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1 Introduction

In recent years applications of fractional calculus in mathematical inequalities have great impor-
tance. Many authors use fractional integrals and fractional derivatives to construct new integral
inequalities. The Hardy inequality has fundamental importance in the mathematical analysis and
lot of rich literature and information concerning Hardy-type inequalities and related results for
Riemann-Liouville operators can be found in [4], [6], [9], [12], [15], [16], [17], [18], [20] including the
references cited therein. Many mathematicians gave generalizations and improvements of Hardy’s
inequalities. In this paper, we establish some more general inequalities of G. H. Hardy for different
kinds of fractional integrals and fractional derivatives like Riemann-Liouville fractional integrals,
Caputo fractional derivative, fractional integral of a function with respect to an increasing function,
Hadamard-type fractional integrals and Erdélyi-Kober fractional integrals. We will use different
weights in this construction to obtain new inequalities of G. H. Hardy for convex functions. Such
type of results are discussed in [9](see also [6]). Our particular interest is to give inequalities of G.
H. Hardy and discover results which involve fractional integrals and fractional derivatives.

Let us recall some facts about fractional derivatives needed in the sequel, for more details see
e.g. [1], [7].

Let 0 < a < b ≤ ∞. By Cm([a, b]) we denote the space of all functions on [a, b] which have
continuous derivatives up to order m, and AC([a, b]) is the space of all absolutely continuous
functions on [a, b]. By ACm([a, b]) we denote the space of all functions g ∈ Cm−1([a, b]) with
g(m−1) ∈ AC([a, b]). For any α ∈ R we denote by [α] the integral part of α (the integer k satisfying
k ≤ α < k + 1) and ⌈α⌉ is the ceiling of α (min{n ∈ N, n ≥ α}). By L1(a, b) we denote the space
of all functions integrable on the interval (a, b), and by L∞(a, b) the set of all functions measurable
and essentially bounded on (a, b). Clearly, L∞(a, b) ⊂ L1(a, b).

Let us recall the well known definitions of Riemann-Liouville fractional integrals, see [13] and
[5].

Tbilisi Mathematical Journal 6 (2013), pp. 1–12.
Tbilisi Centre for Mathematical Sciences & College Publications.

Received by the editors: 25 April 2012.
Accepted for publication: 08 February 2013.



2 S. Iqbal, K. K. Himmelreich, J. Pečarić

Let [a, b], (−∞ < a < b < ∞) be a finite interval on real axis R. The Riemann-Liouville fractional
integrals Iαa+f and Iαb−f of order α > 0 are defined by

Iαa+f(x) =
1

Γ(α)

x∫
a

f(y)(x− y)α−1dy, (x > a),

and

Iαb−f(x) =
1

Γ(α)

b∫
x

f(y)(y − x)α−1dy, (x < b).

Here Γ(α) is the Gamma function. These integrals are called the left-sided and right-sided frac-
tional integrals respectively. It is known that the fractional integral operators are bounded in
Lp(a, b), −∞ < a < b < ∞, 1 ≤ p ≤ ∞, that is

∥Iαa+f∥p ≤ K∥f∥p, ∥Iαb−f∥p ≤ K∥f∥p (1.1)

where

K =
(b− a)α

Γ(α+ 1)
.

G. H. Hardy proved the inequality (1.1) involving left-sided fractional integral in one of his initial
paper, see [8]. The calculation for the constant K is hidden inside the proof. The inequality (1.1)
has been investigated in many ways for convex function as well as superquadratic functions (see
[9], [10] and [11]). Inequality (1.1) refers to as inequality of G. H. Hardy.

Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures and Ak be an integral
operator defined by

Akf(x) :=
1

K(x)

∫
Ω2

k(x, y)f(y)dµ2(y), (1.2)

where k : Ω1×Ω2 → R is measurable and non-negative kernel, f is measurable function on Ω2, and

K(x) :=

∫
Ω2

k(x, y)dµ2(y), x ∈ Ω1. (1.3)

Throughout the paper, we consider that K(x) > 0 a.e. on Ω1.

