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Following up on work by Baum and Petrie published 30 years ago, we study likelihood-based

methods in hidden Markov models, where the hiding mechanism can lead to continuous observations
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1. Introduction and basic results

Hidden Markov models, that is stochastic point functions of ®nite Markov chains, have

become important in a number of areas of application. These include, ®rst and foremost,

speech recognition (for an introduction and survey, see Rabiner 1989); the study of

excitation periods in ion channels (for a survey, see Ball and Rice 1992), and models for

heterogenous DNA sequences (Churchill 1992). The main focus of these e�orts have been

algorithms for the ®tting of these models and, in particular (see Rabiner 1989), the

implementation of likelihood-based methods. It is, in fact, not obvious that the likelihood

can be computed in linear time, but that is the case. There has been comparatively little

work on the study of the inferential properties of likelihood methods in these models. The

notable exceptions to this are the papers of Baum and Petrie (1966), Petrie (1969) and, most

recently, Leroux (1989; 1992). Concurrently with our work, RydeÂ n (1994a; 1994b) has also

pursued likelihood-based procedures in hidden Markov models.

Speci®cally, Baum and Petrie (1966) showed that, when observing a deterministic ®nite

point function of a ®nite Markov chain, maximum likelihood estimates of the parameters

of the model governing the chain are consistent and asymptotically normal. Leroux

formulated hidden Markov models in the generality we shall present and established

consistency of maximum likelihood estimates of both the parameters of the Markov chain

and the conditional distribution of the observations given the Markov chain. Unlike the
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Baum±Petrie techniques, which were used for establishing both consistency and asymptotic

normality, Leroux's approach, based on results of Furstenberg and Kesten (1960) and

Kingman's (1976) subadditive ergodic theorem, appears incapable of giving results beyond

consistency. On the other hand, we shall show, by adding a few essential ideas to the

penetrating analysis of Baum and Petrie, that the log-likelihood for hidden Markov models

obeys the local asymptotic normality (LAN) conditions of LeCam (see LeCam and Yang

1990, for instance). Hence, e�cient analogues of maximum likelihood estimates can be

constructed, and the information bound giving their asymptotic variance estimated. We

shall also indicate how our results need to be strengthened to yield asymptotic e�ciency of

maximum likelihood estimates, when they are consistent. Consistency of maximum like-

lihood estimates can also be established with our methods but under conditions slightly

stronger than those of Leroux (1992).

The paper is constructed as follows. In the rest of this section we formally introduce the

models we consider, state our main assumptions and results, and further discuss the

strengths and weaknesses of these as well as extensions and further questions, some of

which we intend to pursue. In Section 2 we give without proof some lemmas needed to

establish our main theorem, discuss the heuristic behind them, and give a proof of the

theorem based on these lemmas. Finally, in Section 3 we state more lemmas and give the

proofs of all the lemmas which may not immediately be derived from the work of Baum and

Petrie or others.

Formally we assume that observations �Y1; . . .Yn� 2 Y
n, for some space Y, are dis-

tributed according to P
�n�

#
; # 2 �, where� is an open subset ofRp and described as follows:

(i) (Hidden chain.) We are given (but do not observe) a stationary ergodic Markov

chain X1; . . . ;Xn; . . . with states f1; . . . ;Kg, stationary initial probability �#�i�; 1 � i � K ,

and transition probability matrix k�#�i; j �kK�K .

(ii) (Yi is a function of the present Xi and an external randomization only.) Given

X1; . . . ;Xn, the Yi are conditionally independent, and given Xi, Yi is independent of

Xj; j 6� i.

(iii) (Stationarity.) The conditional distribution of Yi given Xi does not depend on i.

(iv) The conditional distribution of Yi given Xi � a are dominated by �, a s-®nite

measure for all i; a; #. The conditional density is denoted by g#� � ja�.

We may then write the density of (Y1; . . . ;Yn) with respect to product measure � �n� as

g#�y1; . . . ; yn� �

X

�x1;...;xn�

f#�x1; . . . ; xn; y1; . . . ; yn�; �1:1�

where

f#�x1; . . . ; xn; y1; . . . ; yn� � �#�x1�

Y

nÿ1

j�1

�#�xj; xj�1�

Y

n

i�1

g#�yijxi� �1:2�

is the joint density of �X1; . . . ;Xn;Y1; . . . ;Yn� with respect to (counting measure)
�n�
� �

�n�.

We denote the joint distribution of �Xi;Yi�; 1 � i <1, by P#, a probability on �
;A�,

where 
 is the space of x; y sequences and A is the Borel s-®eld.

This model, more or less given in Leroux (1989), is more general than it appears to be at

200 P. J. Bickel and Y. Ritov



®rst sight. It includes all situations where Yi � h�Xiÿj; 1 � j � t; �i; #�, 1 � i � n, where the

�i are i.i.d. and independent of the Xs and t is ®xed, since we can always take

�X1�i; . . . ;Xt�i�; i � 0, as our hidden chain. We will need the following assumptions.

Assumption 1. For all #; a; b; �#�a; b� � �#� > 0.

Assumption 2. For all a; b; the map #! �#�a; b� has three continuous derivatives. Hence so

has #! �#�a�.

Note that Assumptions 1 and 2 imply that for all #0 there exist � > 0; �#0� > 0, such that

inff�#�a; b� : j#ÿ #0j � �g � �#0� �1:3�

inff�#�a� : j#ÿ #0j � �g � �#0�: �1:4�

Assumption 3. The maps #! r log g#�yja� have three derivatives for all y; a. Further, for all

#0 there exist � > 0; � > 0, such that if

q#0�y; �� � sup fjr log g#�yja�j : a; j#ÿ #0j � �g;

then

E#0
exp ��q#0�Y1; ��� <1: �1:5�

Assumption 4. For all #0 there exist � > 0; r > 32, such that if

�#0�y� � sup
g#�yja�

g#�yjb�
: a; b; j#ÿ #0j < �

� �

;

then

E#0
�
r

#0
�Y1� <1: �1:6�

Assumption 5. Let # � �#1; . . . ; #p� and

q#0 j�y; �� � sup
@
j

@#i1 . . . @#ij

log g#�yja�

�

�

�

�

�

�

�

�

�

�

( )

;

where the supremum is taken over f1 � il � p; l � 1; . . . ; j; 1 � a � K ; j#ÿ #0j � �g.

Assume, for all #0, some � > 0; j � 2; 3;

E#0
f�q#0 j�Y1; ���

2��
g <1: �1:7�

Let �Xi;Yi�, ÿ1 < i <1, be the two-sided stationary sequence de®ned by our model,

and

W�Y1;Y0;Yÿ1; . . .� �

X

1

m�ÿ1

Wm�Y1;Y0; . . .�; �1:8�

201Inference in hidden Markov models I



where

Wm�Y1;Y�; . . .� � E#0
fr log g�YmjXm�jY1;Y0; . . .g ÿ E#0

fr log g�YmjXm�jY0;Yÿ1; . . .g

� E#0
fr log��Xm;Xm�1�jY1;Y0; . . .g �1:9�

ÿ E#0
fr log��Xm;Xm�1�jY0;Yÿ1; . . .g:

We show in Lemma 3.5 that, under Assumptions 1±4, W 2 L2�P#0
�, and we can then

de®ne

I�#0� � E#0
fWW

T
g: �1:10�

Fix #0 and let L0;P0;E0 be law, probability and expectation under #0. Let �n � n
ÿ1=2,

#n � #0 � ��n, and

Ln��� �
g#n

g#0

�Y1; . . . ;Yn�: �1:11�

Our main goal is to establish the following theorem:

Theorem 1.1. Suppose Assumptions 1±5 hold. Then there exist �n, random p-vectors, such

that if j�nj � O�1�, then

logLn��n� � �
T
n �n ÿ

1
2
�
T
n Jn�n � Rn��n�; �1:12�

where

E0�n � 0; �1:13�

E0�n�
T
n ! I�#0�; �1:14�

Jn ! I�#0�; �1:15�

�nÿ!
L0
N�0; I�#0��; �1:16�

P0�jRn��n�j < n
ÿ=2

=en� < maxfen; n
ÿ1
g for any en ! 0 and  < 2�1ÿ 16=r�=5 for r satisfy-

ing (1.6), and I�#0� given in (1.10).

