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1. Introduction

In order to describe the probabilistic evolution of populations by sexual reproduction, Daley

(1968) introduced the bisexual Galton–Watson process as a discrete-time branching model.

In Daley’s model, a deterministic function establishes the number of couples (female–male

mating units) produced. The model has received considerable attention in the literature. In

particular, its extinction probability is studied in Daley (1968), Hull (1982, 1984), Bruss

(1984), Daley et al. (1986) and Alsmeyer and Rösler (1996, 2002); its limiting behaviour is

investigated in Bagley (1986) and González and Molina (1996, 1997); and some inferential

problems are considered in González Fragoso (1995), Molina et al. (1998) and González et

al. (2001a). In an attempt to improve the mathematical modelling, certain classes of

discrete-time bisexual branching processes have recently been introduced and some

theoretical results presented: see, for example, González et al. (2000, 2001b), Molina et

al. (2002, 2003, 2004a, 2004b) or Xing and Wang (2005). Hull (2003) provides a survey of

the literature associated with discrete-time bisexual processes. A theory of continuous-time

bisexual branching processes has yet to be sufficiently developed, and indeed only

Asmussen (1980) and more recently Molina and Yanev (2003) have considered this

possibility.

This paper deals with the bisexual process with population-size dependent mating

introduced in Molina et al. (2002) as a branching model f(Fn, M n)gn>1 initiated with

Z0 ¼ N > 1 couples and defined in recursive form for n ¼ 0, 1, . . . by

Bernoulli 12(3), 2006, 457–468
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(Fnþ1, M nþ1) ¼
XZ n

i¼1

( f ni, mni), Z nþ1 ¼ LZ n
(Fnþ1, M nþ1),

where the empty sum is taken as (0, 0), f( f ni, mni) : i ¼ 1, 2, . . .; n ¼ 0, 1, . . .g is a

sequence of independent and identically distributed, non-negative, integer-valued random

variables, and fLkgk>0 is a sequence of non-negative real functions on Rþ 3 Rþ assumed to

be integer-valued on the integers and such that Lk(x, y) < xy, x, y 2 Rþ, k 2 Zþ, with Rþ

and Zþ denoting the non-negative real and integer numbers, respectively. Intuitively,

( f ni, mni) represents the number of females and males descending from the ith couple of the

nth generation. It follows that (Fnþ1, M nþ1) is the number of females and males in the

(n þ 1)th generation, which form Z nþ1 couples according to the mating function LZ n
. These

couples reproduce independently through the same offspring probability distribution for each

generation. Notice that, in each generation, the function governing the mating changes

depending on the number of couples in the previous generation. Indeed, the motivation

behind this stochastic process was the interest in developing bisexual models to describe the

probabilistic evolution of two-sex populations in which, because of environmental, social or

other factors, matings between females and males could be influenced by the number of their

progenitor couples.

It can be directly verified that f(Z n�1, Fn, M n)gn>1 and fZ ngn>0 are homogeneous

Markov chains, with 0 being an absorbing state for fZ ngn>0. For each k ¼ 1, 2, . . . , we

introduce the mean growth rate per couple,

rk :¼ E[Z nþ1 Z�1
n jZ n ¼ k] ¼ k�1E Lk

Xk

i¼1

f ni,
Xk

i¼1

mni

 !" #
:

Note that rk can be interpreted intuitively as the expected growth rate per couple when,

in a certain generation, there are k couples. These expected values will play a major role in

this work. In order to investigate some results concerning limiting evolution in this class of

bisexual processes, we shall begin by making the following working assumptions:

Assumption 1. L� : Zþ 3 Rþ 3 Rþ ! Rþ defined as L�(k, x, y) ¼ Lk(x, y), x, y 2 Rþ,

k ¼ 0, 1, . . . , is a superadditive function, that is,

L�(k1 þ k2, x1 þ x2, y1 þ y2) > L�(k1, x1, y1) þ L�(k2, x2, y2):

Assumption 2. r :¼ limk!1 rk . 1 and P(Z n ! 1jZ0 ¼ N ) . 0.

