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We study the binary classification problem with hinge loss. We consider classifiers that are linear
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and margin.
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1. Introduction

Let (X , Y ) be random variables, with X 2 X a feature and Y 2 f�1, þ1g a binary label.

The problem is to predict Y given X . A classifier is a function f : X ! R. Using the

classifier f , we predict the label þ1 when f (X ) > 0, and the label �1 when f (X ) , 0.

Thus, a classification error occurs when Yf (X ) < 0.

Let P be the distribution of the pair (X , Y ), and denote the marginal distribution of X by

Q. Moreover, write the regression of Y on X as

�(x) :¼ P(Y ¼ 1jX ¼ x), x 2 X :

Our aim is to find a classifier which makes the correct classification with high probability.

The probability of misclassification by the classifier f or prediction error of f, is

P(Yf (X ) < 0):

Bayes’ (decision) rule is

f � :¼
þ1, if � > 1

2
,

�1, if � , 1
2
:

(

It is easy to see that the prediction error is smallest when using Bayes’ rule. The function �
is, however, not known. To estimate Bayes’ rule, we take a sample from P. Let

(X1, Y1), . . . , (X n, Yn) be observed independent and identically distributed copies of

(X , Y ). These observations are called the training set. The sample size is assumed to be

large enough to permit a nonparametric approach to the estimation problem. We assume

n > 8 to avoid nonsense expressions later on.
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Let F be a collection of classifiers. In empirical risk minimization, one chooses the

classifier in F that has the smallest number of misclassifications in the sample (see Vapnik

1995, 1998). However, if F is a rich set, this classifier will generally be hard to compute.

We will indeed consider a very high-dimensional class F in this paper. By replacing the

number of misclassifications (i.e., 0/1 loss) by hinge loss one can overcome computational

problems. The support vector machine (SVM) adds an ‘2 penalty (or quadratic penalty) to

the hinge loss function. We propose instead to employ an ‘1 penalty. This yields a

computationally feasible complexity regularization method and we show that the procedure

can yield estimators that adjust to favourable distributions P.

The empirical hinge loss function is

Rn( f ) :¼ 1

n

Xn

i¼1

l(Yi f (X i)),

where l(z) ¼ (1� z)þ, with zþ denoting the positive part of z 2 R. The function l is called

the hinge function. Define the theoretical hinge loss

R( f ) :¼ En( f ) ¼ E(l(Yf (X ))):

Hinge loss is consistent in the sense that Bayes’ decision rule f � minimizes the theoretical

hinge loss

f � ¼ argmin
all f

R( f )

(see Lin 2002).

For the collection of classifiers F , we choose a subset of a high-dimensional linear space.

Consider a given system fłk : k ¼ 1, . . . , mg of functions on X . We call fłkg the

collection of base functions. We assume throughout that C2
Q , 1, where

C2
Q :¼ max

1<k<m

ð
ł2

k dQ (1)

is the largest squared L2(Q) norm of the base functions łk . However, we do not require CQ

to be known.

For Æ 2 Rm define

fÆ(x) :¼
Xm

k¼1

Ækłk(x), x 2 X :

We then take F � f fÆ : Æ 2 Rmg. The number of base functions łk is allowed to be very

large, up to
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m < nD, (2)

for some D > 1. The SVM minimizes the empirical hinge loss with, to avoid overfitting, an

‘2 penalty on the coefficients Æ, that is, a quadratic penalty on the classifier fÆ proportional

to
P

Æ2
k (or a weighted version thereof). In fact, classical SVMs take F not exactly as a

(subset of a) finite-dimensional space, but rather as a reproducing kernel Hilbert space (see

Section 2.3 for more details). SVMs were introduced by Boser et al. (1992), and have been

applied extensively since then. The book by Schölkopf and Smola (2002) contains a good

overview of SVMs and related learning theory.

As a variant of the SVM procedure, we propose to add an ‘1 complexity penalty, instead

of an ‘2 complexity penalty, to the empirical hinge loss. The ‘1 penalty is proportional to

the ‘1 norm
Pm

k¼1jÆk j of the coefficients. The ‘1 penalized minimum hinge loss estimator

f̂f n is then defined as

f̂f n :¼ arg min
fÆ2F

Rn( fÆ)þ º̂ºn

Xm

k¼1

jÆk j
( )

, (3)

where º̂ºn is a regularization parameter.

Under Conditions A, B and C below, an appropriate choice for the regularization

parameter is

º̂ºn :¼ cmax(ĈCn, 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
:

Here, c is required to be larger than some given universal constant, but is otherwise arbitrary.

The quantity ĈCn is the largest empirical L2 norm of the base functions fłkg (see (8)), that is,

an estimate of CQ defined in (1). The constant D is from (2). Finally, K is either an assumed

given bound K0 on the supremum norm of the functions in F , or, under some other

assumptions, K ¼ 1. More precisely, in Theorem 2.1, we require, for technical reasons, that

k f k1 < K0 8 f 2 F , (4)

for some constant K0 > 1, where

k f k1 :¼ sup
x2X

j f (x)j

denotes the supremum norm of the function f. The dependency on K0 of our results will be

given explicitly. On the other hand, in Theorem 2.2, we let K ¼ 1. We assume there that for

some constant K n,

k f � ~ff k1 < max(K nk f � ~ff k1,�, 2), 8 f , ~ff 2 F : (5)

Here, k � k1,� denotes the L1(�) norm, with � some measure on X , depending on the other

conditions (Conditions A and B). The constant K n is allowed to be large, depending in fact

on the rate an ‘oracle’ would have (see Theorem 2.2). Assumption (5) is more attractive than

(4). Nevertheless, we first present the result under condition (4) because, as it turns out, our

proof of Theorem 2.2 relies heavily on Theorem 2.1.
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The ‘1 penalty generally leads to sparse representations, that is, it tends to result in an

estimator f̂f n ¼
Pm

k¼1 Æ̂Ækłk with only a few non-zero coefficients Æ̂Æk (see Zhu et al. 2003).

It is related to soft thresholding (see Donoho 1995), and is referred to as the Lasso in

Tibshirani (1996) and Hastie et al. (2001: Section 10.12).

The difference R( f )� R( f �) is called the hinge excess risk at f . We show in Theorems

2.1 and 2.2 that the hinge excess risk at f̂f n depends on the smoothness of the boundary of

f f � ¼ 1g, as well as on the margin behaviour. The latter quantifies the identifiability of

Bayes’ decision rule. For definiteness, we assume it can be summarized in a margin

parameter (or noise level) k, defined in Condition A below.

Whether or not Theorems 2.1 and 2.2 produce good rates for the prediction error depends

very much on the choice of the system of base functions fłkg. A more detailed discussion

of the problem can be found below, after the statement of the conditions and theorems.

In the literature, the term adaptivity generally refers to attaining (up to log terms) the

minimax rate. Adaptivity and minimax rates have been established in Tsybakov (2004) and

Tsybakov and van de Geer (2005). These papers use empirical risk minimization, which

make the methods proposed there difficult to implement. In other work, for example,

Koltchinskii (2001, 2006), Koltchinskii and Panchenko (2002) and Lugosi and Wegkamp

(2004), Rademacher complexities are applied. Audibert (2004) establishes adaptivity to the

margin for a Gibbs classifier. Scott and Nowak (2006) develop a computationally attractive

tree method that adaptively attains minimax rates no faster than n�1=2. However, their

method only applies to low-dimensional input spaces. In Section 4.2, we establish rates that

depend on margin and complexity, but we will not show that this is in fact (near) adaptation

to minimax rates. To show the latter, one has to carefully define the class of probability

measures over which one studies the minimax bounds (see also Remark 4.1).

This paper is organized as follows. In the next section, we present the conditions

(Conditions A, B and C) and main theorems. The results are followed by a discussion of

their impact and their relation to averaging classifiers and to kernel SVMs. Here we also

address the problem that the hinge excess risk may not be a good approximation of the

prediction error.

Section 3 takes a closer look at the conditions. The margin condition (Condition A) is

shown to follow from assumptions on the amount of mass located near � ¼ 1
2
, and possibly

also on the behaviour near the boundaries � ¼ 0 and � ¼ 1. Also an extension is

considered, as well as an extension of Condition B. It can be observed that the choice of

the smoothing parameter º̂ºn does not depend on the constants appearing in Conditions A

and B, and that the procedure adjusts to favourable values of these constants. Condition C is

a technical condition on the base functions.

