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1. Introduction

The backward and forward (or Fokker±Planck) di�erential equations are some of the basic

tools used in the study of di�usion processes. For instance, it is well known that the

densities of the transition probabilities for a di�usion satisfy these second-order partial

di�erential equations under quite general conditions.

Major contributions to the (semigroup) theory of di�usions, including the backward and

forward equations, were made by Kolmogorov, Feller and Dynkin, but examples of the

di�usion di�erential equations appear earlier, notably in the work of Bachelier (1906; 1912)

in connection with random walks and Brownian motion. By far the earliest occurrence of

such an equation is, however, in the work of Laplace (1810±11; 1812), and it is this

equation, derived by Laplace by approximating with a sequence of urn models ®rst

proposed by Daniel Bernoulli (1770), which is the topic of the present paper.

The argument given by Laplace (or rather, the lack of same) has been strongly criticized

by several authors, Todhunter (1865) in particular; see Section 3 below. We shall argue,

however, that despite the lack of detail and rigour in Laplace's approach, his formidable

intuition has led him to a di�erential equation which is entirely justi®able, and is in fact the

Fokker±Planck equation for a one-dimensional Ornstein±Uhlenbeck process, which

appears as the weak limit of the Bernoulli±Laplace urn models.

It is surprising that this does not seem to have been noticed before. Bachelier (1906) is

possibly the ®rst to write down the transition density of an Ornstein±Uhlenbeck process,

and he does refer back to Laplace, while Markov (1915) establishes a connection between

the urn models and the Ornstein±Uhlenbeck process through the convergence of moments
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± but both papers are too early to be able to place the results in the context of the theory of

stochastic processes. (A fairly recent discussion of Markov's results and of the contem-

porary paper by Steklov (1915) is Ondar (1970), a paper that we have not seen.) Certainly,

in the surveys by Molina (1930) and Sheynin (1976±7) of Laplace's work there is no

mention of a connection between urn schemes and di�usions other than that found by

Markov.

In Section 2 we brie¯y survey the history of and set down some standard facts about the

Ornstein±Uhlenbeck process. Section 3 is devoted to the Bernoulli±Laplace urn model and

Laplace's controversial di�erential equation, while in Section 4 we discuss the solutions to

the di�erential equation that were found by Laplace and investigated more thoroughly by

Steklov. The solutions are given as expansions in terms of Hermite polynomials, and we

show how the solutions given in this form agree with the forms readily available from

Markov process theory.

For overviews of Laplace's work in probability theory, the reader is referred to the

papers by Molina (1930) and Sheynin (1976±7) already mentioned. Also, Hald (1990)

treats various aspects of Laplace's work and in a forthcoming book on the history of

mathematical statistics will present an extensive discussion of the basic contributions to

probability and statistics made by Laplace.

2. The Ornstein±Uhlenbeck process

In their famous paper, Ornstein and Uhlenbeck (1930) studied a free particle in Brownian

motion, moving in a rare®ed gas and a�ected by a friction force proportional to the

pressure. In order to understand the displacement process x�t� of the particle, they

investigated the velocity process u�t� � x
0

�t�, which is now known as the (one-dimensional)

Ornstein±Uhlenbeck process.

The work of Ornstein and Uhlenbeck continues Einstein's fundamental work on

Brownian motion itself (see Einstein 1956), but also owes much to the work of Smolu-

chowski (1915), who, using reasoning from molecular kinetics, derived the Fokker±Planck

equation for the Ornstein±Uhlenbeck process and also determined the transition density

(see (2) below).

The paper by Doob (1942) contains a precise mathematical de®nition of u�t� as a

continuous time-homogeneous Markov process, characterized (see Doob 1942, Theorem

1.1) as being, apart from white noise, the only stationary Gaussian process in continuous

time which is also a Markov process. (Note that Doob's terminology is `temporally

homogeneous'. We use `time-homogeneous' to describe a Markov process with transitions

from time s to time s� t that depend on t only, and `stationary' to describe a process that is

strictly stationary, i.e. with distributional properties that remain unchanged under trans-

lations of time.)

