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This paper is concerned with the asymptotic behaviour of the empirical distribution function for a

large class of continuous-time weakly dependent stationary processes. Under mild mixing conditions

the empirical distribution function is an unbiased consistent estimator of the marginal distribution

function of the process. For strongly mixing processes this estimator is asymptotically normal. We

propose a consistent estimator of the asymptotic variance, and then study the functional central limit

theorem for the empirical distribution function.
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1. Introduction

The development of theory on the empirical distribution function for continuous-time

stationary processes has received relatively little attention in the literature, in contrast to the

discrete-time case, and particularly for sequences of independent and identically distributed

(i.i.d.) random variables. The aim of the present paper is to investigate the asymptotic

behaviour of the empirical distribution function for a large class of continuous-time weakly

dependent stationary processes. This includes exponentially ergodic Markov processes,

ergodic diffusion processes, Markov jump processes as well as nonlinear (and linear)

transformations of Brownian motion.

For a sequence of real-valued independent variables (Yn)n>1 with common distribution

function F(�), the empirical distribution function

F̂Fn(x) :¼ 1

n

Xn

k¼1

IfYk,xg

is a consistent estimator of F(x) and

ĜGn(x) :¼
ffiffiffi
n

p
F̂Fn(x) � F(x)
� �

! N 0, � 2(x)
� �

in law,

as n ! 1, where N 0, � 2(x)ð Þ is the zero-mean normal distribution with variance

� 2(x) ¼ F(x) 1 � F(x)ð Þ. In this situation �̂� 2
n(x) :¼ F̂Fn(x) 1 � F̂Fn(x)

� �
is a consistent estimator

of � 2(x). Furthermore, the empirical process ĜGn :¼ ĜGn(x), x 2 R
� �

is weakly convergent to

a generalized Brownian bridge in the space D(R) endowed with the uniform topology (see
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Dudley 1984; Shorak and Wellner 1986; Pollard 1990), D(R) denoting the set of right-

continuous real-valued functions defined on R with limits from the left.

These results are still applicable under weak dependence conditions. For instance, under

the j-mixing (uniformly mixing) condition
P

n2j1=2
n , 1, Billingsley (1968) proved the

weak convergence in the space D(R) of the empirical process ĜGn to a stationary Gaussian

process G with covariance

cov G(x), G(y)f g ¼ F(x ^ y) � F(x)F(y) þ
X
k.0

Fk(x, y) þ Fk(y, x) � 2F(x)F(y)f g,

where Fk(x, y) :¼ P X0 < x, X k < yf g, the real-valued series being absolutely convergent.

For Æ-mixing (strongly mixing) sequences with Æn ¼ O(n�ª) as n ! 1 for some ª . 1, Rio

(2000) stated the same result if the distribution function F(�) is continuous on R . Recently

Dehling and Philipp (in Dehling et al. 2002) presented a survey of the results and techniques

for dependent discrete-time data (see also the other contributions in Dehling et al. 2002).

For continuous-time ergodic stationary processes, Davydov (2001) studied the empirical

measure. He stated that the existence of a local time is a necessary and sufficient condition

for the almost sure convergence in variation of the empirical measure to the stationary

marginal law of the process. Here we do not consider this point of view and we refer to

Davydov’s paper for further details on this subject.

The empirical distribution function of an ergodic diffusion process is a consistent and

asymptotically normal estimator of the stationary marginal distribution function (see Negri

1998; Kutoyants 2003). In the following we improve and extend these results on the

empirical distribution function

F̂FT (x) ¼ 1

T

ðT

0

IfX s<xg ds

for a wider class of continuous-time weakly dependent stationary processes

X :¼ X t, t > 0f g. No continuity condition is assumed on the stationary marginal distribution

function F(�).
The paper is organized as follows. In Section 2 we present the weak-dependence notions

used in the rest of the paper. Then in Section 3 we recall standard results on the

convergence of F̂F(x) for each x 2 R . If the process X satisfies mild mixing conditions then

F̂FT (x) is an unbiased consistent estimator of F(x). We study the rate of convergence in

quadratic mean. Hence we derive the rate of almost sure convergence and the uniform

strong consistency.

Under strong-mixing conditions, ĜGT (x) :¼
ffiffiffiffi
T

p
F̂FT (x) � F(x)
� �

is asymptotically normal.

As the variance � 2(x) of the asymptotic normal distribution depends on the distribution of

the process X , an estimate of this asymptotic variance is often needed for statistical

purposes. In Section 4 we construct a consistent estimator �̂� 2(x) of � 2(x) which is more

tractable than the specific one presented by Dehay and Kutoyants (2004) for ergodic

diffusion processes. Furthermore, we evaluate the rate of convergence in quadratic mean

and the rate of almost sure convergence of �̂� 2(x) to � 2(x).

