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Supports of doubly stochastic measures

KEVIN HESTIR and STANLEY C. WILLIAMS
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Recent work has shown that extreme doubly stochastic measures are supported on sets that have no axial
cycles. We give a new proof of this result and examine the supporting set structure more closely. It is shown that
the property of no axial cycles leads to a tree like structure which naturally partitions the support into a
collection of disjoint graphs of functions from the x-axis to the y-axis and from the y-axis to the x-axis. These
functions are called a fimb numbering system. It is shown that if the disjoint graphs in the limb numbering
system are measurable, then the supporting set supports a unique doubly stochastic measure. Further, the limb
structure ¢an be used 1o develop a general method for constructing sets which support a unique doubly
stochastic measure.
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1. Introduction

Doubly stochastic measures are measures on the unit square [0, 1° which have uniform marginals.
These measures are imporiant because they embody ail joint distributicns. To see why, suppose that
X and Y are jointly distributed random variables. Then one can find functions f: [0, 1] — R and
g: [0, 1] — R and jointly distributed uniform random variables U/, and U, so that { f{U), g{U»)) has
the same distribution as (X, ¥). Hence a joint distribution can be represented with a pair of
functions and a doubly stochastic measure. In this sense the set of doubly stochastic measurzes.
which we denote by DSM, generates all possible joint distributions. It is therefore an important
problem to study the probabilistic and analytic structure of DSM. Because DSM is convex one is
led, via Choquet’s theorem, to examine extreme points of DSM. This set we denote by EDSM.

Two natural questions to ask about an extreme doubly stochastic measure are what its support
looks ke and, given this support, whether the support determines a unique element of DSM? In
this paper we examine these questions.

One obvious analogy to doubly stochastic measures is doubly stochastic matrices with uniform
marginals, or probability measures on X x X with uniform marginals and X finite. The Birkhoff-
ven Neumann theorem says that a doubly stochastic matrix with uniform marginals is extreme if
and only if it is a scalar times a permutation matrix; that is, a doubly stochastic matrix whose entries
are only 0's and 1/x's. One way to prove this theorem is to employ the concept of an axial path and
an axial cycle. To construct an axial path in a doubly stochastic matrix we start with a non-zero
entry as step | in the path. Next we move horizontally to another non-zero entry in the same row:
this is step 2. From here we move vertically to step 3, which is a non-zero entry in the same column as
siep 2. The axial path continues in this way, with alternating horizontal and vertical steps. An axial
cycle is an axial path of length » > 1 with step # equal to step 1. Using the concept of axial paths and
axia] cycles, an equivalent statement of the Birkhoff~von Neumann theorem says that: a doubly
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stochastic matrix is extreme if and only if it contains no axial cycles. Denny (1980) showed that this
concept generalizes io extreme points of joint distributions on X x ¥ with fixed marginals and X
and ¥ countable.,

_ Axial paths and cycles can aiso be defined on subsets of [0,1]° in an obvious way. Benes and
Stépan (1987) found a result for doubly stochastic measures corresponding to necessity in the
Birkhoff—von Neumann theorem. They showed that an extreme doubly stochastic measure is
supported on a subset of [0, 1] with no axial cycles. No axial cycles, however, cannot be a sufficient
condition for a doubly stochastic measure to be extreme, as Losert (1982) found an example of a
subset of [0, 1}2 with no axial cycles which supports two distinct doubly stochastic measures,

Several authors have explored supports of doubly stochastic measures which are the union of the
graphs of two functions, one from the x-axis to the y-axis and one from the y-axis to the x-axis
(Seethoff and Shiflett 1978; Kaminski ez al. 1990). In fact we show here that the property of no axial
cycles leads to a tree-like structure which can be written as the disjoint union of the graphs of two
functions. Denny (1980} showed that an extreme measure on X x ¥ with X and ¥ countable is
supported on the graphs of two such functions, and Benes and Stépan (1987) showed that the same
is true for extreme doubly stochastic measures. Also, Losert (1982) has found an example which
shows that the functions need not be measurable.

One final concept of importance to us is that of a ser of unigueness. Call F C [0, l]2 a set of
uniqueness if there is a unique doubly stochastic measure supported on F. Stépan (1979) uses a
generalization of this concept for distributions on X x ¥ with fixed marginals, calling it an A-set.
Bene§ and Stépan (1987) give a characterization of A-sets using axial cycles and the union of graphs
of two functions for the case of ¥ and Y Polish spaces with o-fields equai to Borel o-fields.

In this paper we give some new results about the support of measures in EDSM. We give a new
proof of the Bene§—Stépan resuit that each element of EDSM has a support which has no axfal
cycles. From this it follows that every element of EDSM is supported on a union of tree-like sets
which we call an axial forest. This tree structure naturally partitions the support into a collection of
disjoint graphs of functions from the x-axis to the v-axis and from the y-axis to the x-axis. We call
these functions a limb numbering system. The limb numbering system structure of the EDSM
support leads easily to the Benes—Stépan result that every element of EDSM is supported on the
graphs of two (possibly non-measurabie) functions. The limb numbering system structure also leads
to two further results about sets of uniqueness. First, if the disjoint graphs in the limb numbering
system are measurable, then the supporting set is a set of uniqueness for DSM or in fact a set of
uniqueness for GDSM, the set of signed measures with uniform marginals. Second, the limb
structure is used 1o develop a general method for constructing a set of uniqueness for a doubly
stochastic measure. We also used this method to construct a set of uniqueness for GDSM which is
not the support of a doubly stochastic measure. Finally, we give an example of a limb structure
which is a set of uniqueness but does not have measurable limbs.

]2

2. Existence of support with no cycles

In whar follows we Jet A denote Lebesgue measure on [0, 1]. The basic tool for analysis of EDSM isa
characterization of extreme doubly stochastic measures discovered by Lindenstrauss (1965) and
Pouglas (1964):
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Theorem 1 (Lindenstrauss—Douglas) Let pe DSM. Let CL;{x) be the subspace of L;{y)
consisting of all functions of the form f(x) + g(y) with f,.g € L;(A\). Then p € EDSM if and
only if the subspace CL,(u) is dense in L (u).

We use the Lindenstrauss-Douglas theorem to prove that a given element of EDSM has a
support with ne cycles. First some definitions are given.

Definition The sequence of points {(x;, y,)}7%, C [0,1)? is called an axial cycle if and oniy if the
{x;, y;) are distinct, y"j Vai-i» Xaim1 = Xg;, @and x; = Xa,, for 1 €i<n Let P, ={[0,27"]} U
{277, (i+ 1)?_"1}- ! be the diadic partition of [0,1). Also, let P, x P, be the induced diadic
partition of [0, 1}* into dladlc squares. A basic P, x P,~axial cycle is a subset " of P, x P, such that
the centres of the diadic squares of T form an axial cycle. Finaliy, for I' a basic P, x P,-axial cycle,
with #(I") denoting the cardinality of T, the axial cycle {(x;, y; )}‘(_rl) is calied a F axial cycle if each
{x;, ;) 1s in a distinct element of I". In this case, we alsc say that {{x,, 1, )}l_, isa P, x P -axial
cycle.

From the above definition it should be clear that if an axial cycle is a P, x P, -axial cycle for some
n, then it is a P,, x P,-axial cycle for all m > n.

One can similarly define an axial cycle in a doubly stochastic matrix as a sequence of non-zero
matrix entries with indices {({ p,,q,)} =, such that { p;, ¢} are distinct, ¢2; = ¢2;_1, P2i=1 = pa, and
P1 = pa, for 1 < i< n Itisa fact that a doubly stochastic matrix M is an extreme point in the set of
all doubly stochastic matrices if and only if M has no axial cycles. The corresponding result for
doubily stochastic measures is not quite as strong. Indeed, we can prove below that every element of
EDSM has a support with no axial cycles. However, the converse fails as shown in the example in
Losert (1982, p. 391).

To prove that every element of EDSM has support with no axial cycles first requires the next
lemma, which is based on an idea from Lindenstrauss (1965).

