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A class of a-stable, 0 < a <2, processes is obtained as a sum of ‘up-and-down’ pulses determined by an
appropriate Potsson random measure. Processes are H-self-affine (also frequentiy called ‘self-similar’) with
H < 1fa and have stationary increments. Their two-dimensional dependence structure resembles that of the
fractional Brownian metion (for K < 1/2), but their sample paths are highly irregular (nowhere bounded with
probability 1). Generalizations using different shapes of pulses are also discussed.

Keywords: measures of dependence; path behaviour; Poisson random measure; self-affinity; self-similarity:
stable processes; stationarity of increments

1. Introduction

This paper presents a physically motivated construction that vields a class of self-affine stable
processes (not necessarily symmetric) with stationary increments. A process {X(i),1 > 0} is
obtained as a sum of an infinite number of pulses whose height varies by jumps, that is, discon-
tinuities, to be called rises or falfs. Consider the initial jump of a given pulse. Its time of occurrence and
its height are governed by the Poisson random measure that is classically used to obtain Lévy stable
motions (see, for exampie, Itd 1969). But in our construction a puise does not reduce to this initial
jump. In the case of the simplest ‘up-and-down’ pulses every ‘rise’ (or ‘fall’} of a pulse is to be followed
by another ‘fail’ (‘rise’) of the identical absolute size, a ‘cancelling echo’, which occurs after a
random duration of time. General pulses tay involve more than twe jumps, but the ups and downs
must always cancel cut. This more complicated random scenario causes increments of the process
{X(z),1 > 0} to be dependent, while the increments of the Lévy stable motion are independent.

However, the increments remain _statiomary, that s, {X(r+5}— X(b},1 >0} <
{X(1) - X(0),t > 0} for all > 0, where ‘2’ denotes equality of finite-dimensional distributions.
In addition, the process is self-affine (it is also frequently called ‘self-similar’), that is, there exists
H > 0, such that {X{at),7 > 0} 3 {a”X(1).1 > 0} foralla > 0. Itis known (see K&no and Maejima
1991; or Samorodnitsky and Taqqu 1994) that for a-stable processes, with the characteristic
exponent 0 < a < 2, the self-affinity constant H must satisfy 0 < H < max{l,1/a}. In our case
H < 1/a and its specific value will depend on the distribution of the puise width. Lévy stabie
motions have a single scaling exponent H = 1/a and the reason for introducing our {X(z),: > 0}
was the desire to provide a physical construction of processes for which & # 1/a.
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The one-dimensional distributions of {X{(1),r > 0} are symmetric a-stable (SaS) and the joint
multidimensional distributions are stable, but need not be symmetric. In fact, the symmetric
{X(5),1 > 0} falls in the category of Chentsov-type processes obtained by Takenaka (1991) by
means of integral geometry and extensions thereof considered by Mori and Sato (1994). While
Takenaka’s representation is valid only in the symmetric case, ours works both in the symmetric and
non-symmetric cases. The dependence structure of Chentsov-type processes, as shown by Sato
(1991; 1992), is determined by their two-dimensional distributions. So is the dependence structure of
our process {X(#),t > 0}, even in the non-symmetric case.

We also examine the behaviour of the normalized codifference and the normalized covariation of
non-overiapping increments of {X'(¢},¢ > 0}. Both the codifference and the covariation extend the
notion of covariance to the non-Gaussian case. For our process {X{r},¢ = 0}, the normalized
codifference and covariation, as well as another measure of dependence introduced here, are ali
equal to the correlation of the increments of fractional Brownian motion — a self-affine Gaussian
process, If the classical terminology of the second-order processes were to be used we would say that
the one-step increments of the constructed process exhibit negative global dependence. (For the
analogous construction of fractional Brownian motion see Cioczek-Georges and Mandeibrot
(1994a; 1994b}.)

We also point out that the path behaviour of the pulse process is very irregular, contrary to
previous beliefs about the process introduced by Takenaka (1991), Sample paths of {X (7)1 > 0} are
nowhere bounded with probability 1.

Finally we consider possible generalizations. One is in the same spirit as Takenaka's
generalization of his Chentsov-type processes, that is, the time parameter becomes multi-
dimensional and rectangular pulses change to muludimensional cylinders. In another
generalization time is kept one-dimensional, but the pulse shape becomes more complicated: it
consists of several falls or rises separated by random durations of time. For such processes
self-affinity and stationarity of increments still hold; however, the dependence structure is much
more complex.

The idea of adding up pulses to construct self-affine stable processes has aiready been investigated
by Lovejoy and Mandelbrot (1985) (see also Mandelbrot 1995a; 1895b). They used two-dimensional
versions of a pulse process to model rain areas and rain rate. In their construction, however, the
pulses’ widths are functions of the pulses’ heights, yielding a process which is in the domain of
attraction of Lévy stable motion. Processes with independent pulse widths and heights were
considered for the first time in Mandelbrot {1984) and this memorandum inspired the present
paper and its generalization in Cioczek-Georges and Mandelbrot (1995). For a general introduction
to stable processes see the recent monograph of Samorodnitsky and Tagqu (1994).

