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It is well known that the spectral distribution Fn of a Wigner matrix converges to Wigner’s semicircle

law. We consider the empirical process indexed by a set of functions analytic on an open domain of

the complex plane including the support of the semicircle law. Under fourth-moment conditions, we

prove that this empirical process converges to a Gaussian process. Explicit formulae for the mean

function and the covariance function of the limit process are provided.
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1. Introduction and main results

A complex Wigner matrix of size n is a Hermitian matrix W n ¼ (xi j)1<i, j<n where the

upper-triangle entries (xi j)1<i< j<n are independent, zero-mean complex-valued random

variables satisfying the following moment conditions:

(i) for all i, Ejxiij2 ¼ � 2 . 0;

(ii) for all i , j, Ejxijj2 ¼ 1 and Ex2
ij ¼ 0.

The set of these complex Wigner matrices is called the unitary ensemble (UE). Similarly, a

real Wigner matrix of size n is a real symmetric matrix W n where the upper-triangle entries

(xi j)1<i< j<n are independent, zero-mean real-valued random variables satisfying the following

moment conditions:

(i) for all i, Ejxiij2 ¼ � 2 . 0;

(ii) for all i , j, Ejxijj2 ¼ 1.

The set of these real Wigner matrices is called the orthogonal ensemble (OE). In both cases,

the entries are not necessarily identically distributed. If, in addition, the entries are Gaussian

(with � 2 ¼ 1 and 2 for the UE and OE, respectively), the above ensembles are the classical

Gaussian unitary ensemble (GUE) and Gaussian orthogonal ensemble (GOE) of random

matrices.
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The empirical spectral distribution Fn is the empirical distribution generated by the n

eigenvalues of the normalized matrix n�1=2W n. This distribution is supported by the real

line. Wigner (1955, 1958) first proved that as n ! 1, EFn converges to the semicircle law

whose density function is given by

F(dx) ¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � x2

p
dx, x 2 [�2, 2]:

It was later established that Fn converges to F also in probability and almost surely. A review

can be found in Bai (1999).

The problem of the convergence rate has been considered more recently, and several

results are proposed in Bai (1993), Costin and Lebowitz (1995), Johansson (1998),

Khorunzhy et al. (1996), Sinai and Soshnikov (1998) and Bai et al. (2002). However, the

exact convergence rate remains unknown for Wigner matrices. Results from numerical

simulations lead to a ‘folklore conjecture’ of a rate of the order of O(1=n).

It thus seems natural to consider the asymptotics of the empirical process Gn(x)

¼ n(Fn(x) � F(x)). However, there is plenty of evidence to show that the process Gn

cannot converge in any metric space. Thus, we have to draw back a little and consider the

linear functionals of the process Gn(x).

More precisely, let �( f ) denote the integral of a function f with respect to a signed

measure �. An open set U of the complex plane including the interval [�2, 2], the support

of F, will be fixed throughout this paper. Next, define A to be the set of analytic functions

f : U ! C. We then consider the empirical process Gn :¼ fGn( f )g indexed by A, that is,

Gn( f ) :¼ n

ð1
�1

f (x)[Fn � F](dx), f 2 A: (1:1)

To study the weak limit of Gn, we need further conditions on the moments:

Condition 1.1 Homogeneity of fourth moments. M ¼ Ejxijj4 for i 6¼ j;

Condition 1.2 Uniform tails. For any � . 0, as n ! 1,

1

�4 n2

X
i, j

E jxijj41fjxijj>�
ffiffiffi
n

p
g

h i
¼ o(1):

Note that Condition 1.2 implies the existence of a sequence �n # 0 such that

(�n

ffiffiffi
n

p
)�4
X

i, j

E[jxijj41fjxijj>�n

ffiffiffi
n

p
g] ¼ o(1): (1:2)

The main result of this paper is that the empirical process Gn converges to a Gaussian

process. As a consequence, for any p elements f 1, . . . , f p of A, the finite-dimensional

central limit theorem (CLT) holds, that is, the vector [Gn( f 1), . . . , Gn( f p)] converges

weakly to a p-dimensional Gaussian distribution.

Let fT kg be the family of Chebyshev polynomials and define, for f 2 A and any integer

‘ > 0,
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�‘( f ) ¼ 1

2�

ð�
��

f (2 cos(Ł))ei‘Ł dŁ

¼ 1

2�

ð�
��

f (2 cos(Ł)) cos(‘Ł)dŁ ¼ 1

�

ð1

�1

f (2t)T‘(t)
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p dt: (1:3)

In order to give a unified statement for both ensembles, we introduce the parameter k with

values 1 and 2 for the complex and real Wigner ensemble, respectively. Moreover, set

� ¼ E(jx12j2 � 1)2 � k. In particular, for the GUE we have k ¼ � 2 ¼ 1 and for the GOE we

have k ¼ � 2 ¼ 2, and in both cases � ¼ 0.

Theorem 1.1. Under Conditions 1.1 and 1.2, the spectral empirical process Gn ¼ (Gn( f ))

indexed by the set of analytic functions A converges weakly to a Gaussian process

G :¼ fG( f ) : f 2 Ag with mean function

E[G( f )] ¼ k� 1

4
f (2) þ f (�2)f g � k� 1

2
�0( f ) þ (� 2 � k)�2( f ) þ ��4( f ), (1:4)

and covariance function c( f , g) :¼ E[fG( f ) � EG( f )gfG(g) � EG(g)g] given by

c( f , g) ¼ (� 2 � k)�1( f )�1(g) þ 2��2( f )�2(g) þ k
X1
‘¼1

‘�‘( f )�‘(g) (1:5)

¼ 1

4�2

ð2

�2

ð2

�2

f 9(t)g9(s)V (t, s)dt ds, (1:6)

where

V (t, s) ¼ � 2 � kþ 1

2
�ts

� �
(4 � t2)1=2(4 � s2)1=2 þ k log

4 � ts þ (4 � t2)1=2(4 � s2)1=2

4 � ts � (4 � t2)1=2(4 � s2)1=2

� �
:

(1:7)

Note that our definition implies that the variance of G( f ) equals c( f , f ). Let �a(dt) be

the Dirac measure at a point a. The mean function can also be written as

E[G( f )] ¼
ð
R

f (2t)d�(t), (1:8)

with signed measure

d�(t) ¼ k� 1

4
[�1(dt) þ ��1(dt)]

þ 1

�
� k� 1

2
þ (� 2 � k)T2(t) þ �T4(t)

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p 1[�1,1](t)dt: (1:9)

In the case of the GUE and GOE, the covariance reduces to the third term in (1.5). The

mean E[G( f )] is thus always zero for the GUE, and for the GOE we have
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E[G( f )] ¼ 1

4
f (2) þ f (�2)f g � 1

2
�0( f ):

Therefore the limit process is not necessarily centred.

Gaussian fluctuations in random matrices are considered by various authors, starting with

Costin and Lebowitz (1995). Johansson (1998) considers an extended random ensemble

whose entries follow a density proportional to exp[�ntrfV (W )g], where V is a polynomial

of even degree with positive leading coefficient. He established a CLT for the linear spectral

statistics. Therefore the Gaussian ensembles are special cases of both Johansson (1998) and

the present paper. For these ensembles, our theorem applied to polynomials coincides with

the results of Johansson; see Section 6 for a detailed comparison.

Another related work is Khorunzhy et al. (1996), where the authors consider the

orthogonal ensemble (with general entries) and established a CLT for nfsn(z1) �
Esn(z1), . . . , sn(zq) � Esn(zq)g, where q is an arbitrary integer, z j are complex numbers

such that jI(z j)j > 2 and sn is the Stieltjes transform (or resolvent) sn(z) ¼
1
n
tr(W n=

ffiffiffi
n

p � zI)�1. This CLT is very close to Proposition 4.1 below, corresponding to

the finite-dimensional convergence part of our Theorem 2.1. Note that Proposition 4.1 is

applicable without the restriction jI(z j)j > 2 so that the points z j can approach the real axis

in a well-controlled manner. This improvement is fundamental for the contour integration

used for the derivation of the main Theorem 1.1 from Theorem 2.1. It is also worth

noticing that in many applications the functional CLT given in Theorem 1.1 is more useful

than the (finite-dimensional) CLT for the resolvent given in Proposition 4.1 (or in

Khorunzhy et al. 1996).

Consider, for example, a bivariate function f (x, t) and the stochastic process

Z n(t) ¼
Xn

k¼1

f (ºk , t) � n

ð2

�2

f (x, t)F(dx):

If both f and @ f (x, t)=@ t are analytic in x over a region containing [�2, 2], it follows easily

from Theorem 1.1 that Z n(t) converges to a Gaussian process. Its finite-dimensional

convergence is exactly the same as in Theorem 1.1, while its tightness can be obtained as a

simple consequence of the same theorem. However, such a result does not follow from the

results of Khorunzhy et al. (1996). Processes like Z n(t) are of undoubted importance for

applications of the random matrix theory.

A third related work is Sinai and Soshnikov (1998). Assume p ¼ p(n) ! 1 and

p=
ffiffiffi
n

p ! 0. These authors establish a CLT for tr(2�1 n�1=2W n) p � Etr(2�1 n�1=2W n) p under

the assumptions that the underlying variables are symmetric and have all moments

satisfying an appropriate growth condition. They also prove that for f analytic on the disc

of radius 2, the centred random variable Gn( f ) � E[Gn( f )] has a Gaussian limit. However,

neither the mean function nor variance function of the Gaussian limit is provided.