In Section 4 we consider an example. The rates obtained there depend on the roughness

of the boundary of Bayes’ decision rule and on the margin. We consider the case where

Bayes’ decision rule is a boundary fragment. We apply Haar wavelets, which provide

piecewise constant approximations of the boundary and are closely related to the binary

decision trees studied in Scott and Nowak (2006).

The proofs of the main theorems are given in Section 5. Here, we use the tools provided

by empirical process theory, such as concentration and contraction inequalities. The proofs

of the results in Section 4 can be found in Section 6.
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2. A probability inequality for the ‘1 penalized minimum hinge
loss estimator

2.1. Conditions and main theorems

Let � be some measure on X , and let k � k p,� be the L p(�) norm (1 < p , 1). We assume

Conditions A and B below to hold for the same (unknown) measure �.
Condition A is an identifiability condition, which we refer to as the margin condition.

Condition A. There exist constants � . 0 and k > 1 such that, for all f 2 F ,

R( f )� R( f �) > k f � f �kk1,�=� k: (6)

The parameter k is called the margin parameter. Its value is generally not known.

Next we impose conditions on the system fłkg. We use the notation ł ¼ (ł1, . . . , łm)
T

and define �� :¼
Ð
łłT d� (assumed to exist). The smallest eigenvalue of �� is denoted by

r2�.

Condition B. The smallest eigenvalue r2� of �� is non-zero.

The value of r2� is generally also unknown.

The last condition puts a normalization on the system of functions fłkg.

Condition C. We assume

max
1<k<m

kłkk1 <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (7)

Recall also the requirement that CQ , 1, and m < nD for some D > 1.

We now introduce the concepts approximation error and estimation error. Let N (Æ) be

the number of non-zero coefficients in the vector Æ:

N (Æ) :¼ #fÆk 6¼ 0g, Æ 2 Rm:

Given N 2 f1, . . . , mg, the approximation error is

inf R( fÆ)� R( f �) : fÆ 2 F , N (Æ) ¼ N
� �

:

Let

ĈC2
n :¼ max

1<k<m

1

n

Xn

i¼1

ł2
k(xi) (8)

be the empirical version of the constant C2
Q defined in (1), and let the smoothing parameter

be
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º̂ºn :¼ c(ĈCn _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: (9)

Here, c > c0, with c0 a universal constant. (From Section 5, a suitable choice is c0 ¼ 864.)

Moreover, here and throughout we use, for a, b 2 R, the notation a _ b :¼ maxfa, bg.
Likewise, a ^ b :¼ minfa, bg. The value of K will be specified in Theorems 2.1 and 2.2. We

let ºn be the theoretical version of º̂ºn:

ºn :¼ c(CQ _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: (10)

As function of n, the value of the theoretical smoothing parameter behaves as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
.

This is as in hard and soft thresholding (see, for example, Donoho 1995).

Define (a bound for) the ‘estimation error’ as

Vn(N ) :¼ 2��1=(2k�1)(18�º2n NDK=r2�)
k=(2k�1), (11)

where 0 , � < 1
2
is fixed but otherwise arbitrary. Theorem 2.1 tells us that the estimation

error and approximation error are traded off over all fÆ 2 F . The trade-off is reflected in the

quantity

En :¼ (1þ 4�)inf R( fÆ)� R( f �)þ Vn(N (Æ))þ 2ºnK

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: fÆ 2 F

( )
: (12)

By the trade-off, the ‘1 penalized minimum hinge loss estimator adjusts to certain properties

of the unknown distribution P. Thus, it has the potential to produce fast rates for the excess

risk R( f̂f n)� R( f �).

Theorem 2.1. Let f̂f n be the ‘1 penalized minimum hinge loss estimator defined in (3), with

regularization parameter º̂ºn given in (9), where c > c0, with c0 an appropriate universal

constant. Suppose that Conditions A, B, and C hold. Assume also that F � f fÆ : Æ 2 Rmg
and

k f k1 < K0 8 f 2 F ,

where K0 > 1. Let K ¼ K0 in the definition (9) ((10)) of º̂ºn (ºn). Then, for a universal

constant c1,

P R( f̂f n)� R( f �) . En

� �
<

c1

n2
: (13)

The estimation error Vn(N ) would be a bound for the error due to sampling, if a priori

the estimator were required to have only a given set, of cardinality N, of non-zero

coefficients. An oracle would choose the optimal set of non-zero coefficients by balancing

sparseness and approximation error. In this sense, the theorem shows that the estimator

mimics an oracle. Note that the balance is based on the ‘0 penalty which counts the number

of non-zero coefficients. The similarity of ‘0 and ‘1 penalties is well known, and in fact

goes through for underdetermined systems (see Donoho 2004a, 2004b).

It is of interest to examine the behaviour of the estimator for large n. Suppose the
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constants CQ, D, K0, � , k and r� are fixed (i.e., not dependent on the sample size n). Let

us call this the standard situation. In the standard situation, º2n ¼ O(log n=n), and the

estimation error is of order

Vn(N ) ¼ O(N log n=n)k=(2k�1):

For example (for a given N ), the worst case corresponds to k ¼ 1, giving

Vn(N ) ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log n=n

p
). The rates for the estimation error are as in Tsybakov and van

de Geer (2005). However, the latter paper deals with empirical risk minimization and

prediction error excess risk (see below for the definition of the latter), which means that the

rates established there may be quite different from those following from Theorem 2.1.

The prediction error excess risk is P(Yf (X ) < 0)� P(Yf �(X ) < 0). Rates of convergence

for the hinge excess risk imply the same rates for the prediction error excess risk, as Zhang

(2004) has shown that

P(Yf (X ) < 0)� P(Yf �(X ) < 0) < R( f )� R( f �) (14)

(see also Bartlett et al. 2006). It is easy to see, however, that this inequality cannot be

reversed. In particular, for 0 , E , 1, the classifier f :¼ E f � has zero prediction error excess

risk, but, in view of Remark 3.1 below, hinge excess risk equal to the constant

(1� E)
Ð
j1� 2�j dQ. In the trade-off given by Theorem 2.1, however, it is the hinge excess

risk that enters as approximation error. In other words, this trade-off may not reflect the trade-

off between non-sparseness and prediction error excess risk. For that, we need a margin

condition of the form of Condition A, with Bayes’ rule f � replaced by the mimimizer of the

hinge loss over all f 2 F , and in addition an extended version of (14). In Section 4 we

discuss an example where the two types of excess risk will be of the same order of

magnitude.

We now consider a variant of Theorem 2.1, with essentially weaker conditions.

Theorem 2.2. Let f̂f n be the ‘1 penalized minimum hinge loss estimator defined in (3), with

regularization parameter º̂ºn given in (9), where c > c0, with c0 an appropriate universal

constant. Suppose that Conditions A, B, and C hold. Assume also that F � f fÆ : Æ 2 Rmg is

a convex set, and that for some constant K n,

k f � ~ff k1 < (K nk f � ~ff k1,�) _ 2, 8 f , ~ff 2 F : (15)

Then, take K ¼ 1 in (9) and (10). If

2� E1=kn K n < 1, (16)

we have, for a universal constant c1,

P R( f̂f n)� R( f �) . En

� �
<

c1

n2
: (17)

Theorem 2.2 illustrates that the condition on the supremum norm of Theorem 2.1 can be

weakened. The constant K n will generally grow with n. For certain systems fłkgm
k¼1,

condition (16) is met when the number of base functions is small enough, yet large enough

to allow approximation error and estimation error to balance. In other cases, inequality (15)
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is a restriction on the allowed linear combinations. When there are no known bounds on k
and on the complexity of the problem, it is actually not possible to verify (16). This is,

however, in line with Conditions A and B, which also cannot be verified.

In practice, we recommend that the ‘1 penalized estimator is computed over all fÆ,

Æ 2 Rm, and that the choice of the smoothing parameter º̂ºn is decided upon by applying

cross validation.