Lemma 2 If 4 € EDSM then given a positive integer m and € > 0 there exists an » > m and
I1 C P, x P, such that | Jp .5 O contains no P, x P,-axial cycle and g{|Jpen O) > 1 — ¢

Proaof
Fix m and e. By Theorem 1, for a given & > 0, there exist for each L € P,, x P,, functions f; and
gr € Li{10, 1}, X) such that

Jm{x,y) —fox) — gL(3)du < 6.

Because simple functions on | ;. P, are dense in L, ([0. 1}, A), f; and g; can be chosen to be P, simpie
functions for some n > m. Let a(m) be a finite integer such that #(T') < a{m) for all P,, x P, -axial
cycles . Temporarily fix a basic P,, x P-axial cycie I', let {{x;, y,)}?%, be the axial cycle of centres
and choose L{I') € T so that (x;, y;) € L(T'). Define

DTy = {B € Py x P Iglyr, — fyny(x) — gun(¥)| < a(in)}'
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Let U(T) = Upcpim B. We have

l G
OO < [l = fun) = gm0 e <5,

80
1~ éa(m) < u{U(D)}.

Now it turns out that U{T') will have no T-axial cycles. To see this, suppose { (x;, y;)}"") is a [-axial
cycle contained in U(T'). Because of the way L(I') is defined. indexing can be chosen such that
{x;, 31) € L{T). Existence of a [.axial cycle then leads to the following contradiction:
41r) _
V=L 30 = Y _{Lunx, ) — fun (x) — gun 30 =1
i=1

#(T)
1
< ; ey (xiy ¥a) = fum) — gum( vl € #(F)m < i

To finish the proof, let {Ff}?f_,l be the collection of all P, x P,-axial cycles. For each [, pick
8 = &; in the above argument with 0 < §; < ¢/{2'a(m)}}. Form U(T;) = Uge pr,) B. Then U(T;) ©
P, x P, for some n,, U(T,) has no T;-axial cycles, and

1 — = < 1-§a(m) < p{UT))}.

2?
Finally, set D = [VL, U(T';), check that u(D) > 1 —¢, D has no P,, x P,-axial cycles, and D =
Uoen O for1 C P, x P, with n = max,{n;}. )

Theorem 3 Let i € EDSM. There is a Borel sei B with no axial cycles such that u(B8) = 1.

Proof

By Lemma 2, for each m > 1 find K, such that X, has no P, x P,-axial cycles and u(K,,) >
1-27".Then B = |52 | (\m=» K has no P, x P,-axial cycles for any n > 1 and u(B) = 1. Lastly,
nete that any axial cycle must be a P, x P,-axial cycle for some n, so B has no axial cycles,. (O

One ‘well-known’ fact about Lebesgue measure is the following. Let 4 C {0. 1] be a Borel set
which does not contain the corners of any rectangle (that is, 4 contains no axial cycle of length 4);
then the Lebesgue measure of A4 is zero. Together with Theorem 3 this fact vields the following
result, proved in Lindenstrauss (1965).

Corollary 4 Let 4 € EDSM. Then u is singular with respect to Lebesgue measure on [0, 1]%.

Proof

Except for establishing the “well-known’ fact. the proof is given in comments above, To see that a
subset of (0. 1]” which does not contain the corners of any rectangie has Lebesgue measure zero one
can prove the contrapositive. Let A x A denote Lebesgue measure on [0, 1)> and let 4 [0, 17 with
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A x A(4) > 0. We show that 4 contains the corners of a rectangle. Let {x,y) € 4 be a point of
Lebesgue density of 4 (Halmos 1950, p. 268). Then for § > 0 there exists an ¢ > 0 such that

AXxMAN|x—e,x+¢ x [¥v—ey+e) > 41 ~6).

Let B=AN{x—¢,x+¢ x[y—¢y+e. Divide B into four squares of width ¢, By =Bn
[x—ex]x{y—€y),Ba=Bn[x—ex]x[p,y+e, Bs=BnNix,x+¢ x[y—¢y], and By = BN
[x,x+ €] % [,y + ¢|. Then A x A(B;) > €(1 — 46). Now shift each B; by (£e/2, +e/2) so that it
is centred on (x, v}. Let C equal the intersection of the four shifted B;'s. By the shift mvariance of
A XA,

A x MC) 2 €(1 - 166).
Hence C # © for small enough 6. Choose (x4, ) € C and trace it back to the point (x;,y;} € B,

for each i =1, 2, 3, 4. The four points, (x;,y;}, i=1, 2, 3, 4, ali lie in 4 and are corners of a
square, |

3. Doubly stochastic measures with rooted support

In this section we examine sets with no axiai cycles which by Theorem 3 are the supports of measures
in EDSM . The main result i1s that such sets have a structure which is the union of trees. We call this
an axial foresi. Further, the axial forest structure can be written as the union of the graphs of two
functions; one from the x-axis to the y-axis and the other from the y-axis to the x-axis. Our analysis
begins with the concept of a rooting set given in the next definition.

Definition Let F C [0,1}%. Let P{- ) denote power set and define Tx: P(F) — P(F) by
Te(d) = {{x,y) € F: 3z € [0,1] with (x,z) € 4 or with (z,3) € 4}.

For (x,y) € F, [(x,y)]r = X TE(x,y) is called the orbit of (x, y) under Tr. Let A C F; Ais called
a rooting set for F if and only if

G) F =% TA(4).
(i) For each (x,y), {z.w} € 4, (x,¥) # (z,w) implies [(x, )]r N [(z, w)]r = D.
(i) For all {x,y) € A4, [{x.¥}]F has no axial cycles.

If A is Borel then A is called a Borel rooting set. If (i) holds u-a.s. then A4 is called a p-essential rooting
sel.

Condition (iii) says that each [(x, »)]r has a tree-like structure, and condition (ii} says that orbits
of elements from A generate disjoint trees. By (i) F is the union of these disjoint trees, which
motivates the following definition.

Definition Let F C [0,1]%. F is called an axial Jorest if and only if F has a rooting set.

Note that axial forests and rooting sets are set-theoretic structures in a product space and are not
necessarily related to any measures.
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Theorem S F C [0, 1]° is an axial forest if and only if F contains no axial cycles. In particular, every
i € EDSM has axial forest support.

Proof

Clearly if F has a rooting set then it has no cycles. To go the other way, use Zorm’s lemma to pick a
maximal subset from F with points having disjoint orbits. Finally, Theorem 3 shows that every
i € EDSM has support with no axial cycles, Ll
Definition Let F C [0, 1)>. The sequence of points {(x;,y;)}=, € F is calied an F-axial path of

i=1

length n if and only if (x;, y;) are distinct and one of the following holds:

(D) y2i = ya—rand xp ) = Xy fori > 1.
(it} x; = xy_y and yy 4y = yy; fori = 1.

In case (1), {{x;, ¥;)}/=, is called an axial path starting horizonially from (x,,y,) 1o (x,,yn)- In case
@), {(x;, ¥:)}i=1 is called an axial path starting vertically from (xy,y;) 10 (Xp, ¥u).

Let 4 be a rooting set for F and consider (x, y) € [4]¢. Then there is a unigue (z, w) € A such that
(x,y) € [(z, w)]r. Hence there is a unique minimal k such that (x, y} € T4(z, w). Because [{z, w}]7 has
no cycles there is a unique axial path of minimal length & from (z, w) to (x, y}. One can then define
the following subsets of orbits of elements of A:

¥, = {(x,y) € [A4]: there is an axial path of minimal length & starting vertically from (z,w) € A4
to (x,)}

Hy = {(x,y) € [4]F: there is an axial path of minimal length % starting horizontally from
(z,w) € Ato (x,y)}

Let 7, and 7, denote the canonical projections from [0, 1]* onto [0, 1) defined by m({x, y)) = x and
m3{{x,»)) = y. We have the foliowing lemma.