According to Doob, the process u � �u�t��
ÿ1< t<1

is a stationary Gaussian process with

continuous sample paths, de®ned by the constant expectation and variance functions

E u�t� � m; E�u�t� ÿm�
2
� �

2

0 �t 2 R�
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and the covariance function

E��u�t� ÿm��u�s� ÿm�� � �
2

0 e
ÿ�jtÿ sj

�s; t 2 R�:

Herem 2 R is arbitrary, while �
2

0 > 0, and, as is essential for obtaining a stationary process,

� > 0.

In the case where m � 0, it follows that the transition probabilities for u are given as

follows (Doob 1942, p. 352): for any s and any t > 0, the conditional distribution of u�s� t�

given u�s� � a is Gaussian with mean a e
ÿ�t

and variance �
2

0�1ÿ e
ÿ2�t

�.

Having de®ned u, Doob proceeds to de®ne the displacement process x � �x�t��t2R

introduced by Ornstein and Uhlenbeck (1930) as

x�t� ÿ x�0� �

�

t

0

u�s� ds

and shows, in particular, that the variance of x�t� ÿ x�0� is given by the expression

originally found by Ornstein and Uhlenbeck.

From now on the time axis will be R0 � �0;1� rather than R, and we write u � �u�t��t� 0.

The Ornstein±Uhlenbeck process (with m � 0) may then be described (Doob 1942, p. 358)

as the solution to the stochastic di�erential equation

du�t� � ÿ�u�t� dt� � dB�t�; �1�

where B � �B�t��t� 0 is a standard one-dimensional Brownian motion and � �
������

2�
p

�0. The

solution to (1) is completely speci®ed once its initial value u�0� is given, the only

requirement being that u�0� should be stochastically independent of B. We may then

write for any s � 0, t > 0, a; v 2 R,

P�u�s� t� � v j u�s� � a� �

�

v

ÿ1

pt�a; �� d�;

with pt�a; �� the Gaussian transition density

pt�a; �� �
1

�����������������������������

2p�2
1ÿ eÿ2�t

2�

s exp ÿ

1

2�2
1ÿ e

ÿ2�t

2�

��ÿ a e
ÿ�t

�
2

0

B

B

B

@

1

C

C

C

A

: �2�

If, in particular, u�0� is Gaussian with mean 0 and variance �
2
=2� � �

2

0, u is stationary.

It was noted by HostinskyÂ (1932, p. 52), that this type of expression goes back at least to

Smoluchowski (1915). The expression appears, however, also in the two contemporary

papers byMarkov (1915, p. 103) and Steklov (1915, p. 1536) and even earlier in the work of

Bachelier (1906, p. 273).

From (1) it follows in particular that the in®nitesimal generator A for the transition

semigroup of the Ornstein±Uhlenbeck process u has the form

Af ��� � ÿ� f
0

��� �
1

2
�
2
f
00

��� �3�

for f twice continuously di�erentiable with f and Af bounded. From the general theory of
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Markov processes (see, for example, Dynkin 1965, or Feller 1971) it then also follows

that the transition densities satisfy the backward Feller±Kolmogorov di�erential equa-

tions, and, as will be much more important to us, the forward or Fokker±Planck

equations

@

@t
pt�a; �� � ÿ

@

@�

�ÿ��pt�a; ��� �
1

2
�
2 @

2

@�
2
pt�a; ��

� �pt�a; �� � ��

@

@�

pt�a; �� �
1

2
�
2 @

2

@�
2
pt�a; ��: �4�

This expression holds for all a 2 R on the domain �t; �� 2�0;1��R. Of course, as t! 0,

pt�a; �� has a singularity, but for g; h : R! R bounded and continuous it is true that

lim
t! 0

�

1

ÿ1

pt�a; ��g��� d� � g�a� �a 2 R� �5�

lim
t! 0

�

1

ÿ1

pt�a; ��h�a� da � h��� �� 2 R�: �6�

3. The Bernoulli±Laplace urn model

The main topic of this paper is Laplace's thorough discussion of the urn model introduced

by Daniel Bernoulli (1770). This part of Laplace's work appears in Book II of his TheÂorie

Analytique des ProbabiliteÂs (Laplace 1812) and also in the earlier memoir (Laplace 1810±

11).