Note that (1.12) is just local asymptotic normality in the sense of Le Cam. In order to

implement this result for inferential purposes we can proceed more or less as in Le Cam and

Yang (1990, pp. 57±65). We need the following assumption:

Assumption 6. The parameter # is identi®able in the sense that if for some #; #
0

2 �;

P
�n�

#
� P

�n�

#
0 for all n, then # � #

0

.

Lemma 1.1. If Assumptions 1±6 hold, then there exists an estimate f ~#n�Y1; . . . ;Yn�gn�1 which

is
���

n
p

consistent. That is, for each #0;
~#n ÿ #0 � OP0

��n�.

Let the Gn grid denote the set of all �� j1; . . . ;� jp��nn
ÿ=2p, where the ji are integers and 

is as in Theorem 1.1. If Lemma 1.1 holds we can and shall, without loss of generality,

suppose that ~#n takes on values in the Gn grid only. Let

~#n � local maximizer of g#�Yi; . . . ;Yn� on Gn �1:17�
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closest to ~#n among the points of the �n grid, and, for given �n, de®ne the matrix ^In by,

^Inab � ÿ�
ÿ2
n log

g
^#n�a;b�

g
^#n

g
^#n�a;0�

g
^#n�0;b�

�Y1; . . . ;Yn�

( )

�1:18�

^#n�a; b� �
^#n � �n�n�ea � eb� �1:19�

where e1; . . . ; ep are the standard basis vectors and e0 � 0. Thus, ^#n is a grid version of the

closest root of the likelihood equation to ~#n and ÿ^In is a second di�erence grid evaluated

version of the Hessian at ^#n. Then we have the following corollary:

Corollary 1.1. If Assumptions 1±6 hold, ^#n is as in (1.17) and I�#0� is non-singular, then

n
1=2
�
^#n ÿ #0�ÿ!

L0
N�0; Iÿ1�#0�� �1:20�

^Inÿ!
P0

I�#0�: �1:21�

We are now able to construct asymptotically e�cient estimates, tests, etc., by pretending

that ^#n is approximatelyN�#; �
2
n
^I
ÿ1
�. This result does not give what one would ideally like:

(a) that the maximum likelihood estimator (MLE) ^#�n is asymptoticallyN�#0; �
2
nI
ÿ1
�#0��;

(b) that the Hessian of the log-likelihood at ^#
�

n; n
ÿ1
k�@

2
=@#n@#b� log g ^#�n�Y1; . . . ;Yn�k

converges in probability to ÿI�#0�.

Part (a) requires
���

n
p

-consistency of the MLE and uniform (permitting �n to be data

determined) LAN, while (b) requires consistency of the MLE and some sort of uniform

convergence of the Hessian. These are open problems.

Discussion of assumptions

Evidently using f# and Bayes's rule we can construct maps from Y
n to fprobabilities on

�
;A�g, �y1; . . . ; yn� ! P#� � jy1; . . . ; yn� such that P#� � jY1; . . . ;Yn� is a regular condi-

tional probability on 
 given �Y1; . . . ;Yn�. The key property in Baum and Petrie (1966)

and our analysis is that �X1;X2; . . .� are an inhomogeneous Markov chain under

P#� � jy1; y2; . . .�. Assumptions 1, 2 and 4 guarantee that, with probability 1, this chain

has strong geometric ergodicity properties which, among other things, guarantee the

existence of I�#0� in (1.10). Assumptions 1 and 2 can easily be relaxed by specifying that

only some power of the transition matrix needs to have all entries positive. Assumption 4 is

clearly not very demanding. Assumption 3 intersects with Assumptions 1, 2 and 4,

guaranteeing the validity of appropriate Taylor expansions. It is evidently a much stronger

moment condition than is required for valid Taylor expansions in the i.i.d. case. However,

we do not presently see how it can be relaxed. It evidently holds for Gaussian location and

scale families, for instance, as does Assumption 5, which is essentially a standard condition

of the CrameÂ r type.
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Extensions

Two extensions worth considering are:

(a) dropping the requirement that the state space of X be ®nite;

(b) the case where the hidden process is a Markov random ®eld.

Extension (a) includes most nonlinear ARMA processes which have been proposed (see

Priestley 1988, Tong 1991). Let . . . ; �
ÿ1; �0; �1; . . . be an i.i.d. sequence of random variables

with distribution from a parametric family, fF#g, and

Yj � h��j; �jÿ1; . . . ; #�; 1 � j � n: �1:22�

SinceXj � f�jÿk : k � 0g is aMarkov chain onR1 this falls under case (a). For a discussion

of Edgeworth expansions of smooth statistics in such models see GoÈ tze and Hipp (1992).

Estimation of parameters in hidden Markov ®elds by ad hoc methods has been

considered by Frigessi and Piccioni (1990) and others. Likelihoods, even for directly

observed ®elds, are only computable by simulation, but extension of our approach

replacing likelihoods of the hidden process by pseudo-likelihoods may be valuable. See

Qian and Titterington (1991).

We intend to pursue special cases of both extensions. It also appears that extensions to

continuous-time situations where observations are not simply point functions of the hidden

process may also be possible and interesting. A simple example discussed in Daley and Vere

Jones (1989), and pursued by RydeÂ n (1994b), is that of Cox processes driven by a ®nite-

state continuous Markov process.

2. Proof of Theorem 1.1

We begin with an outline of our proof of Theorem 1.1. Details are given at the end of the

section after the statement of some lemmas. Let Ya;b � �Ya; . . . ;Yb� and Xa;b be the

corresponding X block. Also de®ne Y
�k�

m � Ymk�1;mk�k and X
�k�

n be the corresponding X

block where 0 � m � N � n=kÿ 1. To simplify the notation, we assume that n is a multiple

of k. W argue in II below that if k does not divide n we can neglect the resulting end e�ect.

For convenience we use the subscript � in the following to stand for #n � #0 � �n�n, where

f�ng is a bounded sequence. Let l� �Y
�k�

m jXmk�1� denote the conditional likelihood of Y�k�

m

given Xmk�1, and let

L�m �

X

K

a�1

P� �Xmk�1 � ajY1;mk�l� �Y
�k�

m ja�

X

K

a�1

P0�Xmk�1 � ajY1;mk�l0�Y
�k�

m ja�

�2:1�
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denote the likelihood ratio of Y�k�

m given Y1;mk. Also, let

L
�d�

rm �

X

K

a�1

P� �Xmk�1 � ajYmkÿd;mk�l� �Y
�k�

m ja�

X

K

a�1

P0�Xmk�1 � ajYmkÿd;mk�l0�Y
�k�

m ja�

; �2:2�

denote the likelihood ratio of Y�k�

m given Ymkÿd;mk, and

L
�

�m �

l��Y
�k�

m jXmk�1�

l0�Y
�k�

m jXmk�1�

�2:3�

the likelihood ratio of Y�k�

m given Xmk�1.

I. Write

logLn��� �

X

N

m�1

logL�m � log
g#n

g#0

�Y1; . . . ;Yk� �2:4�

and

X

N

m�1

logL�m �

X

N

m�1

logL��m �
X

N

m�1

log 1�
�L�m ÿ L

�

�m�

L��m

� �

: �2:5�

Taylor expanding, we get

X

N

m�1

log 1�
�L�m ÿ L

�

�m�

L��m

� �

�

X

N

m�1

�L�m ÿ L
�

�m� ÿ

X

N

m�1

�L�m ÿ L
�

�m�

L��m
�L

�

�m ÿ 1�

ÿ

1

2
�1� Rn�

X

N

m�1

�L�m ÿ L
�

�m�
2

�L��m�
2

: �2:6�

II. We expect jL�m ÿ 1j � OP0
�k=n�

1=2. We shall establish this and, in so doing, also show

that if n � Nk� r; 0 < r < k, then the di�erence between logLn��� and logLnk��� is oP0
(1).