We now turn 1o the case of up and down pulses. The pulse address space is defined as
E =Ry xR xR,, where Ry = R\{0} and R, = (0,c0). Let & = & be the Borel o-field on E.
Consider a Poisson random measure ¥ on (£, &) with mean » given by

AT W dadr dw if >0,

n(d), dr,dw) = 1.1
( V) {c”|A|-“"w-“-*d,\drdw if A <0, 4D

‘ 1

forreR, weR, ,andsome <o <2,0<8<1,,"20, ¢ +¢" >0
Each pulse is represented in E by a point with coordinates A, = and w, corresponding respectively
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to the vertical ampiitude (height), iime of birth and width (duration) of a pulse. Hence, the random
measure N determines the number of pulses of given heighis, widths and starting times.

The process X{¢} at tumes ¢ > 0 1s defined as the surmn of the heights of ail the puises aiive at time ¢
minus the sumn of the heights of all the pulses alive at time 0. Thus, to get the value of X'(z), we have
to add the heights of all pulses that started between 0 and r and died after time ¢, and subtract the
sum of the heights of the pulses that started before 0 and died between 0 and ¢. Of course, both sums
could be negative because we assume that both positive and negative pulses {A > 0 or A < 0) can
occur. Note that the heights of pulses which started before 0 and died after 7 cancel out and thus
need not be included in our summation. It is also clear that we can ignore the puises that start and
end between 0 and 1.

In fact, X(z}, r > 0 is an integral with respect to number of pulses. Its formai definition 1s as
follows:

| Lu J; EC Mw > t —7]N(dA, dr, dw)

] o
- J J M[—7 < w < 1 — 7]N(dA, d7, dw) fo<ac<l,
By J-oc O

L
lim U J j )\I[w > 1 — 7N(dX, dr,dw)
—0 | Ji—ear Jo Jo

X1 =4 (1.2)

[ o
- r J M[—7 < w < 1~ 7]N(d), dr,dw)} ifl1<o<?2.
Ji=ee) J—ac JO

For consistency, we set A(0} = 0.

We must show that the above integrals converge. It turns out that, in the case 1 <a < 2.
the integrals over R, converge only conditionally in the way specified by the above iimit. Moreover.
each integral alome is divergent, even conditionally. Had we considered them separately we
would need to compensate that divergence around zero by subtracting some normalizing constants
{for example, in the case 1 < a < 2, it would be just the expected value of the respective integral
over (—¢,¢)°). However, in our case there is no need for such a normalization since the two
integrals f_ .y [5 o°(.. Jand Ji_, I Jo~(...) have the same distribution and the normalization
constants cancel.

In subsequent sections we show that the above process {X (1), ¢ > 0} is well defined, is a-stable,
has stationary increments and is seif-affine with the exponent H = (1 — #)/a. We also analyse
dependence structures and path properties, and consider more general puises.

2. Existence

Most of the properties of {X(),7 > 0} as weil as its existence follow from the theory of stable
integrals [ f{x)M(dx), where f is a non-random function and M is an a-stabie random measure.
Let (€2, &, P) be the underlying probability space and denote by L%(€) the set of all real random
variables defined on that space. Recall (see Samorodnitsky and Tagqu 1994) that if (£, §.m) is a ©-
finite measure space, & = {4 € § : m(A} < oo}, and 3: E — [—1, 1] is 2 measurable function, then
an independently scattered c-additive set function M : §; — L°(Q) is calied an a-stable, 0 < a < 2.
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random measure on (E,&) with control measure m and skewness intensity 5, if for each
A € &9, M{A) is an o-stable random variable with scale parameter {m{4)}!/®, shift parameter 0
and skewness f, 8(x)m(dx)/m(A). Using standard procedures it is possibie to construct stable
stochastic integrals (obtained as limits in probability of integrals of simple functions) with respect to
the measure M. A function f is integrable if it satisfies [¢|f(x)|*m(dx} < oo for 0 < @ < 2, and
additionally, [p|f(x)(in|f(x))B(x)lm(dx) <cc for a=1. The resulting stable integral
Jef(x)M(dx) is a stable random variable with characteristic function

E[exp{i Lf(xw(dx)}] -

exp{ = [ 7 (1 - 00ty an S Ymien) . e,
£ 2 2 (2.1)
exp - [, (o (1 + 2 menly () iy (3) mian |, ifa =1

The following lemma relates the integrais with respect to a Poisson random measure to those with
respect to a stable measure. Its statement involves the constant

(2a"'T'(1 - a) cos(ra/2))~/® fo<acl,
Coa=3 (=207 Ya- 1) 'F2—-a)cos(ra/2)) e ifl<ax<?, (2.2)
1/m foa=1

Lemma 2.1 (cf. Theorem 3.12.2 of Samorodnitsky and Taqqu 1994) Let M be an o-stable,
0 < a < 2, random measure on (£, &) with control measure m and skewness intensity 3. Assume
mis c-finiteand £ = UZ, E, E e &, mE)<ccand ENE =0,i#j,i,j=1,2,...Let Nbea
Poisson random measure on (Rg x E, #{R,) x &) with intensity measure » given by

{1+ B(u) }x™" ' dam(du) fA>0 uckE,

{1 -8} X " "dam(dw) if A< 0, uckE.