Laplace considers the following special case of the Bernoulli model: two urns, A and B,

each contain n balls, with n of the 2n balls white and n black. A ball is drawn at random

from each urn and then the ball that came from A is placed in urn B, and the ball that came

from B is placed in urn A. The problem, as originally posed by Bernoulli, is then to ®nd the

distribution of the number of white balls in urn A after r draws.

Denoting by zx; r the probability that there are precisely x white balls in A after r draws,

Laplace derives the partial second-order di�erence equation

zx; r�1 �

x� 1

n

� �

2

zx�1; r � 2
x

n
1ÿ

x

n

� �

zx; r � 1ÿ
xÿ 1

n

� �

2

zxÿ1; r: �7�

It is characteristic (see the discussion in Hald 1990, Section 23.3) that Laplace, in order to

solve a concrete problem, ®rst ®nds a di�erence equation for the function z of interest. He

would then normally proceed to determine the generating function for z, which in the case

of (7) is too di�cult, so instead he uses a di�erent approach: he de®nes a new space variable

� and a new time variable r
0

by

x � 1

2
�n� �

���

n
p

�; r � nr
0

; �8�
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and claims that U � U��; r
0

� :� zx; r satis®es the second-order partial di�erential

equation

@U

@r0
� 2U � 2�

@U

@�

�

@
2
U

@�
2
; �9�

which, as is important to note, is of the form of equation (4) with � � 2 and �
2
� 2.

There seems to be no doubt that with (9), Laplace presented the ®rst ever di�erential

equation of the type now known from the probabilistic theory of di�usion processes. He

does not give an argument that leads from (7) to (9), but only hints that one should use

expansions of z, written by him as identities in the following fashion:

zx�1; r � zx; r �
@zx; r

@x
�

1

2

@
2
zx; r

@x2

zxÿ1; r � zx; r ÿ
@zx; r

@x
�

1

2

@
2
zx; r

@x2

zx; r�1 � zx; r �
@zx; r

@r
;

ignoring terms of order n
ÿ2
. (In fact, as will be shown below, terms of order o�n

ÿ1
) should

be ignored. The expansions are in terms of powers of n
ÿ1=2

, but if they are carried far

enough, one ®nds that the terms of order n
ÿ3=2

cancel and, hence, for these expansions

the ®rst term to be ignored is of order n
ÿ2
).

Several authors have reacted strongly to Laplace's line of reasoning at this point.

Todhunter (1865, § 999) writes that (7) `is too di�cult for exact solution, and so Laplace

mutilates it most unsparingly'; Bachelier (1906, p. 275), states that the argument yielding (9)

from (7) is badly executed, and that the solution provided by (9) is inexact; HostinskyÂ (1932,

p. 50) expresses the opinion that it is di�cult to follow the calculations done by Laplace;

and FreÂ chet (1938, p. 13) says that Laplace treats only a special case of the Bernoulli model,

and that his reasoning is lacking in rigour. Both HostinskyÂ and FreÂ chet admit, however,

that Laplace's argument is of interest since it leads to a second-order partial di�erential

equation obtained much later by Smoluchowski (1915) in his study of (physical) di�usion.

Both authors refer to Markov (1915) as the best source for a precise proof leading from (7)

to (9).

Molina (1930, 1936) reproduces (9) with the comment that its solution approximates that

of (7). He has an interesting reference to Lotka (1956, pp. 30±31), where the urn model is

used to illustrate the concept of irreversibility in molecular kinetics.

It is the main thesis of the present paper, that not only is Laplace (and Markov)

absolutely right, but also that the appearance of a Fokker±Planck equation for an

Ornstein±Uhlenbeck process can be entirely justi®ed by referring to the modern theory

of weak convergence of stochastic processes. Since the step from (7) to (9) thus becomes

crucial, we shall reproduce in some detail the argument given by Markov (1915).