Further, X1;X2; . . . remains a Markov chain given the Ys. Although the chain is not

stationary, it satis®es a strong mixing condition. Thus, we expect that the knowledge of Ys

and Xs in the distant past adds very little information to the present and

jL�m ÿ L
�

�mj � oP0
��k=n�

1=2
� so that we can and do show that the last two terms of (2.6)

are negligible. The second term in (2.4) is also negligible. This uses arguments based on the

Baum and Petrie (1966) results which are stated under our conditions in Lemmas 3.1±3.4.

III. We write the ®rst term as

X

N

m�1

�L�m ÿ L
�

�m� �

X

N

m�1

�L
�d �

�m ÿ L
�

�m� �

X

N

m�1

�L�m ÿ L
�d �

�m �: �2:7�

We show that the second term is negligible for d !1; d � o�k� using Baum and Petrie
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again, and that the ®rst term is negligible using uniform mixing and the Ibragimov±Linnik

lemma (Lemma 3.7 below).

IV. We Taylor expand
P

N

m�1 logL
�

tm in � and apply uniform mixing to show it has the

LAN structure.

V. Finally, we evaluate I�#0� necessarily by a di�erent starting formula than that of

Baum and Petries, but again rely on their results to dispose of possible long-range

dependence.

The proof of Theorem 1.1 is based on the following lemma whose proofs are given in the

next section.

We adopt the following notation. We say

An � Obn
�an� �2:8�

if and only if there exists some M0; c� � � & 0, such that for all M > M0 and n > n�M�

P0�jAnj �Man� � c�M �bn:

In particular, O0�an� � O�an� and O1�an� � OP0
�an�:

Lmma 2.1. If Assumptions 1±4 hold, r > 16; k � n
4���5=4�

; � > 2=r; 4��  < 1=2;  > 0, then

for any j� j < M,

X

N

m�1

log �L�m=L
�

�m� � Oen
�n
ÿ=2

=en� �2:9�

for any en ! 0; nen !1.

Lemma 2.2. If Assumptions 1±5 hold, r > 32; k � n
4��

; 4��  < 1=4, then

E0 sup
j � j<M

X

N

m�1

�

�

�

�

logL��m ÿ �n�
T
r log l0�Y

�k�

m jXmk�1�

(

ÿ

1

2n
�
T @

2

@#i@#j

log l0�Y
�k�

m jXmk�1�





















�

�

�

�

�

�

)

� O�k
2
=n

1=2
�; �2:10�

where kai jk is the matrix with entries ai j .

Lemma 2.3. Under Assumptions 1±4

lim
k!1

1

k
E0 r log l0�Y

�k�

0 jX1�

� �

r log l0�Y
�k�

0 jX1�

� �T
� �

� I�#0� �2:11�

where I�#0� is de®ned as in (1.10).
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Lemma 2.4. Under Assumptions 1±4, if k � o�n�, then

1

n

X

N

m�1

E0frr
T log l0�Y

�k�

m jXmk�1�jXmk�1gÿ!

P0
I�#0� �2:12�

1

n

X

N

m�1

E
1=2
0 fjr log l0�Y

�k�

m jXmk�1�j
4
jXmk�1g � OP0

�1� �2:13�

max
m

P0�j�nr log l0�Y
�k�

m jXmk�1�j � �jXmk�1� � oP0
�1� �2:14�

where rr
T
h � �rh��rh�

T
.

Lemma 2.5. Under Assumptions 1±4,

1

n

X

N

m�1

@
2

@#a@#b

log l0�Y
�k�

m jXmk�1�





















ÿ!

P0
ÿ I�#0�: �2:15�

Proof of Theorem 1.1. From Lemma 2.1 we see that if � � �n we can replace the left-hand

side of (2.5) by �N

m�1 logL
�

�nm
�Oen

�n
ÿ2=5

=en� if k � n
4��

; � > 2=r; 4��  < 1=4.

Lemma 2.2 now guarantees that

X

N

m�1

logL��nm � �n�
T
n

X

N

m�1

r log l0�Y
�k�

m jXmk�1� �a�

�

1

2n

X

N

m�1

�
T
n

@
2 log

@#i@#j

l0�Y
�k�

m jXmk�1�





















�n

�Oen
�n
ÿ1=2�8��2

=en�:

Let

�mn � �n�
T
n r log l0�Y

�k�

m jXmk�1�; 1 � m � N: �b�

We claim that this is a triangular sequence of martingale summands with respect to the �-

®elds Fmn � ��X1;�m�1�k�1;Y1;�m�1�k�, 1 � m � N. This follows from the Markov property

which gives

E0

l0

l0

�Y
�k�

m jXmk�1jF �mÿ1�n

� �

� E0

l#

l0

�Y
�k�

m jXmk�1�jXmk�1

� �

� 1 �c�

and the usual interchange of di�erentiation and integration. Further, I�#0� is well de®ned

and by (2.12),

X

N

m�1

E0��
2
mnjF �mÿ1�n�ÿ!

P0
�
T
n I�#0��n; �d�
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and by Lemma 2.4,

X

N

m�1

E0��
2
mn1�j�mnj � ��jF

�mÿ1�n� �e�

�

X

N

m�1

E
1=2
0 ��

4
mnjF �mÿ1�n�

" #

max
1�m�N

P
1=2
0 �j�mnj � �jF

�mÿ1�n� � oP0
�1�:

The central limit theorem for triangular arrays of martingale summands (see Hall and

Heyde 1980, for example) establishes that

�n�
T
X

N

m�1

r log l0�Y
�k�

m jXmk�1�ÿ!
L0
N�0; �TI�#0���: �f�

Finally, Lemma 2.5 establishes that the last term in (a) tends toÿ 1
2
�
T
I�#0�� . The theorem is

proved. h

Proof of Lemma 1.1.We construct a minimum distance estimator. The proof is based on Le

Cam (1956). The construction is simple under the assumption that, for some k <1, the

map #! P
�k�

#
is one±one and �-compact. In that case it is possible to construct

���

n
p

-

consistent estimates by considering P
�k�

n , the empirical distribution of the vectors

fYa�b : 0 � b � kÿ 1g, for 1 � a � nÿ k� 1. See RydeÂ n (1995) for a proof that k � 2K

under somewhat di�erent conditions than ours, and RydeÂ n (1994a) for the construction of

the
���

n
p

-consistent estimator. In general, let � � [
1

j�1�j with �j�1 � �j; j � 1 compact sets,

and de®ne Tn jk � ft 2 �j : n
ÿ1=4

dK�P
�k�

t ;P
�k�

n � � min#2�j
dK�P

�k�

#
;P

�k�

n �g, where dK� � ; � � is

the Kolmogorov distance. Then let ~# 2 Tn, where Tn � Tnjk with Tnj k non-empty and

radius less than nÿ1=4 and minimal j � k. h

Proof of Corollary 1.1. The corollary follows in a standard fashion by the methods of Le

Cam (1986) and Le Cam and Yang (1990). Let GMn
� Gn \ f# : j#ÿ #0j < Mn

ÿ1=2
g. Note

that there are O�n=2� points in GMn
. Write Rn � Rn��� for the remainder term in (1.12). It

follows from Theorem 1.1 that

P0 sup
�nÿ1=22GMn

jLn��� ÿ ��n �
1
2
�
T
Jn� j > �

 !

�a�

� O�n
=2
� sup
�nÿ1=22GMn

P0�jRn���j > �� �b�

ÿ!

P0
0:

Hence ^#n is within distance OP0
�n
�1��=2

� of

n
ÿ1=2 argmax f�T�n ÿ

1
2
�
T
Jn�g � n

ÿ1=2
J
ÿ1
n �n; �c�

which proves Corollary 1.1. h
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3. Further lemmas and proofs

We begin with four lemmas which are straightforward extensions of key results of Baum

and Petrie (1966) (Lemma 2.1, Lemma 2.2 and Corollary 2.3) valid under Assumptions 1±3

and hence the proofs are omitted. They contain the essential information that knowledge of

ys and xs in the distant past adds very little information to the present. Lemma 3.1

guarantees strong mixing conditions.