This paper is organized as follows. In Section 2 we give the main steps necessary to

prove Theorem 1.1. In particular, Theorem 2.1 will be introduced as an intermediate result.

We then introduce the truncation tool leading to a preliminary simplification of the proofs.

Some useful inequalities and a standard formula are also presented. Sections 3 and 4 are
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devoted primarily to the proof of Theorem 2.1. Also a much shorter proof of Theorem 1.1

using Theorem 2.1 and a proof of (2.3) are given at different places in these two sections.

In Section 5 we derive the mean and covariance functions given in Theorem 1.1. Then in

Section 6 we present applications to linear spectral statistics and to the Gaussian ensembles.

Finally, Section 7 presents two frequently used lemmas.

2. Strategy of the proof, simplifications and known formula

2.1. Strategy of the proof

Let ª be the contour formed by the boundary of the rectangle with vertex (�a � iv0) where

a . 2 and 1 > v0 . 0. We can always assume that ª � U with sufficiently small (but fixed)

a and v0. Then, for every x 2 (�a, a), by Cauchy’s theorem,

f (x) ¼ 1

2�i

þ
ª

f (z)

z � x
dz:

Recall that the Stieltjes transform s H (z) of any function H of bounded variation on R is

defined by

s H (z) ¼
ð1
�1

dH(x)

x � z
, z 2 Cþ :¼ fu þ iv, v . 0g:

This definition applies to a probability distribution function. Also, we may analytically extend

the Stieltjes transform to the whole complex plane, except for the support of H .

Let sn(z) and s(z) denote the extended Stieltjes transforms of Fn and F, respectively.

Then

Gn( f ) ¼
ð

f (x)n[Fn � F](dx)

¼ 1

2�i

ðþ
ª

f (z)

z � x
n[Fn � F](dx)dz ¼ 1

2�i

þ
ª

f (z)dz

ð
1

z � x
n[Fn � F](dx)

¼ � 1

2�i

þ
ª

f (z)n[sn(z) � s(z)]dz: (2:1)

The reader is reminded that the above equality may not be correct when some eigenvalues of

n�1=2W n fall outside the contour. However, the probability of this event decays rapidly to

zero (see below).

This representation reduces our problem to showing that the following process, indexed

by z =2 [�2, 2],

�n(z) ¼ n[sn(z) � s(z)], (2:2)

converges in some appropriate space to a Gaussian process �(z), z =2 [�2, 2]. We will show
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this conclusion by the following theorem. Throughout the paper we set C0 ¼ fz ¼
u þ iv : jvj > v0g.

Theorem 2.1. Under Conditions 1.1 and 1.2, the process f�n(z); C0g converges weakly to a

Gaussian process f�(z); C0g with the mean and covariance functions given in Propositions

3.1 and 4.1 below.

Since the mean and covariance functions of �(z) are independent of v0, the process

f�(z); C0g in Theorem 2.1 can be taken as a restriction of a process f�(z)g defined on the

whole complex plane, except for the real line. Further, by noticing the symmetry

�(z) ¼ �(z), and the continuity of the mean and covariance functions of �(z) on the real

axes except for z 2 [�2, 2], we may extend the process to f�(z); Rz =2 [�2, 2]g.

Split the contour ª into the union ªu þ ª l þ ªr þ ª0, where ª l ¼ fz ¼ �a þ iy,

n�2 , jyj < v1g, ªr ¼ fz ¼ a þ iy, n�2 , jyj < v1g and ª0 ¼ fz ¼ �a þ iy, jyj < n�2g.

By Theorem 2.1 we obtain the weak convergenceð
ªu

�n(z)dz )
ð
ªu

�(z)dz:

To prove Theorem 1.1, we need only show that for j ¼ l, r, 0 and some event Qn with

P(Qn) ! 1,

lim
v1#0

lim sup
n!1

ð
ª j

Ej�n(z)1Qn
j2 dz ¼ 0 (2:3)

and

lim
v1#0

ð
ª j

Ej�(z)j2 dz ¼ 0: (2:4)

The estimate (2.4) can be verified directly by the mean and variance functions of �(z). The

definition of the random event Qn and the proof of (2.3) for the case j ¼ 0 will be given in

Section 2.3, and the proof of the non-random and random parts of the limits (2.3) with j ¼ l

and r will be given in Sections 3.1 and 4.3, respectively.

2.2. Simplification by truncation

As proposed in Bai and Yin (1988) to control the fluctuations around the extreme

eigenvalues, under Conditions 1.1 and 1.2, we will truncate the variables at a convenient

rate without altering their weak limit.

Choosing �n according to (1.2), we first truncate the variables as x̂xij ¼ xij1jxijj<�n

ffiffiffi
n

p . We

must further normalize them by setting ~xxij ¼ (x̂xij � Ex̂xij)=sij, where sij is the standard

deviation of x̂xij for i 6¼ j and � sii is the standard deviation of x̂xii.

Let F̂Fn and ~FFn be the empirical spectral distribution of the random matrices n�1=2(x̂xij)

and n�1=2(~xxij), respectively. Define ĜGn and ~GGn similarly by means of (1.1). First, observe

that

1064 Z.D. Bai and J. Yao



P(Gn 6¼ ĜGn) < P(Fn 6¼ F̂Fn) ¼ o(1): (2:5)

Indeed,

P(Fn 6¼ F̂Fn) < P for some i, j, x̂xij 6¼ xij

� �
<
X

i, j

P jxijj > �n

ffiffiffi
n

p� �

< (�n

ffiffiffi
n

p
)�4
X

i, j

E[fjxijj41jxijj>�n

ffiffiffi
n

p g] ¼ o(1):

On the other hand, Condition 1.1 implies that

max
i, j

j1 � sijj < max
i, j

j1 � s2
ijj

¼ max
i, j

E(jxijj2f1jxijj>�n

ffiffiffi
n

p g) þ jE(xij1fjxijj>�n

ffiffiffi
n

p
g)j2

h i

< (n�1��2
n þ M��6

n n�3) max
i, j

[E(jxijj2f1fjxijj>�n

ffiffiffi
n

p
gg)] ! 0: (2:6)

Therefore, by Conditions 1.1 and 1.2,X
i, j

E(jxijj2j1 � s�1
ij j2) < C

X
i, j

(1 � s2
ij)

2 <
CM

�4
n n2

X
i, j

E(x4
ij1fjxijj>�n

ffiffiffi
n

p
g) ! 0:

Consequently, as f is analytic, we obtain

Ej ~GGn( f ) � ĜGn( f )j2 < C E
Xn

j¼1

j~ººnj � º̂ºnjj
 !2

< Cn E
Xn

j¼1

j~ººnj � º̂ºnjj2

¼ Cn E
X

i, j

jn�1=2(~xxij � x̂xij)j2

< C
X

i, j

(Ejxijj2)j1 � s�1
ij j2 þ

X
i, j

jE(x̂xij)j2s�2
ij

" #
¼ o(1),

where ~ººnj and º̂ºnj are the jth largest eigenvalues of the Wigner matrices n�1=2(~xxij) and

n�1=2(x̂xij), respectively. Therefore the weak limit of the variables (Gn( f )) is not affected if we

substitute the normalized truncated variables ~xxij for the original xij.

From the normalization, the variables ~xxij all have mean 0 and the same absolute second

moments as the original variables. However for the UE, the requirement Ex2
ij ¼ 0 is no

longer satisfied after these simplifications. Indeed, we now have E~xx2
ij ¼ O(1=n).

We now assume that the above conditions hold and we use xij to denote the truncated and

normalized variables ~xxij.

Let ºext be the smallest or the largest eigenvalue of the matrix n�1=2W n (defined by the
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truncated and normalized variables). An important consequence of the truncation (see the

proof of Theorem 2.12 in Bai 1999) is that, for any � . 0 and t . 0,

P(Bn) ¼ o(n� t), Bn ¼ fjºext(n�1=2W n)j > 2 þ �g: (2:7)

This property will be used in the proof of Corollary 7.3 below.

2.3. The proof of (2:3) for j ¼ 0

If we choose Qn � Bc
n, then, when Qn happens, for any z 2 ª0 we have jsn(z)j < 2=(a � 2)

and js(z)j < 1=(a � 2). Hence,ð
ª0

Ej�n(z)1Qn
j2 < 4n(2=(a � 2))2kª0k ¼ 4n�1(2=(a � 2))2 ! 0:

2.4. Known formulae and easy consequences

The Stieltjes transform s(z) of the semicircle law F is given by s(z) ¼ �1
2
(z �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4

p
)

which satisfies the equation s2 þ sz þ 1 ¼ 0. Here
ffiffiffi
z

p
is the square root of z with positive

imaginary part. By the symmetry principle, the extended Stieltjes transform of the

semicircle law can be found by solving s(z) ¼ s(z), if Iz , 0. To prove Theorem 2.1, we

only need to show that �n(z)1Bc
n
) �(z) on C0 with Bn defined in (2.7).

