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Abstract

In 2010, Snolb [9] studied the structure of nilpotent Lie algebras admitting a Levi extension. As
a corollary of the results therein, it is shown that the classes of characteristically nilpotent or
filiform Lie algebras do not admit Levi extensions. The paper ends by asking for the possibility
of finding series of nilpotent Lie algebras in arbitrary dimension not being abelian or Heisenberg
and allowing such extensions. Our goal in this work is to present computational examples of
this type of algebras by using Sage software. In the case of nilpotent Lie algebras admitting
sl2(k) as Levi factor special constructions will be given by means of Sage routines based on
transvections over sl2(k)-irreducible modules.
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1 Introduction

Levi’s theorem (Eugenio Elia Levi, 1905 [8]) decomposes any arbitrary Lie algebra of charac-
teristic zero as a direct sum of a semisimple Lie algebra, known as Levi factor, and its solvable
radical. Given a solvable Lie algebra R, a semisimple Lie algebra S is said to be a Levi extension
of R if a Lie structure can be defined on the vector space S ⊕ R. The assertion is equivalent
to ρ(S) ⊆ Der(R), where Der(R) is the derivation algebra of R, for some representation ρ of
S onto R. Since ρ(S) is a semisimple Lie algebra, then a Lie algebra with solvable derivation
algebra has no Levi extensions. This is the case of the class of characteristically nilpotent Lie
algebras introduced by Dixmier and Lister in [3].

In 2010, Snolb [9] studied the structure of nilpotent Lie algebras admitting a Levi extension
and stablished the following preliminary result on their structure:

Theorem 1.1 (Snolb, Theorem 2 [9]). Let L be an indecomposable Lie algebra with product
[x, y], nilpotent radical N of (t + 1)-nilindex and a nontrivial Levi decomposition L = N ⊕ S
for some semisimple Lie algebra S. Then, there exists a decomposition of N into a sum of
adS-modules:

N = m1 ⊕m2 ⊕ · · · ⊕mt

where
N j = mj ⊕N j+1, mj ⊆ [mj−1,mj ]

such that m1 is a faithful adS-module and for 2 ≤ j ≤ t, the adS-module mj decomposes into
a sum of some subset of irreducible components of the tensor representation m1 ⊗mj−1. ♦
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In [9], Snolb asked about the possibility of finding series of nilradicals in arbitrary dimension,
other than abelian or Heisenberg, allowing Levi extensions. This is the main goal of this paper.
Starting from free nilpotent Lie algebras (all of them admit Levi extensions) and using Sage we
will display some computational examples of nilpotent Lie algebras admitting the 3-dimensional
simple split Lie algebra sl2(k) as Levi factor.

The paper is organised into four sections apart from the Introduction. In Section 2 we introduce
the main definitions and results we will need throughout the paper. Section 3 reviews the
representation theory of sl2(k) and revisits the main tool of transvections which allows us to
build Sage routines in Section 4 for computing nilpotent Lie algebras. The paper ends with a
final section of examples.

Vector spaces in this paper are considered to be finite-dimensional over a field K of characteristic
zero. The non defined concepts and basic statements can be founded in [6], [7] and [1].

2 Preliminary concepts and results

First, let us take a look at the results to be used in the implementation of the Sage routines.
Most of them are elementary and well known for people working on Lie algebras. In this case,
the section may be dropped.

A Lie algebra L is a vector space endowed with a binary skew-symmetric bilinear product [a, b]
satisfying the Jacobi identity:

J(a, b, c) = [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0. (1.1)

The Lie bracket of two vector subspaces U, V of L is defined as the whole span

[U, V ] = span < [u, v] : u ∈ U, v ∈ V > .

For a given associative algebra (A, a · b), the vector space A with the skew-symmetric product
[a, b] = a·b−b·a is a Lie algebra; this algebra is denoted as A−. In fact, from the Ado-Ivasawa’s
theorem, any Lie algebra is just isomorphic to a subalgebra of A− for some associative algebra
A. The main example of the Lie algebra A− is the general linear Lie algebra gl(V ) defined
from the associative algebra of endomorphisms over a vector space V , i.e. gl(V ) = End(V )−

(once a basis of V is fixed, gl(V ) can be viewed as Mn(k)−, where n is the dimension of V ).