Let

�0�y� � �1� �K ÿ 1�ÿ2�#0��#0�y��
ÿ1
:

In what follows we write P#�AjB; y1; . . . ; yn� if P#�AjB;Y1; . . . ;Yn� is a version of the

regular conditional probability of A given B;Y1; . . . ;Yn, and P#�AjB; y1; . . . ; yn� is de®ned

for all #;A;B and y1; . . . ; yn. This is easily done if we can de®ne densities g#�yjx� valid for

all #; y and x.

Lemma 3.1. For j#ÿ #0j � � and all #0,

P#�Xi�1 � bjXi � a; y1; . . . ; yn� � �0�yi�1� > 0: �3:1�

Lemma 3.2. If Ct is an event depending only on Xi;Yi; i � t, then for all

j#ÿ #0j � �; #0; d � 2,

jP#�Ctjytÿ1; . . . ; ytÿd�1� ÿ P#�Ctjytÿ1; . . . ; ytÿd �j

�

Y

tÿ1

j�tÿd�1

�1ÿ 2�0�yj�� � exp ÿ2
X

tÿ1

j�tÿd�1

�0�yj�

( )

:

Lemma 3.3. Let Ct be as above, let

M
�

d
�#� � max

a
P#�Ctjy1; . . . ; yn;Xtÿd � a�;

and de®ne M
ÿ

d �#� as the corresponding minimum. Then, for all #0; j#ÿ #0j � �,

jM
�

d
�#� ÿM

ÿ

d �#�j �

Y

tÿ1

j�tÿd�1

�1ÿ 2�0�yj��: �3:2�

Lemma 3.4. If assumptions 1 and 2 hold, then for all #0; j#ÿ #0j � �; y1; . . . yl; a; b;

P#�Xl�1 � ajy1; . . . ; yl;X1 � b� � �#0�: �3:3�

The following two lemmas are of general utility in missing-data models.

Lemma 3.5. If P� Q; e� � dQ=dP;T 2 L1�Q�, and B is a sub-�-®eld, then

EPjEQ�T jB�j � E
1=r
P
fjT j

r
gE

1=s
P
fe s�gE

1=t
P
feÿt�g; �3:4�

where 1=r� 1=s� 1=t � 1.
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Proof of Lemma 3.5. Note that

EQ�T jB� �
EP�Te

�

jB�

EP�e
�

jB�
: �a�

So (3.4) is bounded by

EPjEP�Te
�

jB�EP�e
ÿ�

jB�j � EPfjT je
�EP�e

ÿ�

jB�g � E
1=r
P
fjT j

r
gE

1=s
P
fe s�gE

1=t
P
feÿt�g:

h�b�

Lemma 3.6. Let #! U#; # 2 R, be continuously di�erentiable, where U#� � � is a stochastic

process on �
;A�;B is a sub-®eld of A. Then, if P# � � and l# � dP#=d�, suppose

(i) #!
@

@#
log l#

(ii) #! E#

@U#

@#

�

�

�

�

�

�

�

�

(iii) #! E#�U
2
#�

(iv) #! E#

@

@#
log l#

� �2

are all continuous. Then,

@

@#
E#�U#jB� � E#

@U#

@#

�

�

�

�

B

� �

� cov# U#;
@

@#
log l#

� �
�

�

�

�

B

� �

: �3:5�

Proof of Lemma 3.6. Write ��#; #��� � log�l#��=l#�,

E#���U#��jB� �
E#�U#��e

��#;#���
jB�

E#�
e��#;#���

jB�
: �a�

Then

@

@#
E#�U#jB� �

@

@�
E#�U#��e

��#;#���
jB�j

��0 ÿ E#�U#jB�
@

@�
E#�e

��#;#���
jB�j

��0; �b�

provided the right-hand side exists. Interchange of integration and di�erentiation may be

justi®ed under our condition by a delicate but standard argument we do not reproduce. We

get that the right-hand side of (b) is

E#

@U#

@#

�

�

�

�

B

� �

� E# U#

@

@#
log l#

�

�

�

�

B

� �

ÿ E#�U#jB�E#

@

@#
log l#

�

�

�

�

B

� �

; �c�

and (3.5) follows. h

We also need a basic lemma (Theorem 17.2.2) from Ibragimov and Linnik (1971 p. 307),

which we quote for completeness.
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Lemma 3.7. If x; � have joint distribution P with marginals P1;P2 such that

kPÿ �P1 � P2�k � �, where k � k is variational distance, and, for some � > 0, and

Ej�j2�� � c1;Ej�j
2��

� c2, then

jE���� ÿ E���E���j � c�
1ÿ�

; �3:6�

where � � 2=�2� �� and c � 4� 3c
�=2
1 c

1ÿ�=2
2 � 3c

1ÿ�=2
1 c

�=2
2 .

Here are the additional lemmas we need to carry out I±V from Section 2. Let

��; i;m�a; b� � P� �Xi�1 � bjXi � a;Y1; . . . ;Ym�: �3:7�

Lemma 3.8. In our model, if 1 � i � mÿ 1,

��; i;m�a; b�

�0; i;m�a; b�
�

E0

f�

f0
�X1;m;Y1;M�jXi � a;Xi�1 � b;Y1;m

� �

E0

f�

f0
�X1;m;Y1;n�jXi � 1;Y1;m

� � : �3:8�

Proof of Lemma 3.8. Note that

P� �Xi�1 � b;Xi � ajY1:m� � E0

f�

f0
�X1;m;Y1;m�1�Xi�1 � b;Xi � a�jY1;m�

� �

E0

f�

f0
�X1:m;Y1;m�jY1:m

�� �a�

P� �Xi � ajY1:m� �

E0

f�

f0
�X1;m;Y1;m�1�Xi � a�jY1;m

� �

E0

f�

f0
�X1:m;Y1;m�jY1;m

� � �b�

E0

f�

f0
�X1;m;Y1;m�1�Xi � a�jY1:m

� �

� E0

f�

f0
�X1;m;Y1;m�jXi � 1;Y1;m

� �

P0�Xi � ajY1;m�:

�c�

Substitute (a), (b) on the left-hand side of (3.8) and simplify using (c) and an analogous

expression for the numerator in (a) to get the right-hand side. h

Let

Sn � f�a; b; i;m; �� : mÿ i � dn; 1 � m � n; j� j �M g

and

E0m� � � � E0� � jY1;m�;P�m� � � � P� � � jY1;m�; etc:

211Inference in hidden Markov models I



Lemma 3.9. Suppose Assumptions 1, 3 and 4 hold and

dn � o�n
1=2

= log n�: �3:9�

Then

P0 inf
Sn

E0m

f�

f0
�Xi;m;Yi;m�jXi � a;Xi�1 � b

� �

�

1

2

� �

� 1ÿ o�n
ÿ1
�: �3:10�

Proof of Lemma 3.9. From (1.2), if j� j �M,

f�

f0
�Xi;m;Yi;m� � inf

c;d

��

�0

�c; d �

� �

mÿi�1

inf
c

��

�0

�c� exp ÿM�n

X

m

j�i

q0�Yj;M�n�

( )

