dgi) with the respect to a morphism

P — P/(p;P). Let us denote ag = ), a;al”. Then for any 4, the images of elements in P/(p,P)
coincide with the basis agz), . d,(;).

Let F be a R[r, g, p]-submodule of P generated by elements ay, ..., a. Let us prove that F is a
free R[r, o, p]-module with a basis a1, ..., ai. Otherwise in F' there would exist a nontrivial relation
between the elements aq, ..., ax and we would have in K ® g F’ that rkx F' < nk, n = (7 : 1). On the
other hand, (F'/(p;F) : R/p;) = (P/(p;P) : R/p;) = nk because F/(pF) — P/(pP) is surjective.
But rk(F) = (F/(p;F) : R/p,), a contradiction. Thus F is a free module.

Since (F/(p;F) ~ (P/(p;P) we have (F : P)+p; = R. R is the Dedekind domain; consequently,
(F:P)+w=R. Q.E.D.

Corollary 4.8. Under the conditions of Theorem 4.7 the module P/(wP) is free over R/w(rw,d, p].
Proof. Indeed, because (F : P)+w = R, F/(wF) — P/(wP) is an isomorphism. Q.E.D.

Proposition 4.9. Under the conditions of Theorem 3.1 there exists an embedding of the module
P in the free R[r, 0, p]-module F such that (P : F)+ (n) =R, (P: F)g~ +nR™ = R".

Proof. Let us suppose in Corollary 3.8 that w = (n) = nR. In the proof of Corollary 3.8 it was
shown that F/(nRF) ~ P/(nRP). But F/(nRF) = F/(nF) = F/(nR™F) and, similarly, for P.
Therefore F'/(nR™F) ~ P/(nR™P) and (F : P)gr +nR™ = R™ because R™ is a Dedekind domain.
Therefore there exists a € nR™, b € (F : P)g~ such that a+b=1. nR™ # R™ and therefore b # 0.
From b € R™ it follows that b is contained in the center of the ring R[m, o, p]. Consequently, bP
is a R[r, o, p]-module and as P is R-torsion-free (finitely generated modules are torsion-free over
Dedekind domains), P ~ bP as R[m, o, p]-modules. bP C F since b € (F : P)r~. It is clear that
be (F: P). Let us identify P and bP. Then F will be the desired free module and bP C F' will be
the desired embedding for which (P : F)g= + nR™ = R™ and a fortiori (P : F) 4+ (n) = R. q.ED.

Proposition 4.10. Let M € M(R[r,0,p]). If anngM + (n) = R, n = (7w : 1), anngM = {r €
R|rM = 0}, then M is R[r, o, p]-projective.

Proof. By condition there exist a,b € R such that an +b = 1 and bM = 0. Let us define
(n): M - M, (n) : m — nm. Let nm = 0. Then anm + bm = 0 = m, i.e. this morphism is

injective. If m € M, then by the equality m = anm + bm = anm we have am ﬂ) m, i.e. (n)is

surjective. Therefore (n) is an isomorphism. On the other hand, R[r, 0, p] D R is a free Frobenius
extension with dual bases {Z)yer and {Z7!)yer. As we have already proved > . 2z~ ' = n is
an isomorphism and therefore from the properties of Frobenius extensions it follows that M is
(R[m, o, p], R)-projective. Q.E.D.

Proposition 4.11. Let I C R[r, o, p] be an ideal such that (I : R[m, 0, p]) + (n) = R and let R be
a Dedekind domain. Then [ is a R[r, 0, p]-projective module.
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Proof. Let us consider a R[r,o,p]-module M = R[r,0,p]/I. Since R is a Dedekind domain,
dimprr(M) < 1. Since (I : R[rm, 0o, p]) = anng(M), anng(M) + (n) = R and by Proposition 3.10
the module M is R([r,0, p|, R)-projective. Since R[r, o, p| is free over R, dimprpr o0 (M) < 1.
But then there exists an exact sequence

0—1I— R[r,0,p] = M — 0,

from which implies that I is R[m, o, p]-projective. Q.E.D.

Proof of Theorem[/-1]. Let F be the free module from Proposition 3.9 with R[r, o, p|-basis a1, as, ..., a.
Let us consider the morphisms of R[r, o, p]-modules

¢1: F — R[rm,0,p|, Zﬂiai — M1

An image ¢1(P) = I of this morphism is an ideal in R[r, 0, p]. Since rF C P = rR[n,0,p] C I,
(P:F)C (I : R[m,o0,p]). Therefore from (P : F)+(n) = R it follows that (I; : R[r, o, p])+(n) = R.
Then by Proposition 3.11 the ideal I is R[m, o, p]-projective. ¢ : P — I; is surjective, therefore
P ~ P @& I,. Now the theorem is easy to prove by mathematical induction with respect to
rki (P). Q.E.D.