The following Theorem is given in [14].

Theorem 1.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures, u be a
weight function on Ω1, k be a non-negative measurable function on Ω1 × Ω2 and K be defined on

Ω1 by (1.3). Let 0 < p ≤ q < ∞ and that the function x 7→ u(x)
(

k(x,y)
K(x)

) q
p

is integrable on Ω1 for

each fixed y ∈ Ω2, and that v is defined on Ω2 by

v(y) :=

 ∫
Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)


p
q

< ∞. (1.4)
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If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality ∫
Ω1

u(x)[Φ (Akf(x))]
q
p dµ1(x)

 1
q

≤

 ∫
Ω2

v(y)Φ (f(y)) dµ2(y)

 1
p

, (1.5)

holds for all measurable functions f : Ω2 → R, such that Imf ⊆ I, where Ak is defined by (1.2).

Throughout this paper, all measures are assumed to be positive, all functions are assumed to
be positive and measurable and expressions of the form 0 · ∞, ∞

∞ and 0
0 are taken to be equal to

zero. Moreover, by a weight u = u(x) we mean a nonnegative measurable function on the actual
interval or more general set.

The paper is organized as follows: After introduction, in Section 2, we prove some new inequal-
ities of G. H. Hardy using different kind of fractional derivatives and fractional integrals.

2 The Main Results

Using Theorem 1.1, we will give some special cases for different fractional integrals and fractional
derivatives to establish new inequalities of G. H. Hardy.

We continue with definitions and some properties of the fractional integrals of a function f with
respect to given function g. For details see e.g. [13, p. 99]:

Let (a, b), −∞ ≤ a < b ≤ ∞ be a finite or infinite interval of the real line R and α > 0. Also
let g be an increasing function on (a, b) and g′ be a continuous function on (a, b). The left- and
right-sided fractional integrals of a function f with respect to another function g in [a, b] are given
by

(Iαa+;gf)(x) =
1

Γ(α)

x∫
a

g′(t)f(t)dt

[g(x)− g(t)]1−α
, x > a

and

(Iαb−;gf)(x) =
1

Γ(α)

b∫
x

g′(t)f(t)dt

[g(t)− g(x)]1−α
, x < b,

respectively.

Our first result involving fractional integral of f with respect to another increasing function g
is given in the following theorem and from this we recover the case of Riemann–Liouville fractional
integrals and Hadamard fractional integrals.

Theorem 2.1. Let 0 < p ≤ q < ∞, f ≥ 0, u be a weight function on (a, b), g be increasing function
on (a, b) such that g′ be continuous on (a, b), Iαa+;gf denotes the left sided fractional integral of f



4 S. Iqbal, K. K. Himmelreich, J. Pečarić

with respect to another increasing function g. Let v be defined on (a, b) by

v(y) := αg′(y)

 b∫
y

u(x)

(
(g(x)− g(y))α−1

(g(x)− g(a))α

) q
p

dx


p
q

< ∞. (2.1)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(α+ 1)

(g(x)− g(a))α
Iαa+;gf(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ (f(y)) dy


1
p

(2.2)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Proof. Applying Theorem 1.1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k(x, y) =

{
g′(y)

Γ(α)(g(x)−g(y))1−α , a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1) (g(x) − g(a))α, Akf(x) = Γ(α+1)

(g(x)−g(a))α I
α
a+;gf(x) and the inequality in

(1.5) reduces to (2.2) with v defined by (2.1). q.e.d.

Corollary 2.2. Let 0 < p ≤ q < ∞, s ≥ 1, α > 1− p
q , f ≥ 0, g be increasing function on (a, b) such

that g′ be continuous on (a, b), Iαa+;gf denotes the left sided fractional integral of f with respect to
another increasing function g. Then the inequality b∫

a

g′(x)(Iαa+;gf(x))
sq
p dx


1
q

≤ α
1
p (g(b)− g(a))

q(αs−1)+p
pq

((α− 1) qp + 1)
1
q (Γ(α+ 1))

s
p

 b∫
a

g′(y)fs(y)dy


1
p

(2.3)

holds.