Remark 1. Assumption 1 extends the classical superadditivity condition usually imposed on

the mating function in the Daley bisexual process literature; see Hull (1982). It expresses the

following intuitive concept: if the females and males descending from k1 þ k2 couples live

together then there will be more matings than if the females and males descending from k1

couples and those descending from k2 couples live separately.

Under Assumption 1, the existence of the asymptotic rate r was proved in Molina et al.
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(2002). Under Assumptions 1 and 2, it was verified in Molina et al. (2004b) that fW ngn>0,

where W n :¼ r�n Z n, is a supermartingale with respect to fF ngn>0, where F n :¼
� (Z1, . . . , Z n), and, with some additional requirements, its almost sure convergence to a

finite limit W such that P(W . 0) . 0 (i.e. W is non-degenerate at zero) was established.

Some necessary and sufficient conditions for both almost sure and L1-convergence of the

sequences fW ngn>0, fFngn>1 and fM ngn>1, where (Fn, M n) :¼ r�n(Fn, M n), were also

derived in Molina et al. (2004b). In particular, the following results were established:

Theorem A. The L1-convergence of fW ngn>0 to W is equivalent to the L1-convergence of

fFngn>1 to r�1�1W and of fM ngn>1 to r�1�2W, where �1 :¼ E[ f 01] and �2 :¼ E[m01].

Theorem B. Given a non-increasing sequence f�kgk>1, �k :¼ r � rk, if
P1

k¼1 k�1�k , 1,

then limn!1 E[W njZ0 ¼ N ] . 0 for N such that P(Z n ! 1jZ0 ¼ N ) . 0.

In the usual methodology of branching process theory research, the natural next step is to

study the LÆ-convergence, 1 < Æ < 2, of the sequences fW ngn>0, fFngn>1 and fM ngn>1.

In Section 2, under a general methodological framework, sufficient conditions are given for

LÆ-convergence to non-degenerate limits, with the main result extending that obtained in

Molina et al. (2004b) for Æ ¼ 1. In Section 3, in a more specific methodological framework

similar to that used in Klebaner (1984, 1985) for asexual population-size dependent

branching processes, some necessary and sufficient conditions for L2-convergence are

determined. These results are based on weaker requirements than those imposed in Section

2 for Æ ¼ 2, and generalize those proved in González and Molina (1997) for Daley’s model.

Finally, by analogy with the classical Kesten and Stigum result for Bienaymé–Galton–

Watson processes, a logarithmic criterion for L1-convergence is established in Section 4.

2. LÆ-convergence

In this section a sufficient condition is provided for the LÆ-convergence, 1 < Æ < 2, of

fW ngn>0 to a non-degenerate limit. In the proof of the main result of this section we shall

use some techniques which extend those used in Klebaner (1984, 1985) for asexual

population-size dependent branching processes.

First, we establish a strong relationship between the LÆ-convergence of the sequences

fFngn>1 and fM ngn>1 and the LÆ-convergence of fW ngn>0.

Theorem 1. Suppose that E[ f Æ01] , 1 and E[mÆ
01] , 1. The following statements are

equivalent:

(i) fW ngn>0 is LÆ-convergent to W .

(ii) fFngn>1 is LÆ-convergent to r�1�1W .

(iii) fM ngn>1 is LÆ-convergent to r�1�2W .

LÆ-convergence for a bisexual branching process 459



Proof. It is sufficient to prove that (i) and (ii) are equivalent. Assume that (i) holds. It is clear

that

kFnþ1 � r�1�1WkÆ < kFnþ1 � r�1�1W nkÆ þ r�1�1kW n � WkÆ:

By hypothesis, limn!1kW n � WkÆ ¼ 0. Also

E[jFnþ1 � r�1�1W njÆ] ¼ r�(nþ1)ÆE[E[jFnþ1 � �1 Z njÆjZ n]]: (1)