Markov considers a more general urn model with n balls in urn A, n1 balls in urn B and

�n� n1�p white and �n� n1�q black balls in all, where 0 < p < 1, q � 1ÿ p. This model
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gives the partial di�erence equation (Markov 1915, p. 88)

zx; r�1 �

x� 1

n

n1qÿ np� x� 1

n1
zx�1; r �

nÿ x� 1

n

�n� n1�pÿ x� 1

n1
zxÿ1; r

�

x

n

�n� n1�pÿ x

n1
�

nÿ x

n

n1qÿ np� x

n1

� �

zx; r; �10�

and, for the corresponding Markov chain, Markov proceeds to ®nd the stationary initial

distribution, which is hypergeometric. He changes variables from �x; r� to ��; �� (� corre-

sponding to Laplace's r
0

; see (8)) using the formulae

x � np� �

1

��

; r
1

n
�

1

n1

� �

� 2�

where

�� �

��������������

n� n1

2pqnn1

r

:

He then demands that n1� � n, where � > 0, is a constant (so �� �

���������������������������

�1� ��=2pqn
p

),

writes

U��; �� � zx; r

and expresses (10) in terms of U, � and � instead of z, x and r, using the approximations

zx�1; r � U�����; �� � U ���

@U

@�

�
1

2
����

2 @
2
U

@�
2

zxÿ1; r � U��ÿ��; �� � U ÿ��

@U

@�

�
1

2
����

2 @
2
U

@�
2

zx; r�1 � U �; ��

1� �

2n

� �

� U �

1� �

2n

@U

@�

;

which are of course precise to the order o�n
ÿ1
� as n!1, when U is smooth enough and

� 2 R is ®xed. In the resulting version of (10) thus obtained by Markov, all terms of order

n
0
, n

ÿ
1

2 cancel and, equating the coe�cients of order n
ÿ1
, one arrives at (9) exactly,

irrespective of the values of p and � (which shows that the change-of-variable formulae

used by Markov have been chosen with great care in order for him to arrive at precisely the

Fokker±Planck equation given by Laplace).

If, in the model studied by Markov, we take n1 � n, p � q � 1

2
, � � 1, we return to the

special case investigated by Laplace. It is worth noting that the critical Todhunter (1865)

almost arrives at (9), but then ignores the crucial assumption that after the change of

variable through (8), � should be considered a ®nite quantity. As will be argued below, this

assumption has a well-understood analogue if one wishes to prove the central limit

theorem, although formally, of course, the range for � in the nth urn model is the interval

�ÿ

���

n
p

;

���

n
p

�, which becomes unbounded in the limit. (Todhunter seems very concerned

about the extreme values �
���

n
p

.)
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The Laplace urn model is, of course, a Markov chain, time-homogeneous with state

space En � f0; 1; . . . ; ng and transition probability matrix � pxy�, where x; y 2 En, given by

px; x�1 � 1ÿ
x

n

� �

2

; pxx � 2
x

n
1ÿ

x

n

� �

; px; xÿ1 �

x

n

� �

2

�11�

with pxy � 0 for all other pairs �x; y�. The Markov chain �Z
�n�

r �r� 0 is completely speci®ed

by also giving the distribution of Z
�n�

0
(the initial distribution), and it is then clear that

zx; r :� P�Z
�n�

r � x�

satis®es (7). If we now consider the transformation (8), we obtain a process

u
�n�
� �u

�n�
�t��t� 0 in continuous time given by

Z
�n�

�nt�
�

1

2
�n� u

�n�
�t�

���

n
p

�

where we use the standard notation t for the time variable rather than Laplace's r or

Markov's �. Then the following result holds:

Theorem. Let �0 2 R and, for all su�ciently large n, let the initial value of Z
�n�

be given

by

Z
�n�

0
� �

1

2
�n� �0

���

n
p

��: �12�

Then, as n!1,

u
�n�
!

d
u �13�

where u is the Ornstein±Uhlenbeck process with parameters

� � 2; �
2
� 2

and initial value u�0� � �0. In particular, the transition densities � pt�a; ��� for u satisfy

Laplace's di�erential equation (9) with U��; t� � pt�a; �� in the domain ��; t� 2 R� �0;1�

for any a 2 R.

Remarks. In (12) the brackets � � � denote the integer part. The quali®cation `n su�ciently

large' simply means that n should be so large that the value of Z
�n�

0
belongs to En.