Finally, iet / be an integrable function. If 0 < a < 1, then

[ rwmen L, LRO | veamar

n(d), du) = EN(dA, du) = {

if 1 <a<2,then

o

Lf(u} (du) L ¢, hmZ(J sz A ()N(dA, du) — EL

and if a = 1, then

c L A (@) N{dA, du)) ;

J Slu}M{du)
E
d OC

£ ¢, lim Z(J J M()N(d), du) — 2Infmax(1, 1)) L f(u)ﬁ(u)m(du))

i

—2b/n Lf(u)ﬁ(u)m(du),
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where b=lInm+ [ (sint — [t < 1))r2ds. The expressions in the right-hand sides of the above
formulas converge a.s.

We are now able to infer the existence of the process.

Theorem 2.1. The process {X{1),: > 0}, given by (1.2), is well defined and its finite-dimensional
distributions equal those of {C; Y {#),t > 0}, where

Y(1): = M(Sg,) ~ M(Sg1}, 120 (2.3)
Here M is an o-stable random measure on (R xR, ,#{R xR,)) with constant skewness
B = (c' = "}/(¢ + ¢") and control measure m given by

m(dr, dw) = #w_g_ld'r dw (24)

for r € R, w >0, and
Sep={mw:0<r<t,t—7<w)
Sor={(FWi—00<T<0,~-T< W<t~}

Hence, the finite-dimensional distributions of Y are o-stable. The one-dimensional distributions
are symmetric with scale parameter equal to [(¢’ + ¢"){8(1 — 8)}'#'~%)'/* Moreover, the processes
are self-affine with exponent H = (1 — #)/o and have stationary increments, under the additionat
assumption f=0fora=1.

Remark

S5.; involves the pulses whose time of birth isin (0, ¢) and whose death occurs after r and Sy, involves
the pulses which start before time 0 and die in (0, ¢).

Proof

Consider first Y{1) = M(Sy,) — M(S5,) = [pxz_{f1{7,w) — fo(7, w))M{d7,dw), where £} and /, are
the indicator functions of Sy, and Sg,, respectively. Since

L_ m(dr,dw) = J; f:{(c’ + /2w ldrdw = .Ex Jr—r((c’ + /2w dr dw

0 T

= J m{d7,dw) = (¢’ + ") {2801 - )} 1" ¢ < o0, {2.5)
0

{¥(1),7 > 0} is a well-defined a-stabie process, not necessarily symmetric. For fixed ¢ > 0, however,
M(S;,) and M(Sg,) are independent and identically distributed random variables and therefore the
one-dimensional distribution of ¥ (z) is symmetric with scale parameter (¢’ + ¢")(8(1 — 6))~'¢'-%)/e.
By Lemma 2.1, the process {X(z),7 > 0} equals in distribution {C.'¥(s),t > 0}. Equality (2.5)
explains why the compensating constants for X(r),1 > 0, are zero for a > [. Moreover, although m
is only o-finite (not finite) the fact that, for every ¢, both functions | and f; are supported on m-finite
sets (which again follows from the above formula) proves a.s. absolute convergence of each
Jiceer Je Mi(m, w)N(dA, d7,dw), i = 1,2, separately, fora 2 1, ¢ > 0.
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Using (2.1), the joint characteristic function of (¥, ¥,,,...,Y,), t,,6,...,4, 20, n2> 1, for
a # 1, can be written as follows:

E{GXp(iierUj))} = e"p[ J 29 I[SOr Sﬂf]

+}_

x {1 ~iBegn (Z 6,113,) - Iisaf,-l)) mnﬁg}«a +)/ 2w dr dw] -
=1

Note that, for g, { > 0,

Soar={(mwr0<r<atat—r<wy={{r,wh:0< 7/a< t,t—7/a < w/a}
={{ar,aw'): 0 < ¥ < 1,1 — 7 < W} =aS],

and, similarly, Sg,, = aSg,. Hence, using the change of variables 7/: = 7/a, w': = w/a, we get for
asthrls-"ﬂtn 2 01 n 2 l

R et

{Y(af),t > 0} £ (" Py (1),1 > O},

proving that {¥{(1),z > 0} is (1 — 8)/c-self-affine. The proof for a = 1 is analogous.
The stationarity of increments can be proved in a similar fashion. Fix b > 0 and ¢),45,...,1, = 0
n > 1. Again, consider only a # 1. Then,

E{exp (], ; 9}{ Y(IJ + b) - Y(b) }) } = €Rp (__ ji{x]lL —

[4]
Z QJ(I[SE:F,:J-H:‘] - I[S;.:ﬁbl) )
i=1 i

that is,

1

x {1 - ifisg (Z O1{Sh o) - f[s;,,,-+bl)) tan%?-} (¢ + )2 drdw,

J=1
where

Si.={(r.wrb<7<c,c—T < wl,
- (2.6)
Spe={{T,wh —cc<T<hb-T<Ww< -1}

The simple translation, T: = 7 — b, shows that the above characteristic function equals that of
(Y(1)), Y(12),. .., Y(¢,)), that is, that { ¥(¢),¢ = 0} has stationary increments. O