Then in Section 5 we investigate the weak convergence of the empirical process
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ĜGT :¼ ĜGT (x), x 2 R
� �

in a convenient functional space. In contrast to the usual framework

(see Kutoyants 2003), we do not assume that F(�) is continuous. However, following Pollard

(1990) and Rio (2000), we consider the semi-metric space X :¼ (R, r) where r(x, y)

:¼ jF(x) � F(y)j. We state the weak convergence of ĜGT in the space D(X) endowed with

the uniform topology, D(X) denoting the set of right-continuous functions from X into R

with limits from the left. Then we deduce the more standard statement of weak convergence

in the space D(R) endowed with the uniform topology. Section 6 is devoted to the proof of

the weak convergence.

2. Background and hypotheses

From now on, we consider a real-valued stationary process X ¼ fX t, t > 0g defined on a

probability space (�, A, P) with stationary distribution function F(�). The marginal

stationary law is denoted by � : F(x) ¼ � �1, xð � ¼ P X t < xf g. It is assumed that the

process X is measurable with respect to the � -algebra B((0, 1]) �A, and that the

probability space (�, A, P) is complete. If the process is also ergodic, we have

lim
T!1

1

T

ðT

0

g(X s) ds ¼
ð
R

g(x) d�(x), almost surely,

for any real-valued bounded Borel function g : R ! R . Let �(2)
t be the two-dimensional law

of (X s, X sþ t) which does not depend on s since the process is stationary. We require the

following weak-dependence condition:

(AIW) mT (A) ! �� �(A) as T ! 1, for any A 2 B(R2). The probability measure mT

is defined on R2 by

mT (A) :¼ 1

T

ðT

0

�(2)
t (A) dt:

As the process is measurable, the function t 7! �(2)
t (A) is measurable for any A 2 B(R2), and

the previous integral is well defined. Under condition (AIW) we have

lim
T!1

1

T

ðT

0

cov g1(X 0), g2(X t)f gdt ¼ 0,

for all real-valued bounded Borel functions g1, g2: R ! R .

To obtain the asymptotic variance and covariance (Lemma 3.2), we need more asymptotic

independence. Based on the condition given by Castellana and Leadbetter (1986) in the

density estimation context, we introduce the following condition:

(CL*) ˆT (A) ! ˆ(A) as T ! 1, for any A 2 B(R2) and for some signed measure ˆ on

R2. The signed measure ˆT is defined on R2 by

ˆT (A) :¼
ðT

0

�(2)
t (A) � �� �(A)

n o
dt: (2:1)
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This Castellana–Leadbetter type condition implies thatð1
0

cov g1(X0), g2(X t)f gdt :¼ lim
T!1

ðT

0

cov g1(X0), g2(X t)f gdt ¼
ðð

R2

g1(x)g2(y) dˆ(x, y)

for all real-valued bounded Borel functions g1, g2 : R ! R .

Finally, we recall the strong-mixing (Æ-mixing) condition (see Doukhan 1984):

(SM) Consider the � -fields � s(X ) :¼ � X (u) : u < sf g and � s(X ) :¼ � X (u) :f u > sg
for any s > 0, and define the strong-mixing coefficient function

Æ : [0, 1) ! [0, 1) of the process X by

Æ(t) :¼ sup jP(A \ B) � P(A) P(B)j : A 2 � s(X ), B 2 � sþ t(X ) and s 2 [0, 1)f g:

The process X is said to be strongly mixing when Æ(t) ! 0 as t ! 1.

Remark 1. Setwise convergence of sequences of measures in conditions (AWI) and (CL*) is

stronger than weak convergence. However, it is weaker than convergence in variation used by

Davydov (2001).

Remark 2. Assume that the two-dimensional law �(2)
t has a density function f t(�, �) with

respect to Lebesgue measure on R2 such that (t, x, y) 7! f t(x, y) is measurable andð1
0

j f t(x, y) � f (x) f (y)j dt < c(x, y),

where
Ð Ð

R2 c(x, y) dx dy , 1 for some non-negative measurable function c(�, �), f (�) being

the density function of the marginal stationary law. Then condition (CL*) is satisfied.

Furthermore, the measure ˆ is absolutely continuous with respect to Lebesgue measure in R2

with density function ð1
0

f t(x, y) � f (x) f (y)f gdt:

Note that the condition given by Castellana and Leadbetter (1986) entails that

ˆT (A) ! ˆ(A) as T ! 1 for any bounded Borel A 2 B(R2). In this case the results

stated below in Sections 3.1 and 3.2 hold if we replace F̂FT (x) by F̂FT (x) � F̂FT (y) and F(x)

by F(x) � F(y) for x . y. In this paper, for simplicity of exposition, we do not develop this

point of view.