Proof. For particular convex function Φ : R+ → R+, Φ(x) = xs, s ≥ 1 and weight function u(x) =

g′(x)(g(x)−g(a))
αq
p , x ∈ (a, b) in (2.2), we get v(y) = (αg′(y)(g(b)−g(y))α−1+ p

q )/(((α−1) qp +1)
p
q )

and (2.2) becomes b∫
a

g′(x)(g(x)− g(a))
αq
p (1−s)(Iαa+;gf(x))

sq
p dx


1
q

≤ α
1
p

((α− 1) qp + 1)
1
q (Γ(α+ 1))

s
p

 b∫
a

g′(y)(g(b)− g(y))α−1+ p
q fs(y)dy


1
p

.

Since (g(x) − g(a))
αq
p (1−s) ≥ (g(b) − g(a))

αq
p (1−s) and (g(b) − g(y))α−1+ p

q ≤ (g(b) − g(a))α−1+ p
q ,

α > 1− p
q we obtain (2.6). q.e.d.
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Remark 2.3. Similar result can be obtained for the right sided fractional integral of f with respect
to another increasing function g, but here we omit the details.

Here, we give a first special case for the Riemman-Liouville fractional integral.
If g(x) = x, then Iαa+;xf(x) reduces to Iαa+

f(x) left-sided Riemann-Liouville fractional integral, so
the following result follows.

Corollary 2.4. Let 0 < p ≤ q < ∞, f ≥ 0, u be a weight function on (a, b), Iαa+f denotes the
left-sided Riemann-Liouville fractional integral of f . Let v be defined on (a, b) by

v(y) := α

 b∫
y

u(x)

(
(x− y)α−1

(x− a)α

) q
p

dx


p
q

< ∞. (2.4)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(α+ 1)

(x− a)α
Iαa+f(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ (f(y)) dy


1
p

(2.5)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Corollary 2.5. Let 0 < p ≤ q < ∞, s ≥ 1, α > 1 − p
q , f ≥ 0, Iαa+f denotes the left-sided

Riemann-Liouville fractional integral of f . Then the inequality b∫
a

(Iαa+f(x))
sq
p dx


1
q

≤ α
1
p (b− a)

q(αs−1)+p
pq

((α− 1) qp + 1)
1
q (Γ(α+ 1))

s
p

 b∫
a

fs(y)dy


1
p

(2.6)

holds.

Now we continue with the definition of Hadamard-type fractional integrals.
Let (a, b) be finite or infinite interval of R+ and α > 0. The left and right-sided Hadamard-type
fractional integrals of order α > 0 is given by

(Jα
a+

f)(x) =
1

Γ(α)

x∫
a

(
log

x

y

)α−1
f(y)dy

y
, x > a

and

(Jα
b−f)(x) =

1

Γ(α)

b∫
x

(
log

y

x

)α−1 f(y)dy

y
, x < b

respectively.

Notice that Hadamard fractional integrals of order α are special case of the left- and right-sided
fractional integrals of a function f with respect to another function g(x) = log(x) in [a, b] where
0 ≤ a < b ≤ ∞, the following result follows.
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Corollary 2.6. Let 0 < p ≤ q < ∞, s ≥ 1, α > 1 − p
q , f ≥ 0, Jα

a+
f denotes the Hadamard-type

fractional integrals of f. Then the following inequality holds: b∫
a

(Jα
a+;gf(x))

sq
p
dx

x


1
q

≤ α
1
p (log b− log a)

q(αs−1)+p
pq

((α− 1) qp + 1)
1
q (Γ(α+ 1))

s
p

 b∫
a

fs(y)
dy

y


1
p

. (2.7)

Next we give result with respect to the generalized Riemann–Liouville fractional derivative. Let
us recall the definition, for details see [2].

Let α > 0 and n = [α] + 1 where [·] is the integral part and we define the generalized Riemann-
Liouville fractional derivative of f of order α by

(Dα
a f)(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

(x− y)n−α−1 f(y) dy .