Define D ¼ (n�1=2W n � zI n)�1. Let Æk be the kth column of W n with xkk removed and

W n(k) the submatrix extracted from W n by removing its kth row and kth column. Define

Dk ¼ (n�1=2W n(k) � zI n�1)�1. Let A� be the adjoint of A and define the auxiliary variables

�k ¼ �n�1=2xkk þ z þ n�1Æ�k DkÆk , (2:8)

�(z) ¼ � 1

n

Xn

k¼1

	k

�k(z þ Esn(z))
, (2:9)

	k ¼ xkkffiffiffi
n

p � 1

n
Æ�k DkÆk þ Esn(z): (2:10)

The Stieltjes transform sn(z) of Fn has the representation

sn(z) ¼ 1

n
trD ¼ 1

n
tr

W nffiffiffi
n

p � zI n

� ��1

¼ � 1

n

Xn

k¼1

1

�k

¼ � 1

z þ Esn(z)
þ �(z): (2:11)

In particular,

Esn(z) ¼ s(z þ E�(z)) þ E�(z): (2:12)

Moreover, under Condition 1.1, we have for z 2 C0 and some generic constant K,
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jE�(z)j < Kn�1: (2:13)

This entails, in particular,

jEsn(z) � s(z)j < Kn�1: (2:14)

Secondly, for any p . 1 such that supi, j Ejxijj p , 1,

EjÆ�k DkÆk � trDk j p < Kn p=2, (2:15)

EjtrDk � EtrDk j p < Kn p=2: (2:16)

Inequality (2.13) follows from (4.26) of Bai (1993), and (2.15) and (2.16) follow from

Lemmas 2.1 and 2.6 of Bai et al. (2002).

Finally, let us mention a ‘trick’ frequently played on the matrix D or Dk : as W n is

Hermitian (or real symmetric), the eigenvalues of D are of the form 1=(º j � z) with real º j.

All these values are then bounded by 1=v, so that jtrDj < n=v and jtrDDj < n=v2. Another

useful equality from this spectral decomposition of D is the following differentiation rule

(with respect to z): dD(z)=dz ¼ D 2(z).

3. The mean function of �n

An expansion from (2.12) gives for the mean function bn(z) :¼ E�n(z),

bn(z) :¼ n[Esn(z) � s(z)] ¼ [1 þ s9(z)]n E�(z)f1 þ o(1)g:

Let the index k always run from 1 to n. When we derive a bound or a limit for some

expression gk depending on k (e.g. trDk), the result holds uniformly in k (i.e. the bound or

the limit is independent of k), so that the same is true for the mean n�1(g1 þ . . . þ g n).

Proposition 3.1. The mean function bn(z) uniformly tends to

b(z) ¼ [1 þ s9(z)]s3(z)[� 2 � 1 þ (k� 1)s9(z)�s2(z)]

for z 2 C0 and for both the UE and OE.

Proof. By definition,

n�(z) ¼ �
Xn

k¼1

	k

�k[z þ Esn(z)]
:

We aim to prove that n E� tends to a limit d(z) ¼ s3(z)[� 2 � 1 þ (k� 1)s9(z)�s2(z)]. Using

the identity

1

u � 	
¼ 1

u
1 þ 	

u
þ . . . þ 	 p

u p
þ 	 pþ1

u p(u � 	)

� �

for any integer p, we obtain
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n�(z) ¼ �
Xn

k¼1

	k

[z þ Esn(z)]2
�
Xn

k¼1

	2
k

[z þ Esn(z)]3
�
Xn

k¼1

	3
k

�k[z þ Esn(z)]3

¼ S1 þ S2 þ S3:

First, we prove that ES3 ¼ o(1). We have j�k j > v because

j�k j ¼
����z � xk kffiffiffi

n
p þ n�1Æ�k DkÆk

����
> Im z � xkkffiffiffi

n
p þ n�1Æ�k DkÆk

� �

¼ v(1 þ n�1Æ�k Dk DkÆk):

Therefore, by Lemma 7.2 below,

jES3j < v�1jz þ Esn(z)j�3 E
Xn

k¼1

j	3
k j ¼ o(1):

For ES1 we have

E	k ¼ E
xkkffiffiffi

n
p � n�1Æ�k DkÆk

� �
þ Esn(z)

¼ n�1[EtrD � EtrDk]:

On the other hand,

trD � trDk ¼ 1 þ n�1Æ�k D2
kÆk

n�1=2xkk � z � n�1Æ�k DkÆk

:

By inequalities (2.15) and (2.16), it is easy to see that

n�1=2xkk � z � n�1Æ�k DkÆk !
L2 �z � s(z),

1 þ n�1Æ�k D2
kÆk ¼ 1 þ [n�1Æ�k DkÆk]9

!L2
1 þ s9(z):

Therefore, as j�k j > v it follows that

trD � trDk !
L1 � 1 þ s9(z)

z þ s(z)
¼ s(z)[1 þ s9(z)]:

Hence,

ES1 !
L1 �s3(z)[1 þ s9(z)]: (3:1)

For the term ES2, by the previous estimate for E	k, we have
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E	2
k ¼ E(	k � E	k)2 þ O(n�2):

Furthermore, by the definition of 	k , we have

	k � E	k ¼ xkk=
ffiffiffi
n

p
� n�1[Æ�k DkÆk � EtrDk]

¼ xkk=
ffiffiffi
n

p
� n�1[Æ�k DkÆk � trDk] þ n�1[trDk � EtrDk]:

Therefore

E[	k � E	k]2 ¼ � 2

n
þ 1

n2
E[Æ�k DkÆk � trDk]2 þ 1

n2
E[trDk � EtrDk]2: (3:2)

It will be proved later that

E[trDk � EtrDk]2 ! c(z),

for some function c(z), so that we neglect the last term in (3.2). To evaluate the second term,

let us use the notation Æk ¼ (�i) and Dk ¼ (dij). We have

E[Æ�k DkÆk � trDk]2 ¼ E
X
i 6¼ j

d ij�i� j þ
X

i

d ii(j�ij2 � 1)

" #2

¼ E
X
i 6¼ j

X
s6¼ t

d ijdst�i� j�s� t

" #
þ E

X
i

d2
ii(j�ij2 � 1)2

" #

¼ E(�1)2 E(�2)2 E
X
i 6¼ j

d2
ij

" #
þ Ej�1j2 Ej�2j2 E

X
i 6¼ j

d ijd ji

" #

þ E(j�1j2 � 1)2 E
X

i

d2
ii

" #

¼ kE
X

i, j

d ijd ji

" #
þ � E

X
i

d2
ii

" #
þ o(n): (3:3)

Here we see the main difference between the UE and OE. For the UE, we need the

assumption E(x2
ij) ¼ 0 for the original variables, which implies E(�2

i ) ¼ o(1) for the truncated

ones. Without this assumption, it is difficult to deal with the limit of
P

i, j d2
ij ¼ tr(Dk DT

k).

The introduction of the parameter k, taking different values on the two ensembles, allows us

to give a unified expression for the computation above.

Noticing that X
i, j

d ijd ji ¼ trD2
k ¼ d

dz
trDk ,

we then have
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n E	2
k ¼ � 2 þ k E[n�1trD2

k] þ � E n�1
X

i

d2
ii

" #
þ o(1):

Furthermore, by Lemma 7.1 below,

lim
n

1

n
trD2

k ¼ lim
n

1

n
trDk

� �
9
¼ s9(z), in L1,

lim
n

1

n

X
i

d2
ii ¼

1

[�z � s(z)]2
¼ s2(z), in L1:

Hence

Xn

k¼1

E	2
k ¼ � 2 þ ks9(z) þ �s2(z) þ o(1):

Summing the three terms, we obtain

n E�(z) ¼ s3 � 2 � 1 þ (k� 1)s9þ �s2
	 


þ o(1):

The proposition is proved. h

3.1. Proof of the non-random part of (2.3) for j ¼ l, r

Using the notation defined in this section, we proceed to prove, for j ¼ l or r

lim
v1#0

lim sup
n!1

ð
ª j

jE�n(z)1Qn
j2 dz ¼ 0: (3:4)

By symmetry, we need only consider the case j ¼ l. Let z 2 ª l, that is, z ¼ �a þ iv with

n�2 , jvj , v1. Without loss of generality we may assume that v1 , a=2 � 1.

Note that Rs(z) . 0 for all z 2 ª l. Thus, we have

� :¼ inf
z¼�aþiv,jvj,v0

Rf�(z þ s(z))g ¼ inf
z¼�aþiv,jvj,v0

R
1

s(z)

� �
. 0:

Let Bn be the event defined in (2.7) with � ¼ 1
2
(a � 2). Now define Qn ¼ Bc

n

\k fj�k j . �=3)g and Bnk ¼ fjºext(n�1=2W k)j > 1 þ a=2g. By the interlacing theorem (see

Rao and Rao, 2001, p. 328), we have Bnk � Bn. Multiplying both sides of (2.11) by 1Qn
gives

the following expressions analogous to those used in the proof of Proposition 3.1:

~ssn(z) ¼ � 1

z þ E~ssn(z)
þ ~��(z),

n~��(z) ¼
n1Qc

n

z þ E~ssn(z)
�
Xn

k¼1

~		k1Qn

[z þ E~ssn(z)]2
�
Xn

k¼1

~		2
k1Qn

�k[z þ E~ssn(z)]2

¼ ~SS1 þ ~SS2 þ ~SS3, (3:5)
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where ~ssn(z) ¼ sn(z)1Qn
and ~		k ¼ n�1=2xkk � n�1Æ�k DkÆk þ E~ssn(z).

