Bernoulli 1(4), 1995, 321-333

Constructing tests for normal
order-restricted inference

ARTHUR COHEN,'"* HAROLD B. SACKROWITZ!
and ESTER SAMUEL-CAHN?

\The State University of New Jersey Rutgers, Department of Statistics, Faculty of Arts and Sciences, Hill Center
for the Mathematical Sciences, Busch Campus, Piscataway, NJ 08835, USA
2De;r,»arnrmmt of Statistics, Hebrew University, Jerusalem 91905, Israel

For normal models we consider the problem of testing a null hypothesis against an order-restricted alternative.
The alternative always consists of a cone minus the null space. We offer sufficient conditions for a class of tests
to be complete and for unbiasedness of tests. Both sets of sufficient conditions are expressed in terms of the
notion of cone order monotonicity. A method of constructing tests that are unbiased and in the complete class
is given. The method yields new tests of value to many problems. Detailed applications and a simulation study
are offered for testing homogeneity of means against the simple order alternative and for testing homogeneity
against the matrix order alternative.
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1. Introduction and summary

The most typical form of a multiparameter one-sided alternative encountered in hypothesis testing
is that in which the alternative is a cone. Such models (which can be seen in a wide variety of areas
such as analysis of variance and contingency tables) are especially interesting and difficult in the
multiparameter case. A common aspect of these problems is the non-existence of classicaliy optimal
tests (uniformly most powerful invariant, uniformly most powerfui unbiased, etc.). Hence one finds
the likelihood ratio test (LRT) (when feasible) and many ad Aoc procedures being used. Because no
formal methodology exists to handle such problems it is not unusual to find ad kec procedures
developed in the literature which are inadmissible and which can be substantially improved upon
(see, for example, Cohen and Sackrowitz 1992a; 1992b; 1994).

Using the notion of cone order monotonicity, we are able to present a framework in which such
problems can be approached. The goal is to ensure that tests which are developed have, at least, the
properties of belonging to a non-trivial complete class and of unbiasedness. In the important case of
normal random variables, we present a method of developing good tests for the unknown variance
case, beginning with a good test in the known variance case. This presents a valuable tool as, for
many such cone aliernatives, the common statistical techrique of studentizing leads to inadmissible
procedures (see Cohen and Sackrowitz 1993),
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We will see that approaching these problems from the point of view of functions which are mono-
tone with respect to certain cone orderings is particularly natural for exponential family distributions,
One indication of this stems from studying Eaton’s (1970) theorem. It will be shown that Eaton’s
theorem implies that under certain conditions the cone order monotone tests form a complete class.

The notion of cone orderings supplies a common thread running through much of the existing
literature relating to admissibility and unbiasedness of tests in such problems. Many of the
quantities which arise in these problems are most easily expressed and studied from this viewpoint.
Furthermore, it allows us to deal with models for which previous methods are insufficient.

In this paper our attention will be confined to normal models. That is, we let X;; ~ N(pz,0%)
for i=1,...k;j=1,...,m p=(u,---,)" and o are unknown. Also let X; =3 =1 Xig/n,
X=(X,..  X), T=5r 571 X5, 82 =T —ny b X7 We wish to test Hy : u € ( against
H, : p el -2, where 2 is a closed convex cone and {2, is a closed linear space of dimension r.

We need to define cone order monotonicity. Towards this end, let x € R* and let " be a closed
convex cone in RF. A partial order, called the cone order with respect to ¢, is defined as follows:
x £ [y, if y — x € A", A function { is cone order monotone {(non-decreasing) with respect to X" if

S(x) < f(y) whenever x < []y. We use COM[(] to describe this.

The dual cone %™, of o', is defined as #™ = {v € R* : v > 0, for every 8 € #'}. In terms of

results for this paper we offer the following:

(1) Restatements of two previous results in terms of cone order monotonicity. The two results are
essentially stated in Cohen et al. (1993) for the case where ) is a polyhedral cone and m, the
minimum number of generators of {2*, is bounded above by k ~ r. No such restriction is required
here. The two results pertain to

(a) Eaton’s (1970) compiete class theorem in terms of test functions which are COM[Q*];
(b) a sufficient condition for unbiasedness in terms of test functions which are COMI{Q N Qg),

where € is the orthocomplement of €3, within R*.