A simple Lie algebra is a non abelian Lie algebra without proper ideals. The Lie algebras
which are direct sum of simple ideals are called semisimple. Throughout the paper, we will
use the following series of ideals of the Lie algebra L. The derived series is defined recursively
as L = L(1) and L(n) = [L(n−1), L(n−1)] for n > 1; the lower central series is again defined
recursively as L = L1 and Ln = [L,Ln−1]. If the derived series vanishes, i.e. there exists k ∈ N
such that L(k) = 0, then L is called solvable. If the lower central series vanishes, then L is
nilpotent. The smallest value of k for which Lk = 0 is called degree of nilpotency or nilindex
of L. The solvable radical of L, denoted as R(L), is the biggest solvable ideal of L. Also the
nilpotent radical N(L) of L, can be defined as the largest nilpotent ideal of L. From Levi’s
Theorem, any Lie algebra can be built from solvable and semisimple ones:

Theorem 2.1 (Eugenio E. Levi, 1905 [8]). Given L a finite-dimensional Lie algebra of char-
acteristic zero, then there exists a semisimple Lie algebra S ≤ L such that L = S ⊕ R(L).
♦

The adjoint map ad : S → gl(R(L)) given by adx(a) = [x, a] is an homomorphism of Lie
algebras and allows us to see the radical of a Lie algebra L as an S-module. In general,
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Definition 2.2. A representation of an arbitrary Lie algebra L is an homomorphism of Lie
algebras

ρ : L→ gl(V )

where V is a vector space. The vector space V and the action x ·v = ρ(x)(v) is called L-module.
The module V is called irreducible if it is non-trivial and does not contain proper submodules.

Lemma 2.3. If V and W are L-modules, then V ⊗W is L-module under the action given by:

g · (v ⊗ w) = (g · v)⊗ w + v ⊗ (g · w).

Moreover, for any n ≥ 2, the vector spaces Sn(V ) and Λn(V ), of n-power symmetric and skew-
symmetric vectors respectively, are submodules of the n-power tensor product module ⊗nV .
♦

Throughout the paper, we will build Lie algebras with nilpotent solvable radical (i.e., R(L) =
N(L)) by gluing a nilpotent Lie algebra N and the simple Lie algebra sl2(k), which is the
subalgebra of traceless 2 × 2 matrices of M2(k)−. This can be done by using representations
ρ : sl2(k)→ gl(N) such that ρ(sl2(k)) is contained in the Lie algebra of derivations of N ,

Der N = {d ∈ End(N) : d([x, y]) = [d(x), y] + [x, d(y)]}.

Free nilpotent Lie algebras: Given a finite set X = {x1, . . . , xm} and the vector space V with
basis X, the free associative algebra generated by X can be defined as:

F = k1⊕
∞∑
j≥1

⊗jV

We rewrite Vj = ⊗jV and V j = Σk≥jVj . In [7] it is said that the free Lie algebra generated
by X, and denoted by FL, is the subalgebra of (F−, [ab] = ab− ba) generated by X. Then,

FL =
∑
j≥1

FLj

where FLj is the subspace generated by the linear combinations of elements of the form
[xi1 , . . . , xij ] = [. . . [xi1xi2 ] . . . xij ], with xis ∈ X. For any k ≥ 2, denoting by FLk the ideal∑
j≥k

FLj , we consider the quotient Lie algebra:

N(m, k) = FL
/
FLk+1

Proposition 2.4 (Proposition 1.4 in [5]). The Lie algebra N(m, k) is nilpotent of (k + 1)-
nilindex and is generated by m elements as subalgebra. Even more, any nilpotent Lie algebra
of (k + 1)-nilindex being generated by m elements is a homomorphic image of N(m, k). ♦

The algebra N(m, k) is called free nilpotent Lie algebra of type m =| X | and (k + 1)-nilindex.

By considering modules, if S is a (semisimple) Lie algebra and FL is generated by an S-module
V = span < X >, the free Lie algebras FL and N(m, k) for all k ∈ N are also S-modules. We
will denote by N(V, k) the Lie algebra N(dim(V ), k) but with the module structure induced
by V in the natural way suggested by Lemma 2.3. The Lie algebras N(V, k) and N(W,k) may
be isomorphic as algebras, but not as S-modules.