Now, applying the von Bahr–Esseen inequality (von Bahr and Esseen 1965), one deduces

that

E[jFnþ1 � �1 Z njÆjZ n ¼ k] ¼ E

����Xk

i¼1

f ni � �1ð Þ
����Æ

" #

< 2
Xk

i¼1

E[j f ni � �1jÆ] ¼ 2k E[j f 01 � �1jÆ],

and then from (1) one obtains

E[jFnþ1 � r�1�1W njÆ] < 2E[j f 01 � �1jÆ]r�(nþ1)ÆE[Z n]

¼ 2E[j f 01 � �1jÆ]r�(nþ1)Æ r nE[W n]

< 2E[j f 01 � �1jÆ]r�1 r n(1�Æ) N :

Therefore, there exists a constant CÆ such that

kFnþ1 � r�1�1W nkÆ < CÆk f 01 � �1kÆ r n(1�Æ)=Æ,

and the right-hand side converges to 0 because k f01kÆ , 1 and r . 1.

Conversely, if one assumes that fFngn>1 is LÆ-convergent to r�1�1W , then

kW n � WkÆ < r��1
1 kr�1�1W n � Fnþ1kÆ
�

þ kFnþ1 � r�1�1WkÆ
�
:

The second term on the right-hand side converges to 0 by hypothesis, and, using reasoning

similar to that considered for (1), the first term also converges to 0, so that the proof is

concluded. h

For all 1 < Æ < 2, let us introduce the sequence fRÆ,kgk>1 where

RÆ,k :¼ k�1E jZ nþ1 � rZ njÆjZ n ¼ k½ �1=Æ, k ¼ 1, 2, . . . :

Note that the expected value per couple RÆ,k provides information about the LÆ-distance

between the variable k�1 Lk(
Pk

i¼1 f ni,
Pk

i¼1 mni) and the asymptotic growth rate r. Its

definition involves both the reproduction law and the mating function, that is to say, the main

features describing the behaviour of the process. We show that the order of magnitude of

these rates will determine the LÆ-convergence of the sequence fW ngn>0, and consequently,

by Theorem 1, of fFngn>1 and fM ngn>1.
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Proposition 1. Given 1 < Æ < 2, then j�k j < RÆ,k , k ¼ 1, 2, . . ..

Proof. The proof is immediate by the application of Jensen’s inequality. Indeed, given

1 < Æ < 2 and k ¼ 1, 2, . . . ,����k�1E Lk

Xk

i¼1

f ni,
Xk

i¼1

mni

 !" #
� r

���� < k�1E

����Lk

Xk

i¼1

f ni,
Xk

i¼1

mni

 !
� kr

����Æ
" #1=Æ

:

h

Theorem 2. If, for some 1 < Æ < 2, fRÆ,kgk>1 is a non-increasing sequence andP1
k¼1 k�1 RÆ,k , 1, then fW ngn>0 is almost surely and LÆ-convergent to a finite and non-

degenerate limit.

Proof. Almost sure convergence to a finite non-negative random variable is derived from

the fact that fW ngn>0 is a supermartingale with respect to fF ngn>0. By Proposition 1,

one deduces that
P1

k¼1 k�1�k , 1. Then, applying Thorem B, one obtains 0 ,

limn!1E[W n] , 1. Therefore it suffices to verify that fW ngn>0 is a Cauchy sequence in

LÆ. For n ¼ 0, 1, . . . ,

kW nþ1 � W nkÆ ¼ r�n�1E[E[jZ nþ1 � rZ njÆjZ n]]1=Æ ¼ r�n�1E[(Z n RÆ, Z n
)Æ]1=Æ: (2)

In González and Molina (1997, Lemma 4.1) it was proved that there exists a non-increasing

positive function hÆ(�) on Rþ such that RÆ,k < hÆ(k), k ¼ 1, 2, . . . ,
P1

k¼1 k�1 hÆ(k) , 1.