In addition, we stipulate

D0
af := f =: I0af, I−α

a f := Dα
a f if α > 0.

If α ∈ N then Dα
a f = dαf

dxα , the ordinary α-order derivative.

The space Iαa (L(a, b)) is defined as the set of all functions f on [a, b] of the form f = Iαa φ for
some φ ∈ L(a, b), [19, Chapter 1, Definition 2.3]. According to Theorem 2.3 in [19, p. 43], the
latter characterization is equivalent to the condition

In−α
a f ∈ ACn[a, b] , (2.8)

dj

dxj
In−α
a f(a) = 0 , j = 0, 1, . . . , n− 1.

A function f ∈ L(a, b) satisfying (2.8) is said to have an integrable fractional derivative Dα
a f , [19,

Chapter 1, Definition 2.4].

The following lemma summarizes conditions in identity for generalized Riemann-Liouville frac-
tional derivative. For details see [2].

Lemma 2.7. Let β > α ≥ 0, n = [β] + 1, m = [α] + 1. Identity

Dα
a f(x) =

1

Γ(β − α)

∫ x

a

(x− y)β−α−1 Dβ
af(y) dy , x ∈ [a, b], (2.9)

is valid if one of the following conditions holds:

(i) f ∈ Iβa (L(a, b)).

(ii) In−β
a f ∈ ACn[a, b] and Dβ−k

a f(a) = 0 for k = 1, . . . n.

(iii) Dβ−k
a f ∈ C[a, b] for k = 1, . . . , n, Dβ−1

a f ∈ AC[a, b] and Dβ−k
a f(a) = 0 for k = 1, . . . n.
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(iv) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β − α /∈ N, Dβ−k
a f(a) = 0 for k = 1, . . . , n and

Dα−k
a f(a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β − α = l ∈ N, Dβ−k
a f(a) = 0 for k = 1, . . . , l.

(vi) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b) and f(a) = f ′(a) = · · · = f (n−2)(a) = 0.

(vii) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β /∈ N and Dβ−1
a f is bounded in a neighborhood

of t = a.

Theorem 2.8. Let 0 < p ≤ q < ∞, u be a weight function on (a, b), β > α ≥ 0, Dα
a f ≥ 0, Dβ

af ≥ 0
and let assumptions of Lemma 2.7 be satisfied. Let v be defined on (a, b) by

v(y) := (β − α)

 b∫
y

u(x)

(
(x− y)β−α−1

(x− a)β−α

) q
p

dx


p
q

< ∞. (2.10)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(β − α+ 1)

(x− a)β−α
Dα

a f(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ
(
Dβ

af(y)
)
dy


1
p

(2.11)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Proof. Applying Theorem 1.1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k(x, y) =

{
(x−y)β−α−1

Γ(β−α) , a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = (x−a)β−α

Γ(β−α+1) . Replace f by Dβ
af . Then Akf(x) = Γ(β−α+1)

(x−a)β−α Dα
a f(x) and the

inequality given in (1.5) reduces to (2.11). q.e.d.

If we take Φ(x) = xs, s ≥ 1 and u(x) = (x−a)
(β−α)q

p , x ∈ (a, b), similar to the proof of Corollary
2.2 we obtain the following result.

Corollary 2.9. Let 0 < p ≤ q < ∞, s ≥ 1, β − α > 1 − p
q and let assumption of Lemma 2.7 be

satisfied. Then for non-negative functions Dα
a f and Dβ

af the following inequality holds: b∫
a

(Dα
a f(x))

sq
p dx


1
q

≤ (β − α)
1
p (b− a)

q((β−α)s−1)+p
pq

((β − α− 1) qp + 1)
1
q (Γ(β − α+ 1))

s
p

 b∫
a

(Dβ
af(y))

sdy


1
p

.

q.e.d.