Remark 3. Assume that the stationary process X is a Markov process with transition kernel

Pt, t > 0. Thus �(2)
t (dx, dy) ¼ Pt(x, dy)�(dx). If the Markov process X is 1-ergodic in the

sense that lim t!1kPt(x, �) � �k1 ¼ 0, then condition (AIW) is satisfied. Here k�k1 denotes

the total variation of the signed measure �. If X is 1-exponentially ergodic, that is

kPt(x, �) � �k1 < M(x)r t with some 0 , r , 1 and some M(�) 2 L1(�), then

jcov g1(X s), g2(X sþ t)f gj < sup
x2R

jg1(x)j sup
x2R

jg2(x)j
ð
R

M(x)�(dx) r t
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for all s, t > 0 and for all real-valued bounded Borel functions g1, g2 : R ! R . Hence

condition (CL*) is satisfied. Moreover, the asymptotic distribution ˆ is defined as

ˆ(A) ¼
ð1

0

ðð
A

Pt(x, dy) � �(dy)f g�(dx)

� �
dt, A 2 B(R2):

Actually we can establish that any 1-exponentially ergodic process is strongly mixing with

Æ(�) 2 L1[0, 1). Meyn and Tweedie (1993a; 1993b) stated Lyapunov type conditions on the

infinitesimal generator of the Markov process X which ensure 1-ergodicity and 1-exponential

ergodicity.

Remark 4. For stationary ergodic diffusion processes, Veretennikov (1988) presented

sufficient conditions on the drift and the diffusion coefficients for the strong-mixing

property. Veretennikov (1999) also gave relationships between the strong-mixing property and

his conditions (CL1)–(CL2). We refer to these papers for more details.

We readily obtain the following relationships between these notions of asymptotic

independence.

Lemma 2.1. (SM) ) (AIW), (CL�) ) (AIW), and Æ(�) 2 L1[0, 1) ) (CL�).

In general, the reverse implications are not valid.

3. Consistency

In this section, we study the convergence of F̂FT (x) as T ! 1, for a stationary process

X :¼ X t, t > 0f g. As the process X is stationary, F̂FT (x) is an unbiased estimator of F(x) :

E F̂FT (x) ¼ F(x) for any x 2 R.

3.1. Convergence in quadratic mean

For any x 2 R, we have

var F̂FT (x) ¼ 2

T

ðT

0

1 � t

T

� 	
Ft(x, x) � F(x)2
� �

dt

¼ 2

T

ðT

0

1 � t

T

� 	
ˆt (�1, x] 3 (�1, y]f gdt,

where Ft(x, y) :¼ P X0 < x, X t < yf g and the measure ˆt is defined by (2.1) for each t > 0.

Thus we can readily check the convergence in quadratic mean of the estimator F̂FT (x).

Theorem 3.1. Let X be a stationary process which satisfies (AIW). Then
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lim
T!1

F̂FT (x) ¼ F(x) in quadratic mean,

for any x 2 R.

Hence for any stationary process satisfying one of the two conditions of Theorem 3.3,

and for any probability measure � on R, the �-integrated quadratic error converges to 0:

lim
T!1

ð
R

E F̂FT (x) � F(x)
� �2
n o

d�(x) ¼ 0:

We can also evaluate the asymptotic covariance between the two estimators F̂FT (x) and

F̂FT (y).

Lemma 3.2. If the stationary process X satisfies (CL*), then

C(x, y) :¼ lim
T!1

T cov F̂FT (x), F̂FT (y)
� �

¼
ð1

0

Ft(x, y) þ Ft(y, x) � 2F(x)F(y)f gdt

¼ ˆ (�1, x] 3 (�1, y]f g þ ˆ (�1, y] 3 (�1, x]f g

for all x, y 2 R . The integral is well defined.

Thus under (CL*) we deduce the asymptotic variance

� 2(x) :¼ lim
T!1

T var F̂Ft(x) ¼ 2

ð1
0

Ft(x, x) � F(x)2
� �

dt ¼ 2ˆ (�1, x] 3 (�1, x]f g: (3:1)

If the process X is strongly mixing with Æ(t) ¼ o(t�ª) as t ! 1 for some 0 < ª , 1, then

we have

lim
T!1

T ª var F̂FT (x) ¼ 0:

3.2. Almost sure convergence

The Borel–Cantelli lemma yields the ergodicity of the process X (see also Davydov 2001).

Next we specify the rate of convergence.

Theorem 3.3. Assume that the stationary process X satisfies one of the two following

conditions: (i) Æ(t) ¼ O(t�ª) as t ! 1 for some 0 , ª , 1; (ii) (CL*). Then

lim
T!1

T �jF̂FT (x) � F(x)j ¼ 0 almost surely,

for any x 2 R and for any � , ª=3; in case (ii) we take ª ¼ 1.