Note that E~ssn ! s uniformly on ª l. From (3.5), we find that E~��(z) ! 0 uniformly. Our

next goal is to show that for any fixed t . 0,

P(Qc
n) ¼ o(n� t), (3:6)

which is a consequence of

Xn

k¼1

P(j�k j < �=3) ¼ o(n� t): (3:7)

Observe that jz þ E~ssnj > 2�=3, for all large n, which, together with j�k j < �=3, implies that

j~		k j > �=3. Thus (3.7) follows from Corollary 7.3 below. Hence, (3.6) is proved.

On the other hand, we have E~ssn(z) ¼ s(z þ E~��(z)) þ E~��(z), which, together with facts that

E~�� ! 0 and that s9(z) is uniformly bounded when jR(z)j > a=2 þ 1, implies that

jE~ssn(z) � s(z)j < KjE~��(z)j:
Therefore,

njE(sn(z) � s(z))1Qn
j < njs(z)jP(Qc

n) þ njE~ssn(z) � s(z)j

< o(n� t) þ KnjE(~��(z))j:

This reduces the proof of (3.4) to showing that E ~SS j, j ¼ 1, 2, 3, are all uniformly bounded on

ª l.

We obviously have that, for all large n,

jE ~SS1j < (3=2�)nP(Qc
n) ¼ o(n� t),

jE ~SS3j < (3=�)32�2
Xn

k¼1

Ej~		k j21Qn
¼ O(1):

To complete the proof of (3.4), we need to prove that E ~SS2 is uniformly bounded for z 2 ª l.

First, we have

jn E~		k1Bc
nk
j ¼ j EtrD1Qn

P(Bc
nk) � EtrDk1Bc

nk
j

< j E(trD � trDk)1Bc
n
j þ jEtrD1Qn

jP(Bnk)

þ jEtrD1Qc
n Bc

n
j þ jEtrDk1Bc

nk
Bn
j

< K þ Kn 2P(Bn) þ
Xn

k¼1

P(j~		k j > �=3, Bc
n)

" #
< K:

Next, we have

jn E~		k1Bc
nk
� n E~		k1Qn

j < nEj~		k[1Qn Bnk
þ 1Qc

n Bc
nk

]j

< Kn[P(Bnk) þ P(Qc
n)] ! 0:
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Hence,

jE ~SS1j < (2�=3)�2
Xn

k¼1

jE	k1Qn
j < K:

The proof of (3.4) is then complete.

4. Convergence of the process 
n ¼ �n � E�n

In this section we consider the convergence of the random part of the process �n given by


n ¼ f
n(z) ¼ �n(z) � E�n(z), z 2 C0g:

To this end we establish the finite-dimensional convergence and the tightness of 
n(z).

4.1. Finite-dimensional convergence of (
n)

Let F k ¼ � (xij, k þ 1 < i, j < n) for 0 < k < n and Ek(�) ¼ E(�jF k). Note that the

filtration (F k)k is decreasing in k. Let us also mention that for each n, the entries xij

could depend on n; in that case we would have a sequence of filtrations F (n) :¼
(F (n)

k )1<k<n. This possible dependence on n will be assumed throughout the paper.

The following martingale decomposition is well known (see (2.12) in Bai et al. 2002):


n(z) :¼ �n(z) � E�n(z) ¼ trD � EtrD ¼
Xn

k¼1

uk ,

where

uk ¼ (Ek�1 � Ek)trD ¼ (Ek�1 � Ek)(trD � trDk)

¼ (Ek�1 � Ek)ak � Ek�1bk ,

ak ¼ � (1 þ n�1Æ�k D2
kÆk)g k

�k(z þ n�1trDk)
, bk ¼ hk

(z þ n�1trDk)
,

gk :¼ n�1=2xkk � n�1(Æ�k DkÆk � trDk)

hk :¼ n�1(Æ�k D2
kÆk � tr(D2

k)): (4:1)

We have
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ak ¼ � 1 þ n�1Æ�k D2
kÆk

z þ n�1trDk

g k

�k

¼ � 1 þ n�1tr(D2
k)g k

(z þ n�1trDk)2
� hk gk

(z þ n�1trDk)2
� (1 þ n�1Æ�k D2

kÆk)g2
k

(z þ n�1trDk)2�k

:¼ ak1 þ ak2 þ ak3:

By Lemma 7.2, for z 2 C0,

E

����Xn

k¼1

(Ek�1 � Ek)ak3

����
2

¼
Xn

k¼1

Ej(Ek�1 � Ek)ak3j2

<
Xn

k¼1

E

���� (1 þ n�1Æ�k D2
kÆk)g2

k

(z þ n�1trDk)2(g k � (z þ n�1trDk))

����
2

< v�6
Xn

k¼1

Ejgk j4 ¼ o(1): (4:2)

We also have

E

����Xn

k¼1

(Ek�1 � Ek)ak2

����
2

¼
Xn

k¼1

Ej(Ek�1 � Ek)ak2j2

<
Xn

k¼1

E

���� hk gk

(z þ n�1trDk)2

����
2

< v�4
Xn

k¼1

(Ejhk j4 Ejgk j4)1=2 ¼ o(1), (4:3)

where we have used the facts that j(1 þ n�1Æ�k D2
kÆk)=(gk � (z þ n�1trDk))j < v�1 and

I(z þ n�1trDk) > v. Furthermore,

(Ek�1 � Ek)ak1 ¼ (Ek�1 � Ek) � 1 þ n�1tr(D2
k)

(z þ n�1trDk)2
g k

� �

¼ �Ek�1

1 þ n�1tr(D2
k)

(z þ n�1trDk)2
gk ,

where the last equality follows from the fact that the conditional expectation with respect to

Ek is zero. Hence,
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n(z) ¼
Xn

k¼1

Ek�1 � 1 þ n�1tr(D2
k)

(z þ n�1trDk)2
g k � bk

� �
þ o p(1)

¼
Xn

k¼1

Ek�1�k(z) þ o p(1),

where we have denoted by �k(z) the term in the square brackets.

Let fzs, s ¼ 1, . . . , pg be p different points belonging to C0. The problem is then

reduced to seeking the weak convergence of the vector martingale

An :¼
Xn

k¼1

Ek�1(�k(z1), . . . , �k(z p)) ¼:
Xn

k¼1

Ek�1�k : (4:4)

Proposition 4.1. Assume that Conditions 1.1 and 1.2 are satisfied. For any set of p points

fzs, s ¼ 1, . . . , pg of C0, the random vector (�(z1), . . . , �(z p)) converges weakly to a p-

dimensional zero-mean Gaussian distribution with covariance matrix given by

ˆ(z j, zs) ¼
@2

@z j@zs

(� 2 � k)s jss þ
1

2
�(s jss)

2 � k log(1 � s jss)

� �

¼ s9j s9s � 2 � kþ 2�s jss þ
k

(1 � s jss)2

� �
, (4:5)

with s j ¼ s(z j).

Proof (Part 1). We apply a CLT to the martingale An defined in (4.4). Consider its hook

process:

ˆn(zi, z j) :¼
Xn

k¼1

Ek[Ek�1�k(zi)Ek�1�k(z j)]:

Then we have to check the following two conditions:

Condition 4.1. ˆn converges in probability to the matrix ˆ;

Condition 4.2 Lyapunov condition. For some a . 2,

Xn

k¼1

Ek[kEk�1�kka]!p
0:

The verification of Condition 4.1 and the computation of the limit ˆ are lengthy and

delayed to Section 4.4. Here we prove that Condition 4.2 is satisfied with a ¼ 4. We will

prove that
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E
Xn

k¼1

Ek[kEk�1�kk4] ¼
Xn

k¼1

E[kEk�1�kk4] ! 0:

Note that

kEk�1�kk4 < K[jEk�1�k(z1)j4 þ . . . þ jEk�1�k(z p)j4],

so that it will be sufficient to establish that for any z 2 C0,

Sn :¼
Xn

k¼1

EjEk�1�k(z)j4 ! 0:

By Jensen’s inequality, we obtain Sn <
Pn

k¼1 Ej�k(z)j4. By definition of �k and bk, we have,

by the ‘trick’ explained at the end of Section 2,

j�k(z)j ¼
���� 1 þ n�1tr(D2

k)

(z þ n�1trDk)2
gk þ

hk

(z þ n�1trDk)

����
<

1 þ v�1

v2
jgk j þ

1

v
jhk j,

Under Condition 1.1 and by Lemma 7.2, we thus have Ej�k(z)j4 < Kn�1�4
n. Hence Sn ¼ o(1)

and Condition 4.2 is satisfied. h

4.2. Tightness of (
n)

It is enough to establish the following Hölder condition: for some positive constant K,

Ej
n(z1) � 
n(z2)j2 < Kjz1 � z2j2, z1, z2 2 C0: (4:6)

By the definition of 
n, we have

Ej
n(z1) � 
n(z2)j2 ¼ jz1 � z2j2 EjtrD(z1)D(z2) � EtrD(z1)D(z2)j2

¼ jz1 � z2j2
Xn

k¼1

Ej(Ek�1 � Ek)(trD(z1)D(z2))j2:

Using the formula

� Æ�
Æ �

� ��1

¼ Ł
1 �Æ���1

���1Æ (Ł�)�1 þ ��1ÆÆ���1

� �
, Ł :¼ 1

� � Æ���1Æ
,

we obtain

trD(z1)D(z2) � trDk(z1)Dk(z2) <
j1 þ n�1Æ�k Dk(z1)Dk(z2)Æk j2

�k(z1)�k(z2)

þ Æ�k Dk(z1)Dk(z2)Dk(z1)Æk

n�k(z1)
þ Æ�k Dk(z2)Dk(z1)Dk(z2)Æk

n�k(z2)
:
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If M ¼ Dk(z1)Dk(z2)Dk(z1), then by Lemma 7.2 we have

E

����(Ek�1 � Ek)
Æ�k MÆk

n�(z1)

����
2

¼ E

����(Ek�1 � Ek)
Æ�k MÆk � trM

n�(z1)
� trM(Æ�k Dk(z1)Æk � trDk(z1))

n2�k(z1)(z þ n�1trDk)

����
2

< Kn�2[EjÆ�k MÆk � trM j2 þ EjÆ�k Dk(z1)Æk � trDk(z1)j2]

< Kn�1:

Therefore,

Xn

k¼1

E

����(Ek�1 � Ek)
Æ�k Dk(z1)Dk(z2)Dk(z1)Æk

n�k(z1)

����
2

< K:

Similarly,

Xn

k¼1

E

����(Ek�1 � Ek)
Æ�k Dk(z2)Dk(z1)Dk(z2)Æk

n�k(z2)

����
2

< K:

By a similar decomposition approach, one may prove that

Xn

k¼1

E

����(Ek�1 � Ek)
j1 þ n�1Æ�k Dk(z1)Dk(z2)Æk j2

�k(z1)�k(z2)

����
2

¼
Xn

k¼1

E

����(Ek�1 � Ek)
j1 þ n�1Æ�k Dk(z1)Dk(z2)Æk j2

�k(z1)�k(z2)
� j1 þ n�1trDk(z1)Dk(z2)j2

(z1 þ n�1trDk(z1))(z2 þ n�1trDk(z2))

����
2

< K:

Then (4.6) follows from the above estimates and the fact that

(Ek�1 � Ek)tr(D(z1)D(z2)) ¼ (Ek�1 � Ek)[tr(D(z1)D(z2)) � tr(Dk(z1)Dk(z2))]:

4.3. Conclusion of the proof of (2.3) for j ¼ l, r

By (3.4), to complete the proof of (2.3), we need only show that

lim
v1 # 0

lim sup
n!1

ð
ª l

Ej(�n(z)1Qn
� E�n(n)1Qn

)j2 dz ¼ 0: (4:7)

Using the same expansion as (4.1) and a slightly different decomposition, we have
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�n(z)1Qn
� E�n(n)1Qn

¼
Xn

k¼1

(Ek�1 � Ek)trD1Qn

¼
Xn

k¼1

(Ek�1 � Ek)uk1Qn
þ
Xn

k¼1

(Ek�1 � Ek)trDk1Qn
,

uk ¼ � 1 þ n�1Æ�k D2
kÆk

�k

¼ uk0 þ uk1 þ uk2

where

uk0 ¼ � 1 þ n�1tr(D2
k)

z þ E~ssn(z)
,

uk1 ¼ �Æ�k D2
kÆk � tr(D2

k)

n(z þ E~ssn(z))
,

uk2 ¼ � (1 þ n�1Æ�k D2
kÆk)~		k

�k(z þ E~ssn(z))
:

When z 2 ª l, we have jtrDk(z)j < nv�1 < n3, and therefore

E

����Xn

k¼1

(Ek�1 � Ek)trDk1Qn

����
2

¼
Xn

k¼1

Ej(Ek�1 � Ek)trDk1Qc
n
j2 < n4P(Qc

n) ¼ o(1):

Also, noticing that (Ek�1 � Ek)uk0 ¼ 0, to prove (4.7), we need only verify that

E

����Xn

k¼1

(Ek�1 � Ek)ukj1Qn

����
2

< K, j ¼ 1, 2:

Since z þ E~ssn(z) is bounded away from 0, we have

E

����Xn

k¼1

(Ek�1 � Ek)uk11Qn

����
2

< Kn�2
Xn

k¼1

EjÆ�k D2
kÆk � tr(D2

k)j21Qn

< Kn�2
Xn

k¼1

EjÆ�k D2
kÆk � tr(D2

k)j21Bc
nk

< K=(a=2 � 1)4

and
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E

����Xn

k¼1

(Ek�1 � Ek)uk21Qn

����
2

< K
Xn

k¼1

E 1 þ n�1jÆk j2
	 


j~		k j21Qn

< K
Xn

k¼1

Ej~		k j21Qn
þ Kn�2

n

Xn

k¼1

Ej~		k j21Qn\fjÆ k j2>2ng

< K þ Kn
Xn

k¼1

E1=2j~		k j41Qn
P1=2(jÆk j2 > 2n) < K:

Here we have used the fact that P(jÆk j2 > 2n) ¼ o(n� t) for any fixed t . 0 and uniformly in

k < n. This fact can be regarded as a consequence of Lemma 7.2.

4.4. Conclusion of the proof of Proposition 4.1

The goal is to check Condition 4.1 introduced in Part 1 of this proof. Recall that

ˆn(z1, z2) ¼
Pn

k¼1 Ek[Ek�1�k(z1)Ek�1�k(z2)]. First, we have

�k(z) ¼ � 1 þ n�1trD2
k

(z þ n�1trDk)2
g k � bk ¼ @

@z

gk

z þ n�1trDk

� �
:

When zz, z2 2 C0 and z1 6¼ z2, by exchanging the expectations and the derivation (here, the

exchangibility is a consequence of the dominated convergence theorem), we obtain

ˆn(z1, z2) ¼ @2

@z1@z2

Xn

k¼1

Ek Ek�1

gk(z1)

z1 þ n�1trDk(z1)
Ek�1

g k(z2)

z2 þ n�1trDk(z2)

� �

and ˆn(z1, z1) ¼ limz2!z1
ˆn(z1, z2).

As n�1trDk(z j) ! s(z j) in L2, we obtain by substitution and using s2(z) þ zs(z) þ 1 ¼ 0,

ˆn(z1, z2) ¼ @2

@z1@z2

s(z1)s(z2)
Xn

k¼1

Ek Ek�1 g k(z1) Ek�1 g k(z2)½ � þ o p(1)

 !

:¼ @2

@z1@z2

s(z1)s(z2) ~̂̂n(z1, z2) þ o p(1)
	 


:

To find the limit of ˆn, by the Vitali theorem (see Titchmarsh, 1939, p. 168), it is sufficient to

find the limit of ~̂̂
n.

By the definition of gk , we have

Ek[Ek�1 g k(z1)Ek�1 gk(z2)]

¼ Ek

x2
kk

n
þ 1

n2
Ek�1(Æ�k DkÆk � trDk)(z1) Ek�1(Æ�k DkÆk � trDk)(z2):

� �

To evaluate the second term, by a computation similar to that leading to (3.3), we obtain
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Ek[Ek�1(Æ�k DkÆk � trDk)(z1) Ek�1(Æ�k DkÆk � trDk)(z2)]

¼ k
X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji þ � Ek

X
i.k

[Ek�1 Dk(z1)]ii[Ek�1 Dk(z2)]ii:

Therefore,

~̂̂
n(z1, z2) ¼ � 2 þ k

n2

Xn

k¼1

X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji

þ �

n2

Xn

k¼1

Ek

Xn

i¼kþ1

[Ek�1 Dk(z1)]ii[Ek�1 Dk(z2)]ii

¼ � 2 þ S1 þ S2: (4:8)

By Lemma 7.1, we find that

S2 ! 1

2
�s(z1)s(z2), in L2:

In the following, let us find the limit of S1.

