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Abstract

There are thirteen types of singular points for irreducible real quartic
curves and seventeen types of singular points for reducible real quartic
curves. This classification is originally due to D. A. Gudkov. There
are nine types of singular points for irreducible complex quartic curves
and ten types of singular points for reducible complex quartic curves.
There are 42 types of real singular points for irreducible real quintic
curves and 49 types of real singular points for reducible real quintic
curves. The classification of real singular points for irreducible real
quintic curves is originally due to Golubina and Tai. There are 28
types of singular points for irreducible complex quintic curves and
33 types of singular points for reducible complex quintic curves. We
derive the complete classification with proof by using the computer
algebra system Maple. We clarify that the classification is based
on computing just enough of the Puiseux expansion to separate the
branches. Thus, the proof consists of a sequence of large symbolic
computations that can be done nicely using Maple.
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1 Introduction

Leading mathematicians in the field of algebraic geometry, as well as other
fields, have stated many times in books and talks that classification is one
of the most fundamental problems of mathematics. Classifying singular
points of algebraic curves of degree n is one of those problems. The first
nontrivial degrees to consider are four and five. History and experience have
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shown that complete classifications for curves of specific degrees provide the
data that allow conjectures to be formulated, which may become theorems
about curves of all degrees. Such theorems allow further classifications,
which in turn lead to new theorems, and so the process continues in a kind
of synergy. The classification of singular points of curves has also been used
in a technique for constructing curves with controlled topology, known as
dissipation of singular points.

The classification of singular points of real quartic curves is originally
due to D. A. Gudkov [8, 5, 6, 7, 9]. He determined the individual types
of singular points, as well as all possible sets of singular points that real
quartic curves can have. The classification of singular points of real quintic
curves is originally due to Golubina and Tai [4]. They found 41 individual
types of real singular points for real irreducible quintic curves. In this
paper, we will derive the thirteen individual types of singular points for
irreducible real quartic curves and the seventeen individual types of singular
points for reducible real quartic curves. We will then derive, with proof, the
classification of individual types of singular points for both irreducible and
reducible real quintic curves. We found 42 individual types of singular
points for irreducible quintic curves. We think that class 39 of Golubina
and Tai should split into two distinct classes based on whether the two
tangent lines are real and distinct or complex conjugate (these classes are
represented by diagrams 3 and 4 below). We exhibit the 49 individual
types of singular points for reducible real quintic curves. There are 28
individual types of singular points for irreducible complex quintic curves
and 33 individual types of singular points for reducible complex quintic
curves. Our description of the equivalence relation is new and our proof is
new and gives a very nice illustration of the role that computer algebra can
play in doing proofs. Furthermore, our proof is self-contained and is the
most elementary proof possible, which makes the material accessible to the
widest possible audience.

The classification of singular points of complex projective quintic curves
appears in a paper by A. Degtyarev [3]. He not only exhibits the 28 individ-
ual types of singular points for complex irreducible quintics, but he exhibits
all 221 sets of singular points, and furthermore proves that the rigid isotopy
type of an irreducible complex quintic is defined uniquely by its set of sin-
gular points. Previous authors of papers on classifications of singular points
of algebraic curves applied theorems that gave enough invariants to sepa-
rate the singular points into distinct classes for the particular degree being
considered. However, no general equivalence relation, applying to curves of
arbitrary degree, was described.

The general question is how shall we classify singular points of real curves
of a fixed degree. For each fixed degree n, we want a finite classification of
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singular points for all algebraic curves of degree n. Thus, in general, the
local diffeomorphism type is not the desired criterion of classification for
singular points. For irreducible quartic curves, there are only finitely many
diffeomorphism types, but for reducible quartic curves, there are infinitely
many equivalence classes with respect to local diffeomorphism. For example,
in the Arnol’d notation [1], four lines intersecting at the origin represents an
X9 singular point which is really an infinite family of smoothly inequivalent
singularities. Notice here that an irreducible real quintic curve can have an
X9 singular point. The tradition is to treat these as one class by fiat. In
our scheme the X9 family will appear naturally as a single class.

Now let us describe how we will classify the individual types of singular
points that a real curve of a fixed degree can have. Given any polynomial
equation F (x, y) = 0, it is possible to solve for y in terms of x in the
form of fractional power series, called Puiseux expansions. There is an
algorithm for doing this, and the software Maple computes such Puiseux
expansions, even for curves with literal coefficients. Our classification is
based on taking just enough of the Puiseux expansions to separate the
“branches,” and noting the exponents at which the “branches” separate. In
other words, compute the Puiseux expansions to a power of x such that all
expansions are unique. Then we will associate a tree-type graph, to which
we will refer as a “tree diagram” or “diagram.” These diagrams will be
described in detail below and will codify how the “branches” separate and
will serve to classify the type of the singular point. It follows from Section 10
of Milnor’s book [10] that such a classification gives a finite number of types
for each fixed degree. At this point let us remark that the term “branch”
already has a traditional meaning in this context. We are really interested
in the distinct Puiseux expansions. In [12], C. T. C. Wall has coined the
term “pro-branch” for the distinct Puiseux expansions. In the same book,
C. T. C. Wall defines the exponent of contact between two pro-branches
to be the smallest exponent such that the corresponding terms in the two
Puiseux expansions have unequal coefficients. Thus, the geometric meaning
of our classification is that two singular points are equivalent if and only if
their pro-branches have the same exponents of contact.

In studying a singular point of an algebraic curve, the first thing to look
at is the Newton polygon. (Our Newton polygons will follow the style of
Walker [11].) Corresponding to each segment of the Newton polygon, there
is a quasihomogeneous polynomial [2, p. 195]. If all such quasihomogeneous
polynomials have no multiple factors, then the Newton polygon already
tells us the type of the singularity. (Note that in this case, we know right
away the exponents at which all of the Puiseux expansions separate.) But
if there is a multiple factor, then it is necessary to examine the situation
more closely. For this, we turn to the Puiseux expansions. As indicated
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above, the relevant definition on which our classification is based is new
and appeals to the Puiseux expansions in an invariant way.

Let us note that we will classify the real singular points. (It is possible
for a real curve to have a complex conjugate pair of singular points. We will
avoid this case.) By a simple translation of axes, we may assume that the
singular point is at the origin. We will treat both irreducible and reducible
curves, but note that the notions of irreducible and reducible are with re-
spect to the complex numbers. Note also that we will not study reducible
curves with multiple components.

The objects being classified are pairs whose first coordinate is a real
quartic curve, specified by a polynomial with real coefficients, considered
up to a real nonzero multiplicative constant, and the second coordinate is
a singular point of the curve in the first coordinate. For example, let the
quartic curve be given by f(x, y) = 0, where

f(x, y) =a00 + a10x + a01y + a20x
2 + a11xy

+ a02y
2 + a30x

3 + a21x
2y + a12xy2 + a03y

3 + a40x
4 + a31x

3y

+ a22x
2y2 + a13xy3 + a04y

4.

Since we may assume that our singular point is at the origin, we have
a00 = 0. Since the point is singular, a10 = a01 = 0. In this paper we
will use the term “tangent cone” to refer to the terms of lowest degree in
f(x, y). The degree of these terms is called the multiplicity of the point.
Let us remark here that our use of this term is slightly unconventional. The
traditional use of the term tangent cone refers to the zero set of the terms of
lowest degree, but for our work it is of the utmost importance to keep track
of the multiplicities as well. With respect to quartic curves, if the point is of
multiplicity four, then the curve must be reducible since any homogeneous
polynomial of degree 4 must factor. Similarly with respect to quintic curves,
if the point is of multiplicity five the curve must be reducible. Thus, for
irreducible curves, we only need to study points of multiplicity four, three,
or two in the quintic case and only points of multiplicity three and two in
the quartic case.