3. Symmetrié case and an extension to a self-affine random field with
stationary increments

When 3 = 0, not only is Y (1) symmetric, but all its finite-dimensional distributions are symmetric as
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weli. In this case {¥{z),7 > 0} (and hence {X(t),7 > 0}) is equivalent to a process introduced by
Takenaka (1991). To see this, we need to make the following change of variables: z: = 7 + w/2,
r: = w/2. Instead of defining a new a-stable measure as the corresponding map of the measure M in
the definition of {¥{z},t > 0}, it is more useful for our purposes to use the following change-of-
variables lemma for Poisson random measures and obtain yet another version of the process
{X(1),12 0}

Lemma 3.1 (Resnick 1987} Let ¢ £ — E be a measurable mapping. If N is a Poisson random
measure on (£, &) with intensity #, then N', defined by

N'(A): = N{¢™'(4))
for A € & with n(¢™'(4)) < oo, is a Poisson random measure on (£, &) with intensity n{¢~'(+)). If
we have a representation N =36y, thenalso N =N o o' =5 8sx)- In particular,

|, getN@n = | g0,
@' (A) A

whenever one of the sides is defined.
Letyr Ry x B xR, — Ry x R x R, be defined as
WA, row) = (A, 7+ w/2,w/2). (3.1)

If N is a Poisson random measure with intensity given by (1.1), then N': = N o v~ is a Poisson
measure with intensity

270 A d A do dr if A >0,

r(d), dz,dr) =
( ) {2*9c"|,\r“—‘r‘9‘1d,\dz dr  ifA<0,

for z € Rand r > 0. The process {X'(t).t > 0}, defined as the difference of integrais with respect o
N'in the same way as {X(1),7 > 0} in (1.2), but with w and = replaced by 2r and z — r (cf. aiso (3.5)
beiow), is of course equivalent to {¥(¢),t > 0}. On the other hand, by Lemma 2.1,

{X'(1).1 > 0} £ const. {M'(S5%) - M'(S53),1 2 0}, (3.2)
where M’ is an o-stable measure on (Rx R, #(R xR.)) with constant skewness

B={c =" /(' + ") and control measure m', m'(dz,dr) = 279 (¢ + ¢")r % 'dzdr for z € R.
r >0, and

Soe={lzryr>t—z0<z—r<t} ={(z,r} lz— 1] < 1]z > r},
Sor={{z.r) —z<r<i—zz=r<0}={{z, )z~ <rlz >r}

When 8 =0, that is ¢’ = ¢, M' is symmetric and hence M'(-) < —M'(- ). Moreover, M'(S}" ).
J=12,...,n, n> 1 are jointly independent from M’(S{)]I)._ j=1L2,....n, n>1, since
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Soh. N Sgy, = @ for all choices of 1, .. ., £,. Hence,
’ (M/(S53,) — MU(SE3, ), M'(S55) = MUSER), - MU(SE,) = MI(SS,)
= (M'(So%,), M'(S57,), -, M'(Sg, ) — (M(S0,,), M'(S57,), - - M (o, )
S (ST M (ST, IS ) + (M (86,0, MU(ST ), o MU(SG,))
= (M'(Son,) + M'(Sg), -, M'(Sg, ) + M(Sq7,)))

= (M'(Sg}, USon)s---» M'(S5h, U S6z,))-
Since, for ¢ > 0,
Son U So = {(z,r): |z — 1] <r}A{(z,r): |2] < 1},

where A denotes symmetric difference, we see, that in the symmetric case 3 =0, the process
{X(1),t > 0} is a version of the process

{M'(Sg, L Sg,) 1 2 0} = {M(SG;) + M'(SG,), 1 = 0} (3.3)
introduced by Takenaka. Relations (3.2) and (3.3) differ by the sign in their right-hand sides. The
choice of sign plays no role in the symmetric case. In the non-symmetric case, however, it is essential
that the sign be minus (as in (3.2)), because otherwise the process would not have stationary
increments. Thus the pulses not only provide the physical construction of the process but also
indicate what the correct sign ought to be.

There is a generalization of the above process to the situation where the time parameter is
multidimensional. That is, we wili construct a self-affine random field with stationary increments. In
the symmetric case such a random field was constructed by Takenaka. Qur alternative construction,
besides being applicable to a non-symmetric case as well, aliows us to view the resuiting random
fields as superposition of multidimensional puises.

Let M’ denote an o-stable measure on (R? x R, B(R? x R, )) with constant skewness 3 and
control measure m', m'{dz,dr) = r8-4dzdrforz e R%, r > 0. Then

{M'(Sgh) — M'(S6).t € R}, (3.4)
with
Sox = {(z.r): llz - tl| <r.lizl| > r},
Sox = {(.r): lig =t > rlzll < v},
is an a-stable {1 — #Y/a-self-affine random field with stationary increments.