Proof. The proof of the almost sure convergence under condition (i) is quite similar to but

requires slightly more cumbersome calculus than under condition (ii). Thus for simplicity of

exposition we only present the proof under condition (ii).
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Assume that condition (ii) is satisfied. Let a . 1=(1 � 2�). Thanks to the Bienaymé–

Chebyshev inequality and convergence (3.1), we have

X1
n¼1

P na�jF̂Fna (x) � F(x)j . E
� �

< 2 E�2
X1
n¼1

na(2��1) , 1

for every E . 0. Applying the Borel–Cantelli lemma, we readily obtain that

lim
n!1

na� F̂Fna (x) � F(x)
� �

¼ 0 almost surely:

For na < T , (n þ 1)a, we have

jF̂Fna (x) � F̂FT (x)j < T � na

T na

ð na

0

IfX t<xg dt þ 1

T

ðT

na

IfX t<xg dt < 2 1 þ 1

n

� �a

�1


 �
:

We deduce that

lim
n!1

sup
na<T,(nþ1)a

jna� F̂Fna (x) � F(x)
� �

� T � F̂FT (x) � F(x)
� �

j ¼ 0 almost surely,

for any a , 1=�. Now we can easily complete the proof of the theorem. h

Now, by ergodicity and the Glivenko–Cantelli theorem (see Billingsley 1995, Theorem

20.6), we can deduce the uniform almost sure convergence.

Theorem 3.4. Under the hypotheses of Theorem 3.3 the stationary process X is ergodic.

Moreover, we have

P lim
T!1

sup
x

jF̂FT (x) � F(x)j ¼ 0


 �
¼ 1:

4. Asymptotic normality

The proof of the asymptotic normality of the empirical distribution function requires more

independence for the process X than condition (CL*). Thus from now on we assume that

the process is strongly mixing with Æ(�) 2 L1[0, 1).

4.1. Central limit theorem

Theorem 4.1. Assume that the stationary process X is strongly mixing with Æ(�) 2 L1[0, 1).

Then

ĜGT (x) :¼
ffiffiffiffi
T

p
F̂FT (x) � F(x)
� �

! N 0, � 2(x)
� �

in law,

as T ! 1, for any x 2 R. The asymptotic variance � 2(x) is defined in (3.1).

Proof. Let x 2 R be fixed. Ibragimov and Linnik’s version of the central limit theorem for
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mixing stationary sequences of bounded random variables (Ibragimov and Linnik 1971,

Theorem 18.5.4) can be applied to the strongly mixing stationary sequence Yn(x)f gn2N where

Yn(x) :¼
ð n

n�1

IfX t<xg dt � F(x):

Then we deduce that ffiffiffi
n

p
F̂Fn(x) � F(x)
� �

! N 0, � 2(x)
� �

in law,

as n ! 1. To complete the proof, it suffices to note that

j
ffiffiffiffi
T

p
F̂FT (x) � F(x)
� �

�
ffiffiffiffiffiffiffi
[T ]

p
F̂F[T ](x) � F(x)
� �

j < 3 [T ]�1=2, (4:1)

for any T . 0. Here [T ] denotes the integer value of the real number T. h

4.2. Estimation of the asymptotic variance � 2(x)

Here we construct a consistent estimator of the variance of the asymptotic law in Theorem

4.1. Let x 2 R . Into the expression

� 2(x) ¼ 2

ð1
0

Ft(x, x) � F(x)2
� �

dt

we plug estimators of each of the two terms under the integral symbol. That is, we define an

estimator of � 2(x) by

�̂� 2
T (x) :¼ 2

ðT �

0

F̂Ft,T (x) � F̂FT (x)2
� �

dt

for some fixed � . 0, where

F̂Ft,T (x) :¼ 1

T

ðT

0

I X s<x ,X sþ t<xf g ds:

Proposition 4.2. Let X be a strongly mixing stationary process with Æ(�) 2 L1[0, 1). For

each 0 , � , 1=3, we have

lim
T!1

�̂� 2
T (x) ¼ � 2(x) in quadratic mean:

Proof. The stationarity of the process X ensures that the estimators F̂FT (x) and F̂Ft,T (x) are

unbiased: E F̂FT (x) ¼ F(x) and E F̂Ft,T (x) ¼ Ft(x, x). The mean of �̂� 2
T (x) can be expressed in

the following way:

E �̂� 2
T (x) ¼ 2

ðT �

0

Ft(x, x) � F(x)2
� �

dt � 2 T � var F̂FT (x): (4:2)

As Æ(�) 2 L1[0, 1) and 0 , � , 1=3, the last term on the right-hand side of (4.2) converges

to 0 as T ! 0. Thus
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lim
T!1

E �̂� 2
T (x) ¼ 2

ð1
0

Ft(x, x) � F(x)2
� �

dt

and the estimator �̂� 2
T (x) is asymptotically unbiased.