Let us now explain how all of the cases are enumerated. First we choose
the tangent cone by choosing the tangent lines together with their multi-
plicities. The choice of tangent lines can be fixed by a linear change of
coordinates. Moreover, by rotation of axes, we may assume no tangent line
is vertical. For each tangent cone, we consider all possible Newton poly-
gons. For each Newton polygon, we first consider the case where none of
the quasihomogeneous polynomials corresponding to the segments of the
Newton polygon have a multiple factor. Then we consider the cases where
there is a multiple factor. When there is a multiple factor, the choice of this
factor can be fixed by a linear change of coordinates. For irreducible quartic
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curves, the only case of this kind is the one with quasihomogeneous terms
(y+x2)2. In this case, Maple is used to compute the Puiseux expansions for
the corresponding family of curves. The different types of singular points
are then determined by the vanishing or nonvanishing of certain polynomi-
als in the coefficients of this family; these polynomials come from executing
the Newton-Puiseux algorithm and are given to us by the Maple computa-
tion of the Puiseux expansion. These polynomials are usually discriminants
and they are associated with the first non-unique coefficient of the Puiseux
expansions. The vanishing or nonvanishing of these polynomials give what
we call the “conditions” and “cases” in the following sections.

Let us now discuss the issue of verifying the existence of irreducible
curves that have a given type of singular point. Observe that for a given
degree, the irreducible curves form a dense open subset in the Zariski topol-
ogy on the space of all curves of that degree. When a segment of the Newton
polygon contains a multiple quasihomogeneous factor, we use Maple to de-
termine the different types of singular points corresponding to that family,
and in this process, a sequence of polynomial conditions on the coefficients
(which turn out to be discriminants) is obtained. With respect to the Zariski
topology, if an irreducible curve is found at any stage of the sequence, then
all prior stages contain irreducible curves. For all quartic and quintic curves
it is clear that each family at the end of a sequence of computations contains
an irreducible representative.

To be more specific, the details of the following outline will be carried
out in the next section. For irreducible quartic curves, by a linear change of
coordinates, as described above, it suffices to consider the following families:
Multiplicity 3.

y3 + ax4 + bx3y + cx2y2 + dxy3 + ey4 = 0, a 6= 0

y2(y − x) + ax4 + bx3y + cx2y2 + dxy3 + ey4 = 0, a 6= 0

y(y − x)(y − 2x) + ax4 + bx3y + cx2y2 + dxy3 + ey4 = 0, a 6= 0

y(y2 + x2) + ax4 + bx3y + cx2y2 + dxy3 + ey4 = 0, a 6= 0

Multiplicity 2.

y2 − x2 + ax3 + bx2y + cxy2 + dy3 + ex4

+fx3y + gx2y2 + hxy3 + jy4 = 0

y2 + x2 + ax3 + bx2y + cxy2 + dy3 + ex4

+fx3y + gx2y2 + hxy3 + jy4 = 0

y2 + ax3 + bx2y + cxy2 + dy3 + ex4

+fx3y + gx2y2 + hxy3 + jy4 = 0
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(y + x2)(y − x2) + ax3y + bxy2 + cx2y2 + dy3 + exy3 + fy4 = 0

y2 + x4 + ax3y + bxy2 + cx2y2 + dy3 + exy3 + fy4 = 0

(y + x2)2 + ax3y + bxy2 + cx2y2 + dy3 + exy3 + fy4 = 0

Maple computation is needed only for the last family above. An inter-
esting feature of the proof occurs at the end of this computation, where we
show that every curve in the family

(y + x2)2 + bx3y + bxy2 + (1/4b2 + d)x2y2 + dy3 + 1/2bdxy3 + fy4 = 0

is reducible. This is the key to establishing that the list of double points is
complete.

For reducible quartic curves, Maple computation is used to examine the
cases where an irreducible cubic is tangent to the line component and where
two conics share a common tangent. (The other cases are enumerated by
mathematical common sense, involving simple manipulations of the Newton
polygons.)

For irreducible quintic curves, by a linear change of coordinates, as
described above, it suffices to consider the following cases, indicated, for
each multiplicity, by choice of tangent cone, number of Newton polygons,
if greater than one, and choice of multiple quasihomogeneous factors, if
applicable.
Multiplicity 4. y4, y3(y − x), y2(y − x)2, (x2 + y2)2, y2(y − x)(y − 2x),
y2(x2 + y2), y(y2 − x2)(y− gx), y(y− x)(x2 + y2), and (x2 + y2)(x2 + 4y2).

Short Maple computations are required only for the 3rd and 4th cases
above because of multiple quasihomogeneous factors in the Newton polygon.
Multiplicity 3. y3 (3 Newton Polygons), y2(y− x) (4 Newton Polygons),
(y − x)(y − 2x)(y − 3x), and (y − x)(x2 + y2).

Substantial Maple computation is required only for the family y2(y −
x)− x5 + 2x3y + ax4y + bx2y2 + cx3y2 + dxy3 + ex2y3 + fy4 + gxy4 + hy5.
Multiplicity 2. y2 (5 Newton Polygons), y2 − x2, and y2 + x2.

Substantial Maple computation is required for the family (y+x2)2+ax5+
bx3y+cxy2 +dx4y+ex2y2 +fy3 +gx3y2 +hxy3 +jx2y3 +ky4 + lxy4 +my5.
Some spectacular factorizations are performed during the course of that
computation and are indicated in the next section.

For reducible quintic curves, Maple computation is used to examine the
cases where an irreducible conic is tangent to an irreducible cubic. (The
other cases are enumerated by mathematical common sense, involving sim-
ple manipulations of the Newton polygons.)

Given an algebraic curve with a singular point at the origin, let us now
describe how to associate a tree diagram to this singular point once we
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have the Puiseux expansions. Each time at least one “branch” separates,
record the exponent where that happens. Place all such exponents in a
row at the top. For each exponent in the top row, there corresponds a
column of vertices. Each Puiseux expansion corresponds to exactly one
vertex in that column, and those expansions with the same coefficients up
to that exponent correspond to the same vertex. Braces will join those pairs
of vertices, within a given column, that correspond to complex conjugate
coefficients. In such a case, the only real solution of the original equation,
satisfying the pair of expansions indicated by the braces, in a small enough
neighborhood of the origin is (0, 0).

In [12], C.T.C. Wall uses the term “pro-branches” to refer to the distinct
Puiseux expansions belonging to a given singular point, and then defines a
notion of exponent of contact between two pro-branches. It follows from [12,
Lemma 4.1.1], that the diagram we assign to a singular point is invariant
under a linear change of coordinates.

Example 1.1. y2 = −x3. Notice that y = ± i x3/2, which can also be
written as y = ±(−x)3/2.

For each x < 0, there are two distinct real solutions for y. Hence, the
diagram is as shown below (without braces!).