Ezample for Theorem[{.1 Let d # 0 be a natural number which does not contain a square of a
prime number as a multiplier and such that d = 2 V 3(mod4). Then the ring of integers for the
field Q(v/d) will be Z([v/d]). Let us suppose that a natural number n > 0 satisfies the following
condition: If p # 2 is a prime number and p|n, then (%) =0V —1 where D = 4d is a discriminant

of the field and (%) is a quadratic residue symbol. If (7 : 1) = n, then any crossed group ring

Z[Vd|[r, 0, p] satisfies the conditions of Theorem 3.1 for any o and p.

Indeed if 2|n, then 2 = p? for some p € spec(Z[V/d)), [15]. If p # 2, p|n, then from (%) =0v-1
it follows that either (p) = p? for some p € spec(Z[V/d)) or (p) is prime in Z[v/d], [I5]. Tt is clear
that in all these cases the group Aut(Z[v/d]), o(v/d) = —/d satisfies the condition (ii) of Theorem
3.1 and a fortiori this is true for the group 7. Further, (2) = p? = Z[Vd]/p ~ F,, but F; has only

one, identity authomorphism and condition (iii) is satisfied too. Q.E.D.

Proposition 4.12. Let w C R be a nonzero ideal. Then under the conditions of Theorem 3.2 there
exists an embedding of the module P in the free R[m, p]-module F such that (P : F)+w = R.

Proof. Proved similarly to Proposition Q.E.D.

Proposition 4.13. Under the conditions of Theorem 3.2 any module P is isomorphic to the direct
sum Y I; of ideals of R, p]; in addition the ideals I; can be chosen in such a way that for all ¢

(I - R[m, p]) + w=R.

Proof. By condition, (7 :1) =n # 0 in R. Let us choose in Proposition 3.12 a free R, p]-module
with the basis a1, as,...,ar in such a way that nw + (P : F') = R. Let us consider the morphism
of R[m, p]-modules ¢ : F — R[m,pl, >, ia; — p1. The image ¢1(P) = I; is the left ideal in
R[m, p]. Since rF C P = rR[m,p| CI1, (P: F) C (I : R[m,p]). From nw + (P : F) = R it follows
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that (I : R[m,p]) + (P : F) = R and thus the ideals (n) and w are coprime with the respect to
(I : R[m, p]). Then from Proposition [£.11]it follows that I; is R[r, p]-projective. Since ¢y : P — I
is an epimorphism, P = P+ I, and the proposition is easy to prove by mathematical induction
with the respect to rkg (P). Q.E.D.

Remark 4.14. We may suppose that K ®pg I; ~ K[, p] for all i. Indeed, let w C R be an
improper ideal. Then w(R|[m, p|I;) = R[m, p]I; and by Lemma 7.4, [I] there exists a € w such that
(1 —a)R[m, p]/I; = 0. Since wR is an improper ideal, 1 —a # 0 and thus K g [ ~ K ®p R[m, p] ~
Klm, p].

Proof of Theorem[{.3 By Proposition [f.13] and Remark [I.14] it is suffices to prove the following:
let I;, I, C R[m, p] be a projective ideals such that (I; : R[m, p]) and (I2 : R[m, p]) are coprime with
the respect to w and K ®g I} ~ K ®p I ~ K|m,p|; then I) & Iy ~ R[m, p] ® I, where I C R[r, p]
is a left ideal and (I : R[m,p]) + w = R.

Let wy = (1 : R[r, p]). From Proposition it follows that there exists I, C R|r, p] such that
I, ~ I, and (I : R[x,p]) +ww; = R. Let us replace I by I,. Therefore we may assume that there
exist by € (I1 : R[m, p]) and by € (I : R[m, p]) such that by + by = 1.

Let F be the free R[m, p]-module with two free generators ey, es and V = I1ey 4+ Izes C F. Then
A~I1+Iyand (V: F)+w=R. It is clear that the elements e/l = e1b; + egby and 6/2 =e1 — e
are also free generators of F', because e; = ell + b2€l2, ey = ell - b26l2. But ell € V because by € Iy,
by € I,. Consequently, V = R[m, ple) + Iey where I = {a € R[m, p||re; € V}. It is also clear that

(I : R[m,p]) +w = R because (I : R[m,p]) = (V : F). Q.E.D.
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