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Abstract

The notion of capability for pairs of groups was defined by Ellis in 1996. In this
paper, we extend the theory of c-capability for pairs of groups and introduce a
criterion, denoted by Z∗

c (G,N), for c-capability of a pair (G,N) of groups. We also
study the behavior of Z∗

c (G,N) with respect to direct products of groups.
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1 Introduction and Motivation

In 1940, P. Hall [6] remarked that characterization of groups which are the central quo-
tient groups of other groups, is important in classifying groups of prime-power order.
This kind of groups was named capable by Hall and Senior [5]. So a group G is called
capable if there exists a group E such that G ∼= E/Z(E). Capability of groups was
first studied by R. Baer [1] who determined all capable groups which are direct sums of
cyclic groups. In 1996, Ellis [4] extended the theory of capability in an interesting way
to a theory for pairs of groups. By a pair of groups we mean a group G and a normal
subgroup N and this is denoted by (G,N). He also introduced the exterior G-center
subgroup of N , Z∧G(N), for any pair (G,N) and proved that the pair (G,N) is capable
if and only if Z∧G(N) = 1. The capability of pairs of groups has been also studied more
by the authors in [8].
On the other hand, in 1997 Burns and Ellis [3] introduced the notion of c-capability
of groups. A group G is said to be c-capable if there exists a group E such that
G ∼= E/Zc(E). They also introduced the subgroup Z∗c (G) with the property that G
is c-capable if and only if Z∗c (G) = 1. In this paper following Burns and Ellis [3] and
Ellis [4], we extend the theory of c-capability for pairs of groups . We also introduce a
subgroup of N , shown by Z∗c (G,N), that can be used as a criterion for c-capability of a
pair (G,N) of groups. The properties of Z∗c (G,N) and its behavior with respect to the
products of groups will also be studied. Finally, a set of examples of c-capable pairs shall
be given. In other words, the paper actually generalizes the works [3, 4, 8] somehow.
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2 Main Results

Let M and G be two arbitrary groups and α1 : G→ Aut(M) be a group homomorphism
whose image contains Inn(M). Then G acts on M by mg = α1(g)(m), for all g ∈
G,m ∈M . The G-commutator subgroup of M is defined the subgroup [M,G] generated
by all the G-commutators [m, g] = m−1mg, where mg is the action of g on m, for all
g ∈ G,m ∈M and the G-center of M is defined to be the subgroup

Z(M,G) = {m ∈M |mg = m, ∀g ∈ G}.

Existence of the homomorphism α1 implies that Z(M,G) ⊆ Z(M). Also it is easy to see
that there is a group homomorphism α2 : G→ Aut(M/Z(M,G)) whose image contains
Inn(M/Z(M,G)) and hence G acts on M/Z(M,G). Then we can define the normal
subgroup Z2(M,G) of M as follows:

Z2(M,G)

Z(M,G)
= Z(

M

Z(M,G)
, G).

Now by continuing this process, we shall get to the following definition.

Definition 2.1. For c ≥ 1, we define the cth G-center subgroup of M as follows:

Z1(M,G) = Z(M,G),
Zc(M,G)

Zc−1(M,G)
= Z(

M

Zc−1(M,G)
, G) (c ≥ 2).

So we have the upper G-central series of M ,

1 = Z0(M,G) ≤ Z1(M,G) ≤ Z2(M,G) ≤ . . . ≤ Zc(M,G) ≤ . . . .

It is easy to see that for all c ≥ 1,

Zc(M,G) = {m ∈M | [· · · [[m, g1], g2], . . . , gc] = 1,∀g1, g2, . . . , gc ∈ G}.

Now using the above definition we define a relative c-central extension of a pair (G,N)
of groups.

Definition 2.2. Let (G,N) be a pair of groups. A relative c-central extension of the pair
(G,N) is a group homomorphism ϕ : E → G, together with an action of G on E such
that
(i) ϕ(E) = N ,
(ii) ϕ(eg) = g−1ϕ(e)g, for all g ∈ G, e ∈ E,
(iii) e′ϕ(e) = e−1e′e, for all e, e′ ∈ E,
(iv) kerϕ ⊆ Zc(E,G).

Note that conditions (ii) and (iii) in Definition 2.2 assert that ϕ is a crossed mod-
ule. A pair (G,N) is said to be c-capable, if there exists a relative c-central extension
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ϕ : E → G with kerϕ = Zc(E,G).