Remark 2.1. Our proof of the two theorems relies on the fact that one has the Lipschitz

property

jl(y, f (x))� l(y, ~ff (x))j < j f (x)� ~ff (x)j, 8 f , ~ff 2 F ,

where l(y, f (x)) ¼ (1� yf (x))þ is the hinge loss function. Theorem 2.2, moreover, uses the

convexity of this loss function. The results can be extended to hold for any convex loss

function l(y, fÆ(x)) with this Lipschitz property. The extension can, for example, be used to

derive similar results to Theorems 2.1 and 2.2 for robust regression. Loubes and van de Geer

(2002) and van de Geer (2003) proceed essentially along these lines, but study fixed design

instead of random design.

Results for averages of classifiers, and kernel estimators, using ‘1 penalties, call for a

different mathematical theory. We will briefly explain why in the next two subsections.

2.2. Averaging classifiers

When averaging classifiers, one introduces a collection of base classifiers fłkg and forms

weighted averages fÆ :¼
P

k Ækłk , where the weights Æk are assumed to be positive and

sum to one. More generally, one may consider arbitrary linear combinations. One often

supposes that the base classifiers fłkg form a Vapnik–Chervonenkis class of fixed

dimension V (e.g., stumps). This set-up is different from ours in several respects. Firstly,

the class of base classifiers may be infinite. However, one may usually replace it by a finite

set, virtually without changing the situation. A more severe problem is that �� generally

will have very small eigenvalues, as the base classifiers are highly correlated. And finally,

Bayes’ decision rule is generally not well approximated by such averages (unless it is itself

one of the base classifiers). This means that the hinge excess risk for such averages is

generally large. It is not clear, however, whether the same will be true for the prediction

error excess risk. We conclude that Theorem 2.1 or Theorem 2.2 is not intended for the

situation of averaging.

The picture is clearer when one alternatively considers estimating the regression function

�, for example using exponential, quadratic or logistic loss. For these loss functions,

Blanchard et al. (2003) have obtained rates of convergence for averaged classifiers. They

also consider ‘1 penalties but different loss functions, and their results are not in the

framework of sparseness. Their rates of convergence follow from the Vapnik–Chervonenkis

dimension of the set of base classifiers.
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2.3. Kernel representations

It is customary to minimize the hinge loss over a reproducing kernel Hilbert space, with

kernel K (say) on X 3 X . Suppose that K has eigenexpansion

K(x, ~xx) ¼
X1
k¼1

�k�k(x)�k(~xx), (x, ~xx) 2 X 3 X :

Here f�kg are the (non-zero) eigenvalues of K, and f�kg are the eigenfunctions. Suppose we

use the representation fÆ ¼
P1

k¼1Ækłk , with łk ¼ �k . Then in our set-up we employ the

penalty

pen( fÆ) ¼ º̂ºn

X
k

jÆk j: (18)

This penalty is meaningful if Bayes’ rule f � can be well approximated by a sparse

representation in terms of the eigenfunctions of the kernel K. The more usual penalty is

pen( fÆ) ¼ ºk fÆk2K, (19)

where º is a regularization parameter, and where k fÆk2K :¼
P

k jÆk j2=�2k (see, for example,

Schölkopf and Smola 2002: Section 1.5). The eigenvalues f�kg of the kernel typically

decrease to zero as k ! 1 (for example, for Gaussian kernels the decay is exponentially

fast), so that the penalty in (18) is substantially different from the more standard choice (19).

We conjecture that for a choice of º depending only on fX ig (and not on fYig), the

penalty in (19) cannot be adaptive to k in the sense we put forward in Theorem 2.1. The

reason why we believe this to be true is that with the quadratic penalty (19) a good choice

for º will be such that the estimation error, which depends on k, is overruled. We do expect

that º in (19) can be chosen (rate-)adaptively using cross validation.

We remark that the kernel usually is allowed to depend on a second regularization

parameter, called the width. For example, for X a compact in Rd , one may apply the

Gaussian kernel

K(x, ~xx) :¼ exp(�jx � ~xxj2=h2),

with width (proportional to) hd . Both º and h are often chosen data-dependent. Rates for the

general kernels and the penalty (19), but with the restriction k ¼ 1, are given in Blanchard et

al. (2004). The situation with Gaussian kernels, penalty (19) and known k is examined in

Steinwart and Scovel (2005).

3. On Conditions A, B and C

Conditions A and B together ensure that the result follows easily from a probability

inequality for the empirical process (see Lemmas 5.1–5.3). Condition C makes sure that the

probability inequality does indeed hold (see Lemmas 5.4–5.7).
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3.1. On Condition A

Condition A is a lower bound for the hinge excess risk in terms of the L1(�) norm k � k1,�.
We have restricted ourselves to this particular form for ease of exposition. A more general

assumption is

R( f )� R( f �) > G k f � f �k1=21,�

� �
, 8 f 2 F ,

with G(�) :¼
Ð �
0

g(z)dz and g a continuous, strictly increasing function on [0, 1) satisfying

g(0) ¼ 0. The estimation error will then be

Vn(N ) ¼ 2�H
3ºn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NDK

p

�r�

� �
,

where

H(�) :¼
ð�
0

g�1(z)dz:

This follows from the proof of Lemma 5.1, with Lemma 5.3 replaced therein by Young’s

inequality (for the latter, see, for example, Hardy et al. 1988: Section 8.3).

We restricted ourselves in Condition A to G(z) ¼ z2k=� k. This appears in similar form

(for prediction error instead of hinge loss) in, for example, Mammen and Tsybakov (1999),

Audibert (2004), Tsybakov (2004), Bartlett et al. (2006) and Scott and Nowak (2006). It

follows essentially from conditions on the behaviour of � near f� ¼ 1
2
g and is therefore

often called the margin condition, or condition on the noise level; see Condition AA below,

which was first formulated by Tsybakov (2004).

Condition AA. There exist constants C > 1 and ª > 0 such that, for all z . 0,

Q(fj1� 2�j < zg) < (Cz)1=ª, (20)

where, by convention, (Cz)1=ª ¼ lfz > 1=Cg for ª ¼ 0.

The case where ª ¼ 0 corresponds to the situation where the function � stays away from
1
2
. This is the situation studied in Blanchard et al. (2004). The larger the value of ª the

weaker (20) becomes, and for ª ¼ 1 it is satisfied for all distributions. If � only takes

values very near to 1
2
, Bayes’ decision rule is not much better than flipping a fair coin and

(20) can only hold for large values of ª.
We will see that Condition A is closely intertwined with assumptions on the behaviour of

� near f� ¼ 0g and f� ¼ 1g as well. In principle, values of � near 0 or 1 are favourable as

they make the learning problem easier. However, these values make it harder to identify

Bayes’ rule in (say) k � kQ,1 norm. We show that Condition A holds with d� ¼ �(1� �)dQ

and k ¼ 1þ ª. This is a slight modification of Tsybakov (2004).

Lemma 3.1. Suppose Condition AA is met. Then, for all f with k f � f �k1 < K,
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R( f )� R( f �) > ��1
K k f � f �k1þª

1,� , (21)

with d� ¼ �(1� �)dQ and

� K ¼ C
K

4

1

ª
þ 1

� �� �ª

(1þ ª): (22)

Thus, Condition A holds with � ¼ � 1=k
K and k ¼ 1þ ª.