Moreover, it is a matter of straightforward computation to check that �Æ(x) :¼ xhÆ
Æ(x1=Æ) is

concave on [1, 1). Consequently, from (2) and Jensen’s inequality,

kW nþ1 � W nkÆ < r�(nþ1)E[(ZÆ
n hÆ(Z n))Æ]1=Æ ¼ r�(nþ1)E[�Æ(ZÆ

n)]1=Æ

< r�(nþ1)�1=Æ
Æ E[ZÆ

n]
� �

¼ r�1kW nkÆhÆ(r nkW nkÆ):

Now, since limn!1kW nkÆ . limn!1 E[W n] . 0, there exists � . 0 such that

kW nkÆ . � for all n. Hence, taking into account that hÆ(�) is non-increasing, one deduces

that

kW nþ1 � W nkÆ < r�1kW nkÆhÆ(�r n): (3)

Making use of this inequality, one obtains

kW nþ1kÆ < (1 þ r�1 hÆ(�r n))kW nkÆ < N
Y1
i¼1

(1 þ r�1 hÆ(�r i)),

and this product is convergent because
P1

k¼1 k�1 hÆ(k) , 1. Consequently there exists M

such that kW nkÆ < M for all n, and by (3) one has

kW nþ1 � W nkÆ < r�1 MhÆ(�r n):

Using again the fact that
P1

k¼1 k�1 hÆ(k) , 1, one verifies that
P1

n¼0 hÆ(�r n) , 1,

which completes the proof. h
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Remark 2. Note that Theorem 2 holds if fRÆ,kgk>1 is bounded above by a non-increasing

sequence fakgk>1 such that
P1

k¼1 k�1ak , 1. In this case, it is not necessary for fRÆ,kgk>1

to be non-increasing.

3. L2-convergence

In this section, by applying some specific techniques concerning L2-bounded martingales,

we provide further conditions for the L2-convergence of fW ngn>0, fFngn>1 and fM ngn>1

which are weaker than those obtained in the previous section for Æ ¼ 2. First, we establish a

necessary condition. Let us consider

� 2
k :¼ k�2 var[Z nþ1 Z n ¼ k], k ¼ 1, 2, . . . ,

assumed to be finite.

Proposition 2.

E[W 2
nþ1] ¼ N 2 þ r�2

Xn

j¼0

E W 2
j(�

2
Z j
þ r2

Z j
� r2)

h i
, n ¼ 0, 1, . . . :

Proof.

E[W 2
nþ1] ¼ r�2(nþ1)E[E[Z2

nþ1jZ n]] ¼ r�2(nþ1)E[Z2
n(� 2

Z n
þ r2

Z n
)]

¼ E[W 2
n] þ r�2E[W 2

n(� 2
Z n

þ r2
Z n

� r2)], n ¼ 0, 1, . . . :

Hence, by iteration and taking into account that Z0 ¼ N , the proof is concluded. h

Theorem 3. Suppose that there exists k0 such that f�kgk>k0
and f� 2

kgk>k0
are non-

increasing and either � 2
k þ r2

k > r2 or � 2
k þ r2

k < r2 for all k > k0. Then a necessary

condition for the L2-convergence of fW ngn>0 to a non-degenerate random variable W is thatP1
k¼1 k�1� 2

k , 1.

Proof. Assume without loss of generality that k0 ¼ 1. Since f� 2
kgk>1 is non-increasing, there

exists �̂� 2 : Rþ ! Rþ defined by �̂� 2(x) :¼ � 2
11(0,1)(x) þ � 2

bxc1[1,1)(x), where bxc denotes the

greatest integer less than or equal to x. It is clear that this function is also non-increasing and

�̂� 2(k) ¼ � 2
k , k ¼ 1, 2, . . . .

For simplicity, let Ak :¼ � 2
k þ r2

k � r2. The L2-convergence of fW ngn>0 implies that

fE[W 2
n]gn>0 is bounded. Then, from Proposition 2,����X1

n¼0

E[W 2
n A Z n

]

���� , 1:

By hypothesis, the sign of An is the same for all n. Hence,
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X1
n¼0

E[W 2
njA Z n

j] , 1

and, by the monotone convergence theorem,X1
n¼0

W 2
njA Z n

j , 1 a:s:

Now, on fW . 0g, one has that fW ngn>0 has a lower bound greater than 0. Consequently,

taking into account that �Z n
¼ r � rZ n

,����X1
n¼0

A Z n

���� ¼ ����X1
n¼0

� 2
Z n

� 2r�Z n
þ �2

Z n

� ����� , 1 a:s: on fW . 0g: (4)

Since P(W . 0) . 0, it can be verified (see Molina et al. 2004b, Proposition 14), that on

fW . 0g, X1
n¼0

�Z n
, 1 and

X1
n¼0

�2
Z n

, 1 a:s:

Hence, from (4), one obtains the almost sure convergence of
P1

n¼0�
2
Z n

on fW . 0g.