(2) A general method of constructing unbiased tests which lie in a non-trivial complete class. It
represents a sensible approach relative to previously used ad hoc procedures.

(3) Application of the results in (1) and (2) to the problem of testing homogeneity against a simple
order alternative and the problem of testing homogeneity against the matrix order aliernative.
See Robertson er al. (1988, pp. 12, 26, 32, and 394) for a discussion of such an alternative.
Rosenbaum (1991) gives an additional data set appropriate for matrix order analysis, Included
in these applications are suggested new tests and simulation studies comparing the power of the
new tests to the power of the LRT. The new tests are sometimes computationally easier to carry
out than the LRT. Furthermore, some of the new tests are considerably more powerful than the
LRT for certain alternatives of interest.

As previously mentioned, we do not require that {2 be a polyhedral cone. When {2 is polyhedral,
we do not require that the minimum number of generators m of * be less than & — r, In fact for
testing homogeneity of the components of g against the matrix order alternative,
m>k —r==k — 1. The problem of testing u = 0 against a circular cone alternative is another
example where m = k — r.

In Section 2 we deal with the preliminaries. In Sections 3, 4 and 5 we obtain the results in (1), (2)
and (3), respectively.
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2. Preliminaries

We make an additional assumption about ;. Namely, we take §}; to be orthogonal to . This
assumption still enables us to accommodate a large number of common applications. See Robertson
et al. (1988) for many such applications.

Now for the model described in Section 1, (X, 7) or (X,52) qualify as complete sufficient
statistics. Let the matrix B™>* be composed of rows that qualify as a basis for the linear space §2,.
Then under Hy, (BX, T) is a complete sufficient statistic. (See equation (3.4) which offers the ioint
density of X, T under €)y.) When {; is a boundary of Q — 0y, we will use a conditional (on BX, T')
approach based on Neyman structure. Note that in this instance there is no equivalent version of the
sufficient statistic in terms of (BX, $%).

We need results concerning projections. If € is a closed convex cone, denote the projection of x
onto € as P(x|¥). The projection of x onto ¢ is defined as the unique point in ¢ which is closest to x
in terms of Euclidean distance. By virtue of Robertson et al. (1988, Theorem 8.2.7), we have

" P(x|%) = | P(x|€)]]", (2.1)

where |||} is Euclidean norm.

Next note that by examining the likelihood function for the normal model of Section 1, we find
that the maximum likelihood estimator of u, when g € £, is P(X]Q?). The maximum likelihood
estimator of o, say 44, when € 2, is a multipie of T — n|| P(X|Q}|.

Before proceeding, we need to clarify some notation and elaborate on the distinction between
(X, T),(X, 5%, and (BX, T). Since the sample space of the sufficient statistics can be expressed either
in terms of (X, T) or (X, S?), test functions are denoted by ¢(%, 1) which can also be written as
#(%,5*). An important distinction to keep in mind is when we condition on §? = &%, or when we
condition on (BX =z, T = ). When we say that a function g(%, ¢} is COM["] given (BX =z,
T = t) wemean that g(¥+ A, 1) > g(x, ) forany A € ", and ®such that B = z, T = tforany z, 1.
Note BA = 0 since A € §*, B is a basis for £}y, and €3, is orthogonal to £2*. Hence B(X + A) = z.
When we say a function A(%, 5°) is COMIS2], we mean that A(Z + A, s*) > h(%, s*) for any A € ( and
any fixed .

We conclude with two cone order monotonicity properties for T — nl|P(X|0)||°, proved in the
Appendix.,

Lemma 2.1 Under the above assumptions

(i) —[T — nl|P(X|Q)|] is COMIQ] for fixed S = T — n|| X]* = &;
@) —[T — n||P(X|D)|1%] is COM[Q'] for fixed BX =z, T = 1.

3. A complete class and unbiased tests

To start, we define an acceptance section of a non-randomized test ¢(%, ¢). The acceptance region of
the test ¢(x,7) is

A={(%1):e(x,1)=0}
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The acceptance section of the test ¢(%,¢) for fixed Bx =z, T =t is
AN{(x,t): Bx =z, T=r}.
A complete class theorem based on Eaton (1970) is as follows:

Theorem 3.1 Let 2 be a class of test functions ¢(x, ¢) such that

@) ¢(x, 1) is COM[M ) given BE =2, T =1¢;
(b) for any given (z, {), the acceptance sections of the test are convex.