The convergence in (13) means convergence in distribution, when u
�n�

and u are viewed as

random variables with values in the Skorohod spaceD�0;1� of right continuous paths with

left limits. (See Billingsley 1968 for D�0; 1� and, for example, Ethier and Kurtz 1986 for

D�0;1� ). In particular, it follows from (13) that the ®nite-dimensional distributions

converge: for all N 2 N and 0 � t1 < � � � < tN we have that

�u
�n�
�t1�; . . . ; u

�n�
�tN�� !

d
�u�t1�; . . . ; u�tN��: �14�

The theorem has been stated only for the Laplace urn model, but it holds also for the

more general models studied by Markov (1915) if one de®nes u
�n�

by Z
�n�

�nt�
� np �

u
�n�
�t�

���������������������������

2pqn=�1� ��

p

and uses Markov chains Z
�n�

with transition probabilities adjusted

in an obvious manner from (11) to the general case treated by Markov.
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We shall not prove the theorem here, but merely indicate why it is true. (A proof may be

given using the techniques and results from Ethier and Kurtz 1986.)

The in®nitesimal generator for the limit process u is given by (see (3))

Af ��� � ÿ2� f
0

��� � f
00

���

(retaining Laplace's notation � for the space variable); in particular, for su�ciently well-

behaved f ,

lim
h # 0

1

h
�E� f �u�h�� j u�0� � �� ÿ f ���� � Af ���:

But here we can approximate the limit on the left by replacing u with u
�n�
, taking h � 1=n

and letting n!1, keeping � ®xed and thinking of the Markov chain Z
�n�

as starting from

xn :�
1

2
�n� �

���

n
p

�

and, even though this is not an integer, use the transition probabilities � pxy� as given

formally by (11). The result is

nE f
1
���

n
p �2Z

�n�

1
ÿ n�

� �

�

�

�

�

Z
�n�

0
� xn

� �

ÿ f ���

� n 1ÿ
xn

n

� �

2

f ��

2
���

n
p

� �

� 2
xn

n
1ÿ

xn

n

� �

f ��� �
xn

n

� �

2

f �ÿ

2
���

n
p

� �

ÿ f ���

� �

ÿÿÿ!
n!1

Af ���

for all f twice continuously di�erentiable in a neighbourhood of �.

Thus the change of variable in space and time used by Laplace (see (8)) is the correct one

that gives weak convergence of his urn scheme to the Ornstein±Uhlenbeck process. This

does not mean that Laplace discovered this process: he was only interested in ®nding the

probabilities zx; r or good approximations thereof, and because of the di�cult nature of the

combinatorics involved this led him to the di�erence equation (7) in space and time, and by

a ¯ash of genius to the partial di�erential equation (9), which we now know describes the

limiting Ornstein±Uhlenbeck process. The connection between the ®ndings made by

Laplace and the weak convergence theorem given above is that Laplace came close to

obtaining weak convergence of the one-dimensional distributions (N � 1 in (14)).

We have not been able to ®nd the weak convergence result in the literature. For example,

in his two-volume classic Feller mentions the Bernoulli±Laplace urn model brie¯y in vol. 1

(Feller 1957, Chapter XV, Exercise 10), and the Ornstein±Uhlenbeck process in vol. 2

(Feller 1971, pp. 335±336), but does not make the connection. However, the one-

dimensional convergence suggested by Laplace's work is established more ®rmly by

Markov (1915) who, in his generalization of Laplace's model uses recursion formulae to

®nd explicit expressions for the moments E�Z
�n�

r �
k
(in terms of the initial values Z

�n�

0
of the

chains) and then shows that the moments E��u
�n�
�t��

k
� converge as n!1. More

speci®cally, if in the limit u
�n�
�0� is N�a; 1

2
�1� l�� (Gaussian with mean a and variance

1

2
�1� l�) where l > ÿ1, Markov shows that for all k 2 N, E�u

�n�
�t��

k
converges to the kth
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moment of the distribution N�ae
ÿ2t
;
1

2
�1� l e

ÿ4t
��, which is in fact the correct distribution

of u�t� when u�0� � N�a; 1
2
�1� l��, as we shall see in the next section.

It must be noted that Markov (1915, p. 103), observes that if t > 0, the Gaussian

distribution of u�t� is also well de®ned if l � ÿ1 (which would correspond to u�0� being

degenerate at a), and he writes down the density

pt�a; �� �
1

������������������������

p�1ÿ eÿ4t �
p exp ÿ

��ÿ ae
ÿ2t
�
2

1ÿ eÿ4t

 !