From [5], N(V, 2) = V ⊕ Λ2V and it is not difficult to see that N(V, 3) = V ⊕ Λ2V ⊕ S(2,1)V
where, given a partition λ, SλV is the irreducible GL(V )-submodule of V ⊗|λ| associated with
the partition λ.
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3 sl2(k)-modules and transvections

The Lie algebra sl2(k) of 2 × 2 traceless matrices is a 3-dimensional simple Lie algebra. It is
usually described by means of its standard basis

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
(1.2)

which provides the law: [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. This Lie algebra has a very
interesting representation theory and a very simple arithmetic. Following [6], for each n ∈ N
there exists a unique (n+ 1)-dimensional representation up to isomorphisms.

Let us consider V (n) as the K-vector space of the homogeneous polynomials of degree n in
the variables x and y. Then sl2(k) acts on V (n) in a natural way once sl2(k) is identified as
derivations in the following way:

sl2(k) → End(V (n))

h 7→ x
∂

∂x
− y ∂

∂y

e 7→ x
∂

∂y

f 7→ y
∂

∂x

For any n ∈ N, the previous identification defines an sl2(k)-irreducible representation. In
fact, these are all the finite-dimensional irreducible representations of sl2(k). Moreover, the
polinomial set {

vi =

(
n
i

)
xn−iyi : i = 0, . . . n

}
(1.3)

works as the standard basis built in [6] for the (n+ 1)-dimensional sl2(k)-irreducible represen-
tation.

On the other hand, the Clebsch-Gordan’s formula gives a decomposition of the tensor product
of two irreducible representations as direct sum of its irreducible components:

V (n)⊗k V (m) ∼= V (n+m)⊕ V (n+m− 2)⊕ . . .⊕ V (n−m) (1.4)

under the assumption n ≥ m. The Schur’s lemma, over algebraically closed fileds, and irre-
ducible modules, stablishes that

dim HomS(V,W ) =

{
1 if V ∼= W
0 otherwise

Applying this result to S = sl2(k) and the tensor product V (n)⊗kV (m) we get thatHomS(V (n)⊗k
V (m), V (n+m−2q)) is a 1-dimensional vector space for q ≤ m. In conclusion, all the homomor-
phisms are scalar multiples of each other. So, we only need to find one non-zero homomorphism.

Let us consider the mapping introduced by Dixmier [4] as q-transvection, (·, ·)q : V (n)×V (m)→
V (n+m− 2q). For f ∈ V (n) and g ∈ V (m), the transvector (f, g)q is defined by:

(f, g)q =
(m− q)!
m!

(n− q)!
n!

q∑
i=0

(−1)i
(
q
i

)
∂qf

∂xq−i∂yi
∂qg

∂xi∂yq−i
(1.5)
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Since derivations are linear applications, transvections are bilinear maps. Even more, as sl2(k)
acts as derivations on V (n) and V (m), transvections are nonzero homomorphism of sl2(k)-
modules as it is explained in [4]. So:

HomS(V (n)⊗k V (m), V (n+m− 2q)) = span < (·, ·)q >

Now, the ideas of our two preliminary sections can be applied to sl2(k). Let us consider the
nilpotent Lie algebra N(V (n), 2). Its expansion is m1 = V (n) and if n is odd m2 =

∧2 V (n) =
V (2n− 2)⊕V (2n− 6)⊕ . . .⊕V (0); but if n is even m2 =

∧2 V (n) = V (2n− 2)⊕V (2n− 6)⊕
. . .⊕ V (2). The product of this Lie algebra is given, up to isomorphisms, by the formula:

[v, w] = (v, w)1 + (v, w)3 + . . .+ (v, w)n if n is odd,

[v, w] = (v, w)1 + (v, w)3 + . . .+ (v, w)n−1 if n is even.

The Lie algebra N(V (n), 3) is not as simple to describe as N(V (n), 2). The expansion of
the module m3 = S(2,1)V (n) is not easy in a general setting, but once n is fixed there are
several combinatorial mechanisms to compute it. There are even computer software specifically
designed to do these computations as fast as possible.