Lemma 6 Let F, 4, H, and V. be defined as in the discussion above. Then by definition &, =
V) = A. We have;

(i [AIF :Uf=2HkUUEC=1 Vk-
(i) H,nV;=Oforallk, j(unlessj=k=1).
(i) j# kimplies H;NHy =@ and VNV, =0.
(iv) m(Hnw{V;}=0Oforalljkand =1, 2 (unless j = k = 1).
(v) The map , is an injection on Ha, and V. Similarly, the map =, is an injection on
sz_| and VZk‘
(vi) Hay C 73 myHy_ 1o Hagod © 7' 70 Hag Vox €77 5 Vg1 Vagan © 73100 Vg
(vil) m(Hyo1) Cm{Hu), m(Va) CmVu_1), m(Hyuo) CmHua) m(Vuu) €
Ty (Vg )
(viiiy j#k implies m{Hy)nm(Hy) =0, mVu_)NmVy_)=0, mfHy_ )N
My ) = @, M V) Nmy(Vy) = O.

Proof
Parts (i)—(1ii) follow from uniqueness of a minimal path for each (x, y) € [4]f. Parts (iv} and (v)
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follow from disjointness of orbits of points in A and the fact that these orbits have no cycles. Part
(vi) follows from the fact that a minimal path to (x,, |, ¥1-1) € Hi,, contains a minimal path to
some (x,y,) € H, and iikewise for the ¥,’s. Statement (vii) follows from (vi). Finally, (viii) is a
result of minimality of paths. |

Lemma 7 below shows that the H,.’s and V}’s can be used to construct a collection of functions
called a limb numbering system which is defined next. From an iliustration of a limb numbering
system see Figs 1 and 2. In what follows we will use irafic type to denote a function and beld type to
denote the graph of a function. Soif f: 4 — Bthen fC 4 x B,

Definition Let {C;}7, be a collection of subsets of [0, 1] such that {Cy_ 1 }i2¢ are disjoint and
{Ca } 5o are disjoint. For each & > 1, let D, C C; and A, be a function, A, Dy — Cp_ (. Set

for 1 = {{x, Ay 1 (X)): x € Dy}

g = {{A(x), x}: x € Dy}

Then L = {fo; _;, 8 Yiw is called @ limb numbering system. Also the functions fy _; and gy are
called the limbs of L. If f;, _; and gy, are measurable subsets of [0, 1)° for all £, ther L is said to have
measurable limbs. For ease of notation we will write U L for gL | {fo— 1 U g )-

and

Iemma 7 For k> 1, Vo _ | UHy is the graph of a single-valued function £ _,, from
T{Vax —y U Hy) 10 my( Vo1 U Hy ). Also, Vo U Hoyy is the graph of a single-valued function
Eai, from Wz(Vzk U H2k+l) to ‘JTI(VZA. ] H2k+]}. Furlhel’,

range ( f 1) © domain (gx)

1
range (g} € domain ( for_ ;) W
and k # j implies
domain { /2 1) Ndomain ( f5;_ ) = 0

2
domain (g2} N domain (g3,) = @. (@)

So {5 _;,gx i is a limb numbering system.

Proof
Notice that f5;, _; being single-valued is equivalent 1o m; being an injection on Vy;, _ U 4, which
follows from (iv) and (v) of Lemma 6. Similarly, g,; is single-valued.

To show that the relationships in (1) hold use (vii) of Lemma 6. To prove disjointness in (2) use
parts (iv) and (viii} of Lemma 6. O

Theorem 8 Let F C [0,1)°. Then F is an axial forest if and only if there exists a limb numbering
system L = {fy, |, 8 }iz) with F=UL.

Proof
By Lemma 7 an axial forest can be written as the union of functions from a limb numbering system.
To go the other way, suppose L = {fx_;.gx}7% | is a limb numbering system and et F = U L. By
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Theorem 5 we need to show that F has no cycles. To do this, suppose there exists {x;}22, which is an
F-axial cycle.

As in the definition of a limb numbering system, let by denote a generic element of L, b, = g, if &
is even and h, =1, if k is odd. Let k; be chosen so that x; € h, . We want to show first that {x; 1,
can be indexed so that k; < k; for all 1 < 7 < 2n. To do this, note that ¥; = X(i+2) mod (22+1)+1 15 80
axial cycle. Hence we can index {x;}?", so that either k, or k; is minimal. Now y; = Xo,,|_; is
an axial cycle so we can indeed index {x;}7%, so that k; is minimal.

Now we argue that in either of the two cases, k, even or k; odd, ks, ..., ky,, k; is an increasing
sequence, which leads to a contradiction.

In the first case, suppose k| = 2k — 1 for some k. Then by definition the step from X, to x5 is
horizontal so x; = (x,3,) € £, _; and X; = (x5, y,) with y; = ¥;. So X, € fy,_| Or x; € g3 _,. But
2k ~ 1 = ky is minimal so X5 € fy ;.

In the second case, suppose k; = 2k — 2 for some k. Then again the step from x; to X, is
horizontal, so x, = (x|, ) € gx_» and X = {x,,y2) with y; = y,. Because gy is single-valued,
X, € f2k— 1-

Now in both cases the following inductive argument shows that k., ... k,, &, is an increasing
sequence, which yields a contradiction. First, Suppose X, = (X, ¥p) € Ta4 4 m—3 for some fixed even
mwith2 < m < 2n Then X, | = (Xpy 1, Ym 1) With X | = X,,,. In other words, the step from x,,
to X, is vertical. Hence X, € 82 . m_2 because fy ., is single-valued. Next, suppose
Xm = (X Vm) € 82krm—3 for some fixed odd m with 3 <m < 2n— 1. Then Xy = (X1 Yma1)
with .., =y, and the step from X,, 10 X, is horizontal. Hence x,.; € fy, 2 because
82k + m_3 I8 single-valued. This proves that &, ... | k3, 18 an increasing sequence with xa, € £33, 2, 3.
Because {x;}2, is an axial cycle, there is a vertical step from x5, to x,. This implies X; € gy 2,1,
which contradicts the minimality of k. O

Theorem 9 Every p € EDSM is supported on the graphs of functions from a limb numbering
system.

Proof

Let u € EDSM. Use Theorem 5 to find a rooting set A4 for the support of p. Define limb numbering
system K = {f;_,, 8% }ie | with £5,_; and gy, as in Lemma 7. Then u is supported on [4]f which is
equal to the union of graphs of functions from L by Lemma 6 (i). i

Corollary 10 (Benes—Stépan) Every u € EDSM is supported on the graphs of two functions.
In particular, there cxist functions f,g with domain (f) Cm|0,1]%, range (f) < m[0,1)%,
domain(g) C 7,0, 1%, range(g) C =,[0, 1]%, such that g is supported on fUg. Further, f and g are
disjoint.

Proof

Use Theorem 9 to find the support of ue EDSM which is a limb numbering system,
L = {fox_1,&x}7=,. Because the domains of the f3, _,’s are disjoint we can define single-valued
function f on Udomain{ f _ ) in the obvious way: for x € Udomain{ /5, _ ), set f{x} = fu . ({x)
where x € domain( /3 _ ). Clearly g can be defined in a similar manner. Lastly, disjointness of f and
g foliows from parts (ii) and (iii) of Lemma 6. O
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Corollary 11 Let i € DSM be supported on a limb numbering system L = {f5, _;, gz }i~,- Then
for every G: [0,1]* — R there exist /: [0, 1] — R and g: {0,1] — R such that G{x, y) = f{x) + g(»}
on UL (or p-a.s.) with g| o, = 0. Further, if G is Borei measurable and if f5; _; and g, are Borel
subsets of |0, 1]* for all k, then f and g can be taken to be Borel measurable.

Proof
Notice that we need G(x,y) = f{x) + g{ ) only on the limbs f5; _ | and g,;. This can easily be done
first for f; by setting g{(y)=0 for y€ C, and f{x)=G(x, fi{x)} for x€ C,. Then
G(x,y) =f(x) +g(») on C; x Cyp. Now consider the limb g,. For (x,y) €8, y€C; and
x =gy{y) € Cy. So for y € C; set g(y) = G(g2{»),») ~ f(g2(»))- Then G(x,y) = f(x) +g(y) on
C] > CﬂUC} X Cz.