We now establish the convergence in quadratic mean. For this purpose, consider the

decomposition

�̂� 2
T (x) � E �̂� 2

T (x) ¼ 2

ðT �

0

F̂Ft,T (x) � Ft(x, x)
� �

dt

� 2 T � F̂FT (x)2 � F(x)2
� �

� 2 T � var F̂FT (x):

We know that the last term converges to 0. As the random variable F̂FT (x) þ F(x) is

bounded, we obtain the convergence

lim
T!1

T � F̂FT (x)2 � F(x)2
� �

¼ 0 in quadratic mean:

The Cauchy–Schwarz inequality gives the bound

E

ðT �

0

F̂Ft,T (x) � Ft(x, x)
� �

dt

� �2
( )

< T �

ðT �

0

var F̂Ft,T (x) dt:

Furthermore, we have

var F̂Ft,T (x) ¼ 2

T 2

ðT

0

ðT�u

0

cov g(X s)g(X sþ t), g(X sþu)g(X sþuþ t)f gdsdu

< c
2t

T
þ 2

T

ðT

0

Æ(s) ds

� �
,

for some c . 0. Then, as Æ(�) 2 L1[0, 1) and 0 , � , 1=3, we deduce that

lim
T!1

E

ðT �

0

F̂Ft,T (x) � Ft(x, x)
� �

dt

� �2
( )

¼ 0:

This completes the proof of the lemma. h

Similarly we may state the rate of convergence in quadratic mean for the estimator

�̂� 2
T (x).

Proposition 4.3. Assume that Æ(t) ¼ O(t�ª) as t ! 1, for some ª . 1. Then

lim
T!1

T � �̂� 2
T (x) � � 2(x)

� �
¼ 0 in quadratic mean,

for any 0 , � , 1=3 and any � , min (1 � 3�)=2, �(ª� 1)f g.

We also obtain almost sure convergence of �̂� 2
T (x).
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Proposition 4.4. Assume that Æ(t) ¼ O(t�ª) as t ! 1, for some ª . 3=2. Then

lim
T!1

T � �̂� 2
T (x) � � 2(x)

� �
¼ 0 almost surely,

for any 0 , � , 1=4 and any � , min (1 � 4�)=3, �(2ª� 3)=3f g.

The asymptotic covariance C(x, y) can be estimated by

ĈCT (x, y) :¼
ðT �

0

F̂Ft,T (x, y) þ F̂Ft,T (y, x) � 2 F̂FT (x)F̂FT (y)
� �

dt,

where

F̂Ft,T (x, y) :¼ 1

T

ðT

0

I X s<x ,X sþ t< yf g ds:

Propositions 4.2, 4.3 and 4.4 are still valid if �̂� 2
T (x) is replaced by ĈCT (x, y). We also deduce

the following result which can be applied for the construction of confidence intervals of F(x):

Corollary 4.5. If the stationary process is strongly mixing with Æ(�) 2 L1[0, 1), thenffiffiffiffi
T

p

�̂� T (x)
F̂FT (x) � F(x)
� �

! N 0, 1ð Þ in law,

as T ! 1, for any x 2 R such that � 2(x) 6¼ 0.

5. Weak convergence

The goal of this section is to establish a functional central limit result for the process

ĜGT :¼ ĜGT (x) :¼
ffiffiffiffi
T

p
F̂FT (x) � F(x)
� �

, x 2 R
� �

as T ! 1. By the Cramér–Wold device we

obtain the following multivariate version of Theorem 4.1.

Corollary 5.1. Let X be a strongly mixing stationary process with Æ(�) 2 L1[0, 1). Then

ĜGT (x1), . . . , ĜGT (xn)
� �

! N n 0, �(x1, . . . , xn)ð Þ in law,

for all n 2 N� and all x1, x2, . . . , xn 2 R . Here N n 0, �(x1, . . . , xn)ð Þ designates the

multivariate zero-mean normal law with covariance matrix �(x1, . . . , xn) given by

C(xi, xj)
� �

1<i, j<n
.

Thanks to Prohorov’s theorem (see Billingsley 1968) it remains to prove the tightness

property in a separable complete metric functional space. Notice that almost all paths of the

processes ĜGT , T . 0, are bounded functions from R into R which are right-continuous with

limits from the left. The tightness conditions are less cumbersome to prove when almost all

paths of the asymptotic process belong to a separable space of continuous functions. Thus

we will consider such a space.

Let X be the semi-metric space (R, r) where r(x, y) :¼ jF(x) � F(y)j. Following Pollard
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(1990), we consider the space B(X) of bounded real-valued Borel functions defined on X,

endowed with the uniform metric d( f , g) :¼ supx2Xj f (x) � g(x)j. We will prove that the

asymptotic law of ĜGT , as T ! 1, is concentrated on the space U(X) :¼
g 2 B(X) : g : X ! R uniformly continuousf g which is separable and complete, the

space X being totally bounded. We adapt to our setting the chaining method as described by

Rio (2000, Theorem 7.2) for the weak convergence of the empirical process for strongly

mixing stationary sequences of random variables. Hence we obtain the following weak

convergence of ĜGT in B(X):

Theorem 5.2. Assume that Æ(t) ¼ O t�ªð Þ as t ! 1 for some ª . 1. Then the process ĜGT

converges in law in B(X), as T ! 1, to a Gaussian process G :¼ fG(x), x 2 Rg with

covariance function cov G(x), G(y)f g ¼ C(x, y). Furthermore, the asymptotic Gaussian

process can be chosen such that almost all its paths are uniformly continuous from X into R .