3
2

We start with one vertex on the left corresponding to the power zero.
Line segments are drawn connecting the vertices from left to right, where
each polygonal path from left to right corresponds to Puiseux expansions
having the same set of coefficients up to a given exponent. The diagram
stops at the first exponent where each vertex in that column corresponds
to exactly one Puiseux expansion. The key point is that this tree diagram
uniquely specifies the singularity type (up to permutations of vertices within
columns) provided that no tangent line at the origin is vertical.

Example 1.2. x2y + x4 + 2xy2 + y3 = 0.

If B := x2y +x4 +2xy2 +y3, the Maple command puiseux(B,x=0,y,3)
tells us that the Puiseux expansions begin as follows:

y = −x + x3/2 (branch#1)

y = −x− x3/2 (branch#2)

y = −x2 (branch#3)



102 D. A. Weinberg, N. J. Willis

In the next section, we will refer to the relevant truncated portion of the
Puiseux expansion as the Puiseux jet. Notice that the coefficient of x in
branch #1 and branch #2 is −1, while the coefficient of x in branch #3 is
0. So there is a splitting at the first power of x, which is indicated as

1

Next we must show the splitting of #1 from #2. Notice that the power of
x at which #1 and #2 split is 3/2.
Now our diagram looks like the following:

1
3
2

The diagram is now complete; notice that there are three distinct vertices
in the column labeled 3/2.

Let us clarify the nature of singular points corresponding to diagrams
with braces. The real zero sets of x2+y2 and (x2+y2)(x2+4y2) each consist
of the origin alone, but these are to be regarded as distinct types of singular
points. D. A. Gudkov established the notation A∗

1 for the former and X∗∗
9

for the latter. From our point of view the distinction between the two
points is revealed algebraically by the Puiseux expansions. The geometric
distinction between such special isolated real points is only revealed in the
complex plane where the notion of exponent of contact has the meaning
described earlier in this introduction.

Let us mention here some aspects of the computer algebra that is used.
During the course of computing the Puiseux expansions, it is often necessary
to use Maple to compute discriminants. Setting the discriminant equal to
zero, computer algebra is used to solve this equation and then to substitute
the result into the equation for the family of curves being treated at that
stage. Sometimes these computations are too large to include in the paper
(it would fill several pages), and in some cases Maple factors the discriminant
so that it reduces to one or two lines of text, giving some sort of remarkable
and curious algebraic identity. The end of a sequence of Puiseux expansion
computations occurs when Maple factors the family of curves at that stage,
again giving some sort of remarkable and curious algebraic identity. Many of
these calculations can be seen in the Maple worksheets posted on the website
of David Weinberg. Another feature of computer algebra that is used occurs
in the section on reducible quintic curves. There, Gröbner bases are used to
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verify the existence or nonexistence of some singular points having diagrams
with braces. More explanation of this will occur in that section.
Summary description of the equivalence relation. The geometric
meaning of the equivalence relation is that two singular points are equivalent
if and only if their pro-branches have the same exponents of contact. We
have described a precise procedure for assigning a diagram to a singular
point of an algebraic curve and this assignment is invariant under a linear
change of coordinates. The diagram just codifies in the most convenient
way all the information about the exponents of contact.

2 Classification of Singular Points for Quartic Curves.

2.1 Irreducible curves
2.1.1 Multiplicity 3
2.1.1.1 Tangent cone y3.

Newton polygon y3 +ax4 +bx3y+cx2y2 +dxy3 +ey4 = 0, a 6= 0. Puiseux
jets: y = −a1/3x4/3 (three expansions here).
Diagram type 1.

4
3

2.1.1.2 Tangent cone: y2(y − x).

Newton polygon y2(y−x)+ax4+bx3y+cx2y2+dxy3+ey4, a 6= 0. Puiseux
jets (from Newton polygon; Maple not needed): y = x;
y = ±

√
ax3/2.

Diagram type 2.

1
3
2
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2.1.1.3 Tangent cone: y(y − x)(y − 2x).

Newton polygon y(y−x)(y− 2x) + ax4 + bx3y + cx2y2 + dxy3 + ey4 = 0,
a 6= 0. Puiseux jets: y = 0; y = x; y = 2x.
Diagram type 3.

1

2.1.1.4 Tangent cone: y(y2 + x2).

Newton polygon y(y2 +x2) +ax4 + bx3y + cx2y2 +dxy3 + ey4 = 0, a 6= 0.
Puiseux jets: y = 0; y = ±ix.
Diagram type 4.

1

2.1.2 Multiplicity 2.
2.1.2.1 Tangent cone: (y − x)(y + x) = y2 − x2.

Newton polygon y2−x2 +ax3 +bx2y +cxy2 +dy3 +ex4 +fx3y +gx2y2 +
hxy3 + jy4 = 0. Puiseux jets: y = x; y = −x.
Diagram type 5.

1

2.1.2.2 Tangent cone: y2 + x2.

Newton polygon y2 +x2 +ax3 +bx2y +cxy2 +dy3 +ex4 +fx3y +gx2y2 +
hxy3 + jy4 = 0. Puiseux jets: y = ±ix.
Diagram type 6.

1
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2.1.2.3 Tangent cone: y2.

Newton polygon y2 + ax3 + bx2y + cxy2 + dy3 + ex4 + fx3y + gx2y2 +
hxy3 + jy4 = 0, a 6= 0. Puiseux jets: y = ±

√
a x3/2.

Diagram type 7.
3
2

Newton polygon Quasihomogeneous factors: (y+x2)(y−x2). (y+x2)(y−
x2)+ax3y+bxy2+cx2y2+dy3+exy3+fy4 = 0. Puiseux
jets: y = x2; y = −x2.
Diagram type 8.

2

Newton polygon Quasihomogeneous factors: y2 + x4. y2 + x4 + ax3y +
bxy2 + cx2y2 + dy3 + exy3 + fy4 = 0. Puiseux jets:
y = ±ix2.
Diagram type 9.

2

Newton polygon Quasihomogeneous factors: (y + x2)2. A := (y + x2)2 +
ax3y + bxy2 + cx2y2 + dy3 + exy3 + fy4 = 0.

Notice that the quasihomogeneous polynomial (y + x2)2 has a double
root. Thus, the family above contains several different types of singular
points. We will determine polynomial conditions on the coefficients that
will give all the different types of singular points by using Maple to compute
a succession of Puiseux expansions. We begin by computing the Puiseux ex-
pansion of A using the Maple command puiseux(A, x = 0, y, 0). Notice
that the zero in the last argument instructs Maple to exhibit just enough
of the Puiseux expansion to separate the “branches”! So, we obtain the
Puiseux jets: y = −x2 + (a − b)1/2x5/2 under the condition a 6= b. This
gives Diagram type 10 :
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5
2

In the case a = b, we get the Puiseaux jets y = −x2 + x3RootOf(−bZ +
Z2 + c − d) under the condition c 6= 1

4b2 + d, and hence the two diagram
types as follows:

Diagram type 11. Diagram type 12.
if b2 − 4(c− d) > 0 if b2 − 4(c− d) < 0

3 3

In the case c = 1
4b2 + d, the Puiseux jets are y = −x2 + (e− 1

2bd)1/2x7/2

under the condition e 6= 1
2bd, thus give rise to Diagram type 13 :

7
2

Finally, in the case that e = 1
2bd, the family has become H := (y +

x2)2 + bx3y + bxy2 + ( 1
4b2 + d)x2y2 + dy3 + 1

2bdxy3 + fy4. We cannot show
that H is reducible by using the Maple command factor(H). However, the
Maple command factor(H - fy4) shows that H − fy4 = 1

4 (2x2 + 2y +
bxy)(bxy + 2x2 + 2dy2 + 2y). Therefore, H = 1

4 (2x2 + bxy + 2y)2 + d
2 (2x2 +

bxy + 2y)y2 + fy4, which is homogeneous in (2x2 + bxy + 2y) and y2, and
thus factors into H = (2x2 + y2(d− (d2 − 4f)1/2) + bxy + 2y)(2x2 + y2(d +
(d2 − 4f)1/2) + bxy + 2y).

This completes the classification of singular point types for irreducible
real quartic curves.

2.2 Reducible Curves
2.2.1 Degrees of factors: 3, 1.
If the straight line does not pass through (0, 0), then there are three cases:

Diagram type 1.

1
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Diagram type 2.

1

Diagram type 3.

3
2

If the straight line does pass through (0, 0), then there are five cases:

Diagram type 4.

1
3
2

Diagram type 5.

3
2

Diagram type 6.

1

Consider the family (y2−x2+ax3+bx2y+cxy2+dy3)(y−x) = 0. By using
Maple, we obtain the Puiseux jets y = x+ 0x2, y = x+ 1

2 (−a− b− c−d)x2,
y = −x under the condition a + b + c + d 6= 0. This yields
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Diagram type 7

1 2

In the case a + b + c + d = 0, the cubic is reducible, so we are done.

Diagram type 8

1

Consider the family (y − x + ax2 + bxy + cy2 + dx3 + ex2y + fxy2 +
gy3)(y − x) = 0. By using Maple, we obtain the Puiseux jets: y = x + 0x2,
and y = x + (−a− b− c)x2 under the condition a + b + c 6= 0.

Diagram type 9.

2

In the case a = −b − c, we get the Puiseux jets y = x + 0x3 and y =
x + (−f − g − e− d)x3 under the condiion f + g + e + d 6= 0.

Diagram type 10.

3

In the case f + g + e + d = 0, the cubic is reducible, so we are done.

2.2.2 Degrees of factors: 2, 2.
The first case is that we have two distinct tangents at (0, 0).

Diagram type 1.

1
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This corresponds to (y + ix + ix2)(y − ix − ix2) = y2 + x2 + 2x3 + x4 =
y2 + x2(1 + x)2.

Diagram type 2.

1

The second case is that two tangents coincide at (0, 0), i.e., (y +ax2 +bxy +
cy2)(y + dx2 + exy + fy2) = 0. Notice that a 6= 0 and d 6= 0. Calculation
using Maple yields the Puiseux jets y = −ax2 and y = −dx2 under the
condition a 6= d with the following diagrams:

Diagram type 9. Diagram type 11.
2 2

In the case a = d, we get the Puiseux jets y = −dx2 + edx3 and y =
−dx2 + bdx3 under the condition b 6= e:

Diagram type 10. Diagram type 12.
3 3

In the case b = e, we get the Puiseux expansions y = −dx2 + edx3 +
(−e2d−cd2)x4 and y = −dx2 +edx3 +(−e2d−fd2)x4, under the condition:
c 6= f :

Diagram type 13. Diagram type 14.
4 4

If c = f , then we just have a curve of degree 2 with multiplicity 2.

2.2.3 Degrees of factors: 2, 1, 1.
In the following list, the geometric situation on the left hand side yields the
diagram on the right hand side.

or

Diagram type 1
1
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Diagram type 2

1

Diagram type 9
2

Diagram type 6
1

Diagram type 8
1

Diagram type 7

1 2

2.2.4 Degrees of factors: 1, 1, 1, 1.
Again, the geometric situation on the left hand side yields the diagram on
the right hand side.

Diagram type 15
1

Diagram type 16
1

Diagram type 17
1
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This completes the classification of singular point types for reducible
real quartic curves.

3 Classification of Singular Points of Quintic Curves

3.1 Irreducible curves
3.1.1 Multiplicity 4.
3.1.1.1 Tangent cone: y4.

Newton polygon y4 +ax5 +bx4y +cx3y2 +dx2y3 +exy4 +fy5 = 0, a 6= 0.
Puiseux jets: y = (−a)1/4x5/4.
Diagram type 1.

5
4

3.1.1.2 Tangent cone: y3(y − x).

Newton polygon y3(y − x) + ax5 + bx4y + cx3y2 + dx2y3 + exy4 + fy5 =
0, a 6= 0. Puiseux jets: y = x and y = (−a)1/3x4/3.
Diagram type 2.

1
4
3

3.1.1.3 Tangent cone: y2(y − x)2

Newton polygon A = y2(y−x)2+ax5+bx4y+cx3y2+dx2y3+exy4+fy5 =
0, a 6= 0. The Puiseux expansion is computed by us-
ing the Maple command puiseux(A,x=0,y,0). Puiseux
jets: y = (−a)1/2x3/2 and y = x − (a + b + c + d + e +
f)1/2x3/2, under the condition a + b + c + d + e + f 6= 0.
Diagram type 3.

1
3
2

If a + b + c + d + e + f = 0, then each curve of the form
A is reducible.
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3.1.1.4 Tangent cone: (x2 + y2)2.

Newton polygon B = (x2+y2)2+ax5+bx4y+cx3y2+dx2y3+exy4+fy5 =
0 under the conditions a−c+e 6= 0 or b+f−d 6= 0. Using
Maple, we obtain the Puiseux jets y = RootOf(Z2 +
1)x + (a + bRootOf(Z2 + 1) + fRootOf(Z2 + 1) − c +
e − dRootOf(Z2 + 1))1/2x3/2. (Note: these are four
expansions.)
Diagram type 4.

1
3
2

If a − c + e = 0 and b + f − d = 0, then, using Maple,
each curve in B is reducible.

3.1.1.5 Tangent cone: y2(y − x)(y − 2x).

Newton polygon y2(y−x)(y− 2x) +ax5 + bx4y + cx3y2 +dx2y3 + exy4 +
fy5 = 0, a 6= 0. Puiseux jets: y = x, y = 2x and
y = (− 1

2a)1/2x3/2.
Diagram type 5.

1
3
2

3.1.1.6 Tangent cone: y2(x2 + y2).

Newton polygon y2(x2+y2)+ax5+bx4y+cx3y2+dx2y3+exy4+fy5 = 0,
a 6= 0. Puiseux jets: y = ±ix and y = (−a)1/2x3/2.
Diagram type 6.

1
3
2
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3.1.1.7 Tangent cone: y(y2 − x2)(y − gx).

Newton polygon y(y2−x2)(y−gx)+ax5 +bx4y +cx3y2 +dx2y3 +exy4 +
fy5 = 0, a 6= 0, g 6= 0,±1. Puiseux jets: y = 0x, y = x,
y = −x, and y = gx.
Diagram type 7.

1

3.1.1.8 Tangent cone: y(y − x)(x2 + y2).

Newton polygon y(y−x)(x2 + y2) + ax5 + bx4y + cx3y2 + dx2y3 + exy4 +
fy5 = 0, a 6= 0. Puiseux jets: y = 0x, y = x, and
y = ±ix.
Diagram type 8.

1

3.1.1.9 Tangent cone: (x2 + y2)(x2 + 4y2).

Newton polygon (x2 +y2)(x2 +4y2)+ax5 +bx4y+cx3y2 +dx2y3 +exy4 +
fy5 = 0. Puiseux jets: y = ±ix and y = ±2ix.
Diagram type 9.

1

3.1.2 Multiplicity 3.
3.1.2.1 Tangent cone: y3.

Newton polygon y3 + ax4 + bx3y + cx2y2 + dxy3 + ey4 + fx5 + gx4y +
hx3y2 + jx2y3 + kxy4 + ly5 = 0, a 6= 0. Puiseux jet:
y = (−a)1/3x4/3.
Diagram type 10.

4
3
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Newton polygon y3 + ax5 + bx2y2 + cxy3 + dy4 + ex4y + fx3y2 + gx2y3 +
hxy4 + jy5 = 0, a 6= 0. Puiseux jet: y(−a)1/3x5/3.
Diagram type 11.

5
3

Newton polygon x5 − x3y + y3 + ax4y + bx2y2 + cx3y2 + dxy3 + ex2y3 +
fy4 + gxy4 + hy5 = 0. Puiseux jets: y = 0x3/2 and
y = x3/2.
Diagram type 12.

3
2

3.1.2.2 Tangent cone: y2(y − x).

Newton polygon y2(y − x) + ax4 + bx3y + cx2y2 + dxy3 + ey4 + fx5 +
gx4y + hx3y2 + jx2y3 + kxy4 + ly5 = 0, a 6= 0. Puiseux
jets: y = x and y = a1/2x3/2.
Diagram type 13.

1
3
2

Newton polygon Quasihomogeneous factors: x(x2 − y)(x2 + y). y2(y −
x) + x5 + ax4y + bx2y2 + cx3y2 + dxy3 + ex2y3 + fy4 +
gxy4 + hy5 = 0. Puiseux jets: y = x, y = x2, and
y = −x2.
Diagram type 14.

1 2

Newton polygon Quasihomogeneous factors: x(−y2−x4). y2(y−x)−x5+
ax4y+bx2y2+cx3y2+dxy3+ex2y3+fy4+gxy4+hy5 =
0. Puiseux jets: y = x and y = ±ix2.
Diagram type 15.

1 2



Singular points of real quartic and quintic curves 115

Newton polygon Quasihomogeneous factors: −x(y − x2)2. y2(y − x) −
x5 +2x3y +ax4y +bx2y2 +cx3y2 +dxy3 +ex2y3 +fy4 +
gxy4 + hy5 = 0.

Now we use Maple to compute Puiseux expansions. Under the condition
a+b+1 6= 0, we obtain the Puiseux jets y = x and y = x2+(a+b+1)1/2x5/2,
giving Diagram type 16 :

1
5
2

In the case b = −a− 1 under the condition d 6= − 1
4 (1− 2a+a2 + 4c), we

get the Puiseaux jets y = x and y = x2 + x3RootOf(Z2 + (a− 1)Z − d− c),
and hence the two diagram types as follows:

Diagram type 17. Diagram type 18.
if 1− 2a + a2 + 4d + 4c > 0 if 1− 2a + a2 + 4d + 4c < 0

1 3 1 3

In the case d = − 1
4 (1 − 2a + a2 + 4c) under the condition 1

8 −
1
8a −

1
8a2 − 1

2c + 1
2ac + 1

8a3 + e + f 6= 0, we get the Puiseux jets y = x and
y = x2 + x3( 1

2 −
1
2a) + ( 1

8 −
1
8a − 1

8a2 − 1
2c + 1

2ac + 1
8a3 + e + f)1/2x7/2,

giving Diagram type 19 :

1
7
2

In the case f = −( 1
8 −

1
8a− 1

8a2 − 1
2c + 1

2ac + 1
8a3 + e), we define

D1 =256c2 − 128c + 384ca2 − 256ca + 80− 32a2

− 64a + 80a4 − 64a3 − 512e + 1024g + 512ae.

Under the condition that D1 6= 0, we get the Puiseux jets y = x and
y = x2 + x3( 1

2 −
1
2a) + x4RootOf(16Z2 + (16c − 20 − 4a2 + 24a)Z + 8e −

14a−16g−8ca2−a4−8c+5+16ac−2a3 +12a2−8ea), giving the following
two diagram types:
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Diagram type 20. Diagram type 21.
if D1 > 0 if D1 < 0

1 4 1 4

If now D1 = 0, we define

D2 =
3
32
− 7a

64
− 3e

8
− c

8
+ h− a3

32
− ca

8
+

ca2

8
+

ea

4

+
a4

32
+

a3c

8
+

a2e

8
+

c2a

4
+

ce

2
+

a5

64
.

If D2 6= 0, we get the Puiseux jets y = x and y = x2 + (1
2 −

1
2a)x3 + (a2

3 +
5
8 −

c
2 −

3
4a)x4 + D2

1/2x9/2, and Diagram type 22 :

1
9
2

Finally, if D2 = 0, the Maple command factor applied to the resulting
family shows that each curve in the family is reducible. Thus, we are done
analyzing the tangent cone y2(y − x).
3.1.2.3 Tangent cone: (y − x)(y − 2x)(y − 3x).

Thus, (y−x)(y− 2x)(y− 3x) + ax4 + bx3y + cx2y2 + dxy3 + ey4 + fx5 +
gx4y + hx3y2 + jx2y3 + kxy4 + ly5 = 0, and we get the Puiseux jets y = x,
y = 2x, and y = 3x, and hence Diagram type 23 :

1

3.1.2.4 Tangent cone: (y − x)(x2 + y2).

Thus (y−x)(x2 + y2) + ax4 + bx3y + cx2y2 + dxy3 + ey4 + fx5 + gx4y +
hx3y2 +jx2y3 +kxy4 + ly5 = 0. We get the Puiseux jets y = x and y = ±ix,
and consequently Diagram type 24 :

1



Singular points of real quartic and quintic curves 117

3.1.3 Multiplicity 2
3.1.3.1 Tangent cone: y2.

Newton polygon y2+ax3+bx2y+cxy2+dy3+ex4+fx3y+gx2y2+hxy3+
jy4 + kx5 + lx4y + mx3y2 + nx2y3 + pxy4 + qy5 = 0,
a 6= 0. Puiseux jets: y = (−a)1/2x3/2.
Diagram type 25.

3
2

Newton polygon y2 − x5 + axy2 + by3 + cx3y + dx2y2 + exy3 + fy4 +
gx4y + hx3y2 + jx2y3 + kxy4 + ly5 = 0. Puiseux jets:
y = ±x5/2.
Diagram type 26.

5
2

Newton polygon Quasihomogeneous factors: (y−x2)(y+x2). (y−x2)(y+
x2) + ax5 + bx3y + cxy2 + dx4y + ex2y2 + fy3 + gx3y2 +
hxy3 + jx2y3 + ky4 + lxy4 + my5 = 0. Puiseux jets:
y = ±x2.
Diagram type 27.

2

Newton polygon Quasihomogeneous factors: y2 + x4. y2 + x4 + ax5 +
bx3y + cxy2 + dx4y + ex2y2 + fy3 + gx3y2 + hxy3 +
jx2y3 + ky4 + lxy4 + my5 = 0. Puiseux jets: y = ±ix2.
Diagram type 28.

2

Newton polygon Quasihomogeneous factors: (y+x2)2. In order to find all
remaining singular points corresponding to the tangent
cone y2, we should consider the family (y +x2)2 +ax5 +
bx3y+cxy2+dx4y+ex2y2+fy3+gx3y2+hxy3+jx2y3+
ky4 + lxy4 + my5 = 0.
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We now perform a sequence of Maple calculations of Puiseux expansions
for this family. Under the condition b− a− c 6= 0, we get the Puiseux jets
y = −x2 + (b− a− c)1/2x5/2, giving Diagram type 26 :

5
2

In the case b = a+c under the condition a2−2ac+c2−4e+4f +4d 6= 0,
we get the Puiseux jets y = −x2 + x3RootOf(Z2 + (a − c)Z + e − f − d),
corresponding to the following two diagram types:

Diagram type 29. Diagram type 30.
if a2 − 2ac + c2 − 4e + 4f + 4d > 0 if a2 − 2ac + c2 − 4e + 4f + 4d < 0

3 3

In the case e = 1/4(a2 − 2ac + c2 + 4f + 4d) under condition g 6=
a2c
2 −

ac2

4 −
a3

4 + fa
2 −

fc
2 −

da
2 + dc

2 + h, we getthe Puiseux jets y = −x2 +
x3(−a

2 + c
2 )+(a2c

2 −
ac2

4 −
a3

4 + fa
2 −

da
2 + dc

2 −g +h)1/2x7/2, giving Diagram
type 31 :

7
2

In the case g = a2c
2 −

ac2

4 −
a3

4 + fa
2 −

fc
2 −

da
2 + dc

2 + h, we define

D1 =256f2 + 256fc2 − 256fa2 − 512df + 256c2a2 + 256a4 + 512da2

+ 256d2 − 512dca + 1024j − 512hc + 512ha− 512a3c− 1024k.

Under the condition D1 6= 0, we get the Puiseux jets y = −x2 + x3(−a
2 +

c
2 )+x4RootOf(16Z2 +(16f +8c2−8a2−16d)Z +8dca−16j−4dc2 +8hc−
6c2a2 + 16k− 8ha− 3a4 + c4− 4da2 + 8a3c), corresponding to the following
two diagram types:

Diagram type 32. Diagram type 33.
if D1 > 0 if D1 < 0

4 4
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If now D1 = 0 (solved for k), we define

D2 =− 4adf + 8l + 4dc2a + 4fca2 − 4dca2 − 4jc− 4hca− fc3 + 2cf2

− 2c3a2 − 2cd2 + 2af2 + 2c2a3 + 2ad2 + 2hc2 − 4hf + 4hd.

Under the condition D2 6= 0, we get the Puiseux jets (in parametric form)
x = − 1

8D2T
2 and y = − 1

64D2
2T 4 − 1

1024cD2
3T 6 − 1

16384 (c2 + 2f + 2ca −
2d)D2

4T 8 − 1
32768D2

5T 9 giving Diagram type 34 :

9
2

In the case D2 = 0 (solved for l), we continue and define

D3 =20480c2a2d + 16384m− 4096fc3a− 8192fc2a2 + 8192hc2a

+ 4096fc2d− 8192hcd− 16384d2ca− 8192jca + 4096a2d2

+ 4096c2a4 + 4096h2 + 4096a2f2 + 8192adh− 8192ca2h

− 8192haf + 4096d3 − 1024f2c2 + 4096f2d + 1024d2c2 − 8192d2f

− 8192jf + 8192jd + 1024c4a2 − 8192c3a3 + 16384fcad

− 2048dc3a− 8192a3dc− 8192a2df + 8192ca3f.

Under the condition D3 6= 0, we get the Puiseux jets y = −x2 + x3( 1
2c) +

x4(− 1
4c2− 1

2f− 1
2ca+ 1

2d)+x5RootOf(64Z2 +(64dc+64ad−64ca2−64ac2 +
64h− 64af − 128fc− 16c3)Z + (−144c2a2d− 64m + 88fc3a + 128fc2a2 −
64hc2a− 80fc2d + 64hcd− 64hcf + 96d2ca + 32jca + 64f2ca− 16d3 + c6 +
68f2c2 − 16f2d + 16fc4 + 12d2c2 + 32d2f − 8hc3 + 32jf − 32jd + 20c4a2 +
64c3a3 + 8ac5 − 8dc4 − 160fcad− 32dc3a)), corresponding to the following
two diagram types:

Diagram type 35. Diagram type 36.
if D3 > 0 if D3 < 0

5 5

Now let D3 = 0 (solved for m) and define

D4 =72c2a3d + 8afc2d− 56ahcd + 24ahcf + 8a3d2 + 8c2a5 + 8ah2

+ 8a3f2 + 14c4a3 − 28c3a4 − a2c5 − 12ch2 − 3f2c3 − d2c3

+ 72fca2d− 8fc3a2 − 40fc2a3 + 40hc2a2 − 60d2ca2 − 12f2ca2

+ 16a2dh− 16ca3h− 16ha2f − 36dc3a2 − 16a4dc− 16a3df
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+ 16ca4f − 4fc3d + 8hc2d + 12hc2f − 14af2c2 + 4afc4 + 30ad2c2

− 8ahc3 + 2adc4 − 32ad2f + 8dcf2 + 16daf2 − 16dhf − 8cd3

+ 16ad3 + 16hd3 + 16jh− 16jaf + 16jad− 16jca2 − 8jfc− 8jdc

+ 8jac2.

Under the condition D4 6= 0, we get the Puiseux jets (in parametric form)
x = − 1

32D4T
2 and y = − 1

1024D − 22T 4 − 1
65536cD4

3T 6 − 1
4194304 (c2 + 2f +

2ca − 2d)D4
4T 8 − 1

268435456 (4af − 4ad + 4ca2 + 8fc − 4dc + ac2 + c3 −
4h)D4

5T 10 + 1
1073741824D4

6T 11, giving Diagram type 37 :

11
2

In the case D4 = 0 (solved for j), we define

D5 = 1024(4a2−28ca+c2+24d−8f)(−2h+2af−2ad+2ca2+fc+dc−ac2)2.

(This is the discriminant of the quadratic polynomial exhibited in the coeffi-
cient of x6 in the Puiseux jet immediately below. It is interesting that Maple
factored this discriminant.) Unter the condition D5 6= 0, we get the Puiseux
jets y = −x2 + 1

2cx3 +(− 1
4c2− 1

2f− 1
2ca+ 1

2d)x4 +(1
2af− 1

2ad+ 1
2ca2 +fc−

1
2dc+ 1

2ac2 + 1
8c3− 1

2h)x5 +x6RootOf(256Z2 +(128a3c−160dc2 +1024fca−
896dca − 128a2d − 128ah + 640c2a2 + 160ac3 + 608fc2 − 448hc − 512df +
128a2f + 32c4256d2 + 256f2)Z + (64d4 + c8 + 10ac7−160a62d3 + 256fac5−
224fdc4 + 224h2ca−480hc3a2−128hcd2−512hc2a3−256had2−152hac4 +
144hdc3−576dc4a2+440d2c3a−104dc5a−736a4c2d+608a3cd2−864a3c3d+
832d2c2a2−352d3ca−28hc5 +192h2c2−96h2d−104d3c2−10dc6 +40d2c4 +
288a5c3 + 240a3c5 + 320a4c4 + 64f4 + 32fh2 + 96a2f3 − 256fd3 + 38fc6 +
312f3c2−256f3d+376f2c4+384d2f2+1304f2c3a+1600f2c2a2−696f2c2d−
256hcf2+544f3ca−128haf2−352a2df2+480ca3f2+416fa2d2+672fc2a4+
424fd2c2 − 528fhc3 + 1040fc4a2 + 1440fc3a3 − 1568f2cad− 2560fc2a2d−
1120fhc2a + 512fhcd + 1376fd2ca + 384fadh − 640fca2h − 1456fdc3a −
1088fa3dc+608hdc2a+768hdca2 +64c6a2)), giving the following two types
of diagrams:

Diagram type 38. Diagram type 39.
if D5 > 0 if D5 < 0

6 6
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In the case h = 1
2 (2af−2ad+2ca2+fc+dc−ac2), the factor command

in Maple tells us that each curve in the resulting family is reducible; in fact,
the family becomes 1

4 (dy+1−acy+ax)(acy2 +2x2 +cxy+2y+fy2−dy2)2.
In the case f = 1

8 (4a2 − 28ac + c2 + 24d), we define

D6 =512a9 + 12288c3a6 − 106176c4a5 − 122592c5a4 − 31936c6a3

+ 6144h2a3 + 768h2c3 + 32768d3a3 + 32768d3c3 − 48c6h

+ 3360c7a2 + 96c7d− 102c8a + 24576a5d2 + 24576c2a7

+ 3072d2c5 + 340608c4a3d + 16896c2a5d− 301056c2a3d2

− 316416c3a2d + 97536c5a2d + 24576h2ad− 27648h2ca2

+ 24576h2dc− 26112h2ac2 + 98304d3ca2 + 98304d3ac2

− 36096hc2a4 − 52034hc4a2 + 3264hc5a− 49152hc2d2

− 3072hc4d− 61440d2ca4 + 27648ca5h− 24576a4dh

− 49152a2d2h− 6432c6ad− 49152a6dc + 308736c3a4d

− 4096h3 + c9 + 215040c2a2dh− 98304d2c4a + 101376hc3ad

+ 86016hcda3 − 98304hcd2a− 118272c3a3h + 6144da7 − 3072a6h

− 6912a8c.

Under the condition D6 6= 0, we get the Puiseux jets x = 1
32768D6T

2 and
y = − 1

1073741824D6
2T 4 + 1

70368744177664cD6
3T 6 − 1

18446744073709551616 (4a2 +
16d−20ca+5c2)D6

4T 8 + 1
604462909807314587353088 (−8h+4a3 +16ad−12ca2 +

40dc − 47ac2 + 4c3)D − 65T 10 − 1
39614081257132168796771975168 (8a4 + 48a2 +

64d2−44a3c−88dca+34c2a2 +112dc2−129ac3 +7c4−8ah−28hc)D6
6T 12 +

1
40564819207303340847894502572032D6

7T 13, giving Diagram type 40 :

13
2

In the case: D6 = 0, the factor command in Maple tells us that
each curve in the resulting family is reducible; in fact, the family becomes
1

256 (dy + 1−acy +ax)(16x2 + 16y + 4a2y2 + 16dy2 + 8cxy−20acy2 + c2y2)2.
This completes the case of the quasihomogeneous factors (y + x2)2.
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3.1.3.2 Tangent cone: y2 − x2.

Newton polygon y2 − x2+ higher terms = 0. Puiseux jets: y = ±x.
Diagram type 41.

1

3.1.3.3 Tangent cone: y2 + x2.

Newton polygon y2 + x2+ higher terms = 0. Puiseux jets: y = ±ix.
Diagram type 42.

1

3.2 Reducible Curves
3.2.1 Factor of degree one
If the reducible curve has a factor of degree one, either the line component
passes through the origin or it doesn’t. If it does not pass through the
origin, then it is only necessary to list the diagrams from the degree four
case. If the line component does pass through the origin, then, by careful
scrutiny of the Newton polygon, all the corresponding diagrams can easily
be obtained by modifying the diagrams in the preceding case. We now list
the diagrams in this case of a factor of degree one.

1.

4
3

2.
1

3
2

3.

1

4.

1

5.
1

6.
1

7.

3
2

8.
2

9.
2

10.

5
2

11.
3

12.
3

13.

7
2

14.

3
2

15.
1 2

16.
4
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17.
4

18.

1

19.

1

20.

1

21.
1

4
3

22.

4
3

23.
1

3
2

24.
1

3
2 2

25.
1

3
2

26.
1 2

27.
1 2

28.
1 3

29.

2

30.
1 2

31.

2

32.
1

5
2

33.
2

5
2

34.
2 3

35.
1 3

36.
2 3

37.
1

7
2

38.
2

7
2

39.
1 2

40.
1 4

41.
2 4

42.
1 4

43.
2 4

44.

1

45.

1

46.

1

3.2.2 Factor of degree 2
We may assume that the factors of degrees two and three are each irre-
ducible; otherwise there is a factor of degree one, and we are in the previous
case. If the factor of degree three has a cusp or acnode at the origin, we
obtain nothing new. Furthermore, we only need consider the case where
the tangent line to the conic factor agrees with a tangent line to the cubic
factor.
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Some further argument is needed to justify the existence of complex-
conjugate-type singular points (singular points whose diagrams contain
braces). The Maple computations below do not reveal whether these types
of singular points exist. Real and imaginary parts with literal coefficients
are inserted for each coefficient in each factor of the family of reducible
curves where each family consists of two or more irreducible components.
This is expanded and simplified by computer algebra. A system of equa-
tions is formed by setting equal to zero all coefficients in the imaginary
part. Gröbner bases are used to find conditions under which this system
has a solution. These conditions are substituted (by computer algebra) into
the original family (having the real and imaginary parts). Puiseux expan-
sions are recomputed. It is a very beautiful feature of the computation that
each time the discriminant is negative (Maple returns a factorization of the
discriminant into even powers, the whole expression having a minus sign in
front.) The calculation ends when the Maple factorization of the equation of
the family of curves has a multiple factor. Unfortunately, these calculations
are too lengthy to include in this paper. There are interesting phenomena
to observe here. Not every diagram without braces is accompanied by the
corresponding diagram with braces.

If the cubic has a crunode at the origin, consider the family (y(y− x) +
ax3 + bx2y + cxy2 + dy3)(y + ex2 + fxy + gy2) = 0. We will now use Maple
to calculate Puiseux expansions.

Under the condition a 6= −e, we get the Puiseux jets y = x, y = ax2,
and y = −ex2 corresponding to diagrams 15. and 30. above:

1 2 1 2

In the case a = −e and under the condition f 6= e−b, we get the Puiseux
jets y = x, y = −ex2 + efx3, and y = −ex2 + (e2 − be)x3, corresponding to
diagrams 28. and 35. in the list above:

1 3 1 3

In the case f = e − b under the condition b 6= e − c − g, we get the
Puiseux jets y = x, y = −ex2 + (e2− be)x3 + (3be2− eb2 + ce2− 2e3)x4, and
y = −ex2 + (e2 − be)x3 + (−e3 − e2g + 2be2 − eb2)x4, giving diagrams 40.
and 42. in the above list:
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1 4 1 4

In the case b = e− c− g under the condition g 6= d, we get the Puiseux
jets y = x, y = −ex2 + (ce + eg)x3 + (−e2g− eg2− 2ecg− ec2)x4 + (3e2cg +
3eg2c + 3egc2 + ec3 + 3e2g2 + eg3)x5, and y = −ex2 + (ce + eg)x3 + (−e2g−
eg2−2ecg−ec2)x4+(e3g−e3d+3e2g2+3e2cg+eg3+3eg2c+3egc2+ec3)x5,
giving diagram 47.:

1 5

If g = d, then each curve in the resulting family has a linear factor.

The final case is where the cubic has a simple point at the origin with
tangent y = 0. y = (ax2+bxy+cy2)(y+dx2+exy+fy2+gx3+hx2y+jxy2+
ky3) = 0. Under the condition a 6= d, we get the Puiseux jets y = −dx2

and y = −ax2, giving diagrams 8. and 9.:

2 2

In the case a = d under the condition g 6= de − db, we get the Puiseux
jets y = −dx2 +(de−g)x3 and y = −dx2 +dbx3, corresponding to diagrams
11. and 12.:

3 3

In the case g = de−db under the condition h 6= be+fd−dc− b2, we get
the Puiseux jets y = −dx2 + dbx3 + (−d2c− db2)x4 and y = −dx2 + dbx3 +
(−bde− fd2 + hd)x4, giving diagrams 16. and 17.:

4 4

In the case h = be + fd− dc− b2 under the condition j 6= bf + ce− 2bc,
we obtain the Puiseux jets y = −dx2 +dbx3 +(−d2c−db2)x4 +(db3 +bfd2 +
d2bc+d2ce−d2j)x5 and y = −dx2 +dbx3 +(−d2c−db2)x4 +(3d2bc+db3)x5,
and thus diagram 48.:
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5

Finally, in the case j = bf +ce−2bc and under the condition k 6= cf−c2,
we obtain the Puiseux jets y = −dx2 + dbx3 + (−d2c − db2)x4 + (3d2bc +
db3)x5 +(−6d2b2c−db4−2d3c2)x6 and y = −dx2 +dbx3 +(−d2c−db2)x4 +
(3d2bc + db3)x5 + (−db4 − 6d2b2c− d3cf − d3c2 + d3k)x6, corresponding to
diagram 49.:

6

If k = cf − c2, then each curve in the resulting family has a linear factor
and a multiple component; and this completes the classification.
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Appendix

A Summary of Classification for Quartic Curves.

In this appendix, we summarize the classification by providing tables that
show, for each singular point type, a simple example, together with a pic-
ture, the tree diagram, and the name of the singularity according to the
Arnol’d notation. (Please note that in the table of reducible curves, the
example will not always perfectly match the picture.)

A.1 Irreducible curves
Name Picture Diagram Example

1. E6

4
3

y3 − x4 = 0

2. D5

1
3
2

x4 + xy2 + y3 = 0

3. D4

1

x4 + x2y + xy2 + y3 = 0

4. D∗
4

1

x4 + x2y + y3 = 0

5. A1

1
y2 − x2 + x4 = 0

6. A∗
1

1
y2 + x2 + x4 = 0

7. A2

3
2

y2 + x3 + x4 = 0
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Name Picture Diagram Example

8. A3

2
y2 − x4 + y3 = 0

9. A∗
3

2
y2 + x4 + y3 = 0

10. A4

5
2

y2 + 2x2y + x4 + x3y = 0

11. A5

3
y2 + 2x2y + x4 + y3 = 0

12. A∗
5

3
y2 + 2x2y + x4 − y3 = 0

13. A6

7
2 y2+2x2y+x4+x2y2+ 1

4y4+y3 =
0

A.2 Reducible curves
Name Picture Diagram Example

1. A1

1
(y − 1)(y − 2)(y − x)(y + x) = 0

2. A∗
1

1
(y − 1)(y − 2)(x2 + y2) = 0

3. A2

3
2

(y − 1)(y2 − x3) = 0
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Name Picture Diagram Example

4. D5
1

3
2

(y − x)(y2 − x3) = 0

5. E7

3
2

y(y2 − x3) = 0

6. D4

1

(y − x)(y + x)(y − x2) = 0

7. D6

1 2
y(y − x)(y − x2) = 0

8. D∗
4

1

(y − x)(y2 + x2 − x3) = 0

9. A3

2
(y − x2)(y + x2) = 0

10. A∗
3

2
y2 + x4 = 0
(Reducible over C)

11. A5

3
(y + x2)(y + x2 + xy) = 0

12. A∗
5

3
x4 + 2x2y + y2x2 + y2 = 0
(Reducible over C)

13. A7

4
(y+x2+xy)(y+x2+xy+y2) = 0
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Name Picture Diagram Example

14. A∗
7

4 x4 +2x3y +2x2y +y2x2 +2xy2 +
y4 + y2 = 0
(Reducible over C)

15. X9

1

(y−x)(y+x)(y−2x)(y+2x) = 0

16. X∗
9

1

(y − x)(y + x)(x2 + y2) = 0

17. X∗∗
9

1

(x2 + y2)(x2 + 4y2) = 0

B Summary of Classification for Quintic Curves.

B.1 Irreducible curves
B.1.1 Multiplicity 2

a
2
2 ≤ a ≤ 13

2

A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10,
A11, A12

a

1 ≤ a ≤ 6
A∗

1, A∗
3, A∗

5, A∗
7, A∗

9,
A∗

11

B.1.2 Multiplicity 3
a

a = 4
3 , 5

3 , 1 E6, E8, D∗
4

a

a = 3
2 , 1 E7, D4

a b
a = 1
b = 3

2 , 4
2 , 5

2 , 6
2 , 7

2 , 8
2 , 9

2

D5, D6 ,D7, D8, D9,
D10, D11



132 D. A. Weinberg, N. J. Willis

a b

a = 1; b = 2, 3, 4 D∗
6 , D∗

8 , D∗
10

B.1.3 Multiplicity 4
1

X9

a

a = 1, 5
4

X∗
9 , W12

1

X∗∗
9

1
4
3

Z11

1
3
2

Y 1
1,1

1
3
2

Y 1∗
1,1

1
3
2

X1,1

1
3
2

X∗
1,1
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B.2 Reducible curves
B.2.1 Multiplicity 2

a
a = 2

2 , 3
2 , 4

2 , 5
2 , 6

2 , 7
2 , 8

2 ,

5, 6

A1, A2, A3, A4, A5,
A6, A7, A9, A11

a

a = 1, 2, 3, 4 A∗
1, A∗

3, A∗
5, A∗

7

B.2.2 Multiplicity 3
a

a = 1, 3
2 , 2 D4 E7, J10

a

a = 1, 4
3 , 2 D∗

4 , E6, J∗
10

a b
a = 1 and
b = 3

2 , 4
2 , 5

2 , 6
2 , 7

2 , 8
2 , 5,

or
a = 2 and
b = 5

2 , 6
2 , 7

2 , 8
2

D5, D6, D7, D8, D9,
D10, D12, J11, J12, J13,
J14

a b
a = 1; b = 2, 3, 4, or
a = 2; b = 3, 4

D∗
6 , D∗

8 , D∗
10, J∗

12, J∗
14

B.2.3 Multiplicity 4
1

X9

a

a = 1, 4
3

X∗
9 , W13

1

X∗∗
9
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1
4
3

Z11

1 a

a = 3
2 , 2 X1,1, X1,2

1 2

X∗1
1,2

1
3
2

Z12

1
3
2 2

Y 1
1,2

1 2

Y 1
2,2

B.2.4 Multiplicity 5
1

N16

1

N∗
16

1

N∗∗
16