Let (G,N) be a c-capable pair of groups. So there exists a relative c-central ex-
tension ϕ : M → G with kerϕ = Zc(M,G). Then it is straightforward to see that
ϕ̄ : M/Z(M,G)→ G, defined by ϕ̄(mZ(M,G)) = ϕ(m), is a relative (c− 1)-central ex-
tension of (G,N) such that kerϕ = Zc−1(M,G). Hence the pair (G,N) is (c−1)-capable.
This implies that every c-capable pair is a capable pair. But the converse is not true gen-
erally. For instance, let G = 〈x, y, z|x = yx−1y3, y = zy−1z3, z = xz−1x3, x16 = 1〉 and
put Q = G/Z∗(G,G). Then Theorem 1.4 in [3] shows that the pair (Q,Q) is capable but
it is not 2-capable.

It is interesting to find a useful way for determining all c-capable pairs of groups.
The following definition provides a criterion for characterizing the c-capability of pairs
of groups.

Definition 2.3. Let (G,N) be a pair of groups. Then we define the cth precise center of
the pair (G,N) to be

Z∗c (G,N) =
⋂
{ϕ(Zc(E,G))|ϕ : E → G is a relative c− central extention of (G,N)}.

In particular Z∗c (G,G) coincides with the subgroup Z∗c (G) defined in [3].

The above definition helps us to state a necessary and sufficient condition for the
c-capability of a pair of groups. For doing this, we need the following theorem.

Theorem 2.4. For any pair (G,N) of groups, there exists a relative c-central extension
ϕ : E → G such that ϕ(Zc(E,G)) = Z∗c (G,N).

Proof. Let {ϕi : Ei → G|i ∈ I} be the set of all relative c-central extensions of a pair
(G,N). Put

E = {{ei}i∈I ∈
∏
i∈I

Ei| ∃n ∈ N ∀i ∈ I; ϕi(ei) = n}.

Define ϕ : E → G by ϕ({ei}i∈I) = n such that ϕi(ei) = n, for all i ∈ I. It is easy to check
that ϕ is a relative c-central extension of the pair (G,N). So Z∗c (G,N) ⊆ ϕ(Zc(E,G)).
On the other hand, if {ei}i∈I ∈ Zc(E,G) =

∏
i∈I Zc(Ei, G), then ej ∈ Zc(Ej , G), for

all j ∈ I. This implies that ϕ({ei}i∈I) = ϕj(ej) ∈ ϕj(Zc(Ej , G)), for all j ∈ I and so
ϕ({ei}i∈I) ∈

⋂
i∈I ϕi(Zc(Ei, G)) = Z∗c (G,N). Therefore ϕ(Zc(E,G)) ⊆ Z∗c (G,N) and

this completes the proof.

The following important corollary is an immediate consequence of Theorem 2.4.
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Corollary 2.5. Let (G,N) be a pair of groups. Then the pair (G,N) is c-capable if and
only if Z∗c (G,N) = 1.

The next theorem states another property of the cth precise center subgroup Z∗c (G,N).

Theorem 2.6. Let (G,N) be a pair of groups and K be a normal subgroup of G contained
in N . Then

Z∗c (G,N)K

K
⊆ Z∗c (

G

K
,
N

K
).

Proof. By Theorem 2.4, there exists a relative c-central extension ϕ : M → G/K
of (G/K,N/K) such that ϕ(Zc(M,G/K)) = Z∗c (G/K,N/K). Put H = {(m,n) ∈
M ×N |ϕ(m) = nK} with an action of G on H defined by (m,n)g = (mgK , ng), for all
g ∈ G, n ∈ N and m ∈ M . Then the group homomorphism ψ : H → G defined by
ψ(m,n) = n, is a relative c-central extension of (G,N). Also (m,n) ∈ Zc(H,G) implies
that m ∈ Zc(M,G/K). So ψ(Zc(H,G))K/K ⊆ ϕ(Zc(M,G/K)). Hence the result fol-
lows.

The following theorem shows that the class of all c-capable pairs is closed under direct
products.

Theorem 2.7. Let {(Gi, Ni)}i∈I be a family of pairs of groups. Then

Z∗c (
∏
i∈I

Gi,
∏
i∈I

Ni) ⊆
∏
i∈I

Z∗c (Gi, Ni).

Proof. Let ϕi : Mi → Gi be a relative c-central extension of (Gi, Ni) with ϕ(Zc(Mi, Gi)) =
Z∗c (Gi, Ni), for all i ∈ I. Define

ψ :
∏
i∈I

Mi →
∏
i∈I

Gi.