In the analogous definition of Takenaka there is, of course, a plus sign in (3.4) instead of a minus
sign. He interprets Sg; U So; as the set of all (d — 1)-dimensional spheres separating points 0 and t.
Variables z and r denote the centre and the radius of a sphere, respectively. It seems that in order to
obtain a ‘proper’ measure of the separating spheres (that is, one which also works in non-symmetric
cases) one should subtract (not add} the measure of spheres containing zero from the measure of
spheres containing point t.

Now let us return to our orniginal construction. The change of variables 4 can be interpreted in the
following way. If (A, 7,w) is a pulse starting at time 7, with height X and duration w, then

z =7+ w/2 is the centre of the pulse and r = w/2 its radius. These variables are particularly
useful in the R¥ generalization. Note that (3.4) is equivalent in distribution (up to a multiplicative
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constant) to {X’(t},t € R} defined by

( J J Mz -t} < r,|jz}] > r]N’(d,\, dz, dr)
Ry JRY IR,
—J l J Mijlz—t>r 2| < r]N’(dA, dz, dr} fl<a<l,
' By JR? JR,
X(=4{ "7 (3.5)

lim J J J Mz =] < r,ijzl| > r]N’(dA,dz, dr)
=01 H—e el JBY JR.
—J J J Mllz—¢] > ]2l < r]N’(d,\,dz, dr) if1<a<l,

\ {—ee)® JRE JE,

where N’ is a Poisson random measure on R, x R x R, with intensity #'(d),dz.dr) =
(1 3A|™>""d3’(dz,dr) if £ A > 0. This interpretation of X'(z). > 0, as a sum of pulses stili
holds. Now a pulse is a cylinder in R%*1 space. It is described by its height {A), radius (r) and the
centre of its circular base (z). But the only pulses which really count are those whose bases contain
either point 0 or point t (but not both). To get X’(t) one adds the pulses containing t in their base and
subtracts those that contain 0 in their base.

4, Dependence structure

it follows from the definition (2.3) (or (3.2)) of the process { Y (),7 > 0} that its two-dimensional
distributions determine its multidimensional structure, More precisely, given the definition of the
process as a difference of measures (or integrals) of the sets S5, and S, knowledge of all two-
dimensional distributions suffices to specify any multidimensional distribution; this fact does not
depend on the particular choice of m. To verify it, first notice that it is enough to know
muitidimenstonal distributions of non-overlapping increments. On the other hand, these can be
described using intersections of at most two sets of the type S, ., S5 (cf. (2.6)) or their complements,
and they, in turn, are specified by two-dimensional characteristic functions. For the proof in the d-
dimensional symmetric case look at Sato (1991), where it is shown that the finite-dimensional
distributions of (3.4) are determined by (d + 1)-dimensional marginals.

We may conclude that the dependence structure of the {one-dimensional) process {Y(1),7 > 0}
resembies that of Gaussian processes. To develop this point, we need to examine the characteristic
function of two non-overlapping increments and compare their interrelation to the covariance in the
Gaussian case.

We will need the following general form of the characteristic function of an a-stable vector (X, Y):

Efexp{i(&,X +&Y)}] =
(oxp{ - [, 1+ g (1 - fsem 615 + 25 n ) e

+ilgip + fzﬂz)} fazl

4 L2
CKP{— L €151 4 Ea53 ] (1 +i-sgn (€11 + &) infEys + {253|)I“(ds)

+il& +§2P2)} fa=1,
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where the unique finite measure I' (called the spectral measure) is defined on Borel sets of the unit
circle Sy and g, u; € R are the location parameters.

Below we calculate the characteristic function of the vector (¥(s), ¥ (u) — ¥Y(1)), 0 < s < t < u,
which is obviously equal to that of (Y{s+ &} — Y(k), Y{(u+ k) — Y(1 + h)) for any & > 0, because
{Y(2),t > 0} has stationary increments. (We assume 8= 0 when o =1, in order to ensure
stationarity of the increments in this case as well.) In order to obtain the characteristic function
we partition the sets S, Sq, S, Si,, and consider independent variables

M(So5), M(S5), M(SE, N S0, MISTAST,), M(STAST),
whose respective scale parameters satisfy (see (2.5)):
o (M(S5,)) = (¢ + " {28(1 - B)}'s™%,
o (M(S) = (¢ + {2601 -9} - )'"°,
o (M(S3, NS = (¢ + {201 =)} {1 P =P~ (1= )"0 4 (w— 9)'7%),
P (MSTASLN = (¢ + {281 =) H' P =P+ 4 (1~ 90 — (u-5)'7%),
s (M(SSAST)) = (¢ + 2601 =0y -0 - P 4P 41— )70 — (w— )77}
Hence,

E{exp(il§, Y (s) + &{Y (x) - Y()}})}
= E(exp[i{&i M(Sg,\Si) — &M (Sos) + £M(SLL) - LM(SLAST,)