The above can be extended to simple inductive construction. To do this, assume that for all £ <,
f has been defined on Cy_ | and g has been defined on Cy with G(x,y) =f{x)+g(y) on
Cog—1 X Co_a U Ty % Cop. Now for x € Cyy g set

fx) = G{x, fo.1(x)) — g( fy+1(x))
and for y € Cy;, 7 set
2(y) = G(gay+2(¥), ¥)) —f(gy+2(9))-

Then for all £k <j+1, f has been defined on Cy_, and g has been defined on €y with
Gix,py=fi(x)+g(y) on Cy_y x Cy_3UCy | x Cy and the inductive construction is com-
plete. This proves the first statement of the corollary.

To prove the second assertion, note that if fz_ | and gy, are Borel subsets of [0, 1)%, then f,, _, and
gz are Borel measurable functions: an easy proof can be formulated using Theorem 3.9 of
Parthasarathy (1967, p. 10). Finally, it is clear from the above construction that if G, £, _,, and
g2 are all Borel measurable, then the resulting / and g are Borel measurable as well, O

Note that in Theorem 9 and Corcllary 10 the rooting set was chosen using Zorn’s lemma so
in general nothing can be said about the measurability of the rooting set or of the limbs in the

limb numbering system. In what follows we explore the case of Borel rooting seis and Borel
limbs.

4. Doubly stochastic measures with Borel limb numbering system support

So far we have explored the general structure of EDSM supporting sets using the concept of a
rocting set. More can be said if the rooting set is Borel. The main result of this section is Theorem
17, which gives several equivalent characterizations of what we call a Borel rooted Borel limbing
system. Lemmas 12 and 13 are some technical results about measurability and orbits required for
the proof of Theorem 17. Lemmas $4- 16 establish the non-trivial assertions in Theorem 17.

We begin by introducing the concept of uniformization (Parthasarathy 1972, Chapter 8), which is
useful for finding rooting sets.
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Lemma 12 (uniformization lemma) Let C, and C, be subseis of [0,1] and =, 7, the canonical
projections from [0, 1) onto [0, 1]. Let £ C [0, 1)* be the graph of a function f: C; — C; and f’ an Fy
subset of f. Then there exists a Borel r C f' such that mor = 7,f’ (that is, the range of r equals the
range of ') and r is the graph of an injective function.

Proaof

First suppose f' is a closed subset of [0, 1]°. For each ¥ € mf’ define r~'(») = inf {x: {x,y) € f'}.
Now (r~1(y),5} € f'. To see this, pick a sequence converging to r™'(3), x, — ™' (), with (x,, ) €
£ for all m Then (x,,%) — (F'(¥),y) and £ is closed, so (¥ (p),y)ef’. Set r=
{7 (»),): y € mf'}. Then r € {' is the graph of an injective function with mor = mf'. To see
that the graph of r is Borel, consider r{0, o) for « € [0, 1]. Check that

r{0, ) = m(f' N7y (0,a))
and £’ N #7'(0,a) is an F, set, so 7(0,«) is a Borel set and r™' is a Borel map from mf" to [0, 1.
Hence r is a Borel subset of [0, 1],

Now suppose f' = | %, f/ with each f/ a closed subset of [0, 1]. For each f; construct Borel r; as
done above. Pantition mf' via 7»f' =, 4, with

A{' = {y & ?Tzf!I ¥ e ’?Tzf; andy e ?Tzf;c fork < I}
Setr~!(yy =8, L, (3 () and v = {(r"'(¥), »): ¥ € mof'}. Then r™" is a Borel map from mf’

to [0, 1], so r is a Borel subset of [0, 1)%. It is easy to check that r C {' is the graph of an injective
function with mor = m,f’, O

The next lemma shows that minirnal length axial paths are monotone.

Lemma 13 Let L= {f'5,_|, g}t~ be a limb numbering system and let h; denote f; when
j=2k -1 and g; when j = 2k. Suppose X;,....X,, 1§ 2 minimal length axial path from x, to x,,.
fx, €h,andx; ch, ,, thenx;€h,,; forl<j<m

Proof
Fix k > 2 and suppose x; € h,, ;_, for 1 <j < k. Assume n+k — | 15 odd. There are three cases:
Xis1 Mg 1 X Ehyg 2 and Xy € by

If x| € 41, then because k. ;. is single-valued (X, ) # 71(%y). Hence, ma(x;. ;) =
ma(Xe) and Xy 1, Xz € 73 ' (Xp_ ;) Ny, _y. This implies that x,,. .., X,, with x, deleted is an axial
path, which contradicts minimality. This case is therefore impossibie.

If x,.,¢h,_;_5 then x; € ?TEI‘TI'Q(X;(_ JNh, . -7 and x;_, € TT}'_]TI‘E(XA-), which yields
To{Xg_1) = Ta(Xp) = ma(Xg_ ). Because A, , ;.2 1s single-valued x,, . | = x, ;, which again contra-
dicts minimality. This case is also impossibie.

We therefore have X, ., € h,;, which completes the induction step for n+ k& — 1 odd. The
argument for n + k — 1 even is similar. O

Lemma 14 Let x € DSM be supported on a iimb numbering system L = {fy. _;, g }i%, with
measurable limbs. Then g has an F; support contained in UL with essential F; rooting set.

Proof
For each k one can find Fy sets f3,_; C f,_; and g3 C go such that u{fs._ ) = p(fx_,) and
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)= . Now form
p(gx) = p{ga) L = {1}
Then F' = UL'is an F set, u{F') = 1, and F' C F. Because F' C F, F' has no axial cycles and by
Theorem 5 is therefore an axial foresi. Hence F' is an F, axial forest support for z.

Next we find a Borel rooting set for F'. For each k and ki, (k} = f; when & is odd and %}, = g
when £ is even), construct an injection r, with range of r, equal to range of 4; as in Lemma 12.
Inductively define subsets R, of [0,1F by R, =1, and R, = (r,\ [Re_1jp/) URi_;. Let R=
\ Ut Ri. Then R, 7 R and we claim R is a rooting set for F!

First, check that [R]s = F'. To see this, note that for each X, the range of r, is equal to the range
of A so b, C [ry]sr. Now

[Relre = [(re \ [Rec 1 Je) U R ] 2 [ N [Re ol ] VIR e 2 1
50 [Rilr 2 ir*]p D b Hence F' D[R] DUL = F'.

Second, check that elements of R have disjoint orbits. Start with R, =1, C f}. Let x,y € r; and
suppose [X]r- = [y]s-. Let X = Xx;,...,X, = ¥ be a minimal length axial path from x to y. We wilt
show that » = | and therefore x = y. Suppose #n > 2. There are two cases: X, € g or x, € f;. If
X; € g5, then Lemma 13 implies y ¢ f] which is impossible. If x, € f1, then either n > 2 and x; € g5
orn=2and x,=y. If n > 2 and X3 € g>, then Lemma 13 again implies y ¢f] so is n > 2 is
impossible. If n = 2 and x, = y then m»X = n,¥. which implies x = y because r; is bijective. Hence
n = 2 is impossible as well and therefore n = 1 and x = y. Elements of R, therefore have disjoint
orbits. Now assume elements of R, _, have disjoint orbits and consider x,y € R,. Suppose [x]z =
[¥]g. f x€ Ry_; and vy € R, _, then x =¥ because elemenis of R,_, have disjoint orbits by
assumption. The case x € r, \ [Ry_ ]+ and y € R;_, is clearly impossible, so suppose X,y € F:\
[Rk_1]F. The paragraphs above show that R; Tand by _; C [R,_,)r-. Hence [ Jjcr— 1 b € [Re_ (]
Therefore [X]r+ = [y]r € U, « b So, replacing F’ with |J; > by, the situation is equivalent to the
case X, ¥ € r| and the same argument implies x = y. R is therefore a rooting set.

Now we have Borel rooting set R which is not necessarily an F, set. To get an F essential rooting
set define 4 on Borel sets of R by

W(C) = u(Cl).
Then 4 is a Borel probability measure so there exists an F; set R C R with | = 4'(R) =
¢ (R') = p{[R']¢) and R is the desired F, essential rooting set. 0O

Lemma 15 Let u € DSM have analytic support, 4, with an essential analytic rooting set. Then u is
supported on a limb numbering system contained in 4 with measurable limbs and analytic rooting set.