In the next section, we will give routines in Sage which lead to compute multiplication tables
of nilpotent Lie algebras admitting sl2(k) as Levi factor (equivalently, nilpotent Lie algebras
N such that sl2(k) ⊆ Der N). These algebras turn to be quotients of N(V (n), k). As in
[2] and for simplicity, we will consider a Lie algebra L whose ideals are in a chain. The
Levi decomposition of L is L = S ⊕ N , where S is a simple Lie algebra, N a nilpotent one
and the quotient N j/N j+1 of two consecutively terms in the lower central series of N is a
S-irreducible module with N/N2 being nontrivial. If N is of 3-nilindex and S = sl2(k), N
was completely described in [2] as N = m1 ⊕ m2 where m1 = V (n) and m2 = V (2n − 2k)
with k being odd; a complete product could be given in a recursive way for N , by taking the
standard basis in Eq. (1.3) of the irreducible module mi. The 4-nilindex case is given by the
decomposition N = m1 ⊕m2 ⊕m3 where m1 = V (n), m2 = V (2n − 2k) taken k being odd
and m3 = V (3n− 2k − 2q), q ≤ min{n, 2n− 2k}, with m3 being an irreducible submodule of
S(2,1)V (n) with some additional restrictions (see [1]).

4 Source code with Sage

From previous concepts, results and remarks and using transvections, the standard basis,
{h, e, f} of sl2(k) given in Eq. (1.2) and the basis in Eq. (1.3) for V (n) as main tools, we
will display several Sage implementations.

Transvection Implementation: The next routine implements the transvection ( , )k :
V (n)⊗ V (m)→ V (n+m− k) as it is defined in Eq. (1.5) in the following way:

(vi, vj)k = prod(i, j, n,m, k)vi+j−2k.

def prod(i,j,n,m,k):

res=0;

if (i+j<k):

return res;

if (n+m<i+j+k):

return res;

for t in range(k+1):
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res=res+(-1)^t*binomial(n-k,i-t)*

binomial(m-k,m-j-t)*binomial(k,t);

res=res/binomial(n+m-2*k,i+j-k);

return res;

By using the previous implementation of the transvection map, we can implement all types of
diferent multiplication tables of nilpotent Lie algebras that are modules for sl2(k). In particular
we will implement a routine for 3- and 4-nilpotent Lie algebras which fit as the radical (in fact
nilradical) of Lie algebras whose ideals are in a chain. In createTable2(n,k,r), if V (3n−2k−2r)
is not an appropiate submodule of S(2,1)V (n), then the matrix given is not the multiplication
table of a Lie algebra. It has to be previously checked according to the results obtained in [1]
or tested subsequently by using the Jacobi identity in Eq. (1.1). We present here a short Sage
program for testing if an introduced multiplication table satisfies the Jacobi identity:

Jacobi identity checking Program: Algorithm to check if a skew symmetric multipli-
cation table corresponds to a Lie algebra:

def CheckJacobi(n,k,r):

m=2*(n-k);

for i in range(n+1):

for j in range(i+1,n+1):

for t in range (j+1,n+1):

if (prod(i,j,n,n,k)*prod(i+j-k,t,m,n,r)+prod(j,t,n,n,k)*

prod(t+j-k,i,m,n,r)+prod(t,i,n,n,k)*prod(i+t-k,j,m,n,r)!=0):

print "The Jacobi identity is not fulfilled";

return;

print "The Jacobi identity is fulfilled";

3-nilpotent Program: Implementation of the routine which provides multiplication tables
for a 3-nilpotent Lie algebra

Nn,k = V (n)⊕ V (2n− 2k).

def createTable(n,k):

m=2*(n-k);

V=QQ^(n+1+m+1);

VB=V.basis();

A=[];

B=[];

C=[];

D=[];

v = list(var(’v_%d’ % i) for i in range(n+1));

w = list(var(’w_%d’ % i) for i in range(m+1));

variables=v+w;

M=PolynomialRing(QQ,variables);

variables=M.gens();

pol=M.zero();

B=[];

for s in range(k):
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B.append(pol);

for j in range(k,n+1):

B.append(binomial(m+k-j,n-j)/

binomial(m,n-k)*variables[n+1+j-k]);

for s in range(n+1,m+1+n+1):

B.append(pol);

A.append(B);

B=[];

pol=M.zero();

for t in range(1,n+1):

for s in range(t+1):

B.append(pol);

for s in range(t+1,n+1):

cal=prod(t,s,n,n,k);

if (cal!=0):

B.append(prod(t,s,n,n,k)*

variables[n+1+s+t-k]);

else:

B.append(pol);

for s in range(n+1,n+1+m+1):

B.append(pol);

pol=M.0-M.0;

A.append(B);

B=[];

for t in range(n+1,n+1+m+1):

for s in range (n+1+m+1):

B.append(M.zero());

A.append(B);

B=[];

for s in range(0,n+1+m+1):

for t in range(s):

A[s][t]=-A[t][s];

return matrix(A);

4-nilpotent Program: Implementation of the routine which provides multiplication tables
for a 4-nilpotent algebra

Nn,k,r = V (n)⊕ V (2n− 2k)⊕ V (3n− 2k − 2r).

def createTable2(n,k,r):

m=2*(n-k);

g=n+m-2*r;

V=QQ^(n+1+m+1+g+1);

VB=V.basis();

A=[];

B=[];

C=[];

D=[];

v = list(var(’v_%d’ % i) for i in range(n+1));
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w = list(var(’w_%d’ % i) for i in range(m+1));

z = list(var(’z_%d’ % i) for i in range(g+1));

variables=v+w+z;

M=PolynomialRing(QQ,variables);

variables=M.gens();

pol=M.zero();

B=[];

for s in range(k):

B.append(pol);

for j in range(k,n+1):

B.append(binomial(m+k-j,n-j)/

binomial(m,n-k)*variables[n+1+j-k]);

for s in range(n+1,m+1+n+1):

B.append(prod(0,s-n-1,n,m,r)*variables[m+1+s-r]);

for s in range(m+1+n+1,m+1+n+1+g+1):

B.append(pol);

A.append(B);

B=[];

pol=M.zero();

for t in range(1,n+1):

for s in range(t+1):

B.append(pol);

for s in range(t+1,n+1):

B.append(prod(t,s,n,n,k)*variables[n+1+s+t-k]);

for s in range(n+1,n+1+m+1):

cal=prod(t,s-n-1,n,m,r);

if (cal!=0):

B.append(prod(t,s-n-1,n,m,r)*

variables[m+1+s+t-r]);

else:

B.append(pol);

pol=M.0-M.0;

for s in range(n+1+m+1,m+1+n+1+g+1):

B.append(pol);

A.append(B);

B=[];

for t in range(n+1,n+1+m+1+g+1):

for s in range (n+1+m+1+g+1):

B.append(M.zero());

A.append(B);

B=[];

for s in range(0,n+1+m+1+g+1):

for t in range(s):

A[s][t]=-A[t][s];

return matrix(A);

4-ideal Lie algebras Program: Implementation of the routine which provides multipli-
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cation tables for a Lie algebra

L(n, k) = sl2(k)⊕ V (n)⊕ V (2n− 2k)

following [2]. These type of algebras have exactly 4 ideals.

def multY(w,n,variables,M):

Z=parent(w);

z=M.0;

z=z-z;

q=Z.dimension();

m=q-5-n;

if w[1]!=0:

z=z-w[1]*M.0;

if w[0]!=0:

z=z+2*w[0]*M.2;

for j in range(3+n+1,q-1):

if w[j] != 0:

z=z + (w[j]*(j-3-n))*variables[j+1];

for j in range(3,3+n):

if w[j] != 0:

z=z + (w[j]*(j+1-3))*variables[j+1];

return z;

def multX(w,n,variables,M):

Z=parent(w);

z=M.0;

z=z-z;

q=Z.dimension();

m=q-5-n;

if w[2]!=0:

z=z+w[2]*M.0;

if w[0]!=0:

z=z-2*w[0]*M.1;

for j in range(3+n+2,q):

if w[j] != 0:

z=z + (w[j]*(m-j+1+3+n+1))*variables[j-1];

for j in range(3+1,3+n+1):

if w[j] != 0:

z=z + (w[j]*(n-j+1+3))*variables[j-1];

return z;

def multH(w,n,variables,M):

Z=parent(w);

z=M.0;

z=z-z;

q=Z.dimension();

m=q-5-n;

ZB=Z.basis();

if w[1]!=0:

z=z+w[1]*2*M.1;



12 P. Benito, D. de-la-Concepción

if w[2]!=0:

z=z-2*w[2]*M.2;

for j in range(3+n+1,q):

if w[j] != 0:

z=z + (w[j]*(m-2*(j-3-n-1)))*variables[j];

for j in range(3,3+n+1):

if w[j] != 0:

z=z + (w[j]*(n-2*(j-3)))*variables[j];

return z;

def ToVector(pol,n,k,variables):

a=3+n+1+2*(n-k)+1;