Proof. By straightforward manipulation, we obtain

R( f )� R( f �) ¼
ð
�1< f <1

j( f � f �)(1� 2�)j dQ

þ
ð

f ,�1,�<1=2

j f � f �j� dQ þ
ð

f ,�1,�.1=2

j( f � f �)(1� 2�)j dQ

þ
ð

f ,�1,�.1=2

(j f j � 1)(1� �)dQ þ
ð

f .1,�<1=2

j( f � f �)(1� 2�)j dQ

þ
ð

f .1,�<1=2

(j f j � 1)� dQ þ
ð

f .1,�.1=2

j f � f �j(1� �)dQ:

This implies the inequality

R( f )� R( f �) >
ð
j f � f �j j1� 2�j d�,

with d� ¼ �(1� �)dQ. Hence, for any z . 0,

R( f )� R( f �) >
ð
j1�2�j.z

j f � f �j j1� 2�j d� > z

ð
j1�2�j.z

j f � f �j d�

¼ zk f � f �k1,� � z

ð
j1�2�j<z

j f � f �j d�:

But, since k f � f �k1 < K and �(1� �) < 1
4
,ð

j1�2�j<z

j f � f �j d� <
K

4
Q(fj1� 2�j < zg) < (K=4)(Cz)1=ª,

where we invoke Condition AA. Thus, for all z . 0,

R( f )� R( f �) > zk f � f �k1,� �
K

4
(Cz)1=ªz:

When ª . 0, we take

z ¼ 4k f � f �k1,�
C1=ªK(1=ªþ 1)

� �ª

,

and for ª ¼ 0, we take z"1=C. We thus arrive at the result of the lemma. h
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Remark 3.1. An intermediate result of the proof of Lemma 3.1 is that

R( f )� R( f �) >
ð
�1< f <1

j( f � f �)(1� 2�)j dQ,

with equality if k f k1 < 1. For an f taking only the values �1, the hinge excess risk is

therefore equal to twice the prediction error excess risk. (We will use this in Section 4.) The

proof of Lemma 3.1 thus leads also to Zhang’s (2004) inequality (see (14)).

Remark 3.2. The choice d� ¼ �(1� �)dQ is in our view quite natural, as the conditional

variance of Yf (X ) is equal to, given X , satisfies

E(var(yf (X ))jX ¼ 4

ð
f 2�(1� �)dQ:

There are, however, also other reasonable candidates for �. For example, let us define

� :¼ minf�, 1� �, j1� 2�jg,

and suppose that instead of Condition AA, one has for some set S, some C > 1 and some

ª > 0,

Q(f� < zg \ S) < (Cz)1=ª 8z . 0:

Then, from the same arguments as used in the proof of Lemma 3.1, one sees that Condition

A holds for all k f � f �k1 < K, with d� ¼ lS dQ, k ¼ 1þ ª and � K ¼
C(K(1=ªþ 1))ª(1þ ª). For the set S one may want to take S ¼ X or S ¼ f� =2 f0, 1gg.
Recall that � also plays a role in Condition B, which means we would like to take the set S as

large as possible.

Of course, if � stays away from 0 and 1, say t < � < 1� t for some 0 , t , 1
2
, then the

choices d� ¼ �(1� �)dQ and v ¼ Q discussed above are, up to constants, the same. In

Blanchard et al. (2003) it is noted that one may force oneself into such a situation by

adding extra noise, namely, by replacing Yi by Y 9i ¼ øiYi (Y 9 ¼ ø0Y ), where føig is a

sequence of independent random variables, with P(øi ¼ 1) ¼ 1� P(øi ¼ �1) ¼ 3
4
,

independent of f(X , Y ), (X i, Yi)g. For any classifier f , the prediction error excess risk

for predicting Y is equal to twice the prediction error excess risk for predicting its noisy

variant Y 9. Such a simple relation is generally not true for the hinge excess risk.

In Blanchard et al. (2004) the condition that � stays away from 0 and 1 is imposed as

well, in order to enable a precise formulation of a good penalty in that context.

Remark 3.3. From Lemma 3.1, one sees that the condition that, for some K,

k f � f �k1 < K may be needed for Condition A to hold. This is not a priori assumed in

Theorem 2.2. Therefore, let us mention the following weaker version of Condition A.

Suppose for simplicity that the infimum in the definition of En is attained, say in fÆ� . So

fÆ� ¼ argminfR( fÆ)� R( f �)þ Vn(N (Æ)) : fÆ 2 Fg:

Then, in Theorem 2.2, it suffices to assume (6) for those f 2 F with k f � fÆ�k1 < 2. Thus,
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if k fÆ� � f �k1 < K0 for some K0, it suffices to assume (6) for those f 2 F with

k f � f �k1 < K0 þ 2.

3.2. On Condition B

3.2.1. The role of the k � k1,� norm

Recall first that f � is a renormalized indicator function. In Condition A, the occurrence of

the k � k1,� norm is closely related to the fact that, for indicator functions, the L2(�) norm

k � k2,� is equal to k � k1=21,� . In our proof, the L2(�) norm appears as intermediate in the

inequality

X
k

jÆk j
 !2

< N (Æ)Kk fÆk1,�=r2�,

where it is assumed that k fÆk1 < K (see Lemma 5.2). In Tarigan and van de Geer (2004) it

is shown that when � is the Lebesgue measure on [0, 1]d , one has in fact the following

improved inequality for standard compactly supported wavelet systems fłkg on [0, 1]d ,

X
k

jÆk j
 !2

< const:N (Æ)k fÆk21,�,

provided that fk : Æk 6¼ 0g is the set of all wavelets up to a given resolution level. In this

paper, we do not employ this improved variant to avoid digressions. Moreover, as pointed out

in Section 4, wavelets may not lead to sparse approximations of Bayes’ decision rule.

3.2.2. Improving the estimation error bound

The smallest eigenvalue r2� appears in our definition (11) of the estimation error. If r� tends

to zero as n tends to infinity, this will slow down the reates. Therefore, it is desirable to

have r� stay away from zero. However, it is as yet unclear to what extent one can find

systems fłkg with this property and, at the same time, good approximating properties.

We now propose a possible improvement of the bound for the estimation error. We

replace Condition B by the following condition:

Condition BB. For each index set J � f1, . . . , mg there exists a non-negative NJ ,� such

that, for all Æ with k fÆk1 < K, one has

X
k2J

jÆk j
 !2

< NJ ,�k fÆk1,�:

With this condition we also have an extension of Lemma 5.2.

Theorems 2.1 and 2.2 hold with Condition BB instead of B, if we make the following

adjustments. Define, for J (Æ) :¼ fk : Æk 6¼ 0g,
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N �(Æ) :¼ NJ (Æ),�:

Next, let Vn(Æ) be definition (11) with N=r2� replaced by N �(Æ):

Vn(Æ) ¼ 2��1=(2k�1)(18�º2nN �(Æ)DK)k=(2k�1):

Then, Theorems 2.1 and 2.2 remain true if in (12) we replace Vn(N (Æ)) by Vn(Æ).
We give an elementary lemma to verify Condition B. It shows that for systems

orthogonal in L2(�), for example, only the eigenvalues of the system chosen by the oracle

matter.

Lemma 3.2. Suppose that for some strictly positive weights fwkgm
k¼1, the smallest eigenvalue

of W��W, with W ¼ diag(w1, . . . , wm), is equal to one. Then Condition BB holds with

NJ ,� ¼
X
k2J

w2
k :

Proof. Let kvk2 ¼ vTv denote the squared length of a vector v 2 Rm. We know that, for all

v 2 Rm,

kvk2 < vTW��Wv, (23)

as W��W has smallest eigenvalue equal to one. So

X
k2J

jÆk j
 !2

<
X
k2J

w2
k

 ! X
k2J

Æ2
k

w2
k

 !
,

and, by using (23) with v ¼ W �1Æ,

X
k2J

Æ2
k

w2
k

¼ ÆTW �2Æ < ÆT��Æ ¼ k fÆk22,�:

Finally, we invoke the fact that k fÆk22,� < Kk fÆk1,� for k fÆk1 < K. h

3.3. On Condition C

We need a bound on both the L2(Q) norm kłkk2,Q and the supremum norm kłkk1, which

holds for all k. This allows us to apply Bernstein’s inequality (see Lemmas 5.5 and 5.7).

The uniform bound kłkk1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
holds, for example, for most compactly supported

wavelet systems on [0, 1]d , with no more than about (log2(n=log n))=d resolution levels per

dimension. This means that, up to constants, the number of functions (wavelets) m in fłkg
is also no more than about n=log n. This bound on the resolution can mean that the rate of

approximation is limited beforehand (see the example of Section 4).

In general, we assume polynomial growth m < nD. This is quite standard in model

selection problems, and rates are generally logarithmic in the a priori number of parameters m.
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4. An example: boundary fragments

The choice of the base functions fłkg plays a crucial role in considerations on their

approximating properties. Recall that Bayes’ decision rule f � takes only the values �1.

Approximating such a function by, for example, an orthogonal series is not always very

natural, as a good approximation might require very many non-zero coefficients. Wedgelets

(Donoho 1999) and curvelets (Candès and Donoho 2004) are good alternatives to wavelets.