Proof

Let F be the analytic support of 1 and A the essential analytic rooting set. Define limb numbering
system L = {f5,_;,g:}i= as in Lemma 7. Consider the foliowing sets:

A= Trl_]ﬁz(A) nF,
Ay = n7'm (4 )N F

Ageoy =73 'ma{ Ay 3} N F,
Ay =77 m (A1) NF.
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Now A4 is analytic so ,(4) is analytic. Because 7 is Borel measurable 73 'm;(A4) is also analytic
{Cohn 1980, Chapter 8). Hence, 4, is analytic. The same argument with induction shows that 4; is
analytic for each j > 1. Next, note that

A=V U H,,
Ay = (VU H;) U (VU H;)

: J+i
4= UHL).

k=1
Therefore the graph of each function from L can be written as the intersection of an analytic set and
the con;}plement of an analytic set. Hence the graph of each function from L is a measurabie subset

of [0,1}".

Next, one can check that [4]F = [4]:4), 50 4 is an analytic rooting set (not just an essential rooting
set) for [Alp Uiz 1 (Fe— 1 U gx)- O

Lemma 16 Let u € DSM have F, support, A, with essential F; rooting set. Then u is supported on
a limb numbering system L = {fs._, 2 }i=, with Borel limbs (that is, fo._; and gy, are Borel sets
for all k) and Borel rooting set. Further, UL C A.

Proof :
Repeat the proof of Lemma 15 replacing ‘analytic’ with ‘F,” and note that 4; is an F set for
each ;. O

Theorem 17 Let u € DSM. The following are equivalent:

(i) u has analytic support with essential analytic rooting set.
(i} u has F; support with essential F; rooting set.
(iil) u is supported on a limb numbering system with measurable limbs.
(iv) s supported on a limb numbering system with Borel limbs and Borel rooting set.

Proaof
By Lemma 14, (iii) implies (ii). It is trivial that (ii) implies (i) and (i) implies (iii} by Lemma 15, so
(1)—(iii) are equivalent. Lemma 16 shows that (i) implies (iv} and clearly (iv) implies (i). O

Definition A y € DSM satisfying the conditions of Theorem 17 is said to have Borel rooted Borel
limbing system support.

5. Uniqueness of doubly stochastic measures with Borel rooted Borel
limbing system support

In this section we address the uniqueness of doubly stochastic measures with Borel rooted Borel
limbing system support. We start with some definitions,
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Definition Let GDSM denote the set of signed measures on LO, 1)? with uniform marginals. Also, let
CDSM denote the set of complex-valued measures on [0, 1]° with uniform marginals.

Definition A measure p € DSM is said to be in EDSM, if and only if forevery v € DSM, v <
implies ¥ = y. A measure p € DSM is said to be in EDSM, if and only if for every v € GDSM,
v <& p implies v = u. Likewise, a measure y € GDSM is in EGDSM, if and only if for every
v € GDSM, v < ¢ implies v = p.

Definition Let A C [0,1] be a universally measurable set. 4 is called a set of unigueness for DSM if
and only if there exists a unique 4 € DSM supported on 4. A is called a set of uniqueness for GDSM
if and only if there exists a unique v € GDSM supported on 4.

Note that this definition of a set of uniqueness requires the existence of a u € DSAM. This differs
from the definition of a set of marginal uniqueness given in Bene$ and Stépan (1987), which does not
include this requirement.

Lemma 18 The following hold:

(1) ESDM C DSM C GDSM C CDSM.

(i) EDSM, C EDSMy, C EDSM.

(i) EDSM, C EGDSM,.

(iv) Let 4 be a set of uniqueness for DSM and let 1 € DSM be supported on 4. Then p €
EDSM,.

(v) Let A4 be a set of uniqueness for GDSAM, and let x € GDSM be supported on 4. Then u €
EGDSM,.

(vi) A measure 4 € DSM is in EDSM; if and only if, for every v € CDSM, v < i implies

V=M.

The verification of these statements is straightforward. Note that result (iv) shows that measures
in EDSM, are the same as those described in Theorem 1 of Losert (1982), where a characterization
of such measures is given.

Definition Let A C [0,1)* and GDSM(A) be the set of measures in GDSM supported on A. Let b
be a collection of Borel functions from A to the reals. D is a GDSM{ A)-determining class if and only
if for v,p € GDSM(4), | fdv= [ fdufor ali f € D implies v = p.

Lemma 19 Suppose yu € GDSM is supported on Borel 4 C [0, 1), Let Larg, o (A) denote the set of
bounded measurable G: 0,1 — R such that there exist Borel functions f,g: [0,1] — R with

G(x,y) = f(x) + g(y) for ali (x,y) € A. If Lyyr, o(A4) is a GDSM(A)-determining class, then A
is a set of uniqueness for GDSM and y € EGDSM,.

Proof
Let G(x,y) = f(x)+g(»y) be an eiement of Lypary oo(4). The idea is to show that §Gdv only
depends on the marginals of v, hence [Gdr = [Gdu. This would clearly be true if / and g

were integrable with respect to A, but this is not necessarily the case so a truncation argument is
required.
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For each positive integer , let B, = f ~'{—n,n), C, = g (—n, n),

Jalx) = T (x) f(X) + 1Ly ey (%) = mlpar Lo (%)
and

gﬂ(y) = fc-n(y)g(y) + nIg‘l[n.oo)(y} - nIg‘l(—m, —nE(y)'

Now approximate the integral of G with integrals of f, and g,,

16603y~ - gnlsilav = [ 16005~ £i) - anl D

+ LB,,XC,,F iG(x‘y) _f;l(x) - gn(}’)!dv.

Now |Gi(x,y) — fulx) —g.(»)| =0 on B, x C,, so we only need to look at the integral over
(B, x C,)°. Let |G|, = SUP( yyei0a)? |G(X, 7)) Then

|G(x,y) = fulx} — (¥} = |G(x, »)| £ IGly on By x C;.

1G(x,y) = fox) —gn{¥) = ig(¥) —&{N < IGll. o0 B, xC;

1G(x,p) = fa(X) = gn{ W =1 /(x) —fulx} < |iGlla on By x C,.
Now, as n — 00, A(B,) — 1 and \{C,) — 1 hence (B, x C,) — 1. Thus,

[1665.3) = £, = £a(3)|dv < w18y x CIINGI = 0 @)
and | Gdv can be approximated by integrals of £,(x) and g, »). Finally, we have
o it miav= | pars | aar=| neescie o

and v and p have equal integrals on Lijarg o (A4)- |

Theorem 20 Let 4 € DSM have Borel rooted Borei limbing system support; then g is supported on
a set of uniqueness for DSM and p € EDSM,. A similar statement holds for v € GDSM having
Borei rooted Borel limbing system support.

Proof

Let 4 be the Borel rooted Borel limbing system support of u. Then by Coroliary 11, Lyarg o0(4)
equals the collection of bounded measurable functions on [0,1}* and the result follows from
Lemma 19, O

6. Further results concerning Borel rooted Borel limbing system support

Theorem 20 can also be proved by using the uniform marginals of z to solve explicitly for x. Results
of this argumnent are useful in their own right and lead to a generalized example of a imb numbering
system which is the support of a measure in GDSM. To present these resuits we examine the



Supports of doubly stochastic measures 231

structure of Borel rooted Borel limbing system supports in more detail, with the goal of finding a
direct proof of Theorem 20.

To begin, let L= {f3,_,8x}iz; be a limb numbering system with Borel limbs. As done
previously, let A, denote a generic function from L: 4, = £, when » is odd and A, = g, when n is
even. Also, let {Cuy,1}reo and {Cylii, be the corresponding partitions of [0,1] with
hi: Cp — Cp_y: that s, for 4 Coyppt — Cop and gop: Cop — Cyp_ .

Let v € GDSM be supported on UL. It will be useful to consider the x and y marginals of the v
mass restricted to 4, For this purpose, let wy(-)=u{n3'(-)Ngy) and vy, ((+) =
v(my (- ) Ny, )). Note that the v,’s uniquely determine v. To see this, suppose that B = [a,b] x
[e,d] N Cay ) x Cx. On B, v is supported on £y 1 50 v(B) = var 41 ( for s 1([e, d]) M [a, B]).