: �a�

By Assumptions 1 and 2, if j� j �M then the ®rst two terms are larger than (1ÿ r��
mÿi�1 for

a ®xed r � r�M � <1, so that

inf
Sn

E0m

F�

f0
�Xi;m;Yj;m�jXi � a;Xi�1 � b

� �

� �1� o�1�� exp f�ÿ�dn � 1�M�n max
1� j�n

q0�Yj;M�n�g: �b�

But by (3.9) and Assumption 3, for some � > 0,

P0 max
1� j�n

q0�Yj ;M�n� � �log 2�=Mdn�n

� �

�c�

� nP0�q0�Y1;M�n� � �log 2�=Mdn�n�

� n exp fÿ��log 2=M �cn log n gE0e
�q 0�Y1;M�n�;

where cn !1 and (3.10) follows. h

Lemma 3.10. Suppose Assumptions 1±4 hold and � > 2=r. Suppose dn !1;

dn � o�n
1=2

=�log n�
2
�. Then

sup
Sn

��; i ;m

�0; i;m

�a; b� ÿ 1

�

�

�

�

�

�

�

�

� O1=n�n
ÿ1=2��

�: �3:11�

Proof of Lemma 3.10. By Lemmas 3.8 and 3.9 it is enough to show that

sup
Sn

E0m

f�

f0
�Xi;m;Yi;m�jXi � a;Xi�1 � b

� �
�

�

�

�

�

ÿ E0m

f�

f0
�Xi;m;Yi;m�jXi � a;Xi�1 � c

�
�

�

�

�

��

� Onÿ1�n
ÿ1=2��

�: �a�
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Consider the three Markov chains X
0

i�1; . . . ;X
0

m;X
00

i�1; . . . ;X
00

m;X
000

i�1; . . . ;X
000

m. Here

fX
0

jg and fX
00

j g are independent, both with transition probabilities �o; j;m from j

to j � 1; i � j � m, with Yi;m held ®xed, X
0

i � X
00

i�1 � a;X
0

i�1 � b;X
00

i�1 � c. Also

X
000

l � X
00

l1�l � T � � X
0

l1�l > T �, where T � minfl : X 0

l � X
00

l; i < l � mg ^m. Note

that

fX
00

l : i � l � T g and fX
000

l : i � l � T g have the same distribution: �b�

Further, if E0m, P0m now refer to probabilities on the space on which the data and the

X
0

j;X
00

j ;X
000

j are de®ned.

E0m

f�

f0
�Xi;m;Yi;m�jXi � a;Xi�1 � b

� �

ÿ E0m

f�

f0
�Xi;m;Yi;m�jXi � a;Xi�1 � c

� �
�

�

�

�

�

�

�

�

�c�

� E0m

f�

f0
�X

0

i;m;Yi;m� ÿ

f�

f0
�X

00

i;m;Yi; ;�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

E0m

f�

f0
�X

0

i;T ;Yi;T� ÿ

f�

f0
�X

000

i;T ;Yi;T�

�� �

�

�0

��

�X
0

T�1�
f�

f0
�X

0

T�1; . . . ;X
0

m;YT�1; . . . ;Ym�

��

�0

�X
0

T ;X
0

T�1�

�
�

�

�

�

: �d�

By Assumptions 1 and 2, for j� j �M; dn as above, there exists c�M � <1 such that, if

An � maxfq0�Yj;M�n� : 1 � j � ng,

exp fÿ�n�T ÿ i ��MAn � c�g �
f�

f0
�X

0

i;T ;Yi;T� � exp f�n�T ÿ i ��MAn � c�g: �e�

The same holds if X 0

i;T is replaced by X
000

i;T and also

f�

f0
�X

0

T�1;m;YT�1;m� � exp f�ndn�MAn � c�g: �f�

By Assumption 3 and (c) of the proof of Lemma 3.9,

An � Onÿ1��log n�
2
�: �g�

Then, from (d), (e), (f), and (g), (a) follows if

sup
Sn

fE0m�e
�Tÿi �an

ÿ eÿ�Tÿi �an�g � Onÿ1�n
ÿ1=2��

� �h�

for

an � O��n�log n�
2
�: �i�

Now,

P0m�T > i � t � �

Y

i�t

j�1�1

�1ÿ K�
2
0�Yj��; �j�
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since for j � i

P0m�X
0

j�1 � X
00

j�1jX
0

j � a;X
00

j � b � �

X

c

�0; j;m�a; c��0; i;m�b; c� � K�
2
0�Yj�1� �k�

by Lemma 3.1. But, by Assumption 4

P0 min
1� j�n

fK�
2
0�Yj�g � bn

� �

� P0 max
1� j�n

f�0�Yj�g �


2
��K=bn�

1=2
ÿ 1�

K ÿ 1

" #

� o�n
ÿ1
� �l�

if

bn � o�n
ÿ2=r

�: �m�

Note that for any integer-valued random variable N � 1

EaN � a�

X

1

t�1

�a
t�1

ÿ a
t
�P �N > t � �n�

From ( j), (l), (n), if bn � o�n
ÿ2=r

�; bnn
�
=�log n�2 !1, then an � o�bn� and, with probability

1ÿ o�n
ÿ1
�,

max fE0m�e
�Tÿi �an

ÿ eÿ�Tÿi �an� : mÿ i � dn; 1 � m � ng

� ean ÿ eÿan �
X

1

t�1

�ean ÿ 1�et�anÿbn�

� ean ÿ eÿan � �ean ÿ 1�eanÿbn�1ÿ e�anÿbn��ÿ1

� O�an�bn ÿ an�
ÿ1
�

� O�anb
ÿ1
n �

and (a) follows from (h). h

Lemma 3.11. If Assumptions 1±4 hold, � > 2=r, then

sup
Sn

jP�m�Xm � a� ÿ P0m�Xm � a�j � O1=n�n
ÿ1=2�2�

�: �3:12�

Proof of Lemma 3.11. For ®xed a let V�;l;m 2 R
K be the column vector with coordinates:

V�;l;m� � �P�m�Xm � ajXl �
:
�; l � m: �a�

Then,

V�;l;m � ��;l;m . . .��;mÿ1;mV�;m;m: �b�

By Lemma 3.3

sup fjV�;l;m�b� ÿ V�;l;m�c�j : b; c; j� j < Mg �

Y

mÿ1

j�l�1

�1ÿ 2�0�Yj�� � eÿ�mÿlÿ1�Bn ; �c�
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where

Bn � 2 min
1� j�n

�0�Yj�: �d�

Then

sup fjV�;l;m�b� ÿ V�;l;m�c�je
�mÿlÿ1�bn

: b; c; j� jM; l � mg � Onÿ1�1� �e�

if bn � o�n
ÿ2=r

�, by arguing as in (1) of Lemma 3.10. Therefore, if c�;l;m � K
ÿ1
�bV�;l;m�b�

then

sup fkV�;l;m ÿ c�;l;m1ke
bn�mÿlÿ1�

: m; l; j� j �M g � Onÿ1�1�; �f�

where k � k is the L
1
on Rk and 1 is the vector of 1s. Then from (b),

kV�;l;m ÿ V0;l;mk � k��;l;mV�;l�1;m ÿ �0;l;mV0;l�1;mk

� k���;l;m ÿ �0;l;m�V�;l�1;mk � kV�;l�1;m ÿ V0;l�1;mk: �g�

Further, from Lemma 3.10, if mÿ l � o�n
1=2

=�log n�2�; bn � o�n
ÿ2=r

�; then

k���;l;m ÿ �0;l;m�V�;l
�1;m

k � �ne
ÿ�mÿlÿ1�bn ; �h�

where �n � Onÿ1�cn�; cn � n
ÿ1=2��, since

���;l;m ÿ �0;l;m�1 � 0: �i�

Iterating (g) and using (h), we get, if dn � o�n
1=2

=�log n�2�; bn � o�n
ÿ2=r

�,

sup fkV�;l;m ÿ V0;l;mk : mÿ l � dn; j� j �M g � Onÿ1�cnb
ÿ1
n �: � j�

Finally,

jP�m�Xm � a� ÿ P0m�Xm � a�j

�

X

b

fP�m�Xl ÿ b�V�; l;m�b� ÿ P0m�Xl � b �V0;l;m�b�g

�

�

�

�

�

�

�

�

�

�

�

X

b

�P�m�Xl � b � ÿ P0m�Xl � b ��V�;l;m�b�

�

�

�

�

�

�

�

�

�

�

� kV�;l;m ÿ V0;l;mk: �k�

By (f) the ®rst term in (k) is, if mÿ l � dn; equal to Onÿ1�e
ÿdnbn

�. If we use ( j) and put

bn � n
ÿ�
; dn � n

�
�log n�2, the lemma follows. h

Lemma 3.12. Under Assumptions 1±4, if k � o�n
1=2ÿ

�, for some  > 0,

sup
l�

l0

�Y
�k�

m jXmk�1� ÿ 1

�

�

�

�

�

�

�

�

: j� j �M; 1 � m � N

� �

� O1;n�n
ÿ=2

� �3:13�
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Proof of Lemma 3.12. Note that for any p > 1,