Then for testing iy : p € § vs H, : p € §2 — {y, the class of tests & is a complete class.

Proof

The proof is essentially given in Eaton (1970). To aid in seeing the connection between the statement
here and the proof of Eaton’s theorem, one should examine the density of (X, 7) under the null and
the alternative hypotheses. The density of (X, T} expressed in exponential family form is

fo,7(%,0) = Blw, 0%) exp (~1/20%) exp (nx" %) g ()i E). (3.1)

Under Hy, p € (. Since the rows of B are a basis for 0, p can be written as o = B p for some
r-dimensional vector p. Hence when p € €3, (3.1) can be written as

Sxr{%0) = B"(p, ) exp(—1/25°) exp {n(B%)" p/c* H o, 4 (nl| %) (3.2)
When g € ), observe that the ratio of (3.1) to (3.2) is COM[$"] for fixed Bx = z, T = 1. To see this,
note that (£ + A)Tp. > ¥ since A € ", pu € Q. The properties of the densities of (X, T') under
1 € Qand under p € (Q, ensure by virtue of Eaton’s proof that Bayes tests and weak limits of Bayes
tests have properties {a) and (b). Whereas Eaton’s proof yields an essentially complete class, the fact
that (X, T) is a complete statistic implies that the essentially complete class becomes a complete
class. O

The following theorem provides a sufficient condition for a test to be unbiased. It is a restatement
of Theorem 3.2 of Cohen et al. (1993).

Theorem 3.2 Let $(%,5%) be a size o test which is COM[Q2 N §25]. Then ¢(%, s) is unbiased.

4. Construction of unbiased tests in the complete class

An intuitive method of constructing tests is as follows. Assume o* is known (say o® = 1 without loss
of generality). Consider a test

1 if U(®) > K,
0 otherwise,

o) = {

where U(%) is_COM[Q*} for fixed B% =z and COMIQ N 0Q51], and K, is chosen so the test has size a.
Note that U(X) depends on X only (not on T'}. Such a test is unbiased, and if its acceptance sections
are convex, it is in the complete class where ¢ = 1. Next suppose o~ is unknown and make the
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further assumption that U(x) be a convex function of £. Base the test on [U/(¥)/s], or, what usually
amounts to the same test, on U(%/s). Such a test will remain unbiased when ¢ is unknown, but, as
shown in Cohen and Sackrowitz (1993), it will be inadmissible for m > 2.

Another method which retains the unbiasedness property of the test but yields a test in the
complete class is as follows: Let

vz = {

where K ! is chosen so that the test has size . (This can be done, for exampie, when the distribution
of U{X)/o is parameter-free under Hy.)

1 if[U®)/éq] > KL,

: 4.1)
0 otherwise,

Theoremd4.1 Let X;; ~ N(p;,0%),fori=1,2,...,kandj = I,...,n, where u and o° are unknown.
Test Hy : p € Qg against H; : p € 0 — O, where {2 is a closed convex cone and ) is a closed linear
space of dimension r that is orthogonal to Q. Let U(£) be COMI"] for fixed BX =z and
COMI2 NNF). Let 63 be the maximum likelihood estimator for o when g € 2. Then the test
defined in (4.1) is unbiased and lies in the complete class of Theorem 3.1.

Proof

Note that U(E) is COM[Q N Q3] for fixed s* (it does not depend on S?) and Lemma 2.1(i) implies
—8¢ is COMI[] for fixed 5* and so it is COM[Q N Q3] for fixed 5. Thus by Theorem 3.2 the test is
unbiased. Next note that U(%) is COM[Q"] for fixed Bf = z, T = ¢, and Lemma 2.1 implies —dq is
COMIQ"] for fixed Bx = z, T = . Furthermore, it can be shown, using Lemma A in the Appendix,
that acceptance sections of the test are convex. Thus by Theorem 3.1, the test (¥, 1) of (4.1) is in the
complete class. |

Corollary 4.2 Consider the model of Theorem 4.1. Suppose 2" @& Qg D 2. Then if U(x) is
COM[QY"] for fixed B¥ = z, the test in (4.1) is unbiased and in the complete class.