Now we define Canavati-type fractional derivative of f over [a, b] (ν−fractional derivative of f),
for details see [3]. We consider

Cν
a ([a, b]) = {f ∈ Cn([a, b]) : I1−ν̄f (n) ∈ C1([a, b])},
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ν > 0, n = [ν], [.] is the integral part, and ν̄ = ν − n, 0 ≤ ν̄ < 1.
For f ∈ Cν

a ([a, b]), the Canavati-ν fractional derivative of f is defined by

Dν
af = DI1−ν̄

a f (n),

where D = d/dx.

The following lemma gives conditions in composition rule for Canavati fractional derivative.

Lemma 2.10. Let ν > γ > 0, n = [ν], m = [γ]. Let f ∈ Cν
a ([a, b]), be such that f (i)(a) = 0, i =

m,m+ 1, ..., n− 1. Then
(i) f ∈ Cγ

a ([a, b])

(ii) (Dγ
af)(x) =

1
Γ(ν−γ)

x∫
a

(x− t)ν−γ−1(Dν
af)(t)dt,

for every x ∈ [a, b].

In the following Theorem, we will construct new inequality for the Canavati-type fractional
derivative.

Theorem 2.11. Let 0 < p ≤ q < ∞, ν > γ > 0, Dγ
af ≥ 0, Dν

af ≥ 0, u be a weight function
on (a, b) and assumptions in Lemma 2.10 be satisfied, Dγ

af denotes the Canavati-type fractional
derivative of f. Let v be defined on (a, b) by

v(y) := (ν − γ)

 b∫
y

u(x)

(
(x− y)ν−γ−1

(x− a)ν−γ

) q
p

dx


p
q

< ∞. (2.12)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(ν − γ + 1)

(x− a)ν−γ
Dγ

af(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ (Dν
af(y)) dy


1
p

(2.13)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Proof. Applying Theorem 1.1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k(x, y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = (x−a)ν−γ

Γ(ν−γ+1) . Replace f by Dν
af . Then the inequality given in (1.5) reduces to

(2.13). q.e.d.

Example 2.12. If we take Φ(x) = xs, s ≥ 1, ν−γ > 1− p
q , D

γ
af ≥ 0, Dν

af ≥ 0 and weight function

u(x) = (x− a)
(ν−γ)q

p , x ∈ (a, b) in (2.13), after some calculations we obtain b∫
a

(Dγ
af(x))

sq
p dx


1
q

≤ (ν − γ)
1
p (b− a)

q((ν−γ)s−1)+p
pq

((ν − γ − 1) qp + 1)
1
q (Γ(ν − γ + 1))

s
p

 b∫
a

(Dν
af(y))

sdy


1
p

.
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Next, we give the result for Caputo fractional derivative, for details see [1, p. 449]. The Caputo
fractional derivative is defined as:
Let α ≥ 0, n = [α] + 1, g ∈ ACn([a, b]). The Caputo fractional derivative is given by

Dα
∗ag(t) =

1

Γ(n− α)

x∫
a

g(n)(y)

(x− y)α−n+1
dy,

for all x ∈ [a, b]. The above function exists almost everywhere for x ∈ [a, b].

Using the above definition, we will prove the following result as a special case of Theorem 1.1.

Theorem 2.13. Let 0 < p ≤ q < ∞, f (n) ≥ 0, u be a weight function on (a, b) and Dα
∗af denotes

the Caputo fractional derivative of f . Let v be defined on (a, b) by

v(y) := (n− α)

 b∫
y

u(x)

(
(x− y)n−α−1

(x− a)n−α

) q
p

dx


p
q

< ∞. (2.14)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(n− α+ 1)

(x− a)n−α
Dα

∗af(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ
(
f (n)(y)

)
dy


1
p

(2.15)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Proof. Applying Theorem 1.1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k(x, y) =

{
(x−y)n−α−1

Γ(n−α) , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = (x−a)n−α

Γ(n−α+1) . Replace f by f (n). Then the inequality given in (1.5) reduces to

(2.15). q.e.d.