: �15�

This is in fact the correct transition density for the Ornstein±Uhlenbeck process u and one

of the ®rst instances where it appears in the literature.

With the focus on Ornstein±Uhlenbeck processes it is natural to ask why (9), the ®rst

second-order partial di�erential equation associated with a di�usion process ever to

appear, comes so much earlier (about a century) than the corresponding equation for

Brownian motion. In fact, the reasoning that led Laplace to (9) might just as well have

yielded the Brownian motion equation, as we shall see shortly. One possible explanation

why Laplace did not ®nd this equation could be that, since his main concern was to ®nd the

probabilities zx; r, which in the random walk/Brownian motion case are simple binomial

probabilities, in the latter case there was no need to proceed via partial di�erence equations.

It seems likely, however, that Laplace's knowledge about the central limit theorem and the

normalizations needed to obtain convergence there inspired him to the crucial normal-

ization (8) needed for the urn models to converge!

To see how Laplace might have deduced the Fokker±Planck equation for Brownian

motion, consider a Bernoulli random walk as follows (see Feller 1957, Chapter XIV,

Section 6): Let Y1;Y2; . . . be i.i.d. with P�Y1 � 1� � P�Y1 � ÿ1� �
1

2
. De®ne S0 � 0, Sr �

Y1 � . . .� Yr and write zx; r � P�Sr � x�. Then

zx; r�1 �
1

2
zx�1; r �

1

2
zxÿ1; r: �16�

Introducing the new variables �, r
0

de®ned by x � �

���

n
p

, r � nr
0

, de®ningU��; r
0

� � zx; r and

expressing (16) in terms of �, r
0

and U, one ®nds, arguing as Markov, that in the limit as

n!1,

@U

@r0
�

1

2

@
2
U

@�
2
; �17�

the Fokker±Planck equation for standard Brownian motion.

Before leaving this section we shall comment brie¯y on the paper by Bachelier (1906,

p. 273), since this may well mark the ®rst appearance of the expression (2) for the Ornstein±

Uhlenbeck transition density. (It must also be noted that Feller 1957, in the footnote on

p. 323, credits Bachelier with the discovery of the connection between random walks and

di�usions ± equations (16) and (17). Notice that Feller refers to Bachelier's work as

important but `heuristic'.) Bachelier studies the problem of ®nding the probability that a

player, after a certain number of games, has lost a certain amount. In the case of Bernoulli

trials he gives the De Moivre±Laplace limit approximation to the binomial probabilities

and then goes on to discuss the case where the games are no longer independent
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( probabiliteÂs connexes is the term used by Bachelier), and it is here that he presents the

Ornstein±Uhlenbeck density, assuming that the loss at any game is proportional to the

total loss already incurred. He then goes through the Bernoulli±Laplace urn model with

the critical comments on Laplace's work quoted above, but ends up by essentially showing

that the densities (2) solve (4) (and hence, in special cases (9))!

4. The solution of Laplace's di�erential equation

Having derived equation (9), Laplace devotes his main e�orts to solving it, and thereby

solving the original problem of ®nding the probabilities zx; r, at least for large values of n,

the number of white (or black) balls. He writes the solution in the form

U��; r
0

� �

�

1

ÿ1

'�t; r
0

� e
ÿ�t

dt �18�

and ®nds that ' is the solution of a ®rst-order partial di�erential equation, and that

'�t; r
0

� � e
1

4
t
2

 �t e
ÿ2r

0

�

with  an arbitrary function. He then makes the change of variable t � 2�� 2is in the

integral (18), and arrives at

U��; r
0

� � e
ÿ�

2

�

1

ÿ1

ds e
ÿs

2

G
sÿ i�

e2r
0

� �

�19�

where G�z� �  �ÿ
1

2
iz� (Laplace denotes G by ÿ), having thus replaced the unpleasant

factor et
2
=4 in the expression for ' by the much more appealing factor e

ÿs
2

in the integrand

in (19). Now, substituting t in the expression exp�ÿ�t� 1

4
t
2
� of course gives exp�ÿ�

2
ÿ s

2
�,

but the domain of integration in (19) should not be R but the line iR in the complex plane,

where s! e
ÿs

2

is unbounded. Thus, Laplace's derivation of (19) is imprecise, but as he

noted himself, the important point is of course that it is still true that if G is smooth enough

and suitably bounded, U given by (19) solves (9), as may be veri®ed directly!