Because these are overcomplete systems, our Condition B does not hold, so that the results

in Section 2 are not applicable. This is the reason why we have chosen to nevertheless

study wavelet approximations, in particular Haar functions. As Haar functions consider

successive splits of intervals, this approach is related to classification by dyadic trees. Scott

and Nowak (2006) derive rates for dyadic decision trees in a context similar to our

example.

The main purpose of this section is to illustrate that Theorem 2.1 (or Theorem 2.2) can

produce rates that adjust to roughness of the boundary of Bayes’ decision rule, as well as to

the margin. We will make some simplifying assumptions (in particular, Assumptions 1–4

below) to avoid digressions.

We consider the case X ¼ [0, 1]2. Moreover, we suppose that f � is a boundary fragment,

that is, for some function g� : [0, 1] ! [0, 1],

f �(x) ¼ þ1, if x 2 f(u, v) 2 [0, 1]2 : g�(u) > vg,
�1, otherwise:

�
(24)

We also suppose that the boundary g� is exactly the set where the regression function � is

equal to 1
2
:

�(u, v)

. 1
2
, if g�(u) . v,

¼ 1
2
, if g�(u) ¼ v,

, 1
2

if g�(u) , v:

8>><
>>: (25)

Let � be Lebesgue measure on [0, 1]2. For a function g on [0, 1], we use the notation

kgk p,� :¼ kgk p,�, 1 < p , 1,

where g(u, v) ¼ g(u), (u, v) 2 [0, 1]2.

To bound the excess risk, we make the following assumptions.

Assumption 1. The distribution Q of X has density q ¼ dQ=d�, satisfying, for some constant

0 , cq , 1,

1=cq < q < cq:

Assumption 2. For some constant 0 , s < 1
2
, s < g�(u) < 1� s for all u.

Assumption 3. For some constants 0 , c� , 1 and 0 , ª , 1,

jv� g�(u)jª=c� < j2�(u, v)� 1j < c�jv� g�(u)jª, 8(u, v) 2 [0, 1]2:
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Thus, we require in Assumption 3 that for each u, 2�(u, v) is Hölder continuous with

exponent ª at v ¼ g�(u), and also a Hölder type lower bound on its increments.

Lemma 4.1. Let Assumptions 1–3 hold. Then Condition AA holds with C ¼ c�(2cq)
ª _ 1=s.

Moreover, we have for each boundary fragment f g with boundary g, that is,

f g(x) ¼ þ1, if x 2 f(u, v) 2 [0, 1]2 : g(u) > vg,
�1, otherwise,

�
(26)

the upper bound

R( f g)� R( f �) < 2c�cqkg � g�kkk,�,

where k ¼ 1þ ª.

For r > 1, we define the class of Hölder continuous functions with exponent 1=r,

Gr(Hölder) :¼ fg : [0, 1] ! [0, 1] : jg(u)� g(~uu)j < ju � ~uuj1=r, 8u, ~uug :

We call r the roughness parameter. We let G0 be the class of all constant functions on [0, 1].

The next lemma studies the approximation of functions in Gr(Hölder). Later, we will see

that Condition C results in a bound on the resolution level, and hence on the one-

dimensional precision level of our measurements. This precision level, say �, is defined as

the smallest value such that our approximations are piecewise constant on the grid ˜2,

where ˜ ¼ fk� : k ¼ 0, 1, . . .g. In our situation, we will have 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
< � <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
.

For a . 0 define bac as the largest integer less than or equal to dae. Likewise a is the

smallest integer greater than or equal to a.

Lemma 4.2. Suppose g� 2 Gr(Hölder) for some r > 1. Then for all E > �, there is a function

g�E which is constant on the intervals (u j�1, u j], u j ¼ jEr, j ¼ 1, 2, . . . , dE�re, and with

values in ˜ such that

kg� � g�E k1 < Eþ �:

Let fh j, lg be the orthonormal Haar basis of L2([0, 1], Lebesguemeasure). So

h1,1 :¼ 1,

h1,2 :¼ 1[0,1=2) � l[1=2,1),

and generally

2�( l�2)=2h j, l :¼ l[2( j�1)2� lþ1,(2 j�1)2� lþ1) � l[(2 j�1)2� lþ1,(2 j)2� lþ1), j ¼ 1, . . . , 2 l�2, l ¼ 2, 3, . . . :

(27)

We use the expansion

fÆ ¼
XL

k¼1

XL

l¼1

X
i

X
j

Æi, j,k, l hi,k h j, l,
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where fh j, lg is the one-dimensional Haar system. We take one-dimensional resolution levels

L, with L the largest integer such that 22(L�2) < n=log n. This means we have one-

dimensional measurement precision � ¼ 2�(L�1) <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
. As a consequence of Lemma

4.2, we thus obtain the following result:

Lemma 4.3. Suppose Assumptions 1–3 are met. Let F ¼ f fÆ : k fÆk1 < K0g, where

K0 > 1, and let �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
. Consider integers N, with N ¼ JL2 and where

2 < J < ��r
n is an integer. If g� 2 Gr(Hölder), we have

inf
fÆ2F ,N(Æ)<N

R( fÆ)� R( f �) < 2kþ1cqc� 3
2L2

N

� �k=r

þ�kn

 !
:

Furthermore, if g* 2 G0,

inf
fÆ2F ,N(Æ)¼L

R( fÆ)� R( f �) < 2cqc��
k
n:

Finally, we assume the following:

Assumption 4. For some constant 0 , t , 1
2
, we have that t < � < 1� t.

See Remark 3.2 for a discussion of this assumption.

Theorem 4.1. Suppose that Assumptions 1–4 hold. Let F ¼ f fÆ : k fÆk1 < K0g. Consider

the standard situation, that is, the case where the constants K0, cq, c�, s, ª, r and t do not

depend on n. Let k ¼ 1þ ª. Then

ER( f̂f n)� R( f �) ¼ O
log2 n

n

� ��

,

with � ¼ k=(2k� 1þ r). If g� 2 G0, we have

ER( f̂f n)� R( f �) ¼ O
log3=2 n

n

� ��

,

with

� ¼

k
2k� 1

, if k >
3

2
,

k
2
, if k <

3

2
:

8>><
>>:

Note that the coefficient � is increasing in r, so the rates are faster when r is smaller.

Moreover, when r > 1, the coefficient � is increasing in k, that is, the rates are then faster

for larger values of k. We conclude that the ‘1 penalized minimum hinge loss estimator

adjusts to the values of both roughness r and margin parameter k.
For the case g� 2 G0, we do not obtain the rate (log3=2n=n)k=(2k�1) for all values of k
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due to limited precision level. If it were known a priori that g� is constant, one would only

have to consider the one-dimensional problem, and a precision level of order n=log n could

be taken. In that case, the rate would be of order (log3=2n=n)k=(2k�1) for all values of k.

Remark 4.1. Note that for roughness r > 1, the rates in Theorem 4.1 become better as k
increases, which makes the definition of minimax rates a subtle matter. The situation is as in

Scott and Nowak (2006). They present a formulation of minimax rates, but their concept of

roughness is different from ours.

5. Proof of Theorems 2.1 and 2.2

5.1. Proof of Theorem 2.1

Let us write f̂f n ¼ f Æ̂Æ n
. Moreover, let

I(Æ) :¼
Xm

k¼1

jÆk j, Æ 2 Rm,

and

�n( f ) :¼
ffiffiffi
n

p
(Rn( f )� R( f )), f 2 F :

Up to and including Lemma 5.6, we fix an arbitrary Æ� 2 Rm, with fÆ� 2 F . The result of

Theorem 2.1 then follows from taking the infimum, over all such fÆ� , of En( fÆ�) defined

below in (29). This is done at the very end of this section.