Under the hypotheses of Theorem 5.2, almost all paths of ĜGT are bounded elements of

D(R). Furthermore, the space U(X) is a separable closed subset of D(R) endowed with the

uniform metric. Thus we deduce the following more classical result.

Corollary 5.3. Assume Æ(t) ¼ O t�ªð Þ as t ! 1, for some ª . 1. Then the process ĜGT

converges in law in D(R) endowed with the uniform metric, as T ! 1, to a Gaussian

process.

If the stationary distribution function F(�) is also continuous, then almost all paths of ĜGT

are elements of the space Cb(R) of bounded continuous functions from R into R . Moreover,

the space U(X) is a separable closed subset of U(R) \ Cb(R) endowed with the uniform

metric. Hence we deduce the following result:

Corollary 5.4. Assume that F(�) is continuous, and Æ(t) ¼ O t�ªð Þ as t ! 1 for some ª . 1.

Then the process ĜGT converges in law in Cb(R) endowed with the uniform convergence, as

T ! 1, to a Gaussian process such that almost all its paths are uniformly continuous on R .

6. Proof of Theorem 5.2

We have seen that we only need to verify the tightness of the sequence of processes GT ,

T . 0. From (4.1) it suffices to consider the sequence GNð ÞN.0. For this purpose we shall

verify that the following condition due to Pollard (1990, Theorem 10.2) is satisfied: for all

E . 0 and � . 0 there is � . 0 such that

lim sup
N!1

P� sup
r(x, y),�

jĜGN (x) � ĜGN (y)j . �

( )
, E, (6:1)

where P� is the outer probability associated with P (see also van der Vaart and Wellner

1996).
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This condition and the finite-dimensional convergence (Corollary 5.1) imply that the

sequence ĜGN

� �
N2N weakly converges to a probability measure concentrated on U(X). Then

Theorem 5.2 is proved.

We follow the proof given by Rio (2000, Theorem 7.2) in the discrete-time context. Here

we replace the indicator function IfX i2Ag by the centred integrated indicator function �i(A)

defined by relation (6.3) below. Moreover, as we do not assume the continuity of F(�), we

need to construct convenient intervals I l, j to control the suprema in (6.4).

Let Z N be the stochastic measure defined on B(R) by

Z N (A) :¼
ffiffiffiffiffi
N

p 1

N

ðN

0

IfX s2Ag ds � �(A)


 �
¼ 1p

N

XN

i¼1

�i(A), (6:2)

where � is the marginal stationary law of the process fX t, t > 0g, and the centred integrated

indicator function is defined on B(R) by

�i(A) :¼
ð i

i�1

IfX s2Ag ds � �(A): (6:3)

As the stochastic process X t, t > 0f g is stationary with mixing coefficient function Æ(�), for

each A 2 B(R) the stochastic sequence (�i(A))i.0 is stationary with mixing coefficient

Æi < Æ(i � 1) for i > 1. Notice that ĜGN (x) ¼ Z N (�1, x].

The generalized inverse function of F(�) is defined by F�1(u) :¼ inffx 2 R : F(x) > ug.
This function F�1 : [0, 1] ! [�1, 1] is non-decreasing and left-continuous. Futhermore,

we have FF�1(u) > u, F�1 F(x) < x, FF�1 F(x) ¼ F(x) and F�1 FF�1(u) ¼ F�1(u), for

any u 2 [0, 1] and any x 2 R. Now for x 2 R and k 2 N, let �k(x) :¼ F�1sk(x) where

sk(x) is the kth partial sum of the dyadic expansion of F(x), that is, sk(x) :¼ 2�k 2k F(x)
� 

where 2k F(x)
� 

is the integer value of 2k F(x).

Let 2n�1 , N < 2n and k , n be fixed. First of all, we estimate the supremum in (6.1)

as

sup
r(x, y)<�

jĜGN (x) � ĜGN (y)j < 2 sup
x2R

jZ N �k(x), xð �j

þ sup
r(x, y)<�

jĜGN �k(x)ð Þ � ĜGN �k(y)ð Þj, (6:4)

for each � . 0. Moreover, we have

sup
x2R

jZ N �k(x), xð �j <
Xn

l¼kþ1

sup
x2R

jZ N � l�1(x), � l(x)ð �j þ sup
x2R

jZ N �k(x), xð �j:

As F(x) � 2� l < F� l(x) < F� lþ1(x) < F(x) for any x 2 R and any l 2 N, the size of each

jump of F(�) in the interval (� l(x), x] is smaller than 2� l, and we can write

sup
x2R

jZ N �k(x), xð �j <
Xn

l¼kþ1

˜ l þ ˜�n

where
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˜�n :¼ sup
x2R

jZ N �n(x), xð �j and ˜ l :¼ max
j¼1,...,2 l

jZ N I l, j

� �
j,

with

I l, j :¼
F�1 ( j � 1)2� l

� �
, F�1 j2� l

� �� 
if 0 < r F�1 j2� l

� �
, F�1 ( j � 1)2� l

� �� �
< 2� l,

F�1 ( j � 1)2� l
� �

, F�1 j2� l
� �� �

if r F�1 j2� l
� �

, F�1 ( j � 1)2� l
� �� �

. 2� l,




for any j ¼ 1, . . . , 2 l. As

�
ffiffiffiffiffi
N

p
� �n(x), xð � < Z N �n(x), xð � ¼ 1ffiffiffiffiffi

N
p

ðN

0

IfX s2(� n(x),x]g dt

for any x 2 R, we readily deduce that ˜�n < ˜n þ
ffiffiffiffiffi
N

p
2�n and

sup
x2R

jZ N �k(x), xð �j < 2N�1=2 þ 2
Xn

l¼kþ1

˜ l: (6:5)

If x and y are such that r(x, y) < 2�k , then sk(x) ¼ sk(y) or jsk(y) � sk(x)j ¼ 2�k. Thus

r �k(x), �k(y)ð Þ < 2�k . Then we have

sup
r(x, y)<2� k

jĜGN (�k(x)) � ĜGN (�k(y))j < max
j¼1,...,2 k

jZ N I k, j

� �
j ¼ ˜k : (6:6)

To prove (6.1) we need to study ˜ l in (6.5) and (6.6). Specifically, we will estimate E˜ l.

Remark that

E˜ l ¼
ð1

0

P ˜ l . zf gdz:

To evaluate P ˜ l . zf g we apply a symmetrization method (see Rio 2000). Let (E j) j.0 be a

sequence of Rademacher random variables (i.i.d. symmetric random variables with values in

f�1, 1g), independent of the process fX t, t > 0g.

Let z > 0 and let J be a finite subset of 1, . . . , 2 l
� �

. Consider ø 2 � such that

max
j2J

jZ N I l, j

� �
(ø)j > z:

Denote by j0 ¼ j0(ø) the lowest integer j in J such that jZ N (I l, j)(ø)j > z. Then for any

e1, . . . , ejJ j
� �

2 f�1, 1gjJ j, one of the two numbersX
j2Jnf j0g

e j Z N I l, j

� �
(ø) þ Z N I l, j0

� �
(ø),

X
j2Jnf j0g

e j Z N I l, j

� �
(ø) � Z N I l, j0

� �
(ø)

is outside the interval (�z, z). (Here jJ j denotes the number of elements in the set J .) Thus

there are at least 2jJ j�1 distinct values for e1, . . . , ejJ j
� �

in f�1, 1gjJ j such that����X
j2J

e j Z N I l, j

� �
(ø)

���� > z:

Then, thanks to the choice of the random variables E j, j ¼ 1, . . . , 2jJ j, we deduce the

following maximal inequality:
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P max
j2J

jZ N (I l, j)j > z


 �
< 2 P

����X
j2J

E j Z N (I l, j)

���� > z

( )
: (6:7)

Let m be an integer in 1, . . . , lf g whose value will be chosen later. For k 2 1, . . . , 2mf g,

let J k :¼ (k � 1)2 l�m þ 1, . . . , k 2 l�m
� �

. Inequality (6.7) implies that

P ˜ l > zf g <
X2 m

k¼0

P max
j2J k

jZ N (I l, j)j > z


 �
< 2

X2m

k¼0

P

����X
j2J k

E j Z N (I l, j)

���� > z

( )
:

Then we fix the values of the random variables Ei, i ¼ 1, . . . , 2jJ j, again. That is, let

e1, . . . , ejJ j
� �

2 f�1, 1gjJ j. By (6.2) we have the decomposition

X
j2J k

e j Z N (I l, j) ¼
1ffiffiffi
n

p
Xn

i¼1

X
j2J k

e j�i(I l, j):

The stochastic sequence (
P

j2J k
e j�i(I l, j))i.0 is stationary with strong-mixing coefficient

Æi < Æ(i � 1) < c i�ª ^ 1, for any i > 1 and for some c . 0. Then the extension of the Fuk–

Nagaev inequality proved by Rio (2000, Theorem 6.2 and Relation 6.19b) applies. We obtain

the bound

P
XN

i¼1

����X
j2J k

e j�i(I l, j)

���� > 4 z
ffiffiffiffiffi
N

p
( )