Let ~WW :¼ supn>0 W n , 1, which exists because fW ngn>0 is almost surely convergent to

a finite random variable. Taking into account that �̂� 2(�) is non-increasing, one deduces thatX1
n¼0

� 2
Z n

¼
X1
n¼0

�̂� 2(r nW n) >
X1
n¼0

�̂� 2(r n ~WW ) a:s:

Finally the convergence of
P1

k¼1 k�1� 2
k is derived using reasoning similar to that in Klebaner

(1984, Lemma 1). h

Theorem 4. Suppose that f�kgk>1 and f� 2
kgk>1 are non-increasing sequences such thatP1

k¼1 k�1�k , 1 and
P1

k¼1 k�1� 2
k , 1. Then fW ngn>0 is L2-convergent to W, where

P(W . 0) . 0.

Proof. Again using Lemma 4.1 of González and Molina (1997) applied to the sequence

f� 2
kgk>1, there exists a positive real non-increasing function � 2(�) on Rþ such that

� 2
k < � 2(k) and

P1
k¼1 k�1� 2(k) , 1. Moreover, it is easy to check that the function

x2� 2(x) is concave on Rþ. Taking into account Proposition 2 and the properties of � 2(�), one

deduces that

E[W 2
nþ1] < E[W 2

n] þ r�2(nþ1)E[Z2
n�

2(Z n)] (5)

and, since x2� 2(x) is concave, by Jensen’s inequality,

E[Z2
n�

2(Z n)] < E[Z n]2� 2(E[Z n]) < E[Z2
n]� 2(E[Z n])

so, by (5),
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E[W 2
n] < N2

Y1
n¼0

1 þ r�2� 2 E[Z n]ð Þ
� �

, n ¼ 0, 1, . . . :

By virtue of Theorem B, limn!1 E[W n] . 0. There therefore exists � . 0 such that

E[Z n] > �r n, n ¼ 0, 1, . . . , and, taking into account that � 2(�) is non-increasing,

E[W 2
n] < N 2

Y1
n¼0

1 þ r�2� 2 �r nð Þ
� �

, n ¼ 0, 1, . . . :

Note that the product is finite if and only if
P1

n¼1�
2(�r n) , 1 or equivalently ifP1

k¼1 k�1� 2(k) , 1 (see Klebaner 1984, Lemma 1), which is guaranteed by the properties

of � 2(�). Thus, we have proved that fW ng1n¼0 is L2 bounded. Now, according to Doob’s

theorem, we can decompose fW ngn>0 into W n ¼ Yn þ Tn, where fYngn>0 is a martingale

relative to F n ¼ � (Z1, . . . , Z n) and

Tn ¼
Xn�1

k¼0

E[W kþ1F k] � W kð Þ ¼ �r�1
Xn�1

k¼0

W k� Z k
a:s:

Since fW ngn>0 is L2 bounded, in order to prove that fYngn>0 is an L2 bounded martingale

and therefore L2-convergent, it only remains to prove that fT ngn>0 is L2-convergent.