Set K :¼ 2K0. Let �
� be the set

�� :¼ sup
f 2F

j�n( f )� �n( fÆ�)j
I(Æ� Æ�)þ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p <
ffiffiffi
n

p ºn

2

( )\ º2n
4

< º̂º2n < 4Dº2n

( )
: (28)

Recall that

ºn ¼ c9(CQ _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
, º̂ºn ¼ c9(ĈCn _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
,

where 4c9 ¼ c > 4c90. Moreover, we take c90 ¼ 216 (c0 ¼ 4c90). We show in Lemmas 5.4–5.7

that, under Condition C, the set fø =2 ��g has probability at most

c1 exp(�K2 log n=2)þ 2 exp(�2 log n):

Here, c1 is an appropriate universal constant. Lemma 5.1 below tells us that Conditions A

and B yield, on ��, the bound

En( fÆ� ) ¼ (1þ 4�) R( fÆ�)� R( f �)þ Vn(N (Æ�))þ ºn K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r( )
(29)

for the excess risk R( f̂f n)� R( f �). Lemmas 5.2 and 5.3 are tools used in Lemma 5.1.
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Lemma 5.1. Assume Conditions A and B. Then, on ��,

R( f̂f n)� R( f �) < En( fÆ�), (30)

where En( fÆ�) is given in (29).

Proof. We use similar arguments to those in Loubes and van de Geer (2002), van de Geer

(2003) and Tsybakov and van de Geer (2005). Define N� ¼ N (Æ�) and, for each Æ 2 Rm,

I1(Æ) :¼
X

k:Æ�
k
6¼0

jÆk j, I2(Æ) :¼ I(Æ)� I1(Æ) ¼
X

k:Æ�
k
¼0

jÆk j :

Then

R( f̂f n)� R( fÆ�) ¼ � �n( f̂f n)� �n( fÆ�)
� �

=
ffiffiffi
n

p
þ º̂ºn(I(Æ

�)� I(Æ̂Æn))

þ [Rn( f̂f n)þ º̂ºn I(Æ̂Æn)]� [Rn( fÆ� )þ º̂ºn I(Æ�)]

< � �n( f̂f n)� �n( fÆ�)
� �

=
ffiffiffi
n

p
þ º̂ºn I(Æ�)� I(Æ̂Æn)

	 

:

The latter inequality is true because

Rn( f̂f n)þ º̂ºn I(Æ̂Æn) < Rn( fÆ�)þ º̂ºn I(Æ�),

as f̂f n is the minimizer of the penalized empirical hinge loss over F , and fÆ� 2 F .

Thus, on ��,

R( f̂f n)� R( fÆ�) <
ºn

2
I(Æ̂Æn � Æ�)þ K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
þ º̂ºn I(Æ�)� I(Æ̂Æn)

	 


¼ ºn

2
I1(Æ̂Æn � Æ�)þ I2(Æ̂Æn)þ K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
þ º̂ºn I1(Æ

�)� I1(Æ̂Æn)� I2(Æ̂Æn)
	 


,

where we use the fact that I2(Æ̂Æn � Æ�) ¼ I2(Æ̂Æn) and I2(Æ�) ¼ 0. Since ºn=2 < º̂ºn on ��,
we find on that set that

R( f̂f n)� R( fÆ�) <
ºn

2
I1(Æ̂Æn � Æ�)þ K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
þ º̂ºn I1(Æ

�)� I1(Æ̂Æn)
	 


:

Now use the fact that I1(Æ�)� I1(Æ̂Æn) < I1(Æ̂Æn � Æ�), and that, on ��, º̂ºn < 2
ffiffiffiffi
D

p
ºn.

Invoking the bounds 1
2
< 1 <

ffiffiffiffi
D

p
, we obtain that, on ��,

R( f̂f n)� R( fÆ�) < 3ºn

ffiffiffiffi
D

p
I1(Æ̂Æan � Æ�)þ ºn K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
:

We now use Lemma 5.2, and the triangle inequality, to arrive at
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R( f̂f n)� R( fÆ� ) < 3ºn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�DK

p
k f̂f n � f �k1=21,� =r� þ 3ºn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�DK

p
k fÆ� � f �k1=21,� =r�

þ ºn K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
: (31)

Let us use the shorthand notation

d̂d :¼ R( f̂f n)� R( f �), d� :¼ R( fÆ� )� R( f �):

Then the application of Lemma 5.3 below (with v ¼ 3ºn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�DK

p
=r� and respectively

t ¼ k f̂f n � f �k1=21,� and t ¼ k fÆ� � f �k1=21,� ), and Condition A, to the first two terms on the

right-hand side of (31) yields

d̂d < �(d̂d þ d�)þ 2�
3ºn

r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� N�DK

p

�

 !2k=(2k�1)

þ ºn K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
:

Since, for � < 1
2
, the inequality (1þ �)=(1� �) < 1þ 4� holds, we have now shown that

d̂d < (1þ 4�) d� þ 2�
3ºn

r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� N�DK

p

�

 !2k=(2k�1)

þ ºn K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r8<
:

9=
;

¼ (1þ 4�) d� þ 2��1=(2k�1) 9�º2n N�DK

r2�

" #k=(2k�1)

þ ºn K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r8<
:

9=
;:

h

Lemma 5.2. Assume Condition B. Let J � f1, . . . , mg be some index set with cardinality

N ¼ jJ j. Then, for k fÆk1 < K,

X
k2J

jÆk j
 !2

< NKk fÆk1,�=r2�:

Proof. Clearly

X
k2J

jÆk j
 !2

< N
X

k

Æ2
k :

But X
k

Æ2
k ¼ ÆTÆ < ÆT��Æ=r2� ¼ k fÆk22,�=r2� < Kk fÆk1,�=r2� :

h

Lemma 5.1 makes use of Lemma 5.3 below. Such inequalities are routinely used in the

recent classification literature (see, for example, Tsybakov and van de Geer 2005). Lemma
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5.3 is an immediate consequence of Young’s inequality (see Hardy et al. 1988: Section 8.3),

using some straightforward bounds to simplify the expressions.

Lemma 5.3. For all k > 1, and all positive v, t and �,

vt < �t2k=� k þ ��1=(2k�1)(�v2)k=(2k�1):

We now will show that the set �� has probability close to one. To this end, a

concentration inequality will be applied. Theorem 5.1 is from Massart (2000), who

improves the constants from Ledoux (1997). These authors actually assume certain

measurability conditions. To avoid digressions, we will skip all measurability issues.

Theorem 5.1. Let Z1, . . . , Z n be independent and identically distributed copies of a random

variable Z 2 Z. Let ˆ be a class of real-valued functions on Z satisfying supzjª(z)j < K for

all ª 2 ˆ. Define

Z :¼ sup
ª2ˆ

���� 1n
Xn

i¼1

ª(Zi)� Eª(Zi)f g
���� (32)

and

�2 :¼ sup
ª2ˆ

var(ª(Z)): (33)

Then, for any positive z,

P Z > 2EZþ �
ffiffiffiffiffiffiffiffiffiffi
8z=n

p
þ 69Kz=(2n)

� �
< exp(�z): (34)

Lemma 5.4. Define FM :¼ f fÆ 2 F : I(Æ� Æ�) < M , k fÆ � fÆ�k1 < Kg, and

ZM :¼ sup
fÆ2F M

j�n( fÆ)� �n( fÆ�)j=
ffiffiffi
n

p
:

Then, for all M satisfying CQ M > K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
(where CQ is given in (1)), we have

P ZM > 2EZM þ 36K2CQ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p� �
< exp(�(C2

Q M2 _ K2)log n):

Proof. In Theorem 5.1 we take

ˆ ¼ fªÆ : fÆ 2 FMg,
where

ªÆ(x, y) ¼ l(yfÆ(x))� l(yfÆ�(x)),

and where l(z) ¼ (1� z)þ is the hinge function. Since l is Lipschitz, we have

jªÆ(x, y)j < j fÆ(x)� fÆ�(x)j:
Note first that this implies ZM < K, so that it suffices to consider values M with

CQ M < K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
. The Lipschitz property also implies that �2 < sup fÆ2F M

k fÆ � fÆ�k22,Q.
So � < CQ M ^ K :¼ �1. We now take z ¼ (C2

Q M2 _ K2)log n.
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Then, for K < CQ M < K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
,

�1
ffiffiffiffiffiffiffiffiffiffi
8z=n

p
þ 69Kz=(2n) ¼ KCQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8log n=n

p
þ 69KC2

Q M2 log n=(2n)

< 3KCQ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
þ 69

2
K2CQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
< 36K2CQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
,

where we use the fact that K > 2. Moreover, for K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
< CQ M < K,

�1
ffiffiffiffiffiffiffiffiffiffi
8z=n

p
þ 69Kz=(2n) ¼ KCQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8log n=n

p
þ 69KK2 log n=(2n)

< 3KCQ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
þ 69

2
K2CQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
< 36K2CQ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
:

The result thus follows from Theorem 5.1. h

Lemma 5.5. Suppose Condition C is met. For ZM defined in Lemma 5.4, it holds that

EZM < 36(CQ _ 4)DM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
: (35)

Proof. This follows from similar arguments to those in van de Geer (2003), using the fact

that the function z 7! l(z) ¼ (1� z)þ, z 2 R, is Lipschitz. Let us briefly summarize these

arguments. Let E1, . . . , En be a Rademacher sequence independent of (X 1, Y1), . . . , (X n, Yn).