Proof

It suffices to show that if Q" & Qy > Q, then if U(F) is COM[S'] for fixed B¥ = z, then it is
COMINQF). Now @ @ QDR =0n &0, 50 V50N 0. If we QNQ;, then we O
and U(¥ 4+ w) > U(X) provided BX = B(¥ + w) = z. The last statement follows since Bw = 0.

Remark 4.1

The successful use of éq in the denominator of the statistic in (4.1) answers a query raised in Berk
and Marcus (1995).

In continuing the construction of tests we seek statistics U(X) that are COM[{2*] for fixed BX = z.
Towards this end, express = Q7 & Q, where 2" is orthogonal to £3,. Let g, denote the generators
of Q" andlet ¥, = a) X/+/ala,,v = 1,...,p, where p is the number of generators of §2”. Note that
the ¥, are COMIQ"] given BX = z. It follows that functions U(X) = U*(Yy,..., Y,) =U"(Y)
which are non-decreasing functions of ¥ are COM[9"].

In this phase of the construction it is convenient to choose [U(X)/dq] to be location- and scale-
invanant whenever the problem is location- and scale-invariant so that the ensuing test is similar. In
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recommending tests other than the LRT we consider tests such that
U(F) ~ max | mag 7, %i5pe7]. @2)

where ¥ =37, Y,/p and +, are non-negative weights assigned. Tests based on (4.2), with
Yp+1 = 0, are Bayes-type tests that are designed to perform well against certain alternatives by
choosing higher weights for the ¥,s that correspond to those alternatives, Furthermore, U*(¥Y) in
(4.2) is COM[Q*] and is such that acceptance sections of the resulting test are convex in deference to
Theorem 3.1.

We note that an important step in the 2bove construction is the determination of @, ¥ = 1,..., p.
Consider sitnations where {2 is a finite polyhedral cone, i.e.

Q={p:peR >0}

where T is an m x k matrix. The null space is £ = {g : g € R¥, T = 0}. The rows of T are the
generators of 2*, When m < k — r the generators a, are the columns of the matrix FT(I'TT)"~! (see
Cohen et al. 1993, p. 144), When m > k — r and the rows of I are contrasts with two non-zero
elements, i.e, rows with + 1 and one —1, one can use resuits of Berk and Marcus (1995, Theorem
3.13) to determine the a,. Examples are offered in the next section.

5. Applications

5.1. Simple order alternative

For the simple order aiternative we determine unbiased tests that lie in a non-trivial compiete class
using the notion of cone order monotonicity. From Cohen et al. (1993), it follows that (1" & 0y O (1,
thus enabling an application of Corollary 4.2. We offer tests that illustrate the construction
of Section 4 and a simulation study of the power of the constructed tests compared with the
power of the LRT. The model is as in Section 1. Let Qy={p: 4, =y =+ - = p} and
Q={p: == >u}t Test Hy: pc against H, : p € @~ Q. The alternative H; is
called the simple order aiternative. The matrix I" of Section 4 which determines 2 is

1 =1 0 .. ¢
0 1 -1 0

r= (5.1)
0 v - 1 =1

In turn T determines a,,, v = 1,...,& — 1, as the columns of I (I'TT)~1.
At this point we let k£ = 6 and propose two tests designed to have good power against slippage
alternatives. The tests are:

¢, : reject Hy if max Lmax5 Y3 Y,] > 4184

<vg
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and
ot re_]ect Hg if max Lglai(s Y,,,ZYI,ZYQ] - 3256‘9

In the above tests the special generators a; = (5, —1,—1,-1,—1,—-1}/v30and a; = (2,2, -1, -1,
—1, —1)/2+/3 receive special attention. They reflect the two largest slippage alternatives. The test ¢,
gives the generator a; three times the weight of any other generator, while ¢, gives each of ¢, and a,
twice the weight of any other generator. The numbers 4.18 in test ¢, and 3.25in test ¢, are chosen so
that each test has size 0.05 when n = 10 observations are taken for each population. Table 5.1
contains the simulated power functions for the LRT, ¢, and ¢,. Each value of the power function is
based on 50 000 replications. The power of all tests depends on p1/g. Alternative points were chosen
50 that some indicate slippage while others do not.