Now, �����X1
n¼0

W n� Z n

�����2 <
X1
n¼0

kW n� Z n
k2 ¼

X1
n¼0

r�nE Z2
n�

2
Z n

h i1=2

: (6)

Using once again Lemma 4.1 of González and Molina (1997) applied to the sequence

f�kgk>1, there exists a non-increasing positive real function �(�) such that �k < �(k),P1
k¼1 k�1�(k) , 1, and the function x�2(x1=2) is concave on [1, 1). Thus, from (6),�����X1

n¼0

W n�Z n

�����2 <
X1
n¼0

r�nE Z2
n�

2(Z n)
� �1=2

<
X1
n¼0

E W 2
n

� �
�2 E[Z n]ð Þ

� �1=2

<
X1
n¼0

kW nk2 � E[Z n]ð Þ < K
X1
n¼0

� E[Z n]ð Þ

with K . 0, where we have used the fact that fW ngn>0 is L2 bounded. Finally, again using

the fact that E[Z n] > �r n and �(�) is non-increasing, one obtains�����X1
n¼0

W n�Z n

�����2 < K
X1
n¼0

� �r nð Þ,

which is convergent by considering Lemma 1 of Klebaner (1984). h

Remark 3. Note that assumptions in Theorem 4 are weaker than those in Theorem 2 for the

particular case Æ ¼ 2. In fact, if fR2,kgk>1 is non-increasing and
P1

k¼1 k�1 R2,k , 1, then,

by Proposition 1, one derives that
P1

k¼1 k�1�k , 1. Moreover,
P1

k¼1 k�1 R2,k , 1 implies
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limk!1R2,k ¼ 0 and there exists k0 such that R2
2,k < R2,k , k > k0. Hence, using the fact that

� 2
k < R2

2,k < R2,k , k > k0, one deduces that
P1

k¼1 k�1� 2
k , 1, and consequently the

assumptions in Theorem 4 hold. However, it is not possible from the conditions

established in Theorem 4 to guarantee that
P1

k¼1 k�1 R2,k , 1.

4. L1-convergence under a logarithmic criterion

In this section, we establish a necessary and sufficient condition, based on a logarithmic

criterion, for the L1-convergence of fW ngn>0. Taking Theorem A into account, it will be

sufficient to determine such a condition for fFngn>1 or fM ngn>1.

Theorem 5. If

(i) f�kgk>1 is non-increasing and such that
P1

k¼1 k�1�k , 1,

(ii) Fnþ1 � r�1�1W nþ1 > 0 (M nþ1 � r�1�2W nþ1 > 0), n ¼ 0, 1, . . . ,

then E[ f 01 logþ f01] , 1 (E[m01 logþm01] , 1) is a necessary and sufficient condition for

the L1-convergence of fFngn>1 (fM ngn>1) to a non-degenerate limit.

Proof. First, we prove sufficiency. Write, for n ¼ 0, 1, . . . ,

~FFnþ1 :¼ r�(nþ1)
XZ n

i¼1

f ni1f f ni<r ng

and

~DDnþ1 :¼ Fnþ1 � r�1W nþ1E[ f011f f01<r nþ1g]:

If F n :¼ � (Z0, . . . , Z n), n ¼ 0, 1, . . . , thenX1
n¼1

( ~FFnþ1 � E[ ~FFnþ1F n]) ¼
X1
n¼1

( ~FFnþ1 � Fn þ ~DDn) a:s:

Molina et al. (2004b) prove the L1-convergence of
P1

n¼1( ~FFnþ1 � E[ ~FFnþ1jF n]). Hence, if one

proves that
P1

n¼1
~DDn is also L1-convergent one will derive that

P1
n¼1( ~FFnþ1 � Fn) is L1-

convergent. Actually, since ~DDnþ1 > 0, n ¼ 0, 1, . . . , it will be sufficient to verify thatP1
n¼0E[ ~DDnþ1] , 1. In fact,

E[ ~DDnþ1] ¼ E E[Fnþ1 � r�1W nþ1E[ f011f f01<r nþ1g]F n]
� �

¼ r�1�1E[W n] � r�2E[ f 011f f01<r nþ1g]E[W n rZ n
]

¼ r�1E[ f 011f f01.r nþ1g]E[W n] þ r�2E[ f 011f f01<r nþ1g]E[W n� Z n
]

< r�1E[ f011f f01.r nþ1g]N þ r�2�1E[W n� Z n
], n ¼ 0, 1, . . . :
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Now, writing F(x) :¼ P( f01 < x) and bearing in mind that
P1

n¼01(r nþ1,1)(x) ¼ O(logþ x),

x 2 Rþ, one hasX1
n¼0

E[ f 011f f01.r nþ1g] ¼
X1
n¼0

ð1
r nþ1

x dF(x) ¼
ð1

0

x
X1
n¼0

1(r nþ1,1)(x)dF(x)

¼
ð1

0

x O(logþ x)dF(x) ¼ E[ f 01 logþ f 01] , 1:

Since
P1

n¼0E[W n� Z n
] , 1 (see Molina et al. 2004b, Theorem 7), one concludes thatP1

n¼0E[ ~DDnþ1] , 1.