By symmetrization and the contraction inequality (see Ledoux and Talagrand 1991), we find

that

EZM < 4E sup
fÆ2F M

���� 1n
Xn

i¼1

Ei( fÆ(X i)� fÆ�(X i))

����
 !

< 4ME max
k¼1,... , m

���� 1n
Xn

i¼1

Eiłk(X i)

����
 !

:

By Bernstein’s inequality (see, for example, Shorack and Wellner 1986: 855), we know that,

for any z . 0,

P
1

n

����Xn

i¼1

Eiłk(X i)

���� > z

 !
< 2 exp � nz2

2zkłkk1=3þ 2kłkk22,Q

 !
:

Use Condition C, which says that for all k, kłkk1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
. Moreover, kłkk2,Q < CQ

for all k. We find for all z > 1, using m < nD and D > 1,
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P max
k¼1,... , m

���� 1n
Xn

i¼1

Eiłk(X i)

���� > 3(CQ _ 4)Dz

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< 2m exp � 9(CQ _ 4)2D2zlog n

2(CQ _ 4)D þ 2C2
Q

 !

< 2m exp(�9Dz log n=4)

< 2exp(�5Dz log n=4):

Now, for any positive random variable U and any positive t,

E(U ) ¼
ð1
0

P(U > z)dz < t 1þ
ð1
1

P(U > tz)dz

� �
:

Apply this with

U ¼ max
k¼1,... , m

���� 1n
Xn

i¼1

Eiłk(X i)

����:
It follows that

EZM < 3(1þ 2)4M(CQ _ 4)D

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
¼ 36M(CQ _ 4)D

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
,

where we use the bound

exp(�5D log n=4)

5D log n=4
< 1,

because D > 1 and n > 8. h

Next, we show that, for ºn > 216(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
, the set

j�n( f̂f n)� �n( fÆ�)j <
ffiffiffi
n

p ºn

2
I(Æ̂Æn � Æ�)þ K

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !( )

has probability at least 1� c1 exp(�K2 log n=2).

Lemma 5.6. Suppose Condition C is met. We have, for a universal constant c1,

P sup
fÆ2F ,k fÆ� fÆ�k1<K

���� �n( fÆ)� �n( fÆ�)

I(Æ� Æ�)þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p ���� . 108(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

< c1 exp � K2 log n

2

� �
: (36)

Proof. This follows from the peeling device, which is designed to establish bounds for
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weighted empirical process, as discussed in van de Geer (2000: Section 5.3). We split Rm

into the sets

S1 ¼ fÆ : CQ I(Æ� Æ�) < K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
g,

S2 ¼ fÆ : K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
, CQ I(Æ� Æ�) < Kg

�
[j0
j¼0

fÆ : 2�( jþ1)K , CQ I(Æ� Æ�) < 2� j Kg,

with 2� j0 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
, and

S3 ¼ fÆ : CQ I(Æ� Æ�) > Kg

¼
[1
j¼1

fÆ : 2 j�1K , CQ I(Æ� Æ�) < 2 j Kg:

The combination of Lemma 5.4 and 5.5, and invoking K > 2r , yields that for

CQ M > K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
,

P ZM > 54(CQ _ 4)DMK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< exp(�(C2

Q M2 _ K2)log n) : (37)

We find on the set S1,

P sup
fÆ2F ,Æ2S1

���� �n( fÆ)� �n( fÆ�)

I(Æ� Æ�)þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p ���� > 108(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

< P sup
fÆ2F ,Æ2S1

j�n( fÆ)� �n( fÆ�)j > 108(K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)(CQ _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

p !

< exp(�K2 log n):

Next, we consider the set S2. Take j0 as the smallest integer such that 2� j0 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
.

Then, from (37),

P sup
fÆ2F ,Æ2S2

���� �n( fÆ)� �n( fÆ�)

I(Æ� Æ�)þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p ���� > 108(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

<
Xj0

j¼0

P sup
fÆ2F ,CQ I(Æ�Æ�)<2� j K

�����n( fÆ)� �n( fÆ� )

���� > 54(2� j K)(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

< log n exp(�K2 log n),

as, for n > 8, j0 þ 1 < log n.

Finally, we consider the set S3. We find
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P sup
fÆ2F ,Æ2S3

���� �n( fÆ)� �n( fÆ�)

I(Æ� Æ�)þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p ���� > 108(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

<
X1
j¼1

P sup
fÆ2F ,CQ I(Æ�Æ�)<2 j K

j�n( fÆ)� �n( fÆ�)j > 54(2 j K)(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

<
X1
j¼1

exp(�22 j K2 log n):

We conclude that

P sup
fÆ2F

���� �n( fÆ)� �n( fÆ� )

I(Æ� Æ�)þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p ���� > 108(CQ _ 4)DK2
ffiffiffiffiffiffiffiffiffiffi
log n

p !

< exp(�K2 log n)þ log n exp(�K2 log n)þ
X1
j¼1

exp(�22 j K2 log n)

< c1 exp � K2 log n

2

� �
,

for a universal constant c1. h

Lemma 5.7. Suppose Condition C holds. Then

P
º2n
4

< º̂º2n < 4Dº2n

 !
> 1� 2 exp(�2 log n): (38)

Proof. Recall the definitions

ºn ¼ c9(CQ _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
, º̂ºn ¼ c9(ĈCn _ 4)DK2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
,

and

C2
Q ¼ max

1<k<m
kłkk22,Q, ĈC2

n ¼ max
1<k<m

1

n

Xn

i¼1

ł2
k(X i):

We first bound the probability of the set fº̂º2n , º2n=4g. We consider two cases: CQ < 4

and CQ . 4. If CQ < 4, we have

ĈCn _ 4 ¼ ĈCn > CQ _ 4, if ĈCn . 4,

4 ¼ CQ _ 4, if ĈCn < 4:

�

In other words, if CQ < 4, we have º̂ºn > ºn, and so the set fº̂º2n , º2n=4g has probability zero.

Now, let łmax a base function for which the maximum L2(Q) norm is attained. Then,

clearly,
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ĈC2
n > kłmaxk22,Qn

:

From Bernstein’s inequality, we now establish that

P(ĈC2
n , C2

Q=4) < P(kłmaxk22,Qn
� kłmaxk22,Q , �3C2

Q=4)

< exp �
n9C4

Q=16

C2
Qkł2

maxk1=2þ 2C2
Qkł2

maxk
2
2,Q

" #

< exp[�9C2
Q log n=40] < exp[�C2

Q log n=8],

since kł2
maxk2,Q ¼ C2

Q and, by Condition C, kł2
maxk1 < n=log n. With CQ . 4, this gives

P(ĈC2
n , C2

Q=4) < exp(�2 log n):

Next, we bound the probability of fº̂º2n . 4Dº2ng. We consider the cases ĈCn < 4 and

ĈCn . 4. For ĈCn < 4, one has

(ĈCn _ 4)2 ¼ 42 < 4D(CQ _ 4)2,

so that fº̂º2n < 4Dº2ng trivially holds. Turning to the case ĈCn . 4, note first that, again by

Bernstein’s inequality,

P max
1<k<m

kłkk22,Qn
� kłkk22,Q . 3D(CQ _ 4)2

� �
< m exp � 9D2(CQ _ 4)4 log n

2D(CQ _ 4)2 þ 2C2
Q

" #

< m exp[�9D(CQ _ 4)2 log n=4]

< exp[�5D(CQ _ 4)2 log n=4] < exp[�2 log n]:

But clearly, if

max
1<k<m

kłkk22,Qn
� kłkk22,Q < 3D(CQ _ 4)2,

one has, for ĈCn . 4,

(ĈCn _ 4)2 ¼ ĈC2
n < 3D(CQ _ 4)2 þ C2

Q < 4D(CQ _ 4)2:

h

To conclude the proof of Theorem 2.1, we observe that, for any z > 0,

P R( f̂f n)� R( f �) . z
� �

¼ lim
z t#z

P R( f̂f n)� R( f �) . zt

� �
,

because a distribution function is right-continuous. Let En be defined as in (12):

En ¼ inf En( fÆ�) : Æ
� 2 Rm, fÆ� 2 F

� �
:

We may then write
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En ¼ lim
t!1

En, t,

for a sequence fEn, tg1t¼1 with

En, t ¼ En( fÆ�t ),

for some Æ�t 2 Rm, fÆ�t 2 F , t ¼ 1, 2, . . .. Therefore, by Lemmas 5.1–5.7.