The simulation indicates that for slippage-type alternatives the tests ¢, and ¢, are definitely
preferable to the LRT. For non-slippage-type alternatives the LRT is preferred. The test based on
¢4 is 2 compromise between ¢, and the LRT. The simulation clearly demonstrates that it will make a
significant difference which of several natural tests is applied.

Should & be different from 6, tests analogous to ¢; and ¢, could easily be determined.

Remark 5.1
Theorem 4.1 is true with only mild modifications if the sample size in each population is »#; instead of
n (see Cohen et al. (1993, Remark 4.4).

5.2, Matrix order alternatives

For the matrix order aiternative we determine unbiased tests that lie in a complete class using
the notions of cone order monotonicity, We zlso show that Q" &€}, O Q, thus enabling an
application of Corollary 4.2. We offer tests that illustrate the construction of Section 4 and finish

Table 5.1. Simulated power functions: simple order alternative

pio LRT LT, &,

0.0 0.0 0.0 0.0 0.0 0.0 0.050 0.050 0.050
20 0.0 0.0 0.0 0.0 0.0 0.373 0.549 0.434
20 20 0.0 0.0 0.0 0.0 0.580 0.435 0.665
2.0 2.0 1.0 1.0 0.0 0.0 0.547 0.324 0.493
3.0 1.0 1.0 0.0 0.0 0.0 0.727 0.766 0.753
3.0 3.0 1.0 1.0 1.0 0.0 0.767 0.525 0.778
4.0 2.0 1.0 0.0 0.0 0.0 0.941 0.931 0.952
3.0 3.0 2.0 1.0 0.0 0.0 0.873 0.547 0.794
4.0 1.0 1.0 1.0 0.0 0.0 0.882 0.953 0.903
40 1.0 0.0 0.0 0.0 0.0 0.316 0.061 0.954
40 0.0 0.0 0.0 0.0 0.0 0.897 0.970 0.949
3.0 3.0 0.0 0.0 0.0 0.0 0.881 0.694 0.932

3.0 0.0 0.0 0.0 0.0 0.0 0.679 0.843 0.784
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up with a simulation study of the power of the constructed tests compared with the power of the
LRT.

_To start, let X;;; be independent N(p,—,—,o‘z), for i=1,....Lj=1,....,J; k=1,...,n Let
ij = Zkajk/n, let X = Z,-'j,kX,ﬂ‘ fJn, and let X = (j'n,--.,f”, X'ZI!' A }X'IJ’)- Deﬁne
T = Zf.f,kX?jk and Sz = T - nZi,ijj' I.re[

Q={p:pequalfori=1,.. 5 j=1,...,J}, TorJ2>2,
and
Q= {p gy < w1y By < pivyys forall g jl

Test Hy . pt € Qp against H| . p € § — £y The alternative H is called the matrix order alternative,

The LRT is unbiased and lies in the complete class of Theorem 3.1, Whereas the LRT can be
expected to have favourable power properties, it is not always easy to carry it out computationally.
We proceed to construct other tests described in Section 4.

First recognize that £ is a closed convex cone. To see this, let

#Hxl = (p11,-- -+ 4175 #21:---,ﬂfJ)Ta
-1 1 6 -+ 0
-1 1 --- 0
AV-UxT ;
0o 0 ... =11
177 is the identity matrix of order J, 0¥ ~V*7 and 037/ are matrices of zeros, and
Y 1
(A 0, - - .. 0]\
00 A 0 - -0
Q[I(J—1)+(I—1}J]><IJ: 0 0, -+ - A
B A T
0, -, I, 0, - 0
\92 0, - .. -I I/

Then it follows that 2 can be expressed as Qu > 0 or as Qg = {p: Qu > 0} so that g is a
polyhedral cone. Let (g be the dual of €g so that the rows of Q are the generators of (g and note
that €}, is orthogonal to the rows of Q.