V=QQ^a;

VB=V.basis();

v=V.0-V.0;

for t in range(a):

d=dict(zip(variables,VB[t]))

v[t]=pol.subs(d);

return v;

def createTable3(n,k):

m=2*(n-k);

V=QQ^(3+n+1+m+1);

VB=V.basis();

A=[];

B=[];

C=[];

D=[];

sl=list(var(’h x y’))

v = list(var(’v_%d’ % i) for i in range(n+1));

w = list(var(’w_%d’ % i) for i in range(m+1));

variables=sl+v+w;

M=PolynomialRing(QQ,variables);

variables=M.gens();

pol=M.zero();

for t in range(3+n+1+m+1):

S=multH(VB[t],n,variables,M);

B.append(S);

S=multX(VB[t],n,variables,M);

C.append(S);

S=multY(VB[t],n,variables,M);

D.append(S);

A.append(B);

A.append(C);A.append(D);

B=[];

pol=M.zero();

for s in range(3+k):

B.append(pol);

for j in range(3+k,3+n+1):

B.append(binomial(m+k-j+3,n-j+3)/binomial(m,n-k)*variables[n+1+j-k]);
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for s in range(3+n+1,3+m+1+n+1):

B.append(M.zero());

A.append(B);

B=[];

pol=M.zero();

for t in range(4,3+n+1):

for s in range(t+1):

B.append(pol);

for s in range(t+1,3+n+1):

if s<3+n:

B.append(1/(t-3)*multY(ToVector(A[t-1][s],n,k,

variables),n,variables,M)-(s-2)/(t-3)*(A[t-1][s+1]));

else:

B.append(1/(t-3)*multY(ToVector(A[t-1][s],n,k,

variables),n,variables,M));

pol=M.0-M.0;

for s in range(3+n+1,3+n+1+m+1):

B.append(pol);

A.append(B);

B=[];

for t in range(3+n+1,3+n+1+m+1):

for s in range (3+n+1+m+1):

B.append(M.zero());

A.append(B);

B=[];

for s in range(3,3+n+1+m+1):

for t in range(s):

A[s][t]=-A[t][s];

return matrix(A);

5 Examples

Table 1 displays the decomposition as sl2(k)-irreducible modules of the free nilpotent Lie alge-
bras of type n+1 and 3- and 4-nilindex being generated by the irreducible sl2(k)-modules V (n)
for n = 1, 2, 3. Then, N(n+ 1, 2) = N(V (n), 2) = V (n)⊕Λ2V (n), N(n+ 1, 3) = N(V (n), 3) =
V (n)⊕ Λ2V (n)⊕ S(2,1)V (n), the spaces Λ2V (n) and S(2,1)V (n) inherit the module structure
from V (n). The module decompositions in the table are obtained following Clebsch-Gordan’s
formula in Eq. (1.4). From this information and the previous Sage routines, we will get multi-
plication tables of some nilpotent Lie algebras admitting sl2(k) as Levi factor. All the nilpotent
algebras given in the examples satisfy that quotients of two consecutively terms in their lower
central series (l. c. s. in the sequel) are sl2(k)-irreducible modules.

Example 5.1. The free nilpotent Lie algebra N(V (1), 2) of type 2 and 3-nilindex is just:

N1,1 = V (1)⊕ k = span < v0, v1 > ⊕ < w0 > .

The nonzero multiplication table from Sage is given by:

[v0, v1] = w0.
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Table 1. sl2(k)-free nilpotent N(V (n), 2) and N(V (n), 3)

n V
∧2 V S(2,1)V

1 V (1) V (0) V (1)

2 V (2) V (2) V (2) ⊕ V (4)

3 V (3) V (0) ⊕ V (4) V (1) ⊕ V (3) ⊕ V (5) ⊕ V (7)

4 V (4) V (2) ⊕ V (6) V (2) ⊕ 2V (4) ⊕ V (6) ⊕ V (8) ⊕ V (10)

This algebra is nothing else but the Heisenbreg 3-dimensional Lie algebra. The free nilpotent
Lie algebra N(V (1), 3) of type 2 and 4-nilindex can be described as the 5-dimensional algebra:

N1,1,0 = V (1)⊕ k ⊕ V (1) = span〈v0, v1〉 ⊕ span〈w0〉 ⊕ span〈z0, z1〉

with nonzero multiplication table given by:

[v0, v1] = w0,

[v0, w0] = z0,

[v1, w0] = z1.