{mi}i∈I 7→ {ϕi(mi)}i∈I

It is easy to check that ψ is a relative c-central extension of (
∏
i∈I Gi,

∏
i∈I Ni) and

ψ(Zc(
∏
i∈IMi,

∏
i∈I Gi)) =

∏
i∈I ϕi(Zc(Mi, Gi)) =

∏
i∈I Z

∗
c (Gi, Ni). So the result fol-

lows.

In the above theorem, equality does not hold in general. A counterexample is given
by I = {1, 2}, G1 = G2 = Z4 and N1 = N2 = Z2. The pair (G1 × G2, N1 × N2) is
1-capable whereas (G1, N1) and (G2, N2) are not capable (See Theorem 5.4 in [8]). Also
we are going to give a condition under which the equality holds. But first we need to
state the following lemma which has a straightforward proof.

Lemma 2.8. Let M and G be groups with an action of G on M . Then for all m,n ∈M
and g, h ∈ G, we have
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(i) [mn, g] = [m, g]n[n, g],
(ii) [m, gh] = [m,h][m, g]h,

(iii) [m−1, g]−1 = [m, g]m
−1

,

(iv) [m, g−1]−1 = [m, g]g
−1

,
(v) [m, g−1, h]g[m, [g, h−1]]h[[m−1, h]−1, g]m = 1.

Now, the following theorem states a sufficient condition under which the equality in
Theorem 2.7 holds.

Theorem 2.9. Let {(Gi, Ni)}i∈I be a family of pairs of groups such that (|Gi|, |Gj |) = 1,
for all i, j ∈ I with i 6= j. Then

Z∗c (
∏
i∈I

Gi,
∏
i∈I

Ni) =
∏
i∈I

Z∗c (Gi, Ni).

Proof. Put Mi = Z∗c (Gi, Ni), for all i ∈ I. Let ϕ : E → G be a relative c-central
extension of (G,N). It is enough to show that for all i ∈ I, ϕ−1(Mi) ⊆ Zc(E,G).
Suppose i ∈ I and put Ei = ϕ−1(Ni). The homomorphism ϕ induces a relative c-central
extension ϕi : Ei → Gi of the pair (Gi, Ni). It follows that Mi ⊆ ϕ(Zc(Ei, Gi)) and
hence

[ϕ−1(Mi), cGi] = 1, (1.1)

in which [ϕ−1(Mi), cGi] is [· · · [[ϕ−1(Mi), Gi], Gi], . . . , Gi]︸ ︷︷ ︸
c−times

. On the other hand, for all

j ∈ I, with j 6= i, [Gi, Gj ] = 1 and so [Ei, Gj ] ⊆ kerϕ ⊆ Zc(E,G). Thus by Lemma 2.8,
for any nonnegative integer k,

[[Ei, kGi], Gj ] ⊆ [[Ei, (k−1)Gi, Gj ], Gi] ⊆ · · · ⊆ [Ei, Gj , kGi]. (1.2)

Let m∗ ∈ ϕ−1(Mi) and h∗1, · · · , h∗c be elements of Gt’s (t ∈ I), where there exists an
integer k, 1 ≤ k ≤ c, such that h∗1, · · · , h∗k−1 ∈ Gi and h∗k ∈ Gj , with j 6= i. Then
Lemma 2.8 and inequality (2) imply that θ : ϕ−1(Mi) → [ϕ−1(Mi), cG] defined by
θ(m) = [m,h∗1, · · · , h∗c ], for all m ∈ ϕ−1(Mi), and also γ : Gj → [ϕ−1(Mi), cG] defined
by γ(g) = [m∗, h∗1, · · · , h∗k−1, g, h∗k+1, · · · , h∗c ], for all g ∈ Gj , are homomorphisms with
kerϕ ⊆ ker θ. It follows that the order of [m∗, h∗1, · · · , h∗c ] divides |ϕ−1(Mi)/ kerϕ| = |Mi|
and |Gj |. Since (|Mi|, |Gj |) = 1, then we have [m∗, h∗1, · · · , h∗c ] = 1. Using this fact and
(1), we have [ϕ−1(Mi), cG] = 1. This completes the proof.