4.4.1. A decomposition tool

To evaluate the sum S1 in (4.8), we need the following decomposition. Let e j ( j ¼ 1,

. . . , k � 1, k þ 1, . . . , n) be the (n � 1)-vector whose jth (or ( j � 1)th) element is 1, the

rest being 0 if j , k (or j . k). By definition,

D�1
k (z) ¼ n�1=2W n(k) � zI ¼

X
i, j 6¼k

n�1=2xijeie9j � zI :

Multiplying both sides by Dk gives a useful identity,

zDk(z) þ I ¼
X
i, j 6¼k

n�1=2xijeie9j Dk(z): (4:9)

Let (i, j) be two indices different from k. To make Dk ‘independent’ of xij, we introduce the

matrix Dkij:

Dkij ¼ n�1=2[W n(k) � �ij(xijeie9j þ xjie je9i)] � zI

 ��1

, (4:10)

where �ij ¼ 1 for i 6¼ j and �ii ¼ 1
2
. The idea is that Dkij is a perturbation of Dk independent

of xij. It is easy to verify that

Dk � Dkij ¼ �Dkij n
�1=2�ij(xijeie9j þ xjie je9i)Dk : (4:11)
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4.4.2. The limit of S1

From (4.9) and (4.11) we obtain

zDk ¼ � I þ
X
i, j6¼k

n�1=2xijeie9j Dkij �
X
i, j6¼k

n�1=2xijeie9j Dkij n
�1=2�ij(xijeie9j þ xjie je9i)Dk

¼ � I þ
X
i, j6¼k

n�1=2xijeie9j Dkij � s(z)
n � 3=2

n

X
i 6¼k

eie9i Dk

�
X
i, j 6¼k

�ij n�1jxijj2[(Dkij) jj � s(z)] þ n�1(jxijj2 � 1)s(z)
	 


eie9i Dk

�
X
i, j 6¼k

n�1�ijx
2
ij(Dkij) jieie9j Dk : (4:12)

Therefore,

z1

X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji

¼ �
X
i.k

[Ek�1 Dk(z2)]ii

þ n�1=2
X

i, j,‘.k

xi‘[Ek�1 Dki‘(z1)]‘, j[Ek�1 Dk(z2)] ji

� s(z1)
n � 3=2

n

X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji

�
X
i, j.k
‘ 6¼k

�i‘ Ek�1

jxi‘j2 � 1

n
s(z1) þ jxi‘j2

n
(Dki‘(z1)‘‘ � s(z1))

� �
[Dk(z1)]ij

� �
[Ek�1 Dk(z2)] ji

� 1

n

X
i, j.k
‘ 6¼k

�ij Ek�1x2
i‘[Dki‘(z1)]‘i[Dk(z1)]‘, j[Ek�1 Dk(z2)] ji

¼ T1 þ T2 þ T� þ T3 þ T4:

First, note that the term T� is proportional to the left-hand side. We now evaluate the

contributions of the remaining four terms to the sum S1 in (4.8). For T1 we have

n�2
X

k

X
i.k

([Ek�1 Dk(z2)]ii � s(z2)) ! 0, in L2:
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T3 and T4 turn to be negligible (we do not provide more details here as the computations are

lengthy but elementary). T2 is not negligible and we simplify it progressively. We haveX
i, j,‘.k

Ek�1

xi‘ffiffiffi
n

p [Dki‘(z1)] j‘[Ek�1 Dk(z2)] ji

T2 ¼
X

i, j,‘.k

Ek�1

xi‘ffiffiffi
n

p [Dki‘(z1)]‘ j[Ek�1(Dk � Dki‘)(z2)] ji

þ
X

i, j,‘.k

Ek�1

xi‘ffiffiffi
n

p [Dki‘(z1)]‘ j[Ek�1 Dki‘(z2)] ji:

¼ T2a þ T2b:

Again the contribution from T2b can be proved to be negligible. As for the remaining term

T2a, we have

n�1=2
X

i, j,‘.k

xi‘[Ek�1 Dki‘(z1)]‘ j[Ek�1(Dk � Dki‘)(z2)] ji

¼ �n�1
X

i, j,‘.k

[Ek�1 Dki‘(z1)]‘ j[Ek�1 Dki‘(z2)�i‘(x
2
i‘eie9‘ þ jxijj2e‘e9i)Dk(z2)] ji

:¼ J1 þ J2,

where

EjJ1j ¼ n�1
X

i, j,‘.k

Ejx2
i‘j[Ek�1 Dki‘(z1)]‘ j[Dki‘(z2)] ji[Dk(z2)]‘ij

< n�1
X

i, j1, j2,‘.k

Ejxi‘j4j[Ek�1 Dki‘(z1)]‘ j1 j2j[Dki‘(z2)] j2 ij2j
X
i,‘.k

Ej(Dk(z2))‘ij2
 !1=2

< Kn1=2:

Hence, the contribution of this term is negligible. Finally, we have

J2 ¼ �
X

i, j,‘.k

Ek�1

jxi‘j2
n

[Dkij(z1)]‘ j[Ek�1 Dkij(z2)] j‘[Dk(z2)]ii

’ �s(z2)
X

i, j,‘.k

Ek�1

1

n
[Dki‘(z1)]‘ j[Ek�1 Dki‘(z2)] j‘

¼ � n � k

n
s(z2)

X
j,‘.k

[Ek�1 Dk(z1)]‘ j[Ek�1 Dk(z2)] j‘ þ o p(n),
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where the last approximation follows from

[Dki‘(z1)]‘ j[Ek�1 Dki‘(z2)] j‘ ¼ [Ek�1 Dk(z1)]‘ j[Ek�1 Dk(z2)] j‘ þ o p(1):

Summing the estimates of Ti, i ¼ 1, . . . , 4, we have proved that

z1

X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji

¼ �s(z1)
X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji � (n � k)s(z2) (4:13)

� n � k

n
s(z2)

X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji þ Rk ,

where the residual term Rk is of order o p(n) uniformly in k ¼ 1, . . . , n. Let us define

X k ¼
X
i, j.k

[Ek�1 Dk(z1)]ij[Ek�1 Dk(z2)] ji:

So (4.13) becomes

z1 X k ¼ �s(z1)X k � (n � k)s(z2) � s(z2)X k

n � k

n
þ Rk : (4:14)

By z1 þ s(z1) ¼ �1=s(z1), identity (4.14) is equivalent to

X k ¼ (n � k)s(z1)s(z2) þ n � k

n
s(z1)s(z2)X k � s(z1)Rk : (4:15)

Consequently,

X k ¼ (n � k)s(z1)s(z2) � s(z1)Rk

1 � n�1(n � k)s(z1)s(z2)
:

Summing and letting n ! 1 yields

1

n2

Xn

k¼1

X k !
p

s1s2

ð1

0

t

1 � ts1s2

dt ¼ �1 � (s1s2)�1 log(1 � s1s2),

with s j ¼ s(z j). Finally, ~̂̂
n(z1, z2) converges in probability to

~̂̂(z1, z2) ¼ � 2 � kþ 1

2
�s1s2 � k(s1s2)�1 log(1 � s1s2):

The proof of Proposition 4.1 is then complete.
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5. Computation of the mean and covariance function of G( f )

5.1. The mean

Let ª be a contour as defined in Section 1. By (2.1) and Proposition 3.1, we have

E(Gn( f )) ¼ � 1

2�i

þ
ª

f (z)E�n(z)dz

! E(G( f )) ¼ � 1

2�i

þ
ª

f (z)E�n(z)dz

¼ � 1

2�i

þ
ª

f (z)[1 þ s9(z)]s3(z)[� 2 � 1 þ (k� 1)s9(z) þ �s2]dz:

Select r , 1 but so close to 1 that the contour

ª9 ¼ fz ¼ �(reiŁ þ r�1e�iŁ) : 0 < Ł , 2�g

is completely contained in the analytic region of f . Note that when z runs a cycle along ª9
counterclockwise, s runs a cycle along the circle jsj ¼ r counterclockwise because

z ¼ �(s þ s�1).1 By Cauchy’s theorem, the above integral along ª equals the integral along

ª9. Thus, by changing variable z to s and noticing that s9 ¼ s2=(1 � s2), we obtain

E(G( f )) ¼ � 1

2�i

þ
jsj¼r

f (�s � s�1)s � 2 � 1 þ (k� 1)
s2

1 � s2
þ �s2

� �
ds

By setting s ¼ �eiŁ and then t ¼ cos Ł, using Tk(cos Ł) ¼ cos(kŁ),

� 1

2�i

þ
jsj¼1

f (�s � s�1)s � 2 � 1 þ (k� 1)
s2

1 � s2
þ �s2

� �
ds

¼ � 1

2�

ð�
��

f (2 cos Ł) (� 2 � 1)e2iŁ þ (k� 1)
eAiŁ

1 � e2iŁ
þ �eAiŁ

� �
dŁ

¼ � 1

�

ð�
0

f (2 cos Ł) (� 2 � 1)cos 2Ł� 1

2
(k� 1)(1 þ 2 cos 2Ł) þ � cos 4Ł

� �
dŁ

¼ 1

�

ð1

�1

f (2t) � 1

2
(k� 1) þ (� 2 � k)T2(t) þ �T4(t)

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p dt

¼ � 1

2
(k� 1)�0( f ) þ (� 2 � k)�2( f ) þ ��4( f ):

Let us evaluate the difference

1The reason for choosing jsj ¼ r , 1 is that the mode of the Stieltjes transform of the semicircle law is less than
1; see Bai (1993).
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1

2�i

þ
jsj¼1

�
þ
jsj¼r

" #
f (�s � s�1)s � 2 � 1 þ (k� 1)

s2

1 � s2
þ �s2

� �
ds:

Note that the integrand has two poles on the circle jsj ¼ 1 with residuals �1
2
f (�2) at points

s ¼ �1. By contour integration, we have

1

2�i

þ
jsj¼1

�
þ
jsj¼r

" #
f (�s � s�1)s � 2 � 1 þ (k� 1)

s2

1 � s2
þ �s2

� �
ds

¼ k� 1

4
( f (2) þ f (�2)):

Putting together these two results gives formula (1.4) for E[G( f )].