+ (6 - &£IM(S5, N S @
= eXP{ — (' + ") (2601 —9))'1(iEII“[Zs*“8 Pl ) (- s) )

(1 BT [ T e S () NI C Rt) S N

[ 4l (1= 5) 7 (=)' sgn gy an )

ol Ru-0" "t = ) T = (u =)'

(1 —iBRu - = (=) (w5

[fl_a _ ul—ﬁ‘ _ (f _ S)]‘S‘ + (N _5)1-9] sgn&: tan‘n.)_a)
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where

T = (' + ") {26(1 - 8} { (s‘-" - 1%9 T (R Lan gy g 5)1'9))61‘0

+ (Sl_g _ 1 ;6(11-—5 S (t -5)"‘9—% (u-_s)l”e))é(_lm
1-8
2

+ ((u— 't - (= =) (u-—s))]—o)é{o‘n

+ ({u— 7)'-? —l—zg(f"e - = (=) (- 5)31_3)5(0,-1)

- - - - 143 1=
+ (Pt =T (- 5) 20 (T b3-vam + Téf—ﬁfz,\/fﬂ}) }

Now, one would like to describe the dependence structure between two increments using some
analogue of the autocorrelation function. Unfortunately, in the stable non-Gaussian case, there is
no single function which couid play the role of the covariance. Indeed, it is the whole spectral
measure I' which gives the information about the interrelation between two variables. Nevertheless,
there are known measures of dependence such as the covariation and the codifference which
partially replace the covariance when 0 < a < 2.

Given two jointly a-stable variables X and ¥ with spectral measure I', the covariation of X and ¥
equals

X, Y): = J 51557 VT (ds),
3.

N

where a'®: = |al? sgna for a, 8 € R. One of the obvious flaws of the covariation is that it is not
symmetric in its arguments. Another is that it is generally not defined for o < 1.

Recently Kokoszka and Taqqu (1994) introduced the notion of codifference for jointly symmetric
a-stable variables X" and ¥. We extend their definition to the non-symmetric case by considering a
symmetrization of the vector (X, Y), that is, the codifference of X and Y equals

7(X.Y): = Re mE[exp{i(X — ¥)}] - Re In E{exp(iX}} — Re inE{exp{i¥)}
- L I51 — 5,[°T'(ds) + L: I51°T'(ds) + L: I52{°T'(ds).

Note that in the Gaussian case (a = 2), we have
T(X,Y)=2[X,Y]=2[Y.X] =cov(X,Y)
For the increments of process {¥{7),1 > 0} we get
(Y {s). Y(u) - Y(0) = (2° - D[Y(s), Y () - Y(O)] = 2% - 2)[Y () = Y (1), Y ()]
= —(2" = 2)27H{(V2/2, -V2/2) + T(~V2/2,V2/2)}
= (2" =2’ + W2 =)} = = (- )Y
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Before interpreting this resuit, note that in our case the spectral measure I" has exceptionally
simple form. It is clear that the dependence between Y (s) and Y (u) ~ Y (1) is due to the mass I gives
to the points =(v/2/2, —+/2/2). Hence, any function pretending to extend the covariance must make
use of mass of I' concentrated at these potints. Equivalently, one may want to keep in mind the
foliowing unique (up to the equality in distribution) representation of the increments (cf. (4.1)):

(Y(s), Yw) — Y(£)) 2 (U, + V., U, — 1),

where U, U; and V' are independent a-stable variables with V', the random variable which affects
the dependence, having skewness 3 and the ath power of its scale parameter equal to

(C.r + C.'J'){za(] _ 9)}-1{I]_6 _ ul-—a - (r _ 3)1—9 + (l{ _ 3]1_9}.
Then we are able to define a measure of dependence between Y(5) and ¥ (u) — ¥ (¢} as the ceth power
of the scale parameter of the ‘common’ variable V. To get an analogue of the correlation, let us

normalize it by the product of the scale parameters of the increments raised to the power «/2; that is,
let us consider the function

e () M (s Ly

2‘/ 18 (g )19

We put the minus sign to underline the negative dependence of the two incremems Hence,
for 1<a<2, the normalized covariation (that 1is, divided by ([¥{(s), Y()}[¥(x)-
Y(1), Y{uy— Y{1))"/? = SJ"(Y(S))O’“(Y(H) Y(1)))'?) equals exactly r(s,z,u). (One could also
consider o =1 with 2'% = sgna. The covariation is not defined here for a < 1.) Also the
codifference 7{¥(s), ¥(#) — ¥(2)), for o« #), properly normalized, equals r(s,f,u). For
0 < a < 1, on the other hand, it seems here that (s, ¢, u) measures dependence in a more proper
way than the codifference. For o = 1, the codifference becomes zero, although the increments are far
from being independent, and for 0 < o < 1 the codifference is positive (2% — 2 < 0).

We should remark that all preceding normalized measures of dependence equal the correlation of
the respective increments of the fractional Brownian motion with the seif-affine exponent
H' = Haf2= (1 —8)/2 (cf. Mandelbrot and Van Ness 1968). For example, the measure of
dependence r for one-step increments, k steps apart, takes a very well-known form:

r(Lkk+ 1) ={(k+ 1)+ (k- 1) 219} /2.