Corollary 2.10. Let {(Gi, Ni)}i∈I be a family of pairs of groups.
(i) If for all i ∈ I, (Gi, Ni) is a c-capable pair, then the pair (

∏
i∈I Gi,

∏
i∈I Ni) is c-

capable.
(ii) If for all i, j ∈ I with i 6= j, we have (|Gi|, |Gj |) = 1, then all the pairs (Gi, Ni) are
c-capable if and only if the pair (

∏
i∈I Gi,

∏
i∈I Ni) is c-capable.
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The authors [8] gave a description of Z∗1 (G,N) in terms of a free presentation of G
and applied it to obtain a number of interesting results. So it might be useful to find
a relationship between Z∗c (G,N) and a free presentation of G. Let (G,N) be a pair of
groups. Suppose that G ∼= F/R is a free presentation of G and S is the preimage of N
in F . First, let us define

γ∗c+1(G,N) =
[S, cF ]

[R, cF ]
,

where [S, cF ] denotes [S, F, F, · · · , F︸ ︷︷ ︸
c−times

] as a left normed commutator (c > 1). It is easy

to see that this definition is independent of the free presentation for G. Also we need to
recall that the c-nilpotent multiplier of G is defined to be

M (c)(G) =
R ∩ γc+1(F )

[R, cF ]
.

This multiplier is also an abelian group and independent of the chosen free presentation.
In order to make a relation between the subgroup Z∗c (G,N) and a free presentation of
G, a straightforward way is to show that the natural homomorphism σ : S/[R, cF ]→ G
is a relative c-central extension. But the problem which arises here is that the natural
action on S/[R, cF ] is not well defined generally. Hence we are forced to add an extra
condition. Therefore, we suppose that G is a group with a free presentation

1→ R→ F
π→ G→ 1

and a normal subgroup N ∼= S/R such that [R,S] ⊆ [R, cF ] (Corollary 2.13 gives an
example of a pair (G,N) which satisfies in this condition). Then the action of G on
S/[R, cF ], defined by (s[R, cF ])g = sf [R, cF ] with π(f) = g, is well defined. So the
group homomorphism

σ :
S

[R, cF ]
→ G,

s[R, cF ] 7→ π(s)

is a relative c-central extension of the pair (G,N). Therefore

Z∗c (G,N) ⊆ σ(Zc(S/[R, cF ], G)).

This inequality yields the following interesting results.

Theorem 2.11. With the above assumption, if K ⊆ Z∗c (G,N) then
(i) the natural homomorphism M (c)(G)→M (c)(G/K) is injective,
(ii) K ⊆ Z∗c (G) ∩N ,
(iii) γ∗c+1(G,N) ∼= γ∗c+1(G/K,N/K).
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Proof. Let T be the preimage ofK in F . ThenK ⊆ Z∗c (G,N) implies that σ(T/[R, cF ]) ⊆
σ(Zc(S/[R, cF ], G)). It follows that [T, cF ]/[R, cF ] = 1. On the other hand
[T, cF ]/[R, cF ] is the kernel of the natural homomorphism M (c)(G) → M (c)(G/K)
and also the natural homomorphism [S, cF ]/[R, cF ] → [S, cF ]/[T, cF ]. So (i) and
(iii) hold. By [3, Lemma 2.1] K ⊆ Z∗c (G) if and only if the natural homomorphism
M (c)(G)→M (c)(G/K) is injective. Hence (ii) follows by (i).

The following corollary is an immediate consequence of Theorem 2.11.

Corollary 2.12. With the previous assumption, if Z∗c (G,N) = N , then γ∗c+1(G,N) = 1.

Finally, Theorem 2.11 helps us to provide a set of examples of c-capable groups. But
for this, we need to recall the definition of nth nilpotent product for cyclic groups. Thus,
let {Gi}i∈I be a family of cyclic groups. Then the nth nilpotent product of the family

{Gi}i∈I is defined to be the group
∏n∗
i∈I Gi =

∏∗
i∈I Gi/γn+1(

∏∗
i∈I Gi), where

∏∗
i∈I Gi is

the free product of the family {Gi}i∈I .

Corollary 2.13. Let {Fi}i∈I be a family of infinite cyclic groups. Put G =
∏c+n
∗
i∈I Fi and

N = γc+k(G), for 0 < k ≤ n. Then the pair (G,N) is c-capable.

Proof. The result easily follows for i = 1. Assume that i ≥ 2. The groups G and N
have free presentations G ∼= F/R and N ∼= S/R, where F =

∏∗
i∈I Fi, R = γc+n+1(F )

and S = γc+k(F ). So the condition [R,S] ⊆ [R, cF ] holds for the pair (G,N) and
Z∗c (G,N) ⊆ Z∗c (G) ∩ N , by Theorem 2.11. On the other hand, using [7, Theorem 3.8]
we have Z∗c (G) = 1, for i ≥ 2. Hence the result follows by Corollary 2.5.
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