In seeking results we prove

Lemma 5.1 The cone () is such that
09 & D% 2 Q- (52)

The proof is given in the Appendix.
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Remark 5.2
Property (5.2), along with Theorem 4.2 of Cohen et al. (1994), immediately yields that those tests
which are COM[Q*] for fixed Bf = z are unbiased when ¢” is known.

We now construct tests. We evaluate the tests by comparing their simulated power functions with
that of the simulated power of the LRT. )

The first step in determining these tests is to find the generators of (2. Writing 2 = 2 & Qp and
using a method given by Berk and Marcus (1995, Section 3), we find that the generators of {2 are
constructed by using the upper sets principie as follows,

Consider the matrix

Hio Mz o Bg

H2 M2 vt H2J
M =

F 7 S A L)

An upper set U is a subset of the elements of # such that whenever u;; € U, p;+ - liesin U fori < &%,
J <J*. Each upper set U determines a vector ¢ of order ZJ x 1 such that &= {C11s €125+ C1 s
oty cpy) Y, With ey = Vif p;; € U and ¢;; = 0if p; & U. The generators of (2 are all vectors ¢ that
correspond to upper sets U, except ¢ = 1. There are a total of m = {( + J/J) — 2| generators of 2.

Next express 2 = 2" & O, where (" is orthogonal to £, and note that the generators of 2" are
a,,, where

a,=1"1c, — (17c, )1, v=12...,m,

where ¢, are the generators of (. Now note that ¥, = a) X/+/ala, are COM[§2*] given X = x_.

At this point we let = 2and J = 3, so that m = 8. We propose two tests. The first test is designed
to have power properties similar to that of the LRT. The advantage of the proposed test is that it is
sometimes computationally easier to carry out than the LRT. The first test is

¢ : Reject Hy if max [1?a§a Y,, (5/3) f’] > 2.156q.

The second test was designed to have favourable properties against alternatives exhibiting
increasing column effects. This test is

¢y : Reject Hy if max[ max Y,, 2Y,, ZY{l 3.364q,
I<v<l

where the generators receiving extra weight are
a = (~2,1,1,~2,1,1)/2V3,  ay=(~1,~1,2,—1,-1,2)/2V3.

Table 5.2 contains simulated powers for the LRT, ¢, and ¢,. Samples of size n = 10 were taken
for each population. The simulation is based on 50 000 replications. The power of all tests depends
on g /g. The parameter points, written in the original matrix form, were chosen so that some of them
reflect increasing column effects. However, other alternatives are considered so that a balanced
presentation is made. The simulation indicates that test ¢y has a power function similar to that of the
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Table 5.2, Simulated power functions: matrix order alternative

ulo LRT é 62
0.0 0.0 0.0 0.050 0.050 0.050
0.0 0.0 0.0

0.0 0.0 0.0 0.373 0.369 0.276
0.0 0.0 2.0

0.0 0.0 1.0 .197 0.156 0.257
0.0 2.0 1.0

0.0 0.0 2.0 0.519 0.517 0.651
0.0 0.0 2.0

0.0 0.0 2.0 0.561 0.561 0.618
0.0 1.0 2.0

0.0 10 20 0483 0.473 0.588
0.0 1.0 2.0

0.0 2.0 2.0 0.520 0.515 0.648
0.0 2.0 2.0

0.0 0.0 2.0 0.828 0.832 0.784
0.0 0.0 3.0

0.0 - 2.0 3.0 0.717 0.704 0.769
1.0 2.0 3.0

0.0 0.0 30 0.843 0.840 0.927
0.0 0.0 3.0

0.0 0.0 3.0 0.854 0.851 0.908
0.0 1.0 30

0.0 1.0 3.0 0.799 0.788 0.881
0.0 1.0 3.0

0.0 2.0 3.0 0.651 0.636 0.607
20 20 3.0

LRT. Test ¢, is clearly the best for alternatives with increasing column effects. The simulation
clearly indicates another instance where it makes a significant difference which of several naturai
tests is applied.

Remark 5.3

In the above development of the matrix order alternative we assumed that the number of
observations in each cell was a constant n. If we allow the number of observations in the (7, j)th
cell to be n;;, then in general Lemma 5.1 will not hold. If foreach i =1,.... 1,y = --- = myy, it is
easily shown that Lemma 5.1 does hold.