Iemma 21 The following hold for the above-described limb numbering system:

(i) If UL is the support of a wx€ DSM then S [_oACxu) 2> i1 AM(Cxy_y) and
2k=0 MCos1) 2 Thag MCop)-

(ii) For each n > 0 let ‘M|’ denote A restricted to C,, that is, A|¢ {B) = A(BNC,). Then
Mg, = v of,"" and for each n > 1, Ale, =V, + Upo | 0Kl

Proof
Note that A(Co) = p{[0,1] x Co) = u(C) x Co} = p(f)). Likewise, A{(C)) = u(f)) +pulgy). In
general,

MCop 1) = {1} + plga)
and

A(Ca) = wlga) + plfari1)-
A simple induction argument then shows that

2% |

MCo) = plfur1) + 3 (—1INC,) (6)
and "=
A(Cyeo1) = plga) + Z(— @)

Because i € DSM, ulfy _1) and p(gy.) are non-negative, and (i) follows.
Part (ii) is simply a result of the definition of v, and the fact that v has Lebesgne marginals. To
show this for A|c,, let B C C; and check that (C; x B)nf, = =7 £, (B) nf,. So

M, (B) = A(B) = v([0,1] x B) = o€, x BYN1y) = vix{' /i (BYN 1) = vy o /7 (B).

To prove the result for A}, assume n = 2k ~ 1, let B C Cy;_,, and check that B x 0, 1jNgy =
73 g5 (B) Mgy Then

Mc,(B)=MB) =v(Bx[0.1)) = v(Bx{0,1]Nfy_ ) + (B x [0, 1] Ngxy)
= v{m (B) Ny _1) + v{mgs! (B) N gox) = v _1(B) + vye(g37 (B)).

The case for n = 2k follows with a similar argument. 0O
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As shown nexi, part (il) of Lemma 21 can be used to prove that the »,’s and hence v are uniquely
determined by the limb numbering system L.

Lemma 22 Let m > n. The following formula holds for v,

v, = Ale, + Z (-—l)k'")\lq ohk" oh{l, o...oh;_.l,l
k=n=1
NV e ATV A=Y Wi S-S ' (8)
Further, as m — co

-1 -1 -1
Vm+1°hm+lohm [ | — 0

in total variation norm. Hence v, and therefore i are uniquely determined by the limb numbering
system L via

o]

ve=Me, + 3 (DM okt okl ookl %)

k=p-+1

and U L is a set of uniqueness for GDSM.

Proof
Use part (ii) of Lemma 21 1o write

M1:=A|G,"Vn+1oh;ll' (10)
Now use (ii) of Lemma 21 again 1o solve for v,y interms of A | and v, ;0 &, 1., and substitute
into (10) to get
va = Mg, = (M, = Vns20 bria) o bl

This proves the lemma for m = n + 1. A simple induction with similar substitution proves (8).

To prove that vy, o kst ohy o... ok, goes to 0 in total variation norm, it suffices to
show that v,,., goes to 0 in total variation norm. To this end, choose arbitrary B C [0, 1] and
suppose m+ | = 2k — 1. Then

e 11(B) < fume - H{Cox 1)

Let € > 0. Then there exists partition E; of Cy,_ such that

Ll

o [Coo 1) <3 e (B + € = S lodaT (B el + ¢

i=| i=1

< AT E) ) F e = o) (Cainy X Cia) +e.
=

Soforalik
vk -1 |(B) < W(Cai_y X Cy_2)-
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But

3 l(Cont x Comz) < WI(0,17) < o0
k=1

$O
W(Ciy X Cp_3) — 0

and vy _; — 0 in total variation norm. Once again a similar argument works for m =2k
and vy, O

7. Some examples of doubly stochastic measures

EXAMPLE 1. CONSTRUCTION OF A GENETIC LIMBING SYSTEM

The results of Lemmas 21 and 22 can be used to construct a limb numbering system in a generic
way which supports a measure in GDSM. To do this, we start with two partitions, {Cs; . }izo
and {Cy}iZo, of [0,1] that satisfy condition (i) of Lemma 21. To avoid complication, we also
require that A(C,) >0 for all n > 0. Next we take a coilection of Borel functions {¢,}7=1,
@i {0,1] = [0,1]. To ehmmate the possibility of atoms with positive mass in the marginals
we require that M ({x}))=0 for all x ¢[0,1). Finally, we squeeze each ¢, into an
hi: C; — C;_,. If the squeeze i1s done correctly Lemmas 21 and 22 can be used to check that the

resulting limb numbering system supports a measure » € GDSM. This procedure is discussed in
detail beiow.

First, define constants
MGCy)

b =3

and, forn > 1,

n—1
> MCyiar) ZA(G;

_ i=0
b = )

]

n—-1
MCa) = 3" MCaivt)
i=0

i=0
S (WY
It is easy to check that forall i > 1,0 < 3, < 1 and
MCis1}Bier = {1 = BIMEC). ()
Next. define S,: [0,1] — {0,1] by
AMCN[0,z])

Siz) = NC)
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Also, let T, = S;l¢ - Next, for each i > 0 define ¥ [0,1] — [0,1] by
wilx) = Ao 67! [0,x].
Lastly, let 7 denote the identity function on {0, 1], J{x) = x, and define G: [0, 11 — {0, 1} by
Go(x} = 1 (x)

and, fori > 1,

Gi(x) = Bl {x} + (1 = B} (x).
To sgueeze the ¢,’s we set

h=T50G_ 106;0G7 o T, (12)

Clearly A C; — C;_,. To show that this squeeze gives a limb numbering system which supports a
measure in GDSM requires some work, starting with the following lemma.

Lemma 23 Let 4 C [0, 1] be a Borel subset of [0, 1}, Then:

() i1, T; and G; are all Borel measurable functions for 7 = 0.
(iiy Foriz0, T,(4), G;(A4), and v, ,{A4) are all Borel sets and X o4;. |, A o §; are measures.
(il1) G, is injective for i > 1, and T; 18 injective a.s. for i > 0. Also, A(S:{A)) = MT{A4)) =
MANCY/ MC;) so Ty is surjective a.s. for i > 0.
{iv) Alg o T (d) = MCIA(4).
(V) Ao MCH[(B + {1 = B 1](A4) = Ao MC)BI(A) + X o ACHT = 3w 51 (A).
() A A)) = A&7 (4)).
(i) Mov v (4)) = A(A).
(vill) Ao grlioG, ' 05,00,x) = Ao gy oGy o T,[0,x].

FProof

Statements (i) and (ii) are true for any non-decreasing function f: {0, 1} — [0, }i. To show this,
suppose f 1s such a function. Clearly f7'(~00,a) is Borel for any @ € R. To check that f(A) is
Borel, notice that for each y € [0,1}, /7' (») is empty. a singleton set, or an interval contained in
[0,1]. Hence there is a countable set { y;} such that £ ~'(}+) is an interval. Now set B =1{J; f~'(»,).
Then C ={0,1]\ B is Borel and f |- is injective. By a well-known result (Theorem 3.9 in
Parthasarathy 1967, p. 21), an injective image of a Borel set under a measurable map is Borel. Hence

flA)y=7{4nBUfANC)

with f{ANB) countable so f(A4) s Borel. To show that Aof is a measure, notice that
Aof(A) = Ao f(AN C) with f | being injective.

Te prove (iii), first note that G, is obviously injective for i > 1. Also, T; is injective at points of
density of C, (for a definition, see Hewitt and Stromberg 1975, p. 274} so T, is injective X a.s. To
prove the statement about 7}, first notice that S; is continuous and increasing so S;{(a, b)) =
(Si(a), S{(b))X a.s. Hence, A(Si({a, b)) = {MCHY 'A{a, )N C). By (i), Ao S,(+) is a measure as
is {AMCHY A+ N C,) so we can conclude that

|

MS{B)) = T(*CT)A(B NGy
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for any Borel set B C {0, 1]. Hence

STETAAN €)= XS(4)) = A(SAN C)) + AS{AN € = MS{ANC)) = AT ().

Part {iv) can be verified in the case where 4 is an interval. Because both sides of (iv) are measures
the result follows for general 4.

