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Abstract
The purpose of the present paper is to consider a special hypersur-
face of a Finsler space with («, 8)-metric a + /a2 4+ 32. We prove
conditions for the special Finsler hypersurface to be a hyperplane of
first, second and third kind.

1 Introduction

Let F™™ = (M™, L) be an n-dimensional Finsler space, i.e., an n-dimensional
differential manifold M™ equipped with a fundamental function L(z,y). The
concept of («, 3)-metric was proposed by Matsumoto [4] and investigated
in detail by Matsumoto [6, 7], Kikuchi [2], Shibata [10], Hashiguchi [1]
and others. The study of some well known (a, 8)-metrics, the Randers
metric a + 3, the Kropina metric a?/(3, and the generalized Kropina metric
a™T1 /3™ have greatly contributed to the growth of Finsler geometry and
its applications to theory of relativity.

In 1985, Matsumoto [5] studied the theory of Finslerian hypersurfaces
and various types of Finslerian hypersurfaces called hyperplanes of the first,
second and third kind.

The («, B)-metric a + /a2 + B2 is considered desirable from the view-
point of geometry as well as applications. Since « is a Riemannian metric,
this metric L is closely linked to a Riemannian metric [8].

In the present paper, we consider the special hypersurface F"~1(c) of
the Finsler metric with b;(x) = 9;b being the gradient of a scalar function
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b(z) [3]. We determine conditions for this special hypersurface to be a
hyperplane of first, second and third kind. Throughout the present paper
we use the terminology and notations of Matsumoto’s monograph [6].

2 Preliminaries
Let F™ = (M™, L) be a Finsler space with (a, §)-metric

Lo, 8) = a+ Va2 + 32, (2.1)

where a? = a;;(z)y'y’ is a Riemannian metric and 3 = b;(z)y’ is a 1-form
on M™.

In F* = (M™, L), the normalized element of support I; = d;L and the
angular metric tensor h;; are defined as follow (following [9]):

li = a 'L,Yi+ Lgb;, (2.2)
hij = pai + qobib; + q1(biY; +b;Y:) + ¢2YiY;, (2.3)
where
Y; = ai;y’,

(a++/a? +5%)°
a2+ 52
(o ++/a2 + 2) (2.4)
(@ +p%)% '
—Bla+ Vo> + )
(0 + B2)2
¢2 = La™*(Lao — Loa™)
(0 + /02 + P)(a® + (a® + B))
ad(a? + 32)3
with Ly = 0L/0a, Lg = OL/0f, Laa = OLo/0c, Lgg = OLg/0f and

Log = 0Lo/0B. Again, following [9], the fundamental tensor g;; = %(:)i(’.?jLQ
is defined by:

p=LL,a '=

go = LLpg =

q = LLagofl =

)

9ij = paij + pobibj + p1(b;Y; + b,;Y;) + poYiY;, (2.5)
where
3
a
—qr = — 4,
Po = qo 8 (@ + 52)% +
ﬁS

=g+ L YpLg=—" .
D1 q1 bLp a(a2+52)%
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p2=q+p°L7?
(0 + Va2 + FP)(0° + (0 +5°)2) | (a+ /a2 1 57)
a¥(a? + 52) 027+ 57)

The reciprocal tensor g* of g;; is defined (following [9]) by:

g7 =ptaY + Sob't + S1(b'y’ +by') + Say'y, (2.7)
where
b' = a"b;, So= (ppo + (Pop2 — p})a?) /¢,
S1 = (pp1 + (pop2 — p})B) /(D (2.8)
Sy = (pp2 + (pop2 — PV?)/Cp, b* = ay;b'V,
¢ = p(p+pob® + p18) + (pop2 — p})(a°” — §°).
Finally (as usual, following [9]), the hv-torsion tensor Cj;, = %gkgij is
defined by:
2pCiji = p1(hijmy + hjem; + hyimj) + yimgmjmy, (2.9)
where 5
= p% — 3p1go, mi = b — a 2BY;. (2.10)

We note that m; is a non-vanishing covariant vector orthogonal to the ele-
ment of support ¥°.