< 4 1 þ z2

rs2
N

� ��r=2

þ 2c N rªz�ª�1, (6:8)

for all r, z . 0, where

s2
N :¼

XN

i1¼1

XN

i2¼1

����cov
X
j2J k

e j�i1 (I l, j) ,
X
j2J k

e j�i2 (I l, j)

( )����:
By stationarity we have that

s2
N ¼ N var

X
j2J k

e j�1(I l, j)

( )
þ 2

Xn

i¼2

N � i þ 1ð Þcov
X
j12J k

e j1�1(I l, j1 ),
X
j22J k

e j2�i(I l, j2 )

( )
:

On the one hand, by construction of the intervals I l, j we have �(I l, j) < 2� l for all l and j;

thus we obtain that

����cov
X
j12J k

e j1�1(I l, j1 ),
X
j22J k

e j2�i(I l, j2 )

( )���� < E�1

[
j2J k

I l, j

 !
þ E�1

[
j2J k

I l, j

( )2

< 2
X
j2J k

� I l, j

� �

< 2 3 2 l�m 3 2� l ¼ 2�mþ1:

On the other hand, the mixing property yields the inequality
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�����cov
X
j12J k

e j1�1(I l, j1 ),
X
j22J k

e j2�i(I l, j2 )

( )����� < 2Æi�1

������1

[
j2J k

I l, j

 !�����
2

1

< 2Æi�1:

As Æi ¼ O(i�ª) as i ! 1, we deduce that

s2
N < 2�mþ1 þ 4

XN

i¼1

Æi�1 ^ 2�m < c 2m(ª�1)=ª,

for some c . 0. Then, using inequality (6.8), we write

P

�����
X
j2J k

e j Z N (I L, j)

����� > 4 z

( )
< P

�����
Xn

i¼1

X
j2J k

e j�i(I l, j)

����� > 4 z
ffiffiffi
n

p
( )

< 4 1 þ z2 N

2m(1�ª)=ª rN

� ��r=2

þ 2c N (1�ª)=2 rªz�ª�1,

for all r, z . 0. The independence properties of the sequence (E j) j entail that

P

�����
X
j2J k

E j Z N (I l, j)

����� > 4 z

( )
< 4 3 2rm(1�ª)=(2ª) r r=2z�r þ 2 c N (1�ª)=2 rªz�ª�1:

Thus we deduce that

P ˜L > 4 zf g < 23þm(2ª�ªrþr)=(2ª) r r=2z�r þ c 22þm N (1�ª)=2 rªz�ª�1:

Taking r ¼ 4ª=(ª� 1), we obtain that

P ˜L > 4 zf g < c 2�mz�r þ 2m N (1�ª)=2z�ª�1
� 	

,

for some c . 0. Thus

E˜ l ¼ 4

ð1
0

P ˜ l > 4zf gdz

< 8 c 2�m(ª�1)=(4ª) þ 2m=(ªþ1) N (1�ª)=(2ªþ2)
� 	

:

Following Rio (2000), we choose m 2 1, . . . , lf g such that E˜ l is the general term of a

convergent series. For instance, m ¼ l(ª� 1)=(4ª)½ � ¼ l=r½ �. Indeed, in this situation, as

2 l�1 < 2n�1 , N , we have 2�m(ª�1)=(4ª) < 21=r 3 2� l=r2

and 2m=(ªþ1) N (1�ª)=(2ªþ2) < 21=r

3 2� l(2ª�1)=(rªþr). We deduce that

E˜ l < c 25� l=r2

:

Hence

Xn

l¼kþ1

E˜ l < 32 c
2�k=r2

21=r2 � 1
: (6:9)
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Then from (6.4)–(6.6) and (6.9) we can readily complete the proof of the theorem using

Markov’s inequality.
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Probabilités de Saint Flour XII–1982, Lecture Notes in Math. 1097, pp. 1–142. Berlin: Springer-

Verlag.

Ibragimov, I.A. and Linnik, Yu.V. (1971) Independent and Stationary Sequences of Random Variables.

Groningen: Wolters-Noordhoff.

Kutoyants, Yu.A. (2003) Statistical Inference for Ergodic Diffusion Processes. London: Springer-

Verlag.

Meyn, S.P. and Tweedie, R.L. (1993a) Stability of Markovian processes II: Continuous-time processes

and sampled chains. Adv. Appl. Probab., 25, 487–517.

Meyn, S.P. and Tweedie, R.L. (1993b) Stability of Markovian processes III: Foster–Lyapunov criteria

for continuous-time processes. Adv. Appl. Probab., 25, 518–548.

Negri, I. (1998) Stationary distribution function estimation for ergodic diffusion process. Statist.

Inference Stochastic Process., 1(1), 61–84.

Pollard, D. (1990) Empirical Processes: Theory and Applications, NSF-CBMS Reg. Conf. Ser. Probab.

Statist. 2. Hayward, CA, and Alexandrias, VA: Institute of Mathematical Statistics and American

Statistical Association.
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