Using a power-series expansion of G, Laplace writes U in the form

U��; r
0

� �

X

1

j�0

H
� j �

e
ÿ�

2

e4 j r
0

�

1

ÿ1

ds e
ÿs

2

�sÿ i��
2 j

�

X

1

j�0

L
� j �

e
ÿ�

2

e�4 j�2�r0

�

1

ÿ1

ds e
ÿs

2

�sÿ i��
2 j�1

�20�

and observes that the integrals

P2 j��� :�

�

1

ÿ1

ds e
ÿs

2

�sÿ i��
2 j
; P2 j�1��� :� i

�

1

ÿ1

ds e
ÿs

2

�sÿ i��
2 j�1

and both real-valued polynomials such that only terms of even powers of � appear in

P2 j and only terms of odd powers of � appear in P2 j�1. He then proceeds to show that
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for n 6� n
0

,
�

1

ÿ1

d� e
ÿ�

2

Pn���Pn0 ��� � 0;

i.e. the polynomials Pn are orthogonal with respect to the Gaussian probability measure

��d�� �
1
���

p

p e
ÿ�

2

d� �21�

on the real line.

Laplace goes on to ®nd examples of solutions to (9), to which we shall return below, but

before that we need brie¯y to discuss the polynomials Pn.

It is an acknowledged fact that in describing the polynomials Pn, Laplace essentially

discovered what are now known as the Hermite polynomials. More precisely, it was noted

by Markov (1915, p. 91) that the Pn used by Laplace are proportional to the Hermite

polynomials Hn. (For an account of this see also Molina 1930; 1936; Hald 1990). We shall

now prove this proportionality, using the original de®nition (Chebyshev 1859; Hermite

1864)

e
ÿ�

2

Hn��� �

d
n

d�n
e
ÿ�

2

of what both Markov (1915) and Steklov (1915) refer to as the Laplace±Chebyshev±

Hermite polynomials. In this form the Hn are given by

Hn��� �

X

�n=2 �

k�0

�ÿ1�
nÿk

n!

k! �nÿ 2k�!
�2��

nÿ2k

(see, for example, Hille 1925±6, (11) p. 432; or SzegoÈ 1939, (5.5.4), p. 102). For n � 2 j one

®nds that the integral after the factor H
� j �

exp�ÿ�
2
ÿ 4 j r

0

� in (20) equals

P2 j��� �

X

j

k�0

�ÿ1�
jÿk

ÿ k�
1

2

� �

2 j

2k

 !

�
2 jÿ2k

�

X

j

k�0

�ÿ1�
jÿk

���

p

p

22 j

�2 j�!

k! �2 j ÿ 2k�!
�2��

2 jÿ2k

� �ÿ1�
j

���

p

p

22 j
H2 j���:

Similarly, one ®nds

P2 j�1��� � �ÿ1�
j�1

���

p

p

22 j�1
H2 j�1���:

Thus, in terms of the polynomials Hn, Laplace's solution to (9) takes the form of the

expansion

U��; r
0

� �

X

1

n�0

CnHn��� e
ÿ�

2
ÿ2nr

0

:
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A thorough discussion of when this series actually solves (9) is given by Steklov (1915).

He writes the expansion as

U��; r
0

� � e
ÿ�

2
X

1

n�0

An e
ÿ2nr

0

'n���; �22�

where

'n��� � �2
n
n!�

ÿ
1

2Hn���

are the Hn normalized so as to form a complete orthonormal basis for the space L
2
��� of

functions, square-integrable with respect to the probability �. Steklov speci®cally considers

the problem of solving (9) subject to the boundary condition

U��; 0� � f ���; �23�

with f a given function. In this case he shows that the coe�cients An in (22) are

given by

An �

1
���

p

p

�

1

ÿ1

f ���'n��� d�; �24�

i.e. the coe�cients in the Gram±Charlier expansion of ~f ��� � e
�
2

f ��� in the orthonormal

basis ('n),

~f �

X

1

n�0

1
���

p

p

�

1

ÿ1

f ���'n��� d�

� �

'n:

Here `�' signi®es that if ~f 2 L
2
��� then the series converges to ~f in L

2
���.