In the case H' = (1 - 8)/2 < ]5, thatis, H = {1 — 8)/a < 1/«, the dependence of the increments of
fractional Brownian motion is antipersistent and we extend this terminology to the dependence
structure of process { Y (), 7 > 0}. Note that our construction does not allow for H' > { (H > 1/a)
which corresponds to persistent {or posiuve) long-run dependence.

Clearly, it is the special nature of the process { ¥{¢),7 > 0} which allows the above measures of
dependence 1o coincide. For most processes r{s, ¢, #) cannot be even defined. However, whenever the
representation X (z) = [, M{(du) = M(4,),1 € T, holds for some M, then a ‘good’ measure of
dependence between X(zl) and X(z;) (or even X {1}, X(12),..., X(¢,)) should be

r{s, tuy = —

j m(df) = m{4, N A4,)
A, NA, -

{or m(Mi 4, )) properly normalized.
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5. More general processes

Let 0 < a < 2, and let F: R* — R. be a function satisfying the two following relations:

Flex),exy, ... ,6x) = T OF(x), X, .  Xe) (5.1)
forc>0,x),%1,...,x; €R, and fixed # € R; and
F(xl + 1, +t1"'7xk+r) SF(xI|x21"':xk) (5‘2)

for t,x),x2,...,x; € R. _
Let N be a Poisson random measure on (R, x B, (R, x R*)) with intensity

aldX dxy, ..., dx,) = |\ F(x, L x)dadxg L, dog
for A#£ 0, x5,...,x; € K. Put Z(0) = 0 and

k
Z(t): = JRD JR" A;a,}[o < %, < N(dA dxp. ... dx;) (5.3)

for¢>0,whereag, €R,i=1,2.. ..k
The integral in (5.3) is well defined for every ¢ > 0 (possibly only in the sense of conditional
convergence if @ > 1) if

2

k
Za,—f[ﬁ < X; S t]
i=1

for every 1> 0. In this case {Z{¢),/ = 0} is a symmetnc c-siable process, which, up to a
multiplicative constant, has the same finite-dimensionai distnbutions as

F(x},...,x,,}dxl..‘dx,,<oc (54)

k
Z’I=J 00 < x; < OM(dxy,. ... dx.), 5.5
()= | 2 adl0 <x < AM(dx,....dx) (5.5)
where M is a SoS random measure on (R*, B(R)) with control measure m(dx,...,dx,) =
Fix,...,x;)dx, ...dx,. (We could consider Poisson measure ¥ with non-symmetric intensity ».

Then (5.3) may require compensating for Z{1) in order to converge. The measure M and process
{Z(#),t > 0} would be, in general, non-symmetric.}

It is easy to check that, under conditions (5.1), (5.2} and (5.4), {Z'(¢).1 > 0} (hence also
{Z(1},t = 0}) is (k — 1 — §)/-self-affine and has stationary increments.

When &k = I, any function F satisfying (5.1) and (5.2) must be constant and the process
{Z(1),1 > 0} is, in fact, a-stable Lévy motion (with independent increments).

Whenk =2, F(xy,x3) = |x2 — x]]']'eF(O, sgn {x; — x;)} and if at least one of F(0, 1), F(0,-1}is
positive, then (5.4) implies

oc > J J |a|I[0 < X S I} ‘}"021[0 < X3 S f]|a(X2 - x])"l'sf[xg = x,]dx]dxz
R JR

= J J |aJ[0 < 7 < ] + apd[—7 < w < £ = 7]1*w I w > Oldr dw.
R IR

The above inequality hoids only when a; + a; =0 and 0 < 8 < 1. We recognize that in the latter
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case the process {Z (1), 1 > 0} is equivalent (up to a multiplicative constant) to processes obtained in
the previous sections, in particular to {X(¢).1 > 0} given by (1.2). The variables x; and x, have
simple interpretation as the moment of pulse birth (that is, ) and the moment of puise death
{7 + w), respectively, if x, > x;, and vice versa if x; > x,.

The foliowing example shows that there is an F with properties (5.1) and (5.2)inthe case k = 3. It
can be easily extended to & > 3. Let

X3 —

-8, - o 1
F(X],X2.,X3) = (X2—xl) b l(x;-x:) 8 ]f €] < X2 <——]I[x] < X K X3]._. (56)

X2 — X €

where 1/e; >¢€ > 0. Then, if 4;#0, i=1,2,3, it is necessary (and sufficient, too) that
0<t +6, <l and a +a,+ ay =0 for (54) to hold. We may still interpret Z(1),7 > 0, as the
difference in the total magnitude of pulses existing at time  and at time 0, but now the shape of a
pulse is different. 1t consists of three, or in general &, jumps with the last one equal to the negative of
the sum of all previous jumps {g, = —{a@; + - -- + @x_}). The ith jump occurs at time x; and at this
time the height of the pulse changes by Ag;. The resulting height (i.e. A ¥}, @;) is maintained for a
period of time WS X — X > 0. Note that we canpnot take the variables w; independent and
distributed as w; ~ldw; with §; > 0, since the convolution of every two such measures would be
infinite and so would be the width of a puise. (This explains the presence of the indicator
Iy < (x3 — x3)/{x2 — x1) < 1/e;] in the above definition of F.) On the other hand, keeping the
x; in increasing order is just a useful simplification. It should be clear from (5.3), or from (5.5), that
integrals over regions with different orderings of x; give independent contributions to Z({1). In the
geometric interpretation, these integrals correspond to adding pulses of various shapes with k jumps
whose size is proportional to the same k& numbers 4;, but the juraps occur in different order. Because
such sums of pulses are independent and have a similar structure, we shall focus on one particular
order of a; or x;.