5.2. The covariance

Let ª j, j ¼ 1, 2, be two disjoint contours with vertex �(2 þ 	 j) � iv j. The positive values

of 	 j and v j are chosen so small that the two contours are contained in U. By (2.1) and

Theorem 2.1, we have

cov(Gn( f ), Gn(g)) ¼ � 1

4�2

þ
ª1

þ
ª2

f (z1)g(z2)cov(�n(z1), �n(z2))dz1 dz2

¼ � 1

4�2

þ
ª1

þ
ª2

f (z1)g(z2)ˆn(z1, z2)dz1 dz2 þ o(1)

! c( f , g) ¼ � 1

4�2

þ
ª1

þ
ª2

f (z1)g(z2)ˆ(z1, z2)dz1 dz2,

where ˆ(z1, z2) is given by (4.5).

By the proof of Proposition 4.1, we have

ˆ(z1, z2) ¼ @2

@z1@z2

s(z1)s(z2) ~̂̂(z1, z2):

Integrating by parts, we obtain

c( f , g) ¼ � 1

4�2

þ
ª1

þ
ª2

f 9(z1)g9(z2)s(z1)s(z2) ~̂̂(z1, z2)dz1 dz2

¼ � 1

4�2

þ
ª1

þ
ª2

A(z1, z2)dz1 dz2,

where

A(z1, z2) ¼ f 9(z1)g9(z2) s(z1)s(z2)(� 2 � k) þ 1

2
�s2(z1)s2(z2) � k log(1 � s(z1)s(z2))

� �
:
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Let v j ! 0 first and then 	 j ! 0. It is easy to show that the integral along the vertical edges

of the two contours tends to 0 when v j ! 0. Therefore, it follows that

c( f , g) ¼ � 1

4�2

ð2

�2

ð2

�2

[A(t�1 , t�2 ) � A(t�1 , tþ2 ) � A(tþ1 , t�2 ) þ A(tþ1 , tþ2 )]dt1 dt2,

where t�j :¼ t j � i0. We first consider the case where f and g are real-valued on the real

axes. Recalling that s(t � i0) ¼ 1
2
(�t � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � t2

p
), we have

f 9(t1)g9(t2)[s(t�1 )s(t�2 ) � s(tþ1 )s(t�2 ) � s(t�1 )s(tþ2 ) þ s(tþ1 )s(tþ2 )]

¼ � f 9(t1)g9(t2)

ffiffiffiffiffiffiffiffiffiffiffiffi
4 � t2

1

q ffiffiffiffiffiffiffiffiffiffiffiffi
4 � t2

2

q
,

f 9(t1)g9(t2)[s2(t�1 )s2(t�2 ) � s2(tþ1 )s2(t�2 ) � s2(t�1 )s2(tþ2 ) þ s2(tþ1 )s2(tþ2 )]

¼ � f 9(t1)g9(t2)t1 t2

ffiffiffiffiffiffiffiffiffiffiffiffi
4 � t2

1

q ffiffiffiffiffiffiffiffiffiffiffiffi
4 � t2

2

q
,

f 9(t1)g9(t2)[log(1 � s(t�1 )s(t�2 ))

� log(1 � s(tþ1 )s(t�2 )) � log(1 � s(t�1 )s(tþ2 )) þ log(1 � s(tþ1 )s(tþ2 ))]

¼ f 9(t1)g9(t2)log

���� 1 � s(t�1 )s(t�2 )

1 � s(t�1 )s(tþ2 )

����
2

¼ � f 9(t1)g9(t2)log
4 � t1 t2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4 � t2

1)(4 � t2
2)

p
4 � t1 t2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4 � t2

1)(4 � t2
2)

p
 !

:

We thus recover formula (1.6). Moreover, if f and g can take complex values on the real

axes, the above expression remains true since we have the decomposition f (z) ¼ f r(z)

þ i f i(z) and g(z) ¼ gr(z) þ igi(z) where f r, f i, gr and gi are analytic on U and are real-

valued on the real axes.

To derive the second representation, formula (1.5), let r1 , r2 , 1 and define contours

ª9j as in the previous subsection. Then

c( f , g) ¼ � 1

4�2

þ
ª91

þ
ª92

f (z1)g(z2)ˆ(z1, z2)dz1 dz2

¼ � 1

4�2

þ
js1j¼r1

þ
js2j¼r2

f (�s1 � s�1
1 )g(�s2 � s�1

2 ) � 2 � kþ 2�s1s2 þ
k

(1 � s1s2)2

� �
ds1 ds2:

By the Cauchy integral, we may set r2 ¼ 1 without changing the value of the integral.

Rewriting r1 ¼ r, expanding the fraction with a Taylor series and then making the changes

of variable s1 ¼ �reiŁ1 and s2 ¼ �eiŁ2, we obtain
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c( f , g) ¼ 1

4�2

ð
[��,�]2

f (reiŁ1 þ r�1e�iŁ1 )g(2 cos Ł2) (� 2 � k)rei(Ł1þŁ2)
�

þ 2�r2ei2(Ł1þŁ2) þ k
X1
k¼1

krkeik(Ł1þŁ2)

#
dŁ1 dŁ2

¼ (� 2 � k)r�1( f , r)�1(g) þ 2�r2�2( f , r)�2(g) þ k
X1
k¼1

krk�k( f , r)�k(g),

where

�k( f , r) ¼ 1

2�

ð�
��

f (reiŁ þ r�1e�iŁ)eikŁ dŁ:

By integration by parts, for k > 3 we have

�k( f , r) ¼ r�1

k
�k�1( f 9, r) � r

k
�kþ1( f 9, r)

¼ r2

k(k þ 1)
�kþ2( f 0, r) � 2

k2 � 1
�k( f 0, r) þ r�2

k(k � 1)
�k�2( f 0, r):

Since f 0 is uniformly bounded in U, we have j�k( f , r)j < K=k(k � 1) uniformly for all r
close to 1. Then (1.5) follows by the dominated convergence theorem and letting r ! 1

under the summation.

6. Application to linear spectral statistics and related results

First, note that W n=(2
ffiffiffi
n

p
) is a scaled Wigner matrix in the sense that the limit law is the

scaled Wigner semicircular law 2��1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
dx on the interval [�1, 1]. To deal with this

scaling, we define for any function f , its scaled copy ~ff by the relation f (2x) ¼ ~ff (x) for

all x.

6.1. Chebyshev polynomials

Consider first a Chebyshev polynomial Tk with k > 1 and define �k such that ~��k ¼ Tk . Set

�ij ¼ 1 for i ¼ j and �ij ¼ 0 otherwise. Using the orthogonality property

1

�

ð1

�1

Ti(t)T j(t)
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p dt ¼

�ij, if i ¼ 0,

1
2
�ij, otherwise,

(

it is easily seen that �‘(�k) ¼ 1
2
�k‘ for any integer ‘ > 0. Thus by (1.4) we have for the mean

1086 Z.D. Bai and J. Yao



mk :¼ E[G(�k)] ¼ k� 1

4
(Tk(1) þ Tk(�1)) þ 1

2
(� 2 � k)�k2 þ

1

2
��k4

¼ 1

2
[(k� 1)e(k) þ (� 2 � k)�k2 þ ��k4], (6:1)

with e(k) ¼ 1 if k is even and e(k) ¼ 0 otherwise.

For two Chebyshev polynomials Tk and T‘, by (1.5) the asymptotic covariance between

Gn(�k) and Gn(�‘) equals 0 for k 6¼ ‘, and

�‘‘ ¼
1

2

� �2

(� 2 � k)�‘1 þ 2��‘2 þ k‘
� �

(6:2)

for k ¼ ‘. Application of Theorem 1.1 readily yields the following result.

Corollary 6.1. Assume that Conditions 1.1 and 1.2 are satisfied. Let T1, . . . , T p be p first

Chebyshev polynomials and define the �k such that ~��k ¼ Tk. Then the vector

[Gn(�1), . . . , Gn(� p)] converges in distribution to a Gaussian vector with mean

w p ¼ (mk) and a diagonal covariance matrix D p ¼ (�kk) with their elements defined in

(6.1) and (6.2), respectively.

In particular, these Chebyshev polynomial statistics are asymptotically independent. Now

consider the Gaussian case. For the GUE, we have k ¼ � 2 ¼ 1 and � ¼ 0. Then mk ¼ 0

(already known!) and �kk ¼ k(1
2
)2. As for the GOE, since k ¼ � 2 ¼ 2 and � ¼ 0, we obtain

mk ¼ 1
2
e(k) and �kk ¼ 2k(1

2
)2. Therefore with Corollary 6.1 we have recovered the CLT

established by Johansson for linear spectral statistics of Gaussian ensembles (see Johansson

1998, Theorem 2.4 and Corollary 2.8).

6.2. Linear spectral statistics

Let Q be an arbitrary polynomial of degree k and define � be such that ~�� ¼ Q. Then Q

has an unique expansion on the basis of Chebyshev polynomials:

Q ¼ ak(Q)Tk þ . . . þ a0(Q)T0:

Furthermore, it is easily seen that a j(Q) ¼ 2� j(�) for j > 1 and a0(Q) ¼ �0(�).

Now consider s polynomials Q1, . . . , Qs and denote by p the maximum of their degrees.

Define the �k such that ~��k ¼ Qk . There is a unique matrix decomposition

Q1

..

.

Qs

0
B@

1
CA ¼ A

T p

..

.

T1

0
B@

1
CAþ u T0,

where A is an s 3 p matrix and u an s 3 1 vector. Application of Corollary 6.1 gives the

following result.