Now, using the transition densities (2) with � � 2, �
2
� 2, the same solution may, for

suitable f , be expressed as

U��; t� �

�

1

ÿ1

d�
0

f ��
0

�pt��
0

; ��; �25�

where (cf. (15))

pt��
0

; �� �

1
������������������������

p�1ÿ eÿ4t �
p exp ÿ

��ÿ �
0

e
ÿ2t
�
2

1ÿ eÿ4t

 !

: �26�

(To show that (25) solves (9) one merely has to use the fact that ��; t� ! pt��
0

; �� is a

solution, and to impose conditions that permit changing the order of integration and the

di�erentiations @=@t, @=@�, @
2
=@�

2
. Formally, U��; t� given by (25) is de®ned only for

� 2 R, t > 0, but if f is bounded and continuous,U will satisfy the boundary condition (23)

in the sense that for all �, limt! 0U��; t� � f ���; see (6).)

We shall see below that the fact that the two expressions (22) and (25) agree amounts to

what is essentially a classical expansion of Ornstein±Uhlenbeck transition densities. Before

doing that we shall, however, ®rst comment on the examples of solutions to (9) found by

Laplace and Steklov.
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Laplace considers the special case of solving (9) with boundary condition

U��; 0� � fL���, where

fL��� �
2 j
������

np
p e

ÿ j
2
�
2

�27�

with j > 0. He gives the solution as

U��; r
0

� �

2
����������������������

np�1� C
0
�

p exp ÿ

�
2

1� C
0

 !

where

C
0

�

1ÿ j
2

j 2 e4r
0
:

But if, more generally, following Steklov (1915, (41) and (42), p. 1536), we take f � fS in

(23) as the density of a Gaussian distribution

fS��� �
1

�����������������

p�1� l�
p e

ÿ��ÿa�
2
=�1� l�

where l > ÿ1 (as was done by Markov 1915 in his work on convergence of moments; see

Section 3 above), it is clear from (25) that U��; t� will be the density of a Gaussian random

variable u�t�, with �u�t��t� 0 an Ornstein±Uhlenbeck process where the initial distribution

for u�0� has density fS and, conditionally on u�0� � �
0

, u�t� has density pt��
0

; �� given by

(26). Thus

E�u�t�� � E�e
ÿ2t

u�0�� � a e
ÿ2t
;

var�u�t�� � 1

2
�1ÿ e

ÿ4t
� � e

ÿ4t 1� l

2
�

1

2
�1� l e

ÿ4t
�

and hence

U��; t� �
1

�������������������������

p�1� l eÿ4t�
p exp ÿ

��ÿ a e
ÿ2t
�
2

1� l eÿ4t

 !

in agreement with the result found by Steklov (1915, (42), p. 1536), who, as already

mentioned, based his deduction on the expansion (22), and also in accordance with the

moment convergence established by Markov (1915).

Now Laplace's initial condition (27) is, in terms of Steklov's notation,

fL �
2
���

n
p fS;

with a � 0, j
2
� 1=�1� l�. But then

C
0

� l e
ÿ4r

0
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and we see that the solution found by Laplace is the correct one, even though again his

reasoning is di�cult to follow and perhaps not quite rigorous!

As our ®nal point, we shall show that the fact that the solutions given by (22) (with An as

in (24)) and (25) agree, amounts to a classical expansion of the transition density (26),

namely

pt��
0

; �� �

1
���

p

p

X

1

n�0

e
ÿ2ntÿ�

2

'n��
0

�'n���: �28�

That the series converges to pt��
0

; �� for all t > 0, �; �
0

2 R is well known; see Hille (1925±6,

(39), p. 439), who traces the formula he gives back to Mehler (1866).

Inserting (24) in (22) and changing the order of summation and integration gives

U��; t� �

�

1

ÿ1

d�
0

f ��
0

�

1
���

p

p

X

1

n�0

e
ÿ2ntÿ�

2

'n��
0

�'n���:

Demanding that this agree with (22) for a large class of functions f is clearly the same as

requiring that, for a given t, �, (28) must hold for almost all �
0

with respect to Lebesgue

measure. Since both sides of (28) are continuous in �
0

, (28) is valid for all t > 0,

�; �
0

2 R.
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