Let us also notice that the g, (or rather their ratios} determine the dependence structure of
multidimensional distributions of {Z(1),f > 0}, that is, they determine points on the muiti-
dimensional sphere where the spectral measure lives. Both F and g, determine the mass at these
points. Since k jumps may affect at most k different disjoint increments of Z{z) and the a; are fixed,
knowledge of all k-dimensional disiributions of {Z{z),r > 0} suffices to describe this process (refer
to the discussion at the beginning of Section 4 for k& = 2). Moreover, in the case k > 3, when
S | a; = 0, two kinds of dependence between two non-overlapping increments appear — positive,
corresponding to pulses either increasing or decreasing in both time intervals, and negative when the
opposite is true. For k = 2 (¢, = —a,) we have only negative dependence (see Section 4).

No matter how big k is, however, the dependence structure of multidimensional distributions of
{Z(2),1 > 0} is simple in the sense that the corresponding spectral measures are discrete. If we
randomize the a; we may obtain non-discrete spectral measures. Then the integral (5.5) will no
longer be a linear combination of random measure of some sets. However, the interpretation of Z(1)
as a sum of puises becomes less clear since the shape of the pulses is not fixed, but is a function itself.
As an example, for k = 3, consider

2= [ [ Msmatro<n < 0-10<x <)

+cosP(I[0 < xy < 1] = J{0 < x5 < ) }N(dA. dx;.dx;, dx;,do),



Stable fracial sums of pulses: the cylindrical case 215

where the Poisson measure N on (Ry x R’ x {0, 21), B(Rg x R? x [0, 2n)) has intensity
n(d), dx;, dxp, dx3, dg} = I\ F(x;, x5, X3)dA dx; dx; dx; dé

with F as in (5.6). Each pulse consists of jumps of height Asin¢g, Acos¢ and —A{sin¢ -+ cos ¢).
Summing pulses, also over ¢, indeed, gives a continuous component of spectral measures for two-
dimensional distributions.

6. Remark on sample path behaviour

The sample path behaviour of the original process (1.2), or equivalently its version (2.3}, is very
irregular, We will show that sampie paths are nowhere bounded, which contradicts the statement
made by K6no and Maejima {1991) about the Takenaka process.

We will use the following facts (see Samorodnitsky and Tagqu 1994, Corollary 9.5.5 and Theorem
10.2.3). A stable process is sample bounded with positive probability if and only if it is sample
bounded with probability 1. Moreover, if an a-stable process with an integral representation
{Jef{1,0)M(du).t € T} is sample bounded then, necessarily,

sup J sup | f (¢, u)|°m{du) < oo,
Ter e et

where T is any countable subset of T.
Consider process {¥(1),1 > 0} given by (2.3). We will prove that

J J sup 7[Sg Jw™* 'drdw = o (6.1}

RJR. re7"

for T* = QN [, where Q is the set of rational numbers and I is a finite interval in (0, 0c). Hence.

{Y(1),7 > 0} is unbounded on every finite interval, that is, nowhere bounded, with probability 1.
To establish (6.1) consider the indicator /[Sy,j = I{0 < 7 < 1,1 — 7 < w] as a function of 7 with

fixed 7 and w. Then /{S;,] = 1 if and only if 7 < ¢ < w + 7. Fix an interval I and note that for any

(r,w),7 € I and w > 0, there exists 7, € T* = QNI such that 7 < t, < 7+ w. Thus,

J J sup I[Sg,|w ¥ drdw > J sup IS¢ |w % drdw
RJE. T IxR_ reT" )

= J w il drdw = .
I«R,

_ Simnilar reasoning proves that also the process {Z'(¢), 1 > 0} defined by (5.5) with k = 3 and F
given by (5.6) is nowhere bounded with probability 1. In this case the statement follows, for
example, from the fact that

Lp su}p la 10 < x) < ¢ < X9 < x3])*F{x7, X7, x3)dx; dx; dx;
er

—8,-1 —8y~ w 1.
:|a]i“J J J supff0 < 7 <1< 74w, <1‘+w2]wle' 'wz‘gr2 'I{el<—2<—]d‘rdwl dw;
R JR. JR. T W &

=] B w i
> |a]|aj J J w!l'?| 1“_.23_ 11|:El <__3<_]de“}! dwzzoc-.
IJR, JR, L L}
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