These algebras are the unique nilpotent Lie algebras of 3- and 4-nilindex such that the codi-
mension of its derived algebra N2 equals 2. ♦

Example 5.2. The free nilpotent Lie algebra N(V (2), 2) of type 3 and 3-nilindex can be
described as the 6-dimensional algebra:

N2,1 = V (2)⊕ V (2) = span〈v0, v1, v2〉 ⊕ span〈w0, w1, w2〉

In this case, the nonzero multiplication table provided by Sage is:

[v0, v1] = w0,

[v0, v2] =
1

2
w1,

[v1, v2] = w2.

The 3rd term in the l. c. s. of the free nilpotent algebra N(V (2), 3) decomposes as V (2)⊕V (4).
Sage routines in Section 4, let us create nilpotent 4-nilindex Lie algebras with the following
sl2(k)-irreducible decomposition: the 9-dimensional N2,2,1 = V (2) ⊕ V (2) ⊕ V (2) and the 11-
dimensional N2,2,0 = V (2)⊕ V (2)⊕ V (4). ♦

Example 5.3. The 2nd term in the l.c.s. of the free nilpotent Lie algebra N(V (3), 2) of type
4 and 3-nilindex decomposes as V (0) ⊕ V (4). From Sage routines in Section 4, it is possible
to build nilpotent 3-nilindex Lie algebras with the following sl2(k)-irreducible decomposition:
N3,3 = V (3)⊕ V (0), which is the 5-dimensional Heisenberg algebra and the 9-dimensional Lie
algebra:

N3,1 = V (3)⊕ V (4) = span〈v0, v1, v2, v3〉 ⊕ span〈w0, w1, w2, w3, w4〉
with nonzero products given by

[v0, v1] = w0,
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[v0, v2] =
1

2
w1,

[v0, v3] =
1

6
w2,

[v1, v2] =
1

2
w2,

[v1, v3] =
1

2
w3,

[v2, v3] = w4.

The 3rd term in the l.c.s. of N(V (3), 3) decomposes as V (1) ⊕ V (3) ⊕ V (5) ⊕ V (7). In
this case, any arbitrary recombination of the irreducible decomposition of N(V (3), 3) does
not work. In fact N3,3,0 = V (3) ⊕ V (0) ⊕ V (3) does not provide a Lie algebra. So, as 2nd
irreducible term, we can only choose V (4) and the case N3,1,2 = V (3)⊕ V (4)⊕ V (3) must be
dropped. The decompositions N3,1,3 = V (3)⊕ V (4)⊕ V (1), N3,1,1 = V (3)⊕ V (4)⊕ V (5) and
N3,1,0 = V (3) ⊕ V (4) ⊕ V (7) provide nilpotent Lie algebras. By using Sage, we have cheked
the 15-dimensional Lie algebra N3,1,1:

N3,1,1 = span〈v0, v1, v2, v3〉 ⊕ span〈w0, w1, w2, w3, w4〉⊕

span〈z0, z1, z2, z3, z4, z5〉
with nonzero multiplication table:

[v0, w1] = z0; [v0, w2] =
3

5
z1; [v0, w3] =

3

10
z2,

[v1, vi] =
1

2
wi, i > 1,

[v1, w0] = −z0; [v1, w1] = −1

5
z1; [v1, w2] =

3

10
z2; [v1, w3] =

1

2
z3,

[v1, w4] =
2

5
z4; [v2, v3] = w4; [v2, w0] = −2

5
z1,

[v2, w1] = −1

2
z2; [v2, w2] = − 3

10
z3; [v2, w3] =

1

5
z4,

[v2, w4] = z5; [v3, w0] = − 1

10
z2; [v3, w1] = − 3

10
z3,

[v3, w2] = −3

5
z4; [v3, w3] = −z5. ♦

Note that, as n grows, the tensor product decompositions increase the number of irreducible
components in the free nilpotent Lie algebras. So, we can get lots of series of nilpotent Lie
algebras admitting sl2(k) as Levi extensions.
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