E0 sup
l�

l0

�Y
�k�

0 jX1� ÿ 1

�

�

�

�

�

�

�

�

p

: j� j �M

� �

� E0 sup E0

�0

��

�X1�
f�

f0
�X

�k�

0 ;Y
�k�

0 � ÿ 1

� �

jX1;Y
�k�

0

� �
�

�

�

�

�

�

�

�

p

: j� j �M

� �

�a�

� �1� o�1��E0 sup
f�

f0
�X

�k�

0 ;Y
�k�

0 � ÿ 1

�

�

�

�

�

�

�

�

p

: j� j �M

� �

� o�1�:

But, for any di�erentiable function A�#� with A�0� � 0,

sup eA�#� ÿ 1
�

�

�

�

�

�
; j#j � �

n o

� � sup fjA 0

�#�jeA�#� : j#j � �g � �M�e
�M� ; �b�

where M� � sup fjA0�#�j : j#j � �g: We conclude that

E0 sup
f�

f0
�X

�k�

0 ;Y
�k�

0 � ÿ 1

�

�

�

�

�

�

�

�

p

: j� j �M

� �

� �M�n�
pE0

X

k

j�1

~q�Yj;M�n�

 !

p

exp pM�n

X

k

j�1

~q�Yj;M�n�

" #( )

; �c�

where

~q�y; �� � q�y; �� � sup fjr log�#�a; b�j : j#ÿ #0j < �; a; bg: �d�

Bound the right-hand side of (c) by

�M�n�
pE

1=�1���

0

X

k

j�1

~q�Yj;M�n�

 !

p�1���
8

<

:

9

=

;

E
�=�1���

0 exp
p�1� ��M�n

�

X

k

j�1

~q�Yj;M�n�

" #( )

:

�e�

The second term in (e) is bounded by

k
p
�E0f~q

p�1���
�Y1;M�n�g�

1=�1���
; �f�

use Assumption 3 to bound the third by

max
a

E0 exp
p�1� ��

�
M�nq�Y1;M�n�

� �
�

�

�

�

X1 � �

� �� �

k�=�1���

�g�

� 1�
O�1�
���

n
p

� �

k�=�1���

� 1� o�1�

since k � o�n
1=2
� and �n ! 0. Therefore,

P0 sup
1�m��M�N

l�

l0

�Y
�k�

m jXmk�1� ÿ 1

�

�

�

�

�

�

�

�

� �

� n
ÿ=2

� �

� O�1�
n

k
�k�n�

p
n
p=2

� o�n
ÿ1
� �h�

if k � O�n
1=2ÿ

�; p > 2� 3=: h
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Lemma 3.13. Under Assumptions 1±4, if k � o�n
1=2ÿ

�, for some  > 0 and � > 2=r

sup
jL�m ÿ L

�

�mj

L��m
: 1 � m � N; j� j �M

� �

� O1=n�n
ÿ1=2�2�

�: �3:14�

Proof of Lemma 3.13. By (3.1)

min
a

l�

l0

�Y
�k�

m ja�B��Y1;mk�

� �

� L�mmax
a

l�

l0

�Y
�k�

m ja�B� �Y1;mk�

� �

; �a�

where

B� �Y1;mk� �

X

a

P� �Xmk�1 � ajY1;mk�l0�Y
�k�

m ja�

X

a

P0�Xmk�1 � ajY1;mk�l0�Y
�k�

m ja�
: �b�

But

jB� �Y1;mk� ÿ 1j � max
a

P� �Xmk�1 � ajY1;mk�

P0�Xmk�1 � ajY1;mk�
ÿ 1

�

�

�

�

�

�

�

�

: �c�

It follows from Lemmas 3.11 and 3.4,

sup fjB� �Y1;mk� ÿ 1j : j� j �M; 1 � m � N g � Onÿ1�n
ÿ1=2�2�

�: �d�

On the other hand,

l�

l0

�Y
�k�

m ja� �
�0

��

E0

f�

f0
�X

�k�

m ;Y
�k�

m �jXmk�1 � a;Y
�k�

m

� �

�e�

so that by (a) of the proof of Lemma 3.10, if k � o�n
1=2

=�log n�2�, then

sup
l�

l0

�Y
�k�

m ja� ÿ
l�

l0

�Y
�k�

m jb�

�

�

�

�

�

�

�

�

: m; j� j �M; a; b

� �

� Onÿ1�n
ÿ1=2��

�: �f�

From (a), (d), (f) and Lemma 3.12 we obtain Lemma 3.13. h

Lemma 3.14. Under Assumptions 1±5,

E0

X

N

m�1

jL
�

�m ÿ 1j � O
n

k

� �1=2
� �

: �3:15�
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Proof of Lemma 3.14. Note that

E0fjL
�

�0 ÿ 1jjX1 � ag � kL� �Y1;kjX1 � a� ÿ L0�Y1;kjX1 � a�k; �a�

where k � k denotes variational distance. Therefore,

E0fjL
�

�0 ÿ 1kX1 � ag �b�

� kL� ��X1;k;Y1;k�jX1 � a� ÿ L0��X1;k;Y1;k�jX1 � a�k �c�

� 2H�L0;a;L1a��2ÿH
2
�L0a;L1a��

1=2
;

where L0a;L1a are the laws in (c) and H is Hellinger distance, by a standard inequality (Le

Cam 1986, p.47). But

1ÿH
2
�L0a;L1a� � E0

f�

f0

� �1=2

�X1;k;Y1;k�jX1 � a

( )

� E0

��

�0

� �1=2

�a�

Y

kÿ1

1

��

�0

� �1=2

�Xi;Xi�1�

(

Y

k

i�1

E0

g�

g0

� �1=2

�YijXi�

" #

jx1 � a

)

: �d�

But

Y

k

i�1

E0

g�

g0

� �1=2

�YijXi�

" #

�

Y

k

i�1

E0fe
�1=2� log �g� =g0��Yi jXi�

g �e�

�

Y

k

i�1

�

1ÿ
�
2
n

2
j� j

2
pE0f�

1
4
q
2
0�Yi;M�n��

1
2
q02�Yi;M�n��e

�j� j=2��nq0�Yi ;M�n�
g

�

� 1ÿO
k

n

� �

by Taylor expansion and Assumptions 3 and 5. Similarly, by Assumptions 1 and 2:

E0

��

�0

� �1=2

�a�

Y

kÿ1

1

��

�0

� �1=2

�Xi;Xi�1�jX1 � a

( )

� 1ÿO
k

n

� �

: �f�

Finally, we conclude from (e) and (f):

X

K

a�1

H
2
�L0a;L1a��0�a� � O

k

n

� �

: �g�

The lemma is proved by (a), (b) and (g). h

Lemma 3.15. If L
�d�

�m is given by (2.2), r > 8; k � o�n
1=2ÿ

� for some  > 0, d � n
�
log

2
n;

� > 2=r then

sup fjL �d �

�m ÿ L�mj : j� j �M; 1 � m � Ng � Onÿ1�n
ÿ1ÿ�

�: �3:16�
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Proof of Lemma 3.15. By Lemma 3.2, if Bn is given by (d) of Lemma 3.11,

sup
1�m�N

j� j�M

fjP� �Xmk�1 � ajYmkÿd;mk� ÿ P� �Xmk�1 � ajY1;mk�jg �a�

� max
m�1

X

mkÿdÿ1

l�1

Y

mk

j�l�1

�1ÿ 2�0�Yj��

( )