Next consider statement (v). By (ii) both sides of (v) are measures so we only need prove (v) for
A = 10,al. Notice that the requirement A{¢;' ({x})) = 0 makes ¥;., continuous, so checking (v)
for 4 = [0,4] is a straightforward calculation.

To prove (vi), recall that by (ii) A o ¢%;{ - ) is a measure. Clearly A o ¢; '( - ) is 2 measure. Now check
thatAoand Ao qﬁ;i agree on sets of the form 4 = [0, a]. Part (vii) can be established in the same way.

To prove (viil), note that (iii} implies A{S,[0,x] \ 7,[0,x]) = 0. So (viii} can be established by
showing Ao ¢;1, o G;! « A To prove this, note that G, is an injective continuous increasing map
from [0,1] onto [0, 1]. Hence

20, x) = M0, G,G, ' (x)} = G4Gy ' (x)
= BA[0, G (x)) + (1 — B)h o 672 [0,G,7 (x)]
=820 G, [0.x]+ (1 = Brodrty oGy [0,x].

Now Ao G, ! and Ao ¢, !, 0 G! are measures, so
MA) = 8,20 G (A) + (1 = B)re g71, 0 Grl(A)
for ali Borel sets 4. Hence Ao ¢, L, 0 G <« A O

Note that parts (1)-(iti} of Lemma 23 show that 4; is single-valued a.s. and measurable. Next, we
can define a measure v; using the limb numbering system L = {h;};Z, and equation (9). Note that (9)
is an absolutely convergent sum so that v; is a well-defined finite signed measure on [0, 1] which is
supported on C;. We can then define v supported on UL using the v;’s in the obvious way; for
i=2k+1 and B=By x ByNhy.y set v{B)=wvy (hi. (Bs)NB,), and for i=2k and
B =B x ByNhy set v(B) =vy(hy!(B)NB;). So defined, v is a o-finite signed measure
supported on UL = | 22 h,.

Now to check that the marginals of i are Lebesgue measure, suppose 4 € C,,. Set B = 4 x [0, 1]if
nis odd and B = [0, 1] x A4 if » is even. Then, for n > 0,

v(By=v(BNh,) +v(BNh,, )
= yn(A) +Vn+|(h;-1—1(A)) = ’\iC,,(A)

by {10) which holds for », defined by (9).

Lastly, we need to check the case n = 0. Here all the mass which cancels using (9) piles up, so a
more delicate calculation is required.

First, the following equation needs to be estabiished:

ValA) = A, (A) = MCpo1)Bu1ho byt 0 Gy o T,(4). (13)
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To prove (13), chose Borel 4 C [0, 1} and use (9) to write

o

vald) = Mo, () + 3 (=1 "Alg ok o e hpl (4)
k=n+1
=M+ D (D) g o T o Gro g ogil 0. 04l 0G0 T (A).
k=n+1

By parts (iv) and (v) of Lemma 23 this yields

=]

vl ) = A, () + D (=1 T"AMCA 0 (Bed + (1 = B)wsr) 0 8% ©...0 65110 Gy 0 T,(4)

k=n+l
=2 e, (4) = MG )Brsi o dns 1 0 G o To(A) + Y (=1 (MG = Bidro ey
kE=n+1

MG )Brodisi)o...opmsy 0 Gyl o Th(A).

By (11) the terms in the infinite sum are zero, which establishes (13).
Now choose Borel 4 € Cp and set B+ [0,1] x A. Using (13), we then have

v(B) = v (ki (4))
= Ale, o b (A) = M(C1)Bar o 67 0 G o Ty 0 7' (4)
= Ajg, o (4) = A(C2)Bar 0 67 067" 0 G ' 0 Ty(A)
= (M, o T 0 Gy — MGy)Baro 63 ) 007" 0 Gi' o Ty(4).

By parts (iv)-(vii} of Lemma 23 this gives

v(B) = (MC)A0 Gy — MCy)BAo 7 Yo by 0 Gy' o To(A)
= (MCBA+ NC)(1 = B)A oty = MCp)BAo d7') e 67! 0 Gt o Ty(4)
= AMC)Br 0 0Ly 0 Gt o To(A)
= MCp)ho To(A) = A(ANCy) = A, (4).

Finaliv, we need to determine if v is a positive measure (v € DSM) or v is a signed measure
(v € GDSM \ DSM). Using part (viii) of Lemina 23 and equation (13} we have

v,([0,x]) = Me, (10, %)) = MCrs1)Bpir A0 6721 0 Gy ' 0 5,([0,x])
= MC)S(x) = MCo1)Byi1¥ns1 0 Gy 0 Sy(x).
Now we claim that this s an increasing function of x. To see this, set

£(x) = &= G, ' o S,(x).
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Clearly £ is an increasing function of x. So
v,([0, x]) = A(Ca}Su(x) = M(Cri1)Bs1¥na1 0 Gy ' 0 (%)
= (B + (1 = B)¥n w1 (EMECa) = MG 1)Ba 1 (1 = Ba)¥nr1(8)
= MCo)Ba€ + BMCos1)Br s 19 +1{E)
which is an increasing function of £. This makes v, a positive measure and hence v a positive

measure. To summarize the resuit:

Theorem 24 Let {Cy . }reg and {Cy )i, be partitions of [0, 1] that satisfy condition (i} of
Lemma 21. Let {¢,}32 be a collection of Borel functions ¢;: [0, 1] ~+ [0, 1}, with A(¢] ({x}}) = 0for
all x € [0,1]. Define #; as in equation (12), v, as in equation (9),

forn-1 = {{(x hap o1 (X)) x € Con_y}
and

20 = {(A2n(x), x): x € Cop}.

Let B) and B, be arbitrary Borel subsets of {0, 1]. Define measure v on [0, 1)? by the following: for
i=2+1 and B=B, x ByNhy., set v(B)= vy, (b3, (B;)NB,;), and for i=2k and
B = B, x By Ny set v{B) = vy (h3 (B)) N By). Then v is the unique element of DSM supported
on limb numbering system L = {f, ., g }22 .

Proof
See above discussion. !

Example 14 Seis of uniqueness for DSM

Concrete examples of the generic construction in Theorem 24 are plotted in Figs 1 and 2. These limb
numbering systems were constructed by setting ¢;(x) = f(x) for each i. In Fig. 1, f{x) = /x. In
Fig. 2, f(x) = (x — 4)>. The two partitions, {Cy., }i%¢ and {Cy; }5¢, were taken to be the same in
each of the figures. To describe the partitions, let ¢; = A(C}) for i > 0,

az,,:Zczk—Zc%_i (143)
k=0 k=1

and

T ST P (14b)
k=0 k=0

Then q; > 0,
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Figure 1. Example set of uniqueness for DSM using ¢,(x) = /x. {2) shows the limbing numbering system as
well as the diagonal and boxes outlining the sets Cy, . % Cy,. In (b} only the limb numbering system support is
shown

and, fork > 2,
Cp = Qp_| + O
So for positive a;’s summing to 1 — ¢, we set
Co = [0, ), (15a)

C, =[0,0 +¢) (15b)

and

k-2 k
C. = CO+ZQJ"CO+ZGJ)' {15c)
i=1

The example in Fig. 1 is based on partitions defined by ¢p = 0.03 and ag,, . ="~ !, which leads to
the requirement that r = {1 — ¢o}/{9 — ¢¢}. In Figs la and 2a the diagonal y = x is shown as well as
the boxes outlining the sets Cs, .| x (o, and Cy,_ X Cyy42. In Figs 1b and 2b just the limb
numbering system support {4;} is plotted. Both figures are sets of uniqueness for DSM and GDSM.
Note also that the functions in Example 2 are not monotone or bijective as are examples in Seethoff
and Shiflett (1978) and Kaminski er al. (1950).

Example 1B  Sets of uniqueness for GDSM \ DSM
To construct a Borel rooted Borel limbing system which supports a measure in GDSM \ DSM, one
can adjust the partitions {Cy 1} oo and {Cyu }i%o so that they no longer satisfy condition (i) of
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Figure 2, Example set of uniqueness for DSM using ¢;(x) = {(x — %)2. {a) shows the limbing numbering system

as well as the diagonat and boxes outlining the sets Cy,..( X Ca,. In (b) only the limb numbering system support
is shown :

"~

Lemma 21. In this case we no longer have 0 < 8; < 1, 50 some care must be used in applying the
above arguments. However, Lemma 23 will stiil hold if G, is strictly increasing for all i and we can
make G; strctly increasing by carefully choosing the ¢;’s.