Corollary 6.2. Assume that Conditions 1.1 and 1.2 are satisfied. Then the vector
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[Gn(�1), . . . , Gn(� p)] converges in distribution to a Gaussian vector with mean Aw p þ u

and covariance matrix AD p AT, where w p and D p are defined in Corollary 6.1 for Chebyshev

polynomials.

7. Two useful lemmas

With the notation defined in the previous sections, we prove the following two lemmas.

Lemma 7.1. Suppose v0 . 0 is a fixed constant. Then, for any z 2 C0, we have

max
i, j,k,‘

jEk(Dkij)‘‘ � s(z)j ! 0, in L2,

where the maximum is taken over all k, i, j 6¼ k and all ‘.

Proof. Recall the identity

D�1
kij ¼ D�1

k � n�1=2�ij(xijeie9j þ xjie je9i ):

Since j(D�1
k )‘‘j > v . 0 and jxijj < �n

ffiffiffi
n

p
, we have j(Dkij)‘‘ � (Dk)‘‘j < K�n for some

constant K independent of the indices. On the other hand, we know that (Dk)‘‘ ¼
(D)‘‘ þ O(n�1). Moreover, by definition,

(D)‘‘ ¼
1

n�1=2x‘‘ � z � n�1Æ�‘ D‘Æ‘

¼ 1

�z � s(z)
þ �s(z) � [n�1=2x‘‘ � n�1Æ�‘ D‘Æ‘]

(n�1=2x‘‘ � z � n�1Æ�‘ D‘Æ‘)[�z � s(z)]
:

By writing

jn�1Æ�‘ D‘Æ‘ � s(z)j < n�1jÆ�‘ D‘Æ‘ � EtrD‘j þ jn�1 EtrD‘ � s(z)j,

for any z 2 C0, the first term here converges to zero in L2 (see (2.15)) and the second also

tends to 0.

Noting that j � z � s(z)j�1 ¼ js(z)j has a positive lower bound, as does jn�1=2x‘‘
� z � n�1Æ�‘ D‘Æ‘j, we obtain

j(D)‘‘ � s(z)j < K(�n þ jn�1Æ�‘ D‘Æ‘ � s(z)j):

The conclusion follows from the fact that s(z)2 þ zs(z) þ 1 ¼ 0. h

Lemma 7.2. Suppose that Exi ¼ 0, Ejxij2 ¼ 1, sup Ejxij4 , 1 and jxij < �n

ffiffiffi
n

p
with �n ! 0

slowly. Assume that A is a Hermitian matrix of order n bounded in norm by M. Then, for any

given 2 < p < b log (n�2
n) with some b . 1, there exists a constant K such that

Eju�Au � tr(A)j p < n p(n�4
n)�1(MK�2

n) p,

where u ¼ (x1, � � �, xn)T.
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Proof. Without loss of generality, we may assume that p ¼ 2s is an even integer. Write

A ¼ (aij). We first consider

S1 ¼
X
i¼1

aii(jxij2 � 1) ¼
Xn

i¼1

aii�i:

By noticing that jaiij < M , we have, for p=log(n�4
n) > 1,

EjS1j p <
Xs

‘¼1

X
1< j1,..., j‘<n

X
i1þ...þi‘¼ p

i1,...,i‘>2

p!
Y‘
t¼1

jait

j t j t
jEj�i t

j t
j

(i t)!

< M p
Xs

‘¼1

n‘
X

i1þ...þi‘¼ p
i1,...,i‘>2

(n�2
n) p�2‘ p!

(i1)! � � � (i‘)!

< n p(M�2
n) p
Xs

‘¼1

(n�4
n)�‘‘ p

< s(M�2
n) p(n�4

n)� p=log(n�4
n)( p=log(n�4

n)) p

< n p(MK�2
n) p(n�4

n)�1:

Here we have used the facts that a‘‘ p is maximum for ‘ ¼ � p=log a if a 2 (0, 1), p > 2 and

s1= p p=2 log(n�2
n) < K as p < b log n. Note that the last inequality is still true when

p=log(n�4
n) , 1 since (n�4

n)�‘‘ p < (n�4
n)�1.

Next, let us consider

S2 ¼
X

1<i6¼ j<n

aijxixj:

Then we have

EjS2j p ¼
X

ai1 j1 ak1,‘1
� � � ais js

aks,‘s
Exi1 xk1

xj1 x‘1
� � � xis

xks
xjs

x‘s
:

Draw a directional graph G of p ¼ 2s edges which link i t to j t and ‘ t to k t, t ¼ 1, . . . , s.

Note that if G has a vertex of degree 1, then the graph corresponds to a term with

expectation 0. That is, for the non-zero term, the vertices of the graph have degree either 0 or

greater than 1. For vertices of non-zero degree, denote by p1, . . . , pm the degree of vertex

v1, . . . , vm. We have m < s. By assumption,

jExi1 xk1
xj1 x‘1

� � � xis
xks

xjs
x‘s

j < K(n�2
n) p�m��=2,

where � is the number of vertices of degree 3 plus twice the number of vertices of degree

greater than 3. Now, suppose that the graph can be split into q disjoint connected subgraphs

G1, . . . , Gq with m1, . . . , mq vertices, respectively. As an example, consider the contribution
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by G1 to EjS2j p. Assume that G1 has s1 edges, e1, . . . , es1
. Choose tree subgraph G91 of G1

and assume its edges are e1, . . . , em1�1, without loss of generality. Note that

X
v1,...,vm1

<n

Ym1�1

t¼1

jaet
j2 < M2m1�2 n

and

X
v1,...,vm1

<n

Ys1

t¼m1

jaet
j2 < M2s1�2m1þ2 nm1�1:

Here the first inequality follows from the fact that
P

v1
jav1v2

j2 < M2 since it is a diagonal

element of AA�. The second inequality follows from the facts that
P

v1
jav1v2

j‘ < M ‘, for any

‘ > 2, and that s1 > m1 since all vertices have degree no less than 2. Therefore, the

contribution of G1 is bounded by

X
v1,...,vm1

<n

Ys1

t¼1

jaet
j <

X
v1,...,vm1

<n

Ym1�1

t¼1

jaet
j2

X
v1,...,vm1

<n

Ys1

t¼m1

jaet
j2

0
@

1
A

1=2

< M s1 nm1=2:

Noticing that m1 þ . . . þ mq ¼ m and s1 þ . . . þ sq ¼ s, we eventually obtain the

contribution from all graphs isomorphic to a given in-homogeneous subgraph, which is

M2s nm=2. Because the two vertices of each edge are not equal, we have q < m=2. The

number of inhomogeneous graphs is less than m
2

	 
 p
< m2 p. We finally obtain

EjS2j p < M2s
Xs

m¼2

nm=2(n�2
n) p�m��=2 m2 p

< n p(M�2
n) p
Xs

m¼2

(n1=2�2
n)�m(n�2

n)��=2 m2 p < n p(n�4
n)�1(MK�2

n) p:

Combining the estimates of EjS1j p and EjS2j p, the proof of of the lemma is complete. h

Corollary 7.3. For any positive constants � and t, when z 2 C0, all the following

probabilities have order o(n� t):

P(j	k j > �), P(j~		k j > �), P(jgk j > �), P(jhk j > �):

When z =2 C0 but jR(z)j > a, the same estimates remain true.

Proof. Recalling the definition of 	k , we have

j	k j ¼
����n�1=2xkk �

1

n
Æ�k DkÆk þ Esn(z)

����
< �n þ n�1jÆ�k DkÆk � tr(Dk)j þ n�1jtr(Dk) � Etr(D)j:
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By the decomposition (4.1), the Burkholder inequality (Burkholder 1973) and the fact that

z 2 C0, we have

P(n�1jtr(D) � E(tr(D))j > �=3) < 3 p�� p n� p Ejtr(D) � E(tr(D))j p

< 3 p�� p K p n� p E
Xn

k¼1

Ek(uk)2

 ! p=2

< 3 p�� p K p n� p=2v
� p
0 :

(7:3)

Choosing p fixed and p . 2t, we then have

P n�1jtr(D) � E(tr(D))j > �
� �

¼ o(n� t):

When z 2 C0, the norm of Dk is bounded by 1=v0. Thus, by Lemma 7.2 with p ¼ [log n], we

have

Pfn�1jÆ�k DkÆk � tr(Dk)j > �=3g < 3 p�� p E n�1jÆ�k DkÆk � tr(Dk)j p
� �

< (3��1 MK�n) p ¼ o(n� t): (7:4)

Therefore P(j	k j > �) ¼ o(n� t) since �n ! 0 and n�1jtr(D) � tr(Dk)j < =nv.

When z =2 C0 but R(z)j > a, the eigenvalues of Dk are bounded by 2=(a � 2) when Bc
nk

happens. Thus, inequalities (7.3) and (7.4) can be modified as

Pfn�1jtr(D) � Etr(D)j > �=3, Bc
ng < P n�1

����Xn

k¼1

(Ek�1 � Ek)uk1Bc
nk

���� > �=3

( )
¼ o(n� t)

and

P n�1jÆ�k DkÆk � tr(Dk)j > �=3, Bc
nk

� �
¼ o(n� t):

This also proves P(j	k j > �=3) ¼ o(n� t) since P(Bn) ¼ o(n� t).

The proofs of the other probabilities are similar and hence omitted. The proof of the

lemma is complete. h
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