�

eÿ�dÿ1�Bn

1ÿ eÿBn

� O1=n�n
ÿ1ÿ2�

�

by arguing as for (l) of Lemma 3.10. But, by Lemma 3.1,

P0�Xl � ajY1;nj � min
a;b

�0;lÿ1;n�a; b� � minf�0�Yj� : 1 � j � ng �b�

and, hence

P0�min
a;l

P0�Xl � ajY1;n� � n
ÿ�
� � 1ÿ o�n

ÿ1
�: �c�

But, arguing as for Lemma 3.13,

jL�m ÿ L
�d �

�m j � Am���max
�

l�

l0

�Y
�k�

m ja� � Am�0�L�m; �d�

where

Am��� � max
a

jP� �Xmk�1 � ajY1;mk� ÿ P� �Xmk�1 � ajYmkÿd;mk�j

P0�Xmk�1 � ajYmkÿd;mk�

� �

: �e�

By (a) and (c),

sup fAm��� : m; j� j �Mg � Onÿ1�n
ÿ�1���

� �f�

and Lemma 3.15 follows from (d), Lemma 3.12 and Lemma 3.13. h

Lemma 3.16. Suppose Assumptions 1±4 hold. Let d � n
�
�log n�

2
; � > 2=r, and k � n

4��
for

some  > 0; 4��  < 1=2, so that r > 16. Then

E0

X

m

�L
�d �

�m ÿ L
�

�m�

 !2( )

� O�n
ÿ
�: �3:17�

Proof of Lemma 3.16. For any ®xed u, we ®rst bound

E0f�L
�d �

�m �
u
g � E0 max

a

P�

P0

�Xmk�1 � ajYmkÿd;mk�max
a

l�

l0

�Y
�k�

m ja�

� �

u
� �

: �a�
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Now the ®rst term in (a) is uniformly bounded by Lemma 3.4. The second is bounded by

exp M�nu

X

�m�1�k

j�mk�1

q0�Yj;M�n�

( )

: �b�

Thus, if k � o�n
1=2
�, by Assumption 3, for all u, eventually

E0�L
�d �

�m �
u
� C1�1� C2�n�

k
� C3: �c�

Similarly,

E0�L
�

�m�
u
� C4: �d�

Now,

jL
�d �

�m ÿ L
�

�mj � max
a;b

l�

l0

�Y
�k�

m ja� ÿ
l�

l0

�Y
�k�

m jb�

�

�

�

�

�

�

�

�

�max
a

l�

l0

�Y
�k�

m ja�max
a

P�

P0

�Xmk�1 � ajYmkÿd;mk� ÿ 1

�

�

�

�

�

�

�

�

�e�

� Onÿ1�n
ÿ1=2��

� �Onÿ1�n
ÿ1=2�2�

�

by (f) of Lemma 3.13, Lemma 3.12, Lemma 3.4, Lemma 3.11 and (a) of Lemma 3.15. Let

cn � cn
ÿ1=2�2� for some large enough c. Note that

E0jL
�d �

�m ÿ L
�

�mj
2�8�

� c
2�8�
n � E0fjL

�d �

�m ÿ K
�

�mj
2�8�1�jL�d ��m ÿ L

�

�mj � cn�g

� c
2�8�
n � E16�2

0 fjL
�d �

�m ÿ L
�

�mj
�2�8��=16�2

gP
1ÿ16�2

0 fjL
�d �

�m ÿ L
�

�mj < cng �f�

� 2c2�8�n

for large enough n.

We will apply Lemma 3.7, with � � 8�. Note that, if d � k, by the geometric ergodicity of

the chain under Assumptions 1 and 2, the variational norm distance between the joint

distribution of �L�d ��m1
ÿ L

�

�m1
;L

�d �

�m2
ÿ L

�

�m2
� and the product of the marginals is bounded by

C�
jm1ÿm2j for some C <1; � < 1 and all m1;m2. Hence, using (f) above,

E0

X

N

m�1

�L
�d �

�m ÿ L
�

�m�

 !2( )

� O
n

k
c
2
n

� �

� O�n
ÿ
� �g�

under our conditions on k; cn. h

Proof of Lemma 2.1. It is enough to show that all terms on the right-hand side of (2.6) are

Oen
�n
ÿ=2

=en�. The ®rst term is equal to

X

N

m�1

�L�m ÿ L
�d �

�m � �

X

N

m�1

�L
�d �

�m ÿ L
�

�m� � Oen
�n
ÿ=2eÿ1=2n � �a�
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By Lemmas 3.15 and 3.16. The second term can be bounded by

sup
1�m�N

j� j�M

jL�m ÿ L
�

�mj

L�

�m

� �

X

N

m�1

jL
�

�m ÿ 1j � Oen
n
ÿ1=2�2� n

k

� �1=2

=en

� �

� Oen
�n
ÿ=2

=en� �b�

by Lemmas 3.13 and 3.14. Finally, the third term is negligible since

jRnj � 1ÿ sup
jL�m ÿ L

�

�mj

L�

�m

: 1 � m � N; j� j �M

� �� �

ÿ2

� Onÿ1�1� �c�

and

X

N

m�1

jL�m ÿ L
�

�mj

L�

�m

� �2

� O1=n�n
ÿ
�; �d�

both by Lemma 3.13. h

Proof of Lemma 2.2. Expand

logL�

�m � �n�
T
r log l0�Y

�k�

m jXmk�1�

�

1

2n
�
T @

2

@#i@#j

log l0�Y
�k�

m jXmk�1�





















� �a�

� �
3
n

�1

0

�1ÿ ��
2

2

X

a;b; c

�a�b�c
@
3

@#a@#b@#c

log l���Y
�k�

m jXmk�1�d�:

We use a classical formula based on Lemma 3.6. If B is generated by Xmk�1, Y
�k�

m , and we

suppress arguments in f#,

@
3

@#a@#b@#c

log l#�Y
�k�

m jXmk�1� �b�

� E0

@
3

@#a@#b@#c

log f#jB

( )

� cov#
@
2

@#a@#b

log f#;
@

@#c

log f#jB

( )

� cov#
@
2

@#a@#c

log f#;
@

@#b

log f#jB

( )

� cov#
@
2

@#b@#c

log f#;
@

@#a

log f#jB

( )

ÿ cov#
@

@#a

log f#
@

�#b

log f#;
@

@#c

log f#jB

� �

ÿ cov#
@

@#a

log f#
@

@#c

log f#;
@

@#b

log f#jB

� �

ÿ cov
@

@#b

log f#
@

@#c

f#;
@

@#a

log f#jB

� �

ÿ

@
3

@#a@#b@#c

log�#�Xmk�1�:
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We see from (b) and Assumptions 1 and 2 that to bound the third term in (a) it su�ces to

bound, for j#ÿ #0j �M�n, all a; b; c,

E0 E#

X

k

j�1

@
3

@#a@#b@#c

log g#�YjjXj�

�

�

�

�

�

�

�

�

�

�

jYi; . . . ;Yk

" #( )

; �c�

E0 E#

X

k

j�1

@
2

@#a@#b

log g#�YjjXj�

�

�

�

�

�

�

�

�

�

�

1�
X

k

j�1

@

@#c

log g#�YjjXj�

�

�

�

�

�

�

�

�

�

�

 !

jY1; . . . ;Yk

" #( )

; �d�

and

E0 E#

X

k

j�1

@

@#a

log g#�YjjXj�

�

�

�

�

�

�

�

�

�

�

3

jY1; . . . ;Yk

" #( )

: �e�

We can apply Lemma 3.5 to all of these and use Assumption 3 to conclude that, under

Assumption 5, (c)±(e) are uniformlyO�k 3
�. To do so we take r in the lemma as close to 1 as

possible and s and t as large as necessary since, by A3, and by arguing as in (b) of Lemma

3.16, E0 exp jt�j <1 for all k � o�n
1=2
�; t. Therefore, the expectation of the remainder in

(a) isO�nÿ3=2k3
�. The lemma follows since there are n=k terms like that in the left-hand side

of (2.10). h

Lemma 3.17. Let ÿk � ÿj � 2 and

S� j; k� � max
a;b; c

P0�Xÿk � ajX
ÿj�2;Yÿj�2;0;X1� b �ÿ P0�Xÿk � ajX

ÿj�2;Yÿj�2;0;X1� c�
�

�

�

�

� 	

:

�3:18�

Then

S� j; k� � 2ÿ1�#0�
Y

0

i�ÿk�1

�1ÿ 2�0�Yi��: �3:19�

Proof of Lemma 3.17.