Let {jk} be the components of Christoffel symbols of the associated
Riemannian space R™ and Vj be covariant differentiation with respect to
2" relative to this Christoffel symbols. We shall use the following tensors

where bij = ijz
Let CT' = (I‘ﬁc, Iy, ;k) be the Cartan connection of F". The difference
tensor D}, =T7; — {]lk} of the special Finsler space F™ is given by
i, = B'Ej+ FiBj+ FiBy + Blibox + Biby
—bomg"" Bjr — Ci AR — Chp AT + Cirm AT g™ (2.12)
FA(CGn O + Cim O — CJRCrs),
where

By = poby, + 1Yy, B =g¢"B;, FF = g"Fj;
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-2 9po
pilay; —a”7Y3Y5) + Zgmam; y
By = (aij 23) 0B J7Bf=g’”B
o =0y"Eoo + B™Eyo + By Fy" + BoFy",

AT = BmEOO +QBOF6na By = Biyi'

Jis (2'13)

and ‘0’ denotes contraction with y* except for the quantities pg, go and Sp.

3 Finsler hypersurface

A hypersurface M"™~! of the underlying manifold M"™ may be represented
parametrically by the equations z° = z%(u®), where u® are the Gaussian
co-ordinates on M™~! (Latin indices run from 1 to n, while Greek indices
take values from 1 to n — 1). We assume that the matrix of projection
factors B?, = 0z'/0u® is of rank n — 1. The element of support y* at a point
u = u® of M" is to be taken tangential to M™ !, that is

y' = B (u)v, (3.1)
so that v = v® is thought of as the supporting element of M"™~! at the
point u“.

The metric tensor gog and v-torsion tensor Cygy of F n=1 are given by
9o = 9i;BLB%, Capy = CijiBLBLBE.
At each point u® of F"~! a unit normal vector N*(u,v) is defined by
gl](x(u7 ’U), y(“’a U))B(ixNj = Oa g’L] (‘T(ua U)7 y(ua ’U»NiNj =1
As for the angular metric tensor h;;, we have
hap = hi;BLB%, hijBLNT =0, hjN'N7 = 1. (3.2)

If (B®, N;) denote the inverse of (Bf, N*), then we have B = go‘ﬁgijBé,
BiBP = 6%, B*N' = 0, BIN; = 0, N; = gi;N7, B¥ = g¥Bj;, and
B!, B§ + N'N; = §. The induced connection ICT' = ('35, Gf, CF) of
Fn~1induced by the Cartan’s connection (F}f}c, | I C;k) is given by

I = BY(Bh, +T5.B,BY) + Mg H,,
G§ = B(Big+T4;B)),
Cg, = BICLBIBL,
where
Mg, = N;CiyBLBE, Mg = g M., (3.3)
Hz = Ni(Bé,@‘FFZ;BZ%)?
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and Bj = 0B}, /0U", By, = B;zv® (cf. [5]). The quantities Mg, and Hp
are called the second fundamental v-tensor and normal curvature vector,
respectively [5]. The second fundamental h-tensor Hg, (cf., again, [5]) is
defined as 4

Hgy = Ni(Bj., + 5. B,BY) + MgH,,, (3.4)

where o
Mg = N;C},. BLN*. (3.5)

The relative h- and v-covariant derivatives of projection factor Bf, with
respect to ICT" are given by

Bl5 = HapN', Bl|lz = MagN". (3.6)
Equation (3.4) shows that Hg., is generally not symmetric and
Hgy — Hyp = MgHy — My Hg. (3.7)
The above equations yield
Hy,=H,, Ho=H,+ M,H. (3.8)

We shall use the following definitions and lemmas which are due to
Matsumoto and can be found in [5]:

Definition 3.1. If each path of a hypersurface F»~! with respect to the
induced connection is also a path of the enveloping space F”, then F*~ ! is
called a hyperplane of the first kind.