Using the fact that there exists a finite and non-negative random variable W F which is

the almost sure limit of fFngn>1, since ~FFnþ1 < Fnþ1, n ¼ 0, 1, . . . , one deduces that

E[W F] > E[Fnþ1] þ E
X1
k¼n

( ~FFkþ1 � Fk)

" #
, n ¼ 0, 1, . . . : (7)

Taking into account that
P1

n¼1( ~FFnþ1 � Fn) converges in L1, one deduces from (7) that

E[W F] > lim supn!1 E[Fn], and by Fatou’s lemma one derives that E[W F] <

lim inf n!1 E[Fn]. Therefore E[W F] ¼ limn!1 E[Fn] and fFngn>1 is also L1-convergent

to W F .

Finally, by Theorem A the L1-convergence of fFngn>1 implies the L1-convergence of

fW ngn>0 to W which is almost surely equal to r��1
1 W F . Moreover, by (i) and Theorem B,

one has that limn!1 E[W n] . 0. Hence, E[W F] . 0 and P(W F . 0) . 0.

Conversely, if fFngn>1 converges in L1 to W F such that P(W F . 0) . 0 then

P( bWW . 0) . 0, where bWW :¼ inf n>0W n.

It is known thatX1
n¼1

( ~FFnþ1 � Fn þ ~DDn) ¼
X1
n¼1

( ~FFnþ1 � E[ ~FFnþ1 j F n]) a:s:,

which is almost surely and L1-convergent, by virtue of the L2-bounded martingale

convergence theorem and of the fact that fFngn>1 is almost surely and L1-convergent to

W F . Also, since f ~FFngn>1 and fFngn>1 are almost surely equal from a certain n onwards,P1
n¼1( ~FFnþ1 � Fn) , 1 almost surely. Hence, one deduces that

P1
n¼0

~DDnþ1 , 1 almost

surely, and, taking into account that ~DDnþ1 > 0, n ¼ 0, 1, . . . , and (ii),

bWW X1
n¼0

E[ f 011f f01.r ng] <
X1
n¼0

W nE[ f 011f f01.r ng] , 1 a:s:,

and one deduces that E[ f 01 logþ f 01] , 1. h

Remark 4. Condition (ii) in Theorem 5 is verified if fLkgk>0 is such that Lk(x, y) < xr��1
1

(or Lk(x, y) < xr��1
2 ), k ¼ 0, 1, . . .. Indeed,

r�1�1 Z nþ1 ¼ r�1�1 LZ n
(Fnþ1, M nþ1) < Fnþ1

466 M. Molina, M. Mota and A. Ramos



and therefore Fnþ1 � r�1�1W nþ1 > 0, n ¼ 0, 1, . . . .

Remark 5. An interesting problem which arises from Theorem 5 is whether the set on which

the limit variable W is greater than 0, equivalently W F . 0, is the entire survival set of the

process. This problem is partially solved in González et al. (2004). In this work, assuming the

classical extinction–explosion duality in branching process theory, it is proved that if Z0 ¼ 1

then fW . 0g ¼ fZ n ! 1g, and, since W F ¼ r�1�1W (see Theorem 1), fW F . 0g ¼
fZ n ! 1g.
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González, M. and Molina, M. (1997) On the L2-convergence of a superadditive bisexual Galton–

Watson branching process. J. Appl. Probab., 34, 575–582.

González, M., Molina, M. and Mota, M. (2000) Limit behavior for a subcritical bisexual Galton–

Watson branching process with immigration. Statist. Probab. Lett., 49, 19–24.
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