P0�Xÿk � ajX
ÿj�2;Yÿj�2;0;X1 � b �

�

P0�X1 � b jX
ÿj�2;Yÿj�2;0;Xÿk � a�

P0�X1 � b jX
ÿj�2;Yÿj�2;0

P0�Xÿk � ajX
ÿj�2;Yÿj�2;0�: �a�

Then

S� j; k� � 2max
a;b

P0�X1 � b jX
ÿj�2;Yÿj�2;0;Xÿk � a�

P0�X1 � b jX
ÿj�2;Yÿj�2;0�

ÿ 1

�

�

�

�

�

�

�

�

� �

: �b�
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But

P0�X1 � b jX
ÿj�2;Yÿj�2;0� �

X

c

P0�X1 � b jX
ÿk � c;Y

ÿk�1;0�P0�Xÿk � cjX
ÿj�2;Yÿj�2;0�;

�c�

and hence

S� j; k� � 2max
a;b

X

c

jP0�X1 � b jX
ÿk � c;Y

ÿk�1;0� ÿ P0�X1 � b jX
ÿk � a;Y

ÿk�1;0�j

min
b

P0�X1 � b jX
ÿj�2;Yÿj�2;0�

� 2ÿ1�#0�K
Y

0

j�ÿk�1

�1ÿ 2�0�Yj�� �d�

by Lemmas 3.3 and 3.4. h

Proof of Lemma 2.3. Without loss of generality, take #0 � 0. Write

l#�Y1; . . . ;YkjX1� �

Y

k

j�1

gj#

g
� jÿ1�#

�X1;Y1; j�; �a�

where gj#�X1;Y1; j� is the joint density of �X1;Y1; j� for j � 1, and g0# � �#�X1�. Take

dim �#� � 1. The generalization is trivial. Then

@

@#
log l#�Y

�k�

0 jX1� �

X

k

j�1

@

@#
log gj#�X1;Y1; j� ÿ

@

@#
log g

� jÿ1�#�X1;Y1; jÿ1�

� �

:

The terms in brackets are of course martingale summands, and we arrive at the identity

E0

@

@#
log l0�Y

�k�

0 jX1�

� �2
( )

�

X

k

j�1

E0

@

@#
log gj 0�X1;Y1; j� ÿ

@

@#
log g

� jÿ1�0�X1;Y1; jÿ1�

� �2
( )

�c�

�

X

k

j�1

E0 U
2
j �X1;Yi; j�

� 	

; say

�

X

k

j�1

E0fU
2
j �Xÿj�2;Yÿj�2;1�g;

where �Xj;Yj�;ÿ1 < j <1, is the two-sided stationary sequence such that �Xj;Yj�; j � 1,

are distributed according to P#. We claim that

E0fU
2
j �Xÿj�2;Yÿj�2;1g ! I�#0�; �d�

223Inference in hidden Markov models I



and that, combined with (c), clearly establishes (2.11). Now, if we use �b 0=b��#� for

�@=@#� log b�#�,

Uj�Xÿj�2;Yÿj�2;1� � E0

X

1

m�ÿj�2

g
0

0

g0
�YmjXm� �

X

0

m�ÿj�2

�
0

0

�0

�Xm;Xm�1�jXÿj�2;Yÿj�2;1

( )

�e�

ÿ E0

X

0

m�ÿj�2

g
0

0

g0
�YmjXm� �

X

ÿ1

m�ÿj�2

�
0

0

�0

�Xm;Xm�1�jXÿj�2;Yÿj�2;0

( )

by the usual formula. Consider the ®rst part of the mth term in the sum in (e),

U
�1�
j m
� E0

g
0

0

g0
�YmjXm�jXÿj�2;Yÿj�2;1

� �

ÿ E
g
0

0

g0
�YmjXm�jXÿj�2;Yÿj�2;0

� �

�f�

�

X

K

a�1

g
0

0

g0
�Ymja�fP0�Xm � ajX

ÿj�2;Yÿj�2;1� ÿ P0�Xm � ajX
ÿj�2;Yÿj�2;0�g:

Note that, by the (backward) martingale convergence theorem, for ®xed m < 0,

U
�1�
j m
ÿ!

P0
E0

g
0

0

g0
�YmjXm�jY1;Y0; . . .

� �

ÿ E0

g
0

0

g0
�YmjXm�jY0;Yÿ1; . . .

� �

�g�

as j !1.

Note that

P0fXm � ajX
ÿj�2;Yÿj�2;0g

�

X

b

P0fXm � ajX
ÿj�2;Yÿj�2;0;X1 � bgP0fX1;� b jX

ÿj�2;Yÿj�2;0g �h�

and
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�

X

c

P0fXm � ajX
ÿj�2;Yÿj�2;0;X1 � cgP0fX1 � cjX
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so that

max
a
jP0fXm � ajX

ÿj�2;Yÿj�2;0g ÿ P0fXm � ajXj�2;Yÿj�2;1gj

� max
a;b;c

jP0fXm � ajX
ÿj�2;Yÿj�2;0;X1 � bg �j�

ÿ P0fXm � ajX
ÿj�2;Yÿj�2;0;X1 � cgj � S� j;ÿm�:
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We conclude, by Lemma 3.17, that
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j m
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X
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X

0
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�0�Yk�

 !
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Now, by (k)

E0
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U
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X

0

t�m2
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��

:

Applying the HoÈ lder inequality to each term and using Assumption 3, we obtain
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X
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But, if m1 � m2,
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X
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where s � maxa E0�e
ÿs�0�Y1�

jX1 � a� < 1 for all s > 0. Using the bound from (n) in (m) we

obtain, for some C� <1;  � 2�1���,
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U
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Thus for any � > 0 there exists k � k��� such that, for all j > k� 2,
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X

ÿk
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U
�1�
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A similar argument shows that for ®xed k, some C <1, all j,

E0

X

0

m�ÿk

U
�1�
j m

 !4

� C: �q�

By a similar but easier argument, if

U
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� �
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and (p) and (q) carry over as well. We conclude that (d) follows since in fact, by (g), (p)±(s),

Uj�Xÿj�2;Yÿj�2;1�ÿ!
L2

W �Y1;Y0; . . .�: �t�

The lemma follows. h

Proof of Lemma 2.4.We begin by proving (2.12). In view of Lemma 2.3 it is enough to show

that, for all � ,
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1

n

X

N

m�1

�
TE0frr

T log l0�Y
�k�

n jXmk�1�jXmk�1g�
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 !
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But if we let hk;m�Xmk�1� denote the mth summand in (a), then Lemma 3.7 and geometric

ergodicity of the fXjg guarantee that the expression in (a) is bounded by

CE0h
2
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Also
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by invoking Lemma 3.7 and (e) of Lemma 2.3 again. Thus,

E0h
2
k;1�X1�Nn

ÿ2
� O�kn

ÿ1
� � o�1� and (a) and (2.12) follow. To prove (2.13) we take

expectations and note that it is enough to show that

E0jr log l0�Y
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1 jX1�j
4
� O�k
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�: �d�

But this is just (c). Finally, (2.14) follows from
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Proof of Lemma 2.5. By a standard identity valid under our conditions,

E0

@
2

@#a@#b

log l0�Y
�k�

m jXmk�1�
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� ÿE0�rr
T log l0�Y
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Therefore, by Lemma 2.3 and stationarity,
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Now use A5 and argue as in the proof of (2.12) to obtain the lemma. h
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