With the ¢.’s chosen to satisfy Lemma 23, the above arguments go through and we have a
measure + on a Borel limb numbering system which is a set of uniqueness for GDSM but not for
DSAM. Figure 3 is an example of such a set. To describe Fig. 3, first consider the partitions
{Cacs 1 Yoo and {Cy }ig. Fix r € (—1,0). Consider o;’s as defined in (14). Set

Qapy = ?’2"+3
and In+ 2
Oy = r .

Then ¢; = oy _ | + « is positive. Now we reguire

o 203
rr+ 1)
0< = =1 —y < 1. )
;aj o Co (16}
Given that (16) holds, define C, as in (15). Next, check that
ﬁ] = cﬂ Bl = [}
o+
and, forn> 1, |
= >0
Pon P+
and .
."32!1-.‘—[ = <0

r+1
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1.0
1.0

00 02 04 08 08 1.0 00 02 04 06 08 1.0

Figure 3. Example set of uniqueness for GDSM but not for DS, as explained in the text. (a) shows the limbing
numbering system as well as the diagonal and boxes outlining the sets Cy,,; % Ca,. In (b) only the limb
numbering system support is shown

00 02 04 06 08
00 02 04 06 08

Finally, set ¢, (x)=x and &,(x)=x° Then Gu(x)=x and Gy ;(x) = By 1x+
{1 — By,_1)v/x. Choosing r = —0.5 then makes G, increasing for all & and satisfies (15) as well.
Figure 3 shows the resulting limb numbering system which is a set of uniqueness for GDSM but not
for DSM.

Example 2 u c EDSM, which does not have Borel rooted Borel limiting system support

There are elements of EDSM, which do not have Borel rooted Borel limbing system support. One
such example can be constructed by considering a generalization of limb numbering systems called
an axial function forest.

Definition Let {C,}7i _ be a collection of Borel subsets of [0, 1] so thai both {C5,};~ . and
{Can- i }n= _o are partitions of [0, 1]. For each », let 4,: C, — C,,_, be a Borel function, and let

f30-1 = {1 (X)) x € Coyy}
and

g2y = {{M24(x), x}: x € Con}.

Then L = {f3, 1,82, 5= o 18 called a Borel axial function forest.
A result similar to Theorem 20 hoids for Borel axial function forests.

Theorem 25 Let L be a Borel axial function forest which 1s the support of e DSM (or
u € GDSM). Then L is a set of uniqueness for DSM (for GDSM).
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Proaf

Let L = {f3 _,8x iz —o 25 in the above definition. Set 4 = | J§Z _.(f 1 Ugx) and, for n € Z,
Ay = Uz alfa— s Ugn) Let G € Ly(4) and G,(x,¥) = G{x,y) 5, (x,¥). Now L, = {1, 82} >
is a limb numbering system, so by Corollary 11 there exist measurable f/ and g with G,(x,y) =
f(x)+g(y)on A, Extend f and g to all of the domain [0, 1! by defining them tobe O on | ), ., Coi
and {Jy<n Cox, respectively. Because gle, , =0, Gu{x,v) =f(x) +g(y) on all of A. Hence,
Gp € Liarg, c{A). By dominated convergence, [ G,dp — [Gdyu as 7 — —0, 50 Lyaeg (4) is 2
GDSM({A)-determining class and 4 is a set of uniqueness by Lemma 19. O

One instance of a Borel axial function forest can be constructed in the same fashion as a limb
numbering system except for one change: first take two Borel partitions of [0, 1], {C3,}7% ¢, and
{Can_1}n—0, and define Borel &,: C, — C,., (instead of &,: C, — C,_, as in the limb numbering
system case). Changing the index of C, to C_,, for all n >> 0 then gives a Borel axial function forest.
This 1dea can be used to generate an axial function forest which supports a measure in DSM and
does not have a Borel rooting set.

To construct this example, let

O=by<a <b <ar<...

with lim, _, . a, = lim,_ b, = 1. Let Co = (0,qy], C; = (0,51}, C:=(a),a], C3 = (), b, etc.
Further, for each n > 0, let C,, | equal the right half-interval of C, and let C, o equal the left half-
interval of C,. For each n > 0 and i € {0, 1}, define 4, ;: C,, — C,..; to be the unique linear map
with positive slope from C, ; 10 C,,. . For neven and i € {0, 1} set

K, ;= {(hn.i'(x)sx): X € C,”'},
and for # odd and i € {0, 1} set
kﬂ.i = {(X, hn,l’(x)): x € Cﬂ.f}'

For each n, let k, =k, Uk, | and set F =|J,50k,. Define a probability measure, u, on F by
spreading uniformly on ks, a mass of @, . | — b, and spreading uniformiy on ky,,_ , amass of 4, - a,,.
Clearly u € DSM. Figure 4 shows the set F given by sequences

In—1

an =3 o
k=1

with oy =37%, and ey =3  for k> 1. In Fig. 4a the diagona!l y = x is shown as well as the
boxes outlining the sets Cy,_; x Cy, and Co_ g % Coy o

Because the measure y is supported on a Borel axial function forest, Thecrem 25 implies that
¢ € EDSM,. We show that u does not have a Borel rooting set by establishing two facts:

(i) ¥ 4 C k,, ; with p(4) = 0 then [4] = 0.
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Figure 4. Exampie of a Borel axial function forest which does not have a Borel rooting set and is a set of
uniqueness for DSM. (a) shows the axial function forest as well as the diagonal and boxes outlining {he sets
Capi1 X Cy,. In (b) only the axial function forest is shown

(ii) If A C k, ; is measurable and a partial rooting set for F (elements of 4 have distinct orbits)
then p(A) = 0.

Now any parual rooting set A, which is Borel, can be partitioned into 4, ; = 4 Nk, ;. Fact (ii) then
implies that p(4, ;) = 0, while fact (i) gives u([A|r) = u(U,. Ai4../]F) = 0. So 4 cannot be a rooting
set for F.

To prove facts (i) and (1i), introduce the following functions: for each » > 1, i, j € {0,1}, let
G,, iy Kai— k,, 1,; be the unique linear map so that if w = G, ; ;(2} then z, w is an axial path. Set

= {G,,‘,”, o J,|n > 1,i,j € {0,1}}. Now G, ; ; and Gl ;.1 send sets of measure zero to sets of
measure zero. To prove fact (1), we can write [4]p = UA;, where 4, = H, o Hy 0 ... H,(A) for some
collection of H;s in G.

Fact (ii) is a little more subtle. Start by defining for each i = {i,}7., € {0, 1},

B = Gnu+l ir.ig o Gﬂo-r L g e...© Gﬂo-.'m- [ S (kno—.- nl. i',,,)'

A simple induction argument on m shows that U,e{g ”m i = Ky i, Also, Gyl ;15 single-valued for
all n, i and j, so for each z € k, ;, there is a unique i € {0 1} wnth 2 € B;. Hence, the B;'s are a
partition of K, ;.
Next, for each i, j € {0, 1}™ with j, = i, set
-1 - -
Aij = Gnu+1 Fard oGno-!-Z.j;.js o --»OGnn—m,f i G S TR I T °G,! 1. ;u(AﬁB)

ny+

Now u{4; ;) = ,u(A M B;) because the maps G, ; ; are linear and each stretch by a Gna-*—k iy 18
undone by a G,10T k. je i, Also, the 4; ;s are disjoint. To see disjointness. suppose z € A4; ;N Ay -
Then 4; ; C By and Ay C By so j =1 Now, there exists a v € AN B; and w &€ 4N By such that
ZE€ VN [w];. But A4 is a partial rooting setsov=wandi=m
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To prove fact (ii), write

27 Ay = "l ) € gl g)
i

for all m > 1, so u(4) = 0. Thus, 4 cannot be a rooting set for F.
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