Definition 3.2. If each h-path of a hypersurface F™~! with respect to the
induced connection is also a h-path of the enveloping space F™, then F"~!
is called a hyperplane of the second kind.

Definition 3.3. If the unit normal vector of F™~! is parallel along each
curve of F”~ !, then F™! is called a hyperplane of the third kind.

Lemma 3.4. The normal curvature Hy = Hgv? vanishes if and only if the
normal curvature vector Hg vanishes.

Lemma 3.5. A hypersurface F”~! is a hyperplane of the first kind if and
only if H, = 0.

Lemma 3.6. A hypersurface F"! is a hyperplane of the second kind with
respect to the connection CI' if and only if H, = 0 and H,g = 0.

Lemma 3.7. A hypersurface F"~! is a hyperplane of the 3" kind with
respect to the connection CI' if and only if H, =0 and Hyg = Myp = 0.
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4 The special hypersurface F"!(c) of the Finsler
space
Let us consider the Finsler metric L = a++/a? + (2 with a gradient b;(z) =
0;b for a scalar function b(x) and the special hypersurface F"~1(c) given by
the equation b(x) = ¢ for a constant ¢ (cf. [3]).
From parametric equations z% = z¢(u®) of F"~!(c), we get 9,b(x(u)) =
0 = b; B!, so that b;(z) are regarded as covariant components of a normal

[e2]

vector field of F™~1(c). Therefore, along the F"~1(c) we have
b;B!, =0 and by" = 0. (4.1)

The induced metric L(u,v) of F*"~1(c) is given by

L(u,v) = 24/aqgv®vP, ans = aingB% (4.2)

which is the Riemannian metric. At a point of F"~1(c), from (2.4), (2.6)
and (2.8), we have

p=4490=2 ¢=0,¢@=—4a"% p=2p =0 (4.3)
pa=0, C=8(2+0b%), So=1/4(2+b%), S1 =0, S, =0.
Therefore, from (2.7) we get
1T bipi
U= g - —|. 4.4
g {a 2+ 62] (44)

Thus along F"~1(c), (4.4) and (4.1) lead to g*/b;b; = b? and thus

bl(x(u)) = A / Z(ijbz)Ni, b2 = aijbibj. (45)

Again, from (4.4) and (4.5), we get
. b2 . UBIN;
' = ———5 |4N"* J 4.
b \/2(2+b2)[ +2+b2} (46)

Theorem 4.1. Let F™ be a special Finsler space with L = o + /a? + 32
and a gradient b;(z) = 9;b(z) and let F"~1(c) be a hypersurface of F"
which is given by b(z) = ¢ for a constant ¢. Suppose the Riemannian metric
a;jdz'dx? be positive definite and b; be non-zero field. Then the induced
metric on £~ 1(c) is a Riemannian metric given by (4.2) and relations (4.5)
and (4.6).

and consequently:
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Theorem 4.2. The second fundamental v-tensor of special Finsler hyper-
surface F™~1(c) vanishes and the second fundamental h-tensor H,g is sym-
metric.

Proof. The angular metric tensor and metric tensor of '™ are given by

2Y,Y;

)
OZQ

2 2aij + blb] —

(4.7)
gij = 2[2aij +b1bj]

From (4.1), (4.7) and (3.2), we get that if hg{aﬁ) denote the angular metric

tensor of the Riemannian metric a;;(z), then along F"~*(c), hag = h(aaﬁ)

Opo — 730435
From (2.6), we get 3 e

and therefore (2.10) gives v1 = 0, m; = b;. Therefore the hv-torsion tensor
becomes

. Thus along F"~!(c), we have %—Ig’ =0

Cijk =0 (4.8)

in the special Finsler hypersurface F"~!(c). Therefore, (3.3), (3.5) and (4.8)

imply
Mas =0 and My = 0. (4.9)

Now (3.7) implies that H,g is symmetric. Q.E.D.