P R( f̂f n)� R( f �) . En

� �
¼ lim

t!1
P(R( f̂f n)� R( f �) . En, t)

< c1 exp(�2 log n),

where c1 ¼ c1 þ 2.

5.2. Proof of Theorem 2.2

For simplicity, let us assume that the infimum in

inffR( fÆ)� R( f �)þ Vn(N (Æ)) : fÆ 2 Fg
is attained for some fÆ� 2 F :

fÆ� :¼ argminfR( fÆ)� R( f �)þ Vn(N (Æ)) : fÆ 2 Fg:
Define

tn :¼ K nk f̂f n � fÆ�k1,�
2þ K nk f̂f n � fÆ�k1,�

:

Let

~ff n :¼ (1� t n) f̂f n þ tn fÆ� :

Then ~ff n 2 F because F is convex. Moreover,

k ~ff n � fÆ�k1 ¼ 2k f̂f n � fÆ�k1
2þ K nk f̂f n � fÆ�k1,�

<
2k f̂f n � fÆ�k1

K nk f̂f n � fÆ�k1,�
< 2:

Observe also that by the convexity of the hinge loss and of the ‘1 norm, for

~ÆÆn ¼ (1� tn)Æ̂Æn þ tnÆ�,

Rn( ~ff n)� Rn( fÆ� )þ º̂ºn(I( ~ÆÆn)� I(Æ�)) < (1� tn)[Rn( f̂f n)� Rn( fÆ� )þ º̂ºn(I(Æ̂Æn)� I(Æ�))] < 0:

Let �� be defined as in (28), but with F replaced by F :¼ F \ fk f � fÆ�k1 < 2g.
Then, by the same arguments as in the proof of Theorem 2.1, with f̂f n now replaced by ~ff n,

and with K ¼ 2, we see that, on ��,

R( ~ff n)� R( f �) < En:

Next, Condition A implies

k ~ff n � f �kk1,� < � k(R( ~ff n)� R( f �)):
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On the other hand, by the triangle inequality and again Condition A,

k ~ff n � f �k1,� > k ~ff n � fÆ�k1,� � k f �Æ � f �k1,� > (1� tn)k f̂f n � fÆ�k1,� � � E1=kn ,

because R( fÆ�)� R( f �) < (1þ 4�)(R( fÆ�)� R( f �)) < En. So

R( ~ff n)� R( f �) < En

implies

(1� t n)k f̂f n � fÆ�k1,� < 2� E1=kn ,

or

k f̂f n � fÆ�k1,� < 2� E1=kn þ K n� E1=kn k f̂f n � fÆ�k1,�,

or, since 2K n� E1=kn < 1,

k f̂f n � fÆ�k1,� < 4� E1=kn :

But then, using once again the fact that 2K n� E1=kn < 1,

k f̂f n � fÆ�k1 < 2:

In other words, on ��, we have that f̂f n 2 F .

But this means that on ��, we can apply the arguments of Theorem 2.1, to arrive at

R( f̂f n)� R( fÆ�) < En:

Since P(��) > 1� c1=n2, this completes the proof. h

6. Proof of the results in Section 4

Proof of Lemma 4.1. Consider, for some z . 0, the set j2�� 1j < z. Since

j2�(u, v)� 1j > jv� g�(u)jª=c�, we have

fj2�� 1j < zg � f(u, v): jv� g�(u)j < (c�z)1=ªg:

It follows that when (c�z)1=ª < s,

Q(fj2�� 1j < zg) < Q(f(u, v) : jv� g�(u)j < (c�z)1=ªg)

< cq�(f(u, v) : jv� g�(u)j < (c�z)1=ªg) ¼ 2cq(c�z)1=ª:

So Condition AA holds with C ¼ c�(2cq)
ª _ 1=s.

By Remark 3.1, since f g takes values in f�1g, we have

R( f g)� R( f �) ¼ 2

ð
f g 6¼ f �

j2�� 1j dQ:

Hence,
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R( f g)� R( f �) ¼ 2

ð ð g(u)_ g�(u)

g(u)^ g�(u)
j2�(u, v)� 1jq(u, v)dv du

< 2c�cq

ð ð g(u)_ g�(u)

g(u)^ g�(u)
jv� g�(u)jª du

¼ 2c�cq

k
kg � g�kkk,� < 2c�cqkg � g�kkk,�:

h

Proof of Lemma 4.2. Let

g�E (u) :¼ bg�(u j)=�c�, u j�1 , u < u j:

Then

jg�E (u)� g�(u)j < �þ ju j � uj1=r < �þ E:

h

Proof of Lemma 4.3. Let g� 2 Gr(Hölder). Consider the integer l such that 2 l�1 < J < 2 l.

Take E ¼ 2�( l�1)=r. Then dE�re ¼ E�r < J . Moreover, E < (J=2)�1=r. The function g�E is

piecewise constant on at most J intervals. We note that for the one-dimensional expansion in

the Haar basis, of the indicator function of a half-interval l[a,1], with a 2 ˜, we need no more

than L non-zero coefficients. So we need at most L2J non-zero coefficents to expand f �E .
Here, f �E is the boundary fragment with boundary g�E . Hence, by Lemma 4.2,

kg�E � g�k1 < (J=2)�1=r þ �n:

Note also that f �E takes only the values �1, so f �E 2 F .

Finally, if g� 2 G0, we consider the function g��n
:¼ g�=�n�n. We clearly need no more

than L coefficients to expand the boundary fragment f ��n
corresponding to g��n

.

The proof is completed by applying Lemma 4.1 and the inequality

(a þ b)k < 2k(ak þ bk), a, b . 0. h

Proof of Theorem 4.1. By Lemma 4.1, Condition A holds with k ¼ 1þ ª and with

d� ¼ �(1� �)dQ.

Now the base functions fłkg have L2(�) norm equal to one, and are orthogonal in L2(�).
So, by Assumptions 1 and 4, we have that d� ¼ �(1� �)dQ > (s2=cq)d�. Therefore, we

know that the smallest eigenvalue r2� of �� satisfies r2� > s2=cq. Thus, Condition B is met

as well.

Condition C is met, since 22(L�2) < log n=n implies

kłkk1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
, 8k:

The result now follows from Theorem 2.1. To see this, we invoke Lemma 4.3.

When g� 2 Gr(Hölder), we let
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N :¼
�

n

log2

� �r=(2kþr�1)

L2: (39)

Then

J :¼ N

L2
<

n

log2n

� �r=(2kþr�1)

<
n

log n

� �r=(2kþr�1)

<
n

log n

� �r=2

¼ ��r
n :

For the estimation error, we now have

Vn(N ) ¼ O
N log n

n

� �k=(2k�1)

¼ O
log2 n

n

� �k=(2kþr�1)

:

In view of Lemma 4.3,

inf
N (Æ)¼N

R( fÆ)� R( f �) ¼ O
L2

N

� �k=r

¼ O
log2 n

n

� �k=(2kþr�1)

:

When g� 2 G0, the result immediately follows from Theorem 2.1 by taking N :¼ L and

applying Lemma 4.3. h
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