In general, whether unbiasedness of a test can be established by the method here, when sample
sizes for each population are unequal, depends on £1. If {) represents the simple order cone, we
remarked earlier that these methods work. On the other hand, if ) represents the matrix order
alternative then the methods work only in special cases. Other cones would require additional
examination.



Constructing tests for normal order-restricted inference 331

Remark 5.4
Unbiasedness of the LRT for the matrix order alternative has been established by Hu and Wright
(1994).

Appendix

Proof of Lemma 2.1

(i) Write | X|* = | X — P(X|}) + P(X|Q)||*>. Expand and use (2.1) to find

IP(RIQ)|” = |1 X|* - |1 X — PXIQ)I. (A1)
Furthermore, by Robertson et al. (1988, p. 102, (2.6.8)), we have that —||X — P(X iQ)||2 is COM[Q]
with T — n| X))* fixed. Hence (i) follows.

(ii) Consider P i _
IP(RIQ)|® = |P(XIQ) — P(X|Q0) + P(X|00)]?

= [|P(X[2) — P(XIQ)|I” + |P(X1Q) I (A2)
+2{P(X|(2) - P(X|Q%)} " P(X]Sy).
By Robertson et al. (1988, p. 46, Theorem 1.7.2), we may write
{P(X]Q) — P(X|%)} P(X|%) = {X- P(XI0y) — P(XI10)} T P(X|0)
using (2.1) and the fact that €}, is orthogonal to *.

Thus ~ _ _ ~
[PXIQ)I = | P(XIQ) — PXIQ0)I1 + |1 P(X|2)}.

The argument leading to Robertson er al. (1988, p. 102, (2.69)) will imply that
| P(XIQ) — P(X|Q)}}> is COMIQ"). The proof of (ii) is complete once we recognize that as the
maximum likelihood estimator of 8 & £y, P(X|§);) must be a function only of the sufficient statistic
BX. Thus if BX is fixed, P(X|0) is fixed.

Proof of Lemma 5.1

Let 1; and §; denote J x | vectors of 1s and 0s, respectively. Define

(A O 0
0, A 0 - 9
{ blocks
QUI-nx17 _ 6 0 - - A
-17 17 o ... of
o] -17 17 ... of
(I —1) rows
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Since adding all the rows of 0, - - - 05 — I;I,8, - - - 0, in the Q matrix gives 010} ... — 1}1}'0} -0, it
follows that Q:j C Q- Hence Qg C {14. Furthermore, {}; is orthogonal to the rows of Q. Thus it
suffices to show that

Q;:! &y 2 QQ, (A3)
since then we would have

Now it follows from Cohen ef a/. (1993, Lemma 3.4) that (A.3) holds if and only if (3}QT)~! has
all non-negative elements. Note that

(GJ 0 - o o 0
0o G, 0 - ... 0
Q' =| - T S (A.5)
0 G, o0
Lo o . JG;/
where G; = AAT, G, = I, T},
-t 1 0 0
=07 _ 0 -1 1 0 0
0 0 - .o =1 1

From Cohen er al. (1993, Example 4.1) it follows that G;' and G;' both have all non-
negative elements. Hence (QQT) ™! has all non-negative elements. This completes the proof of the
lemma.

Lemma A

Lemma A The norm squared of the projection of X onto §2, [|[P(X|0)|)°, is a convex function of X.

Proof
Let z = %, + (1 — &)%;. Then from Robertson et al. (1988, equation (8.2.6)) we have

IPGIQ)|? = 7 P(zI0) = {af) + (1 - a)&}T P(2|Q). (A6)
Use Robertson er af. (1988, equation (8.2.7)) so that (A.6) is less than or equal to
aP(®Q)TP(z|Q) + (1 ~ ) P&/ TP(I0)
= {aP(%10) + (1 — @) P(&,0)} TP(zIY). (A7)
Use the Cauchy-Schwarz inequality in (A.7) so that (A.7) is less than or egual to
[aP(£,1R2) + (1 - a}P(%|Q)|]| P(z[2)]- (A8)
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Thus we have
1Pz < laP(%|$2) + (1 — @} P(E Q). (A.9)

Since an increasing convex function of a convex function is convex, the iemma follows.
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