Example 2.14. If we take Φ(x) = xs, s ≥ 1, n − α > 1 − p
q , f

(n) ≥ 0 and weight function

u(x) = (x− a)
(n−α)q

p , x ∈ (a, b), in (2.15), after some calculations we obtain b∫
a

(Dα
∗af(x))

sq
p dx


1
q

≤ (n− α)
1
p (b− a)

q((n−α)s−1)+p
pq

((n− α− 1) qp + 1)
1
q (Γ(n− α+ 1))

s
p

 b∫
a

(f (n)(y))sdy


1
p

.

Now we present definitions and some properties of the Erdélyi-Kober type fractional integrals.
Some of these definitions and results were presented in Samko et al. in [19].
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Let (a, b) , (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+. Also let
α > 0, σ > 0, and η ∈ R. We consider the left- and right-sided integrals of order α ∈ R defined by

(Iαa+;σ;ηf)(x) =
σx−σ(α+η)

Γ(α)

x∫
a

tση+σ−1f(t)dt

(xσ − tσ)1−α
, x > a, (2.16)

and

(Iαb−;σ;ηf)(x) =
σxση

Γ(α)

b∫
x

tσ(1−η−α)−1f(t)dt

(tσ − xσ)1−α
, x < b, (2.17)

respectively. Integrals (2.16) and (2.17) are called the Erdélyi–Kober type fractional integrals.

Now, we give the following result.

Theorem 2.15. Let 0 < p ≤ q < ∞, f ≥ 0, u be a weight function on (a, b), Iαa+;σ;ηf denotes the
Erdélyi–Kober type fractional integrals of f, 2F1(a, b; c; z) denotes the hypergeometric function.
Let v be defined on (a, b) by

v(y) := α

 b∫
y

u(x)

(
σx−σηyση+σ−1

(xσ − yσ)1−α(xσ − aσ)α

) q
p

dx


p
q

< ∞. (2.18)

If Φ is a non-negative convex function on the interval I ⊆ R, then the inequality b∫
a

u(x)

[
Φ

(
Γ(α+ 1)(

1−
(
a
x

)σ)α
2F1(x)

Iαa+;σ;ηf(x)

)] q
p

dx


1
q

≤

 b∫
a

v(y)Φ (f(y)) dy


1
p

(2.19)

holds for all measurable functions f : (a, b) → R, such that Imf ⊆ I.

Proof. Applying Theorem 1.1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k(x, y) =

{
1

Γ(α)
σx−σ(α+η)

(xσ−yσ)1−α y
ση+σ−1, a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1)

(
1−

(
a
x

)σ)α
2F1(−η, α;α + 1; 1 −

(
a
x

)σ
). Then the inequality (1.5)

becomes (2.19). q.e.d.

Example 2.16. If we take Φ(x) = xs, s ≥ 1, f ≥ 0, and weight function

u(x) = xσ−1 ((xσ − aσ)α 2F1(x))
q
p , x ∈ (a, b) in (2.19), after some calculations we obtain b∫

a

(2F1(x))
q
p (1−s)

(
Iαa+;σ;ηf(x)

) sq
p

dx


1
q

≤ C

 b∫
a

(2F1(y))f
s(y)dy


1
p

(2.20)
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where

C =
α

1
pσ

q−p
pq b

σ−1
p (bσ − aσ)

q(αs−1)+p
pq

a
pσ−p+qsσα

pq ((α− 1) qp + 1)
1
q (Γ(α+ 1))

s
p

,

2F1(x) = 2F1

(
−η, α;α+ 1; 1−

(a
x

)σ)
and 2F1(y) = 2F1

(
η, α;α+ 1; 1−

(
b

y

)σ )
.

Remark 2.17. Similar result can be obtained for the right sided Erdélyi-Kober type fractional
integrals, but here we omit the details.

Acknowledgements. This research is partially funded by Higher Education Commission (HEC)
of Pakistan. The research of the second and third author was supported by the Croatian Ministry
of Science, Education and Sports, under the Research Grant 117-1170889-0888.

References

[1] G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Science-Businness Media,
LLC, Dordrecht, the Netherlands, (2009).
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