In the following, we give conditions under which F"~!(c) is a hyperplane
of the first, second and third kind:

Theorem 4.3. The special Finsler hypersurface F"~!(¢) is hyperplane of
the first kind if and only if 2b;; = b;c; + bjc; holds.

Proof. From (4.1), we get b;gBi, + biBéW = 0. Therefore, from (3.6) and
using b;|g = bi|jBé +b; |; N7Hg, we get

bij; BaBjy +bi | BENTHp + biHapN' = 0. (4.10)
Since b; |;= fthihj, we get
b |; B NI =0.
Thus (4.10) gives
b2 o
Hop + by, BLB) = 0. (4.11)

2(2 1 ?)
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Note that b;); is symmetric. Furthermore, contracting (4.11) with v” and
then with v® and using (3.1), (3.8) and (4.9) we get

b2

——H,+b;; By’ =0, 4.12
2(2+b2) + Z‘] ay 0 ( )
b2 w,
————Hy + b;;y'y? =0. 4.1

In view of Lemmas 3.4 and 3.5, the hypersurface F"~1(¢) is hyperplane of
the first kind if and only if Hy = 0. Thus from (4.13) it follows that F"~1(c)
is a hyperplane of the first kind if and only if bi|jyiyj = 0. Here b;); being
the covariant derivative with respect to CI' of F™ depends on y*.

On the other hand V;b; = b;; is the covariant derivative with respect
to the Riemannian connection {jik} constructed from a;;(x), therefore b;;
i — bij in the
following. The difference tensor D’ = I'; — {;k} is given by (2.12). Since

does not depend on y°. We shall consider the difference b;

b; is a gradient vector, from (2.11) we have E;; = b;;, F;; = 0 and Fj’ =0.
Thus (2.12) reduces to
‘e = B'bjk+ Blbox + Biboj — bomg"" B

—Ch AP = Clop AT + Cn AT g (4.14)

+A¥ (0}, Cek + Crnn O — CHLCrs)-
In view of (4.3) and (4.4), the expressions in (2.13) reduce to

bi

2+ 0%’
B! =0, A}® = B™bro, A" = B"byo.

B; = 2b;, B' = Bi; =0, (4.15)

By virtue of (4.15), we have Bf = 0 and B;o = 0 which give AZ* = B™bq.
Therefore we get

Di, = B'bjo,
i i b’
DOO = B b()() == m bOO'
Thus from (4.1), along the hypersurface F"~1(c), we finally get
) b2

. b2
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From (4.8) it follows that

by, Ct BI = b2M,, = 0.

gm*Pa
Therefore, the relation b;; = b;; — b, D}; and equations (4.16), (4.17) give
by’ =b b.Dfy = 2 b
il3Y Y~ = 000 — OrLgg = m 00-
Consequently, (4.12) and (4.13) may be written as

2v/2 -
f] bijoBe, =0,

Vb2 H, +
V2 + b2

2v/2
—F boo =0.
V2 + b2

Thus the condition Hy = 0 is equivalent to bgy = 0, where b;; does not
depend on y'. Since y' is to satisfy (4.1), the condition is written as b;jy’y’ =
(0:y")(cjy?) for some ¢;j(z), so that we have

Vb2Hy +

2bij = bZ‘Cj + bjci. (418)
The claim follows. Q.E.D.

Proposition 4.4. If the special Finsler hypersurface F"~!(c) is a hyper-
plane of the first kind then it becomes a hyperplane of the second kind,
too.

Proof. Using (4.8), (4.14) and (4.15), we have b, D}; = ﬁ%blj. Substituting
(4.18) in (4.11) and using (4.1), we get

Hop = 0. (4.19)

Thus, from Lemmas 3.4, 3.5, and 3.6 and Theorem 4.3, we get the result.
Q.E.D.

Proposition 4.5. The special Finsler hypersurface F"~1(c) is a hyperplane
of the third kind if and only if it is a hyperplane of the first kind.

Proof. The claim follows from (3.8), (4.19) and Theorem 4